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Abstract

Vision-language pre-training (VLP) has recently proven highly effective for various uni- and
multi-modal downstream applications. However, most existing end-to-end VLP methods use
high-resolution image-text-box data to perform well on fine-grained region-level tasks, such
as object detection, segmentation, and referring expression comprehension. Unfortunately,
such high-resolution images with accurate bounding box annotations are expensive to col-
lect and use for supervision at scale. In this work, we propose VoLTA (Vision-Language
Transformer with weakly-supervised local-feature Alignment), a new VLP paradigm that
only utilizes image-caption data but achieves fine-grained region-level image understand-
ing, eliminating the need for expensive box annotations. VoLTA adopts graph optimal
transport-based weakly-supervised alignment on local image patches and text tokens to
germinate an explicit, self-normalized, and interpretable low-level matching criterion. In
addition, VoLTA pushes multi-modal fusion deep into the uni-modal backbones during pre-
training and removes fusion-specific transformer layers, further reducing memory require-
ments. Extensive experiments on a wide range of vision- and vision-language downstream
tasks demonstrate the effectiveness of VoLTA on fine-grained applications without com-
promising the coarse-grained downstream performance, often outperforming methods using
significantly more caption and box annotations. Code and pre-trained model are available
at https://github.com/ShramanPramanick/VoLTA.

1 Introduction

Inspired by the escalating unification of transformer-based modeling in vision (Dosovitskiy et al., 2021; Liu
et al., 2021; Chen et al., 2021a) and language (Devlin et al., 2019; Liu et al., 2019) domains, coupled with
readily available large-scale image-caption pair data, vision-language pre-training (VLP) (Lu et al., 2019; Li
et al., 2020a; Kim et al., 2021; Kamath et al., 2021; Zhang et al., 2021) has recently been receiving increasing
attention. VLP has not only been proven the de-facto for several vision-language tasks, but it has also been
beneficial for traditional vision-only tasks, such as image classification and object detection. Such wide-range
applications of VLP can broadly be categorized into two groups: (i) tasks requiring image-level understand-
ing, e.g., image classification, image & text retrieval (Plummer et al., 2015), image captioning (Zhou et al.,
2020), visual question answering (Antol et al., 2015), and (ii) tasks requiring region-level understanding, e.g.,
object detection, instance segmentation, and referring expression comprehension (Kazemzadeh et al., 2014;
Yu et al., 2016). Most existing VLP methods address only one group of application, leaving the question of
a generalizable and unified VL framework under-explored.

Traditional VLP methods with image-level understanding (Li et al., 2021a; Wang et al., 2021b; Dou et al.,
2022b) utilize large-scale image-caption pair datasets and are commonly trained with image-text contrastive
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Figure 1: Different Categories of VLP frameworks. Existing VLP systems perform separate pre-
training for image-level (Li et al., 2021a; Wang et al., 2021b; Dou et al., 2022b) and region-level (Kamath
et al., 2021; Li et al., 2022c; Zhang et al., 2022) understanding and do not generalize well to coarse- and fine-
grained downstream tasks. In contrast, our proposed method, VoLTA, unifies both downstream with a single
pre-training setup and attains fine-grained region-level understanding without using expensive bounding box
annotations during pre-training.

objectives computed on global features. Hence, it is not trivial to extend such methods to region-level
applications. On the other hand, VLP methods with region-level understanding (Kamath et al., 2021; Li
et al., 2022c; Zhang et al., 2022) use image-text-box grounding data and are designed to predict bounding
boxes during pre-training. Consequently, they do not support image-level tasks. Furthermore, accurate
bounding box annotations require high-resolution input images, which are often expensive to collect, annotate
and use for pre-training at scale. Recently, FIBER (Dou et al., 2022a) addressed the problem of such unified
VLP and proposed a two-stage pre-training algorithm requiring fewer box annotations than previous region-
level pre-training methods. Moving a step forward, as shown in Figure 1, we aim to eliminate the use of costly
box annotations and ask the challenging but natural question: Can we attain region-level understanding from
global image-caption annotations and unify image- and region-level tasks in a single VL framework?

Subsequently, we focus on achieving region-level fine-grained understanding by weakly-supervised alignment
of image patches and text tokens. Previous VLP methods (Chen et al., 2020d; Kim et al., 2021) in this
direction use Wasserstein distance (WD) (Peyré et al., 2019), a.k.a Earth Mover’s distance (EMD)-based
optimal transport (OT) algorithms for such alignment problems. However, we argue that WD is not optimum
for images with multiple similar entities. Thus, we propose to jointly utilize Gromov-Wasserstein distance
(GWD) (Peyré et al., 2016) and Wasserstein distance (WD) in a setup known as graph optimal transport
(Chen et al., 2020a). Moreover, instead of using a commonly deployed contrastive objective, we propose to
use redundancy reduction from Barlow Twins (Zbontar et al., 2021), which is less data-intensive and does not
require hard-negative mining. We also follow Dou et al. (2022a) and incorporate deep multi-modal fusion into
the uni-modal backbones, removing the need for costly fusion-specific transformer layers. These steps when
integrated yield VoLTA, Vision-Language Transformer with weakly-supervised local-feature Alignment, a
unified VLP paradigm only utilizes image-caption annotations but achieves fine-grained region-level image
understanding, eliminating the need for expensive box annotations. Figure 4 visualizes the feature-level
image-text alignment generated by VoLTA, which can attend text tokens to the corresponding visual patches
without relying on low-level supervision.

In summary, our contributions are three-fold. (i) We propose to use graph optimal transport for weakly-
supervised feature-level patch-token alignment in VLP. (ii) We introduce VoLTA, a unified VLP paradigm for
image-level and region-level applications, but pre-trained only using image-caption pairs. VoLTA is memory,
compute, and time-efficient and can easily be scaled up with readily available large-scale image-caption data
harvested from the web. (iii) We present the results of a wide range of vision- and vision-language coarse-
and fine-grained downstream experiments to demonstrate the effectiveness of VoLTA compared to strong
baselines pre-trained with significantly more caption and box annotations.
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2 Related Works

Uni-modal Self-supervised Pre-training: In recent years, the machine learning community has observed
a boom in self-supervised pre-training. In the language domain, representations learned by BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) have become the default setting for many downstream tasks.
Generative models such as GPT (Radford et al., 2019; Brown et al., 2020) have also achieved impressive
few-shot/zero-shot performances on novel applications. SimCSE (Gao et al., 2021) uses contrastive learning
to help learn useful sentence representations.

In the vision domain, several contrastive/joint-embedding methods (He et al., 2020; Chen et al., 2020c; 2021b;
2020b; Grill et al., 2020; Chen & He, 2021; Caron et al., 2021; Zbontar et al., 2021; Bardes et al., 2022; Shah
et al., 2022; Assran et al., 2022) have outperformed supervised counterparts. Recently, generative models
such as BEiT (Bao et al., 2021) and MAE (He et al., 2022) have also achieved impressive performances with
much more scalable potential.

Vision-Language Pre-training (VLP): Vision-language pre-training mainly relies on image-text pair
datasets to learn joint visual-language representations. One line of work is to train separate vision and
language encoders and only fuse in the representation space. CLIP (Radford et al., 2021), UniCL (Yang et al.,
2022a), and ALIGN (Jia et al., 2021) use the image-text contrastive loss to learn aligned representations.
SLIP (Mu et al., 2021) combines self-supervised visual representation learning and contrastive multi-modal
learning. M3AE (Geng et al., 2022), FLAVA (Singh et al., 2022) combines masked image modeling and
masked language modeling. Another line of work uses cross attention to fuse vision and language information
in the early stage (Kamath et al., 2021; Dou et al., 2022b; Lu et al., 2019; Li et al., 2020b; Kiela et al., 2019;
Kim et al., 2021; Zhang et al., 2021; Li et al., 2022b; Wang et al., 2022c; Pramanick et al., 2023; Park &
Han, 2023; Li et al., 2023a; Jang et al., 2023; Wang et al., 2023a). These works focus on learning semantic-
level aligned vision-language representations. In addition, UniTAB (Yang et al., 2022c), OFA (Wang et al.,
2022b), GLIP (Li et al., 2022c), and FIBER (Dou et al., 2022a) use expensive grounding image-text-box
annotations to learn the fine-grained aligned representations. Our work uses representation space alignment
and cross-attention fusion, but we do not use any box annotation to learn robust feature-level alignments.

Unsupervised Representation Alignment: Unsupervised multi-modal alignment typically relies on spe-
cific metrics. Wasserstein distance (Peyré et al., 2019), a.k.a EMD-based optimal transport (OT) algorithms
have been widely adopted to various domain alignment tasks, including sequence-to-sequence learning (Chen
et al., 2019), few-shot learning (Zhang et al., 2020), knowledge distillation (Balaji et al., 2019), unsupervised
domain adaptation (Balaji et al., 2019), generative networks (Han et al., 2015; Genevay et al., 2018; Mroueh
et al., 2018; 2019), and multi-modal learning (Yuan et al., 2020; Chen et al., 2020d; Kim et al., 2021; Li
et al., 2022d; Pramanick et al., 2022). Previous VLP methods (Chen et al., 2020d; Kim et al., 2021), which
use OT-based patch-word alignment, only utilize the Wasserstein distance. However, we argue that jointly
modeling GWD (Peyré et al., 2016) and WD results in a superior multi-modal alignment for intricate images.
To the best of our knowledge, this is the first work to apply WD and GWD-based optimal transport for
feature-level alignment in VLP.

3 Proposed System - VoLTA

In this section, we present our proposed approach, VoLTA, which contains three broad modules - (i) intra-
and inter-modality redundancy reduction, (ii) weekly-supervised cross-modal alignment of local features,
and (iii) cross-modal attention fusion (CMAF). Next, we introduce the fine-tuning strategies for various
uni- and multi-modal downstream tasks as supported by VoLTA. An overview of the different modules of
VoLTA is presented in Figure 2.

3.1 Intra- & Inter-modality Redundancy Reduction

We use Barlow Twins (BT) (Zbontar et al., 2021), a non-contrastive covariance regularization as the foun-
dational objective of VoLTA. The recent success of contrastive vision-language pre-training (Radford et al.,
2021; Li et al., 2021b; Jia et al., 2021; Kim et al., 2021; Yang et al., 2022a; Dou et al., 2022a;b) has already
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Figure 2: Computation of four different objectives, LBT, LGOT, LMLM, and LITM by the proposed
VoLTA framework. Inspired by Dou et al. (2022a), VoLTA inserts cross-modal attention fusion (CMAF)
inside uni-modal backbones with a gating mechanism. During VoLTA pre-training, every forward iteration
consists of three steps - (i) CMAF is switched off, VoLTA acts as dual encoder, LBT and LGOT are computed.
(ii) CMAF is switched on, VoLTA acts as fusion encoder, and image-masked caption pair is fed into the
model to compute LMLM. (iii) CMAF is kept on, randomly sampled image-caption pair is fed into the
model to compute LITM. Such a fusion strategy results in a lightweight and flexible model compared to
using fusion-specific transformer layers.

shown that, compared to a single modality, image-caption pairs offer a significantly higher-level of abstractive
and semantic concepts about the training samples. However, common contrastive VLP objectives, like In-
foNCE (Oord et al., 2018), are data-hungry, as they require large batch sizes and well-mined hard negatives.
On the other hand, the BT objective operates on the dimensions of the embeddings across the two views of
training samples. Hence, it is more robust to batch size and can be trained using lower memory resources.
In this work, we extend the BT objective for a multi-modal setup.

The original BT algorithm, which operates on joint embeddings of distorted samples, was proposed only
for image modality. Specifically, for each image of a batch X , two distorted views are obtained using a
distribution of data augmentation T with disparate probabilities. These distorted images are then fed into
a shared image encoder containing a feature extraction network (e.g., ResNet (He et al., 2016)) cascaded
with trainable linear projection layers, producing a batch of parallel embeddings zA and zB . The BT loss
computed using the encoded embeddings can be denoted as:

LBT ≜
∑

i

(
1 − Cii

)2 + λ
∑

i

∑
j ̸=i

(
Cij

)2
,where, Cij =

∑
b z

A
b,iz

B
b,j√∑

b

(
zA

b,i

)2
√∑

b

(
zB

b,j

)2
(1)

λ is a positive weighting factor; C is the cross-correlation matrix computed between zA and zB along the
batch dimension; b stands for sample indices in a batch; i, j refers to the dimension indices of zA and zB .
The first term in Equation 1 is the invariance term which attempts to equate the diagonal elements of the
cross-correlation C matrix to 1, whereas the second term is the redundancy reduction term which pushes the
off-diagonal elements of C matrix to 0.

In this work, we use BT for image-caption pairs. Specifically, we use stochastic data augmentations for both
images and text1, and directly apply the BT objective for all the 2×2 pairs, resulting in additional supervision.
Note this simple, straightforward, and instinctive extension enables us to apply redundancy reduction in
between and across modalities, which intuitively results in superior visual representation. Moreover, in this

1Augmentation details are provided in Appendix D.1.
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bi-modal setting, we can pre-train a text encoder in parallel with the image encoder and, thus, can generalize
our system to a broader range of uni- and multi-modal downstream applications.

Intra-modal Objective: Intra-modal objective refers to applying the BT loss in-between pairs of image
and text embeddings. Given an image-caption pair, we first have two augmented views (I, I ′) for each image,
and two augmented views (T, T ′) for each text. Then, we resort to Equation 1 individually for the image
and text pairs.

Lk
BT ≜

∑
i

(
1 − Ck

ii

)2 + λ
∑

i

∑
j ̸=i

(
Ck

ij

)2
,∀ k ∈ {II ′, TT ′} (2)

Inter-modal Objective: Inter-modal objective refers to applying the BT loss across image and text embed-
dings. Since the image and text encoders can output features with different shapes, we design the projector
layers with same output dimension. Hence, in addition to the original BT loss between (I, I ′) in Zbontar
et al. (2021), we get three more loss terms - (T, T ′), (I, T ′), (I ′, T ), leading to 3× diverse and high-quality
additional supervision. The inter-modal BT losses can be directly computed following Equation 1.

Lk
BT ≜

∑
i

(
1 − Ck

ii

)2 + λ
∑

i

∑
j ̸=i

(
Ck

ij

)2
,∀ k ∈ {IT ′, I ′T} (3)

The resulting bi-modal BT loss is LBT =
∑

k Lk
BT, ∀ k ∈ {II ′, TT ′, IT ′, I ′T}.

3.2 Alignment of Local Features
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Figure 3: Illustration of the graph optimal trans-
port (GOT) algorithm used for patch-word
alignment in the proposed VoLTA framework.
We obtain patch- and token-level features from the
last layers of corresponding visual and textual trans-
former encoders and use these encoded local-feature
vectors to construct modality-specific dynamic graphs
- Gx(Vx, Ex) for image patches and Gy(Vy, Ey) for
text tokens. Next, we perform patch-word align-
ment by utilizing the Gromov-Wasserstein distance
and Wasserstein distance for edge and node match-
ing, which preserves the topological graph structure.
See Section 3.2 for details. Darker edges denote larger
weights.

Though the inter-modal redundancy reduction pro-
vides high-quality semantic supervision, it is com-
puted on the global image- and text features and,
thus, only simulates implicit and non-interpretable
multi-modal alignment. However, fine-grained
region-level downstream applications like detection,
segmentation, and reference expression comprehen-
sion require local visual feature descriptors with
specific spatial information. To achieve this, most
existing top-performing VLP methods, including
UniTAB (Yang et al., 2022c), OFA (Wang et al.,
2022b), GLIP (Li et al., 2022c), and FIBER (Dou
et al., 2022a), use high-resolution image-text-box
data for fine-grained pre-training. However, bound-
ing box annotations are expensive to collect and use
for supervision. Hence, we seek an alternate weekly-
supervised solution for local feature-level alignment
using global image-caption annotations.

Recently, WD (Peyré et al., 2019), a.k.a EMD-based
OT algorithms have been used for weakly-supervised
patch-word alignment in VLP (Chen et al., 2020d;
Kim et al., 2021). Such OT-based learning meth-
ods are optimized for distribution matching by min-
imizing the cost of a transport plan. We pose the
patch-word alignment as a more structured graph-
matching problem and use the graph optimal trans-
port (GOT) algorithm, which utilizes GWD (Peyré
et al., 2016) in conjunction with WD to ensure the
preservation of topological information during cross-
modal alignment. More specifically, we obtain the patch- and token-level features from the last layers of
corresponding visual and textual transformer encoders, and use these encoded local-feature vectors to con-
struct modality-specific dynamic graphs - Gx(Vx, Ex) for image patches and Gy(Vy, Ey) for text tokens. Each
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node in these graphs i ∈ {Vx,Vy} is represented by corresponding feature vectors, and intermediate edges
e ∈ {Ex,Ey} by thresholded cosine similarity.

Importance of GOT in Patch-Word Alignment: As mentioned previously, GOT adopts two types of
OT distances - WD for node matching and GWD for edge matching. In contrast, previous vision-language
pre-training algorithms using OT for patch-word alignment only considered WD (Chen et al., 2020d; Kim
et al., 2021). However, we argue that intricate images with multiple objects with similar shapes and colors
require both WD and GWD for accurate, fine-grained matching. For example, in Figure 3, there are multiple
“orange" present in the image. WD can only match nodes in the graph, and will treat all “orange" entities as
identical and will ignore neighboring relations like “on the laptop". However, by using proper edge matching
with GWD, we can preserve the graph’s topological structure. We can correctly identify which “orange" in
the image the sentence is referring to. Hence, we couple WD and GWD mutually beneficially and use a joint
transport plan for accurate patch-word matching.

Once Gx and Gy are computed, we follow Chen et al. (2020a) to compute WD and GWD.

Wasserstein Distance calculates the pairwise distances between two sets of cross-domain node embeddings.
Consider two discrete distributions, ϕ ∈ P(X) and ψ ∈ P(Y), where ϕ =

∑n
i=1 uiδxi

and ψ =
∑m

j=1 vjδvj
;

and δx being the Delta-Dirac function centered on x. Since ϕ and ψ are both probability distributions, sum
of weight vectors is 1,

∑
i ui = 1 =

∑
j vj . The WD distance between ϕ and ψ is defined as:

Dw(ϕ, ψ) = min
T∈Π(u,v)

∑
i

∑
j

Tij · c(xi, yj) (4)

where Π(u, v) = {T ∈ Rn×m
+ |T1m = u,T⊤1n = v}, c(xi, yj) is cosine distance metric, and T is the transport

plan, interpreting the amount of mass shifted from ϕi to ψj .

Gromov-Wasserstein Distance assists in edge matching and preserves graph topology by calculating
distances between pairs of nodes in each domain and measuring how these distances compare to the counter
domain. In the same discrete graph matching setting, GWD between ϕ and ψ can be mathematically
represented as:

Dgw(ϕ, ψ) = min
T̂∈Π(u,v)

∑
i,i′,j,j′

T̂ijT̂i′j′L(xi, yj , x
′
i, y

′
j) (5)

where intra-graph structural similarity between two node pairs (xi, x
′
i) and (yj , y

′
j) is represented as

L(xi, yj , x
′
i, y

′
j) = ∥c1(xi, x

′
i) − c2(yi, y

′
i)∥, ci being cosine similarity between a node pair in any graph Gi.

Transport plan T̂ is periodically updated to align the edges in different graphs belonging to disparate modal-
ities.

We further follow Chen et al. (2020a) to combine WD and GWD transport plans, leading to a unified GOT
objective given as:

LGOT(ϕ, ψ) = γDw(ϕ, ψ) + (1 − γ)Dgw(ϕ, ψ) (6)

where γ regulates the importance of two loss terms.

3.3 Cross-Modal Attention Fusion (CMAF)

BT and GOT losses are computed in a dual encoder setting, which does not contain cross-modal interac-
tions and is not suitable for complex multi-modal feature representation. Most existing methods, including
UNITER (Chen et al., 2020d), ViLT (Kim et al., 2021), METER (Dou et al., 2022b), and GLIP (Li et al.,
2022c) design cross-modal fusion by stacking additional transformer layers on top of uni-modal encoders,
introducing a large number of added parameters during pre-training. We follow a more efficient solution
proposed by FIBER (Dou et al., 2022a), which inserts cross-modal fusion into the uni-modal backbones with
a gating mechanism. Specifically, at the top M transformer layers in the vision and language backbone,
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cross-attention signals, weighted by a gating scalar α, are added to self-attention:

x̂ = Self-Att(x)
x = x+ x̂+ α ∗ Cross-Att(x̂, y) (7)
x = x+ FFN(x)

where α is a trainable parameter initialized to 0. Following existing literature (Li et al., 2021a; Wang et al.,
2021a; Dou et al., 2022b;a), we use masked language modeling (MLM) and image-text matching (ITM) to
pre-train the cross-attention parameters. For MLM, we randomly mask 15% text tokens, and the loss aims
to reconstruct the masked tokens. We feed the network with randomly sampled image-caption pairs for ITM,
and the loss predicts whether they are matched. The gating mechanism is a good choice for CMAF because
(i) cross-attention parameters can easily be switched off by setting the gating scalar α to 0 when computing
the BT and GOT losses. Thus, we can learn the cross-attention parameters without affecting the original
computational flow of uni-modal backbones. (ii) gating mechanism is more lightweight and memory-efficient
than adding fusion-specific layers (GLIP and METER use 4× more fusion parameters than VoLTA).

Overall, VoLTA training pipeline can be summarized in the following three steps:

• BT & GOT: CMAF is switched off (α = 0), VoLTA acts as dual encoder, LBT and LGOT are computed.

• MLM & ITM: CMAF is switched on (α ̸= 0), VoLTA now acts as fusion encoder, LMLM and LITM
losses are computed.

• Back-propagation: the four losses are added, giving Ltotal = LBT +wGOT ∗ LGOT + LMLM + LITM, and
back-propagated into the model end-to-end. An ablation on different pre-training objectives of VoLTA
and values of wGOT is given in Section 4.7.

The overall VoLTA pipeline for computation of different training objectives is shown in Figure 2. The
pseudo-code for VoLTA is presented in Appendix A.

3.4 Finetuning For Downstream Tasks

We adopt VoLTA to various vision- and vision-language downstream tasks. We switch off the inserted
cross-attention modules for the vision-only tasks and use the image encoder. We utilize the learned cross-
attention parameters as required for the vision-language tasks, following Dou et al. (2022a). For example,
VQA and visual reasoning employ all cross-attention modules, whereas captioning requires only image-to-
text cross-attention. Again, during IRTR, we switch off all cross-attentions and use VoLTA in a dual encoder
setting. We keep all cross-attention parameters during multi-modal object detection and referring expression
comprehension and train an object detection head from scratch using the language-aware image features.

4 Experiments, Results, and Analysis

4.1 Pre-training & Downstream datasets

Following Chen et al. (2020d) and Huang et al. (2021), we perform pre-training by appending the VG dataset
(Krishna et al., 2017) with COCO2017 (Lin et al., 2014), together consisting of 231k images. We divide our
downstream tasks into three categories - (i) Uni-modal tasks such as image classification on ImageNet
(Deng et al., 2009), VOC07 (Everingham et al., 2010), COCO; object detection on VOC07+12, COCO, and
instance segmentation on COCO. (ii) Multi-modal fine-grained tasks such as region-level VL tasks -
referring expression comprehension (REC) on RefCOCO, RefCOCO+, RefCOCOg (Kazemzadeh et al., 2014;
Yu et al., 2016), and language-conditioned object detection on COCO and LVIS (Gupta et al., 2019). (iii)
Multi-modal coarse-grained tasks such as image-level VL tasks - visual question answering on VQAv2
(Antol et al., 2015), visual reasoning on NLVR2 (Suhr et al., 2019), image- and text retrieval on Flicker30k
(Plummer et al., 2015) and captioning on COCO. We exclude any overlap between our pre-training and
downstream validation/test splits. Detailed statistics of all downstream datasets are given in Appendix C.
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Linear probing on ImageNet Validation Set Linear probing on VOC07 and COCO

Method Pre-train Arch. Pre-training
Supervision Top-1 Method Pre-train Arch. VOC07 COCO

SVM MLP MLP (PC/O)
Sup. IN-1K RN50 Label 76.5 Sup. IN-1K RN50 87.5 90.8 55.2/60.8
Sup. IN-100 RN50 Label 53.3† BYOL IN-1K RN50 86.6 − −
MoCo COCO RN50 NA 44.5† BT IN-1K RN50 86.2 91.9‡ 56.1/63.0‡

MoCo-v2 COCO RN50 NA 49.3† VICReg IN-1K RN50 86.6 91.1‡ 51.0/57.9‡

CAST COCO RN50 Caption 48.7 CAST COCO RN50 74.0 − 51.0/57.9
VirTex COCO RN50 Caption 52.8 VirTex COCO RN50 88.7 − −
ICMLM COCO RN50 Caption 51.9 ICMLM COCO RN50 87.5 − −
MCT COCO RN50 Caption 54.9 LocTex COCO RN50 88.4 − −
MCT COCO RN50 Caption+Tag 55.3 LocTex COCO+OpenIm RN50 92.6 − −
VoLTA(w/o MLM, ITM) COCO RN50 Caption 55.3 VoLTA(w/o MLM, ITM) COCO RN50 89.6 94.3 71.4/74.3
VoLTA(w/o MLM, ITM) COCO Swin-T Caption 56.3 VoLTA(w/o MLM, ITM) COCO Swin-T 88.2 93.5 73.4/75.7
VoLTA(w/o MLM, ITM) COCO Swin-B Caption 62.5 VoLTA(w/o MLM, ITM) COCO Swin-B 88.5 93.9 74.1/76.1
VoLTA COCO Swin-B Caption 62.5 VoLTA COCO Swin-B 89.7 95.0 74.5/76.4

Table 1: Uni-modal downstream: linear image classification. We benchmark learned representations
on image classification tasks by training linear classifiers on fixed features. We report top-1 accuracy on
ImageNet-1k validation set, classification mAP on VOC07, and per-class (PC) and overall (O) F1 scores
on COCO. Numbers with † are re-implemented by Yuan et al. (2021), and the numbers with ‡ are re-
implemented by us. methods trained with significantly larger datasets are colored gray. The best results are
in bold.

Method Pre-train Arch. Pre-training
Supervision

VOC07+12 det COCO det COCO instance seg
APall AP50 AP75 APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

Sup. IN-1K RN50 Label 53.5 81.3 58.8 38.2 58.2 41.2 33.3 54.7 35.2
MoCo-v2† IN-1K RN50 NA 57.4 82.5 64.0 39.3 58.9 42.5 34.4 55.8 36.5
MoCo COCO RN50 NA 47.5 75.4 51.1 38.5 58.5 42.0 35.0 55.6 37.5
MoCo-v2 COCO RN50 NA 48.4 75.5 52.1 39.8 59.6 43.1 35.8 56.9 38.8
CAST COCO RN50 Caption 54.2 80.1 59.9 39.4 60.0 42.8 35.8 57.1 38.6
VirTex COCO RN50 Caption 55.6 81.4 61.5 40.9 61.7 44.8 36.9 58.4 39.7
LocTex COCO RN50 Caption 53.9 80.9 59.8 40.6 60.6 44.1 35.2 57.0 37.4
MCT COCO RN50 Caption 56.1 82.1 62.4 41.1 61.8 44.9 36.9 58.2 40.0
VoLTA COCO RN50 Caption 56.6 84.4 62.7 41.9 61.8 44.8 36.5 58.5 40.8
Sup.‡ IN-1K Swin-T Label − − − 50.5 69.3 54.9 43.7 66.6 47.1
MoBY‡ IN-1K Swin-T NA − − − 50.2 68.8 54.7 43.5 66.1 46.9
VoLTA COCO Swin-T Caption − − − 50.9 69.6 55.5 43.8 66.9 47.5
Sup.‡ IN-1K Swin-B Label − − − 51.9 70.9 56.5 45.0 68.4 48.7
ViTDet IN-1K ViT-B NA − − − 51.6 − − 45.9 − −
CLIP LAION-20M ViT-B Caption − − − 45.2 − − 40.4 − −
SLIP LAION-20M ViT-B Caption − − − 44.7 − − 41.0 − −
MaskCLIP LAION-20M ViT-B Caption − − − 46.6 − − 41.7 − −
VoLTA COCO Swin-B Caption − − − 52.1 71.3 56.6 45.2 68.5 49.0

Table 2: Uni-modal downstream: object detection and instance segmentation with fine-tuning.
We benchmark learned representations on VOC07+12 object detection task using faster R-CNN (Ren et al.,
2015), and on COCO2017 object detection and instance segmentation using mask R-CNN (He et al., 2017),
both with C4 backbone variant (Wu et al., 2019). The best results are in bold. Methods marked with
† and ‡ are not direct comparison to other baselines as they use multiple MLP layers & significant data
augmentations and cascade mask R-CNN (Cai & Vasconcelos, 2018) during fine-tuning, respectively.

4.2 Network Architectures

Following FIBER (Dou et al., 2022a), we adopt Swin-Base (Liu et al., 2021) and RoBERTa-Base (Liu et al.,
2019) as our vision and text encoders, which are initialized with weights from uni-modal pre-training. We
collect patch- and token features from the last transformer layers, feed them into the local projector network,
and compute GOT loss. Furthermore, we apply AvgPool on patch and token features, feed them into the
global projector network, and compute BT loss. Both local and global projector networks have three linear
layers with dimensions 2048-2048-1024, with batch normalization and ReLU after the first two layers. Section
4.7 gives an ablation on projector dimension. We use the image and text features after the AvgPool layer
during downstream tasks. For CMAF, we insert the cross-attention into the top 6 blocks of the vision and
text encoders. Moreover, for direct comparison with existing uni-modal baselines, we re-train VoLTA with
ResNet50 (He et al., 2016) and Swin-Tiny image encoders.
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Method #Pre-train Data RefCOCO RefCOCO+ RefCOCOg
I-T I-T-B val testA testB val testA testB val test

MAttNet − − 76.4 80.4 69.3 64.9 70.3 56.0 66.7 67.0
VLBERT 3M − − − − 71.6 77.7 61.0 − −
ViLBERT 3M − − − − 72.3 78.5 62.6 − −
Ernie-VL-L 4M − − − − 75.9 82.4 66.9 − −
Rosita 4M − 84.8 88.0 78.3 76.1 82.0 67.4 78.2 78.3
UNITER-L 4M − 81.4 87.0 74.2 75.9 81.5 66.7 74.9 75.8
VILLA-L 4M − 82.4 87.5 74.8 76.2 81.5 66.9 76.2 76.7
Models pre-trained on Im-Txt-Box data

MDETR-B − 1.3M 87.5 90.4 82.7 81.1 85.5 73.0 83.4 83.3
UniTAB − 1.3M 86.3 88.8 80.6 78.7 83.2 69.5 80.0 80.0
X-VLM 4M 6.15M - - - 80.2 86.4 71.0 - -
OFA-L 16M 3M 90.1 92.9 85.3 84.5 90.1 77.8 84.5 85.2
FIBER-B 4M 0.8M 90.7 92.6 87.3 85.7 90.1 79.4 87.1 87.3
VoLTA-B 231k − 86.1 88.6 81.8 77.0 82.7 67.8 78.3 78.3

Table 3: Multi-modal fine-grained downstream: referring expression comprehension. Methods
pre-trained on image-text-box (I-T-B) data are colored gray. Best comparable results are in bold. VoLTA-B
denotes Swin-B backbone.

Method COCO Val 2017 LVIS MiniVal
AP APr APc APf AP

Models pre-trained on Im-Txt-Box and/or with larger size
Mask R-CNN − 26.3 34.0 33.9 33.3
MDETR − 20.9 24.9 24.3 24.2
GLIP-B 57.0 31.3 48.3 56.9 51.0
GLIP-L 60.8 − − − −
FIBER-B 58.4 50.0 56.9 58.1 56.9
VoLTA-B 51.6 34.4 43.1 43.8 42.7

Table 4: Multi-modal fine-grained downstream: language-conditioned object detection on
COCO and LVIS. All available baselines are pre-trained on Im-Txt-Box data and are colored gray. VoLTA-
B denotes Swin-B backbone.

4.3 Implementation Details

We perform pre-training for 20 epochs with 256 batch-size on 64 V100 GPUs. Following Zbontar et al.
(2021), we use the LARS optimizer (You et al., 2017) with a learning rate of 0.2 for the weights and 0.0048
for the biases and batch normalization parameters. We use a learning rate warm-up period of 2 epochs, after
which we reduce the learning rate by a factor of 1000 using a cosine decay schedule (Loshchilov & Hutter,
2016). We use 1e−6 weight decay, excluding the biases and batch normalization parameters. We conduct a
grid search for the GOT loss hyperparameter (wGOT), and we empirically found the best value to be 100.
Appendix D explains other necessary pre-training and downstream hyper-parameters details.

4.4 Results on Vision-only tasks

We first experiment on three uni-modal tasks - classification, object detection, and instance segmentation.
For a direct comparison with existing ResNet50 and Swin-T baselines, we re-train identical encoders with
VoLTA pipeline. Furthermore, since the uni-modal tasks do not utilize cross-attention parameters, we
perform an ablation by dropping the MLM and ITM objectives from VoLTA.

Image Classification: Table 1 presents the linear probing results of uni-label classification on ImageNet
and multi-label classification on VOC07 and COCO. For all uni-modal tasks, we report results with COCO
pre-training for a fair comparison with existing baselines. For ImageNet, we adopt all COCO baselines from
Yuan et al. (2021). Even without the MLM and ITM objectives, VoLTA achieves better performance than
all baselines across three datasets with ResNet50 backbone. The Swin backbones and cross-attention module
further improve the performance. For VOC07, we report the results for both SVM and MLP-based linear
classifiers. VoLTA with ResNet50 backbone achieves state-of-the-art results on VOC07 SVM evaluation,
beating the nearest baseline, SwAV, by 0.7 mAP score. These results indicate the ability of VoLTA to learn
effective image-level visual features.
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Method #Pre-train
Data

VQAv2 NLVR2 F30k IRTR Method #Pre-train
Data

COCO Captioning
dev std dev test-P IR@1 TR@1 B@4 M C S

Models pre-trained on COCO (123k) and/or VG (108k) Models fine-tuned without CIDEr optimization
SCAN 108k − − − − 48.6 67.4 VirTex 123k − − 95.5 18.1
SCG 108k − − − − 49.3 71.8 VL-T5 180k 34.5 28.7 116.5 21.9
PFAN 108k − − − − 50.4 70.0 VL-BART 180k 35.1 28.7 116.6 21.5
MaxEnt 123k 54.1 54.8 − − − − VoLTA-B 231k 38.2 30.7 126.6 22.5
VisualBERT 123k 70.8 71.0 67.4 67.0 − − VoLTA-GOLD-B 231k 38.9 30.5 128.5 23.4
LXMERT 231k 72.4 72.5 74.9 74.5 − − Models fine-tuned with CIDEr optimization
SOHO 231k 73.2 73.4 76.3 77.3 72.5 86.5 VoLTA-B 231k 39.7 30.5 133.6 23.7
VoLTA-B 231k 74.6 74.6 76.7 78.1 72.7 83.6 VoLTA-GOLD-B 231k 40.2 30.9 137.5 23.7

Table 5: Multi-modal coarse-grained downstream: visual question answering, visual reasoning,
retrieval, and captioning. We only compare with methods pre-trained on a comparable amount of
dataset. For captioning, 4 metrics are reported - B@4: BLEU@4, M: METEOR, C: CIDEr, S: SPICE. The
best results are in bold. VoLTA-B denotes Swin-B backbone.

VoLTA RefCOCO RefCOCO+ RefCOCOg

LBT
LGOT LMLM LITM val testA testB val testA testB val testLw Lgw

✓ − − − − 81.7 84.1 77.8 71.2 76.6 62.2 71.7 71.7
− − − ✓ ✓ 82.0 84.5 77.8 71.5 77.1 62.2 71.4 71.8
✓ − − ✓ ✓ 82.7 85.2 78.1 72.0 77.7 62.5 72.8 72.7
✓ ✓ − ✓ ✓ 83.9 86.6 80.5 73.9 79.5 64.1 74.6 74.3
✓ − ✓ ✓ ✓ 82.8 85.5 78.5 72.2 77.8 62.8 72.9 72.8
✓ ✓ ✓ ✓ ✓ 86.1 88.6 81.8 77.0 82.7 67.8 78.3 78.3

Table 6: Ablation study on different losses of the training objective of VoLTA for referring
expression comprehension tasks. Each model is pre-trained on 231k samples from COCO2017 and VG.

Object Detection & Instance Segmentation: Next, we perform two uni-modal region-level tasks -
object detection on VOC07 + 12 and COCO2017, and instance segmentation on COCO2017. As shown in
Table 2, VoLTA yields the state-of-the-art performance in both tasks across the majority of metrics. The
fine-grained region-level understanding helps VoLTA to perform well on detection and segmentation tasks.

4.5 Results on Fine-grained Vision-Language tasks

Next, we perform region-level multi-modal downstream tasks - referring expression comprehension (REC)
and language-guided object detection.

REC: This task aims to localize target objects in an image described by a referring expression phrased in
natural language and, thus, perfectly evaluates the fine-grained feature representation capability of VoLTA.
As depicted in Table 3, VoLTA beats larger-sized UNITER-L and VILLA-L models on the challenging
testB split of both RefCOCO and RefCOCO+. Moreover, VoLTA performs comparably with MDETR and
UniTAB, even without being trained on grounding data. These results indicate our model’s efficacy in
learning fine-grained local visual features.

Object Detection: We evaluate VoLTA on two challenging language-conditioned object detection bench-
marks - COCO and LVIS. Note that, all existing baselines for this tasks are pre-trained on fine-grained
image-text-box data, whereas VoLTA only utilizes image-caption pairs. Table 4 shows that VoLTA performs
comparatively with these strong baselines. Note that VoLTA beats Mask R-CNN, MDETR, and GLIP-B
on LVIS APr, which denotes average precision on rare objects. Thus, we conclude that VoLTA achieves
impressive localization ability and robustness, even without utilizing any grounding annotations.

4.6 Results on Coarse-grained Vision-Language tasks

Next, we perform image-level multi-modal downstream tasks - visual question answering (VQA), visual
reasoning, retrieval, and captioning.

VQA & Visual Reasoning: As reported in Table 5, VoLTA achieves the best performance on VQA and
visual reasoning across the baselines pre-trained with a comparable amount of data. Moreover, on VQA,
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LII′
BT LT T ′

BT LIT ′
BT LI′T

BT
VOC07 COCO

MLP MLP (PC/O)
✓ − − − 90.8 72.2/71.7
✓ ✓ − − 91.8 74.0/73.7
− − ✓ ✓ 86.5 69.0/69.8
✓ ✓ ✓ ✓ 94.0 74.5/76.4

(a) Ablation study on Intra- and
Inter-modal Barlow Twins objec-
tive for multi-label image classification
on VOC07 and COCO.

wGOT
VOC07 COCO

MLP MLP (PC/O)
50 93.4 74.1/76.0
100 94.0 74.5/76.4
200 93.2 73.1/75.5
500 93.1 72.8/75.3

(b) Ablation study on the
value of wGOT, the weight
of GOT loss in Ltotal in the
objective of VoLTA for multi-
label image classification on
VOC07 and COCO.

Projector Config. VOC07 COCO
MLP MLP (PC/O)

8192-8192-128 91.3 71.3/73.0
8192-8192-256 91.9 72.2/73.3
2048-2048-512 93.4 73.9/76.1
2048-2048-1024 94.0 74.5/76.4

(c) Ablation study on the di-
mension of local and global
projector networks of VoLTA for
multi-label image classification on
VOC07 and COCO.

Table 7: Ablation on Intra- and Inter-modal Barlow Twins objective (a), the value of wGOT
(b), and the dimension of projector networks (c). We report classification mAP on VOC07, and
per-class (PC) and overall (O) F1 scores on COCO. Each model is pre-trained on 123k train-val samples
from COCO2017.

VoLTA beats LXMERT, which is trained with 2× more data. These results demonstrate the efficacy of our
method even when utilizing a mid-scale pre-training corpus.

Retrieval: Most existing VLP methods use a fusion encoder for image and text retrieval and feed every
image-text pair into the model. Though such fine-tuning often results in higher performance, it introduces
quadratic time cost and is not scalable. Following Dou et al. (2022a), we adopt a more efficient strategy. We
drop the cross-attention parameters for this task and compute the dot product of image and text features
extracted separately in the dual-encoder setting. As shown in Table 5, even with such an approach, VoLTA
produces superior performance among the baselines trained with a similar amount of data, beating all three
baselines by a significant margin.

Captioning: We perform captioning on the COCO dataset to evaluate if VoLTA can adopt a generation
task. We integrate GOLD (Pang & He, 2021) into VoLTA during fine-tuning as it produces significant
improvements. As shown in Table 5, our approach maintains superior captioning performance across all
baselines pre-trained with comparable data. Using CIDEr optimization further improves performance.

It is worth mentioning that besides achieving a superior result than all baselines using a comparable amount
of data on multi-modal coarse-grained tasks, VoLTA also outperforms multiple methods pre-trained using
magnitude more data. These results, shown in Table F.1, indicate the effectiveness and generalizability of
VoLTA across these tasks.

4.7 Ablation Study

We perform ablation studies on the pre-training objectives, GOT loss weight, and the dimension of projectors.

Pre-training Objectives: We ablate the effectiveness of different pre-training objectives and evaluate the
pre-trained models on fine-grained downstream tasks. First, we pre-train VoLTA only with the multi-modal
BT loss. In this setup, VoLTA only acts as a dual encoder; thus, the cross-attention parameters are not
pre-trained. Next, we add MLM and ITM loss which helps the model to learn cross-modal information
via attention fusion. Next, we add the GOT pre-training objective. Note that GOT adopts two types
of OT distances − WD for node matching and GWD for edge matching. As shown in table 6, applying
WD and GWD together improves the performance of reference expression comprehension across RefCOCO,
RefCOCO+, and RefCOCOg datasets. Specifically on RefCOCOg, adding Lgw to Lw yields a significant
4.0% boost in the challenging test set. Since this dataset contains intricate images with multiple similar
objects with different shapes and colors, GWD is crucial in distinguishing between them. However, we see
that adding GWD without WD is not helpful. This is because though GWD can capture the edge similarity
between graphs, it cannot directly address graph alignment since it does not consider node information. For
example, the word pair (boy, girl) has a similar cosine similarity as the pair (football, basketball). Still, the
semantic meanings of the two pairs are different and should not be matched. But GWD will treat these two
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Figure 4: Visualization of fine-grained patch-word alignment, produced by VoLTA. We look at the
optimal transport plan from GOT to represent the alignment between the words in red with the corresponding
input image. All image-caption pairs are taken from the COCO2017 train split. The visualizations are
generated with 224p images, resulting in sequences of 196 tokens for 16 × 16 patches.

pairs as the same since it only considers the cosine similarity between nodes. Hence, when applied together,
WD and GWD objectives only result in an effective region-word alignment.

We also verify the effectiveness of the multi-modal BT objective by ablating the intra- and inter-modal terms.
The first row of Table 7a is identical to the original image-only BT objective. Next, we introduce the text
branch and add the same BT objective between the two views of the caption. Afterward, we add the inter-
modal BT objectives. As shown in Table 7a, each loss term improved the image classification performance,
demonstrating the importance of intra- and inter-modal objectives. Overall, this set of experiments demon-
strates that all objectives are necessary for our model to perform well on different fine-grained multi-modal
tasks.

GOT Loss Weight: In our loss formulation, we introduce a GOT loss weight wGOT which regulates
the alignment of local features through GOT loss. By conducting a grid search on uni-modal downstream
classification tasks, we assessed the impact of wGOT as shown in Table 7b and experimentally found its best
value to be 100 in our case. It is to be noted that a very high value of wGOT considerably degrades the
performance of downstream tasks.

Ablation on Projector Dimension: The design of the projector head plays a pivotal role in the down-
stream performance of the model (Garrido et al., 2022). To investigate the impact of hidden and feature
(projector output) dimensions, we have tested 4 different configurations on uni-modal downstream classifi-
cation tasks. It can be observed (see Table 7c) that an increase in the number of parameters in the projector
head does not necessarily lead to an increase in performance. For example, a projector configuration of
8192-8192-256 has roughly eight times more parameters than 2048-2048-1024. However, the latter performs
better in downstream tasks (Table 7c), indicating that the output dimension of the projector plays a crucial
role in the final performance of the model.

4.8 Qualitative Results & Error Analysis

Figure 4 shows the fine-grained alignment of image regions and caption words achieved by the pre-trained
VoLTA system. The transport plan from GOT module outputs the similarity across every image patch and
caption token. To obtain the visualizations in Figure 4, we choose the similarity scores between the red
words in the caption with every image patch. Next, we apply bilinear interpolation to these similarity scores
to convert them to the same dimension as the input image. Finally, we superimpose these interpolated
similarity maps on the input images to obtain Figure 4 as the outcome. In most cases, the pre-trained
model accurately learns to localize various objects using only global image-caption data. However, objects
in extremely cluttered scenarios are occasionally not focused. We show such error cases in Section E.
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5 Conclusion

We present VoLTA, a unified VLP paradigm that utilizes image-caption data but achieves fine-grained region-
level image understanding, eliminating the use of expensive box annotations. VoLTA adopts graph optimal
transport-based weakly supervised patch-token alignment and produces an explicit, self-normalized, and
interpretable low-level matching criterion. Extensive experiments demonstrate the effectiveness of VoLTA
on a wide range of coarse- and fine-grained tasks.
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A Pesudo Code of VoLTA

The training pseudo code for VoLTA is as follows:

Algorithm 1 PyTorch-style pseudocode for VoLTA.

# f_I: Image Encoder, f_T: Text Encoder
# task_names: string containing task names
# I: Image input, T: Text input, N: Batch size, D: Projector dim
# BT: Barlow Twins loss function
# WD, GWD: Wasserstein and Gromov-Wasserstein loss functions
# MLM, ITM: MLM and ITM loss functions, respectively
# gamma: coefficient of GWD loss in GOT
# w_GOT: weight of GOT loss

def GOT(x_1, x_2, f_1, f_2):
# compute embeddings
z_A, z_B = f_1(x_1), f_2(x_2) # N x D

# normalize representation along batch dimension
z_A_norm = (z_A - z_A.mean(dim=0)) / z_A.std(dim=0)
z_B_norm = (z_B - z_B.mean(dim=0)) / z_B.std(dim=0)

# cosine distance matrix
c = cosine_dist_matrix(z_A, z_B)}
# Wasserstein distance
loss_w = W_D(c, z_A.size(0), z_A.size(1), z_B.size(1))
# Gromov-Wasserstein distance
loss_gw = GW_D(z_A.transpose(2,1), z_B.transpose(2,1))

return gamma * torch.mean(loss_gw) + (1 - gamma) * torch.mean(loss_w)

def VoLTA (I, T):
total_loss = torch.tensor(0.)
for x in loader: # load a batch with N samples

# two augmented versions of I, T
I1, I2 = augment_image(I); T1, T2 = augment_text(T)

if "BTGOT" in task_names:
# BT loss
intra_loss = BT(I1, I2, f_I) + BT(T1, T2, f_T)}
inter_loss = BT(I1, T1, f_I, f_T) + BT(I2, T2, f_I, f_T)}
BT_loss = intra_loss + inter_loss
total_loss += BT_loss

# GOT loss
GOT_loss = GOT(I1, T1, f_I, f_T) + GOT(I2, T2, f_I, f_T)}
total_loss += w_GOT * GOT_loss

# cross-attention is enabled
if "MLM" in task_names:

# MLM loss
MLM_loss = MLM(T1, I1, mask_T1, f_I, f_T)
total_loss += MLM_loss

if "ITM" in task_names:

# ITM loss
ITM_loss =ITM(T1, I1, false_image_1, f_I, f_T)
total_loss += ITM_loss

return total_loss

B Overview of Vision-Language Pre-training Models

Vision-Language Pre-trained (VLP) models have proven extremely beneficial for multi-modal tasks in recent
years. Earlier works were predominantly focused on using pre-trained object detectors to extract patch
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Model Venue Vision Encoder Text Enc. Multimodality Fusion Pre-train Pre-training ObjectivesI-T I-T-B
ViLBERT NeurIPS’19 OD+Xformer Xformer Co-attn ✓ MLM+ITM+MIM
LXMERT EMNLP’19 ✓ MLM+ITM+MIM+VQA
VisualBERT ACL’20

OD Emb. Merged attn

✓ MLM+ITM
VL-BERT ICLR’20 ✓ MLM+MIM
UNITER ECCV’20 ✓ MLM+ITM+MIM+WRA
OSCAR ECCV’20 ✓ MLM+ITM
VinVL CVPR’21 ✓ MLM+ITM
VL-T5 ICML’21 ✓ MLM+ITM+VQA+Grnd+Cap
SOHO CVPR’21

CNN Emb. Merged attn
✓ MLM+ITM+MIM

SimVLM ICLR’22 ✓ PrefixLM
MDETR ICCV’21 Xformer ✓ OD+TP+CA
ViLT ICML’21 Patch Emb. Emb. Merged attn ✓ MLM+ITM
Visual Parsing NeurIPS’21

Xformer
✓ MLM+ITM+MIM

ALBEF NeurIPS’21 Xformer Co-attn ✓ MLM+ITM+ITC
METER CVPR’22 ✓ MLM+ITM
CLIP ICML’21 CNN/Xformer

Xformer

None
✓ ITC

DeCLIP ICLR’21 ✓ ITC+MLM+SL+MVS+NNS
ALIGN ICML’21 CNN ✓ ITC
GLIP CVPR’22 OD+Xformer

Cross-modality MHA

✓ ✓ OD+CE+WRA
GLIPv2 NeurIPS’22 ✓ ✓ OD+CE+WRA+MLM
BLIP ICML’22

Xformer

✓ ITC+ITM+LM
OmniVL NeurIPS’22 ✓ UniVLC+VLM+LM
X-VLM ICML’22 ✓ ✓ BBP+ITC+MP+MLM
CMAL ACM MM’22

None

✓ AMC+MLM+MRM+ITM+ITC
LOUPE NeurIPS’22 ✓ ITC+FSA+TSA
FILIP ICLR’22 ✓ ITC
UniCL CVPR’22 CNN/Xformer ✓ ITC
UniTAB ECCV’22 CNN Merged attn ✓ LM
TCL CVPR’22

Xformer

✓ CMA+IMC+LMI+ITM+MLM
MS-CLIP ECCV’22 Shared Attention ✓ ITC
FLM CVPR’23 Cross-modality MHA ✓ FLM + ITM
BLIP-2 ICML’23 ✓ ITC+ITM+ITG
Fame-ViL CVPR’23 Cross-modality Adaptive Attention ✓ ITC
PTP CVPR’23 OD+Xformer Cross-modality MHA ✓ ITC+ITM+LM
Softmask++ CVPR’23

Xformer

Merged attn ✓ ITC+ITM+MLM
OneR AAAI’23 Unified attn ✓ ITC+XMC+CIC+CMC
BEiT-3 CVPR’23 Shared MHA ✓ MDM
FLIP CVPR’23 None ✓ ITC
GIT TMLR’23 Emb. Merged attn ✓ LM
FIBER NeurIPS’22 Xformer Xformer Merged Co-attn ✓ ✓ MLM+ITM+ITC
VoLTA TMLR’23 CNN/Xformer Xformer Merged Co-attn ✓ BT+GOT+MLM+ITM

Table B.1: Overview of VLP models. OD: objective detector. Xformer: transformer. Emb.: em-
bedding. MLM/MIM: masked language/image modeling. ITM: image-text matching. WRA: word-region
alignment. ITC: image-text contrastive learning. Grnd: Grounding. Cap: Captioning. TP: Token Pre-
diction. CA: Contrastive Alignment, NNS: Nearest Neighbour Supervision, MVS: Multiview Supervision,
SL: Sim-siam Loss, MHA: Multi-head attn., LM: Language Modeling, UniVLC: Unified Vision Language
Contrastive, VLM: Vision Language Matching, BBP: Bounding Box Prediction, MP: Matching Prediction,
FSA: Fine-grained Semantic Alignment, TSA: Token-level Semantic Alignment, AMC: Associative Mapping
Classification, CMA: Cross-Modal Alignment, IMC: Intra-Modal Contrastive, LMI: Local Mutual Informa-
tion Maximization, I-T: Image-Text, I-T-B: Image-Text-Box, ITG: Image grounded text generation, XMC:
Cross-Modal Mixup Contrastive, CIC: Contextual Invariance Contrastive, CMC: Contextual Mixup Con-
trast, MDM: Masked Data Modeling.

(region) level information from corresponding images (Lu et al., 2019; Li et al., 2020a; Tan & Bansal, 2019;
Chen et al., 2020d; Su et al., 2019). In some of these models, such as ViLBERT (Lu et al., 2019), and
LXMERT (Tan & Bansal, 2019), multi-modality fusion has been achieved via co-attention using a third
transformer which contains fused information independently obtained from respective vision and language
encoders. On the contrary, VisualBERT (Li et al., 2020a), VL-BERT (Su et al., 2019), and UNITER (Chen
et al., 2020d) employ a merged attention strategy to fuse both image patches and text features together into a
unified transformer through corresponding image and text embedders. In addition to these, OSCAR (Li et al.,
2020b) uses object tags as inputs. VinVL (Zhang et al., 2021) follows a similar strategy to that of OSCAR,
the only difference being their novel 3-way contrastive loss which optimizes the training objectives used for
VQA and text-image matching. VL-T5 (Cho et al., 2021) exploits bounding-box coordinate information,
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image IDs, and region IDs along with ROI features for visual embedding. Here, encoded visual and textual
features are fed into a bi-directional multi-modal encoder and an auto-regressive text decoder framework,
respectively, for pre-training.

In all the above methods, pre-trained object detectors are kept frozen during the training. Furthermore,
extracting region-level features from images can be tedious. To address these shortcomings, end-to-end pre-
training methods have been developed. PixelBERT (Huang et al., 2020) uses a CNN-based vision encoder
and sentence encoder to obtain image and text representations, respectively. These representations are
subsequently fed into a transformer via a cross-modality alignment. SOHO (Huang et al., 2021) uses grid
features-based discretization via a learned vision dictionary which is then fed into a cross-modal module.
SimVLM (Wang et al., 2021b) uses CNN and text token embedding for image and text feature representation
extraction with a unified encoder-decoder transformer trained on a PrefixLM objective. Finally, MDETR
(Kamath et al., 2021) uses CNN and RoBERTa (along with corresponding projection layers) for image
and text feature extraction. These extracted features are concatenated before passing through a unified
transformer trained on 1.3M Image-Text-Box (I-T-B) annotated data.

In recent years, the rise of Vision Transformers (ViT) (Dosovitskiy et al., 2021) has motivated the research
community to have an all-transformer framework by incorporating ViTs (instead of CNN backbones) in VLP
models. Image patch features and text token embeddings are fed directly into a ViT model for pre-training
in ViLT (Kim et al., 2021). Visual Parsing (Xue et al., 2021), ALBEF (Li et al., 2021a), and METER
(Dou et al., 2022b) use ViTs as vision encoders for image feature generation. ALBEF and METER use
co-attention in their pre-training frameworks for multimodality fusion.

Another class of VLP models in the form of CLIP (Radford et al., 2021), DeCLIP (Li et al., 2021b),
and ALIGN (Jia et al., 2021) has been introduced lately. Although known for their impressive zero-shot
recognition ability and excellent transferability to downstream tasks, these models typically rely on huge
amounts of image-text pairs for pre-training. Contrastive loss forms the core component of the pre-training
objectives in these VLP models. In such models (e.g., CLIP (Radford et al., 2021), DeCLIP (Li et al.,
2021b)), separate encoders have been used for each modality. On the contrary, modality-shared contrastive
language-image pre-training (MS-CLIP) (You et al., 2022) leverages knowledge distribution across multiple
modalities (image and text) through parameter sharing. In their unified framework, the parameters which
are being shared between two modalities include the attention and feedforward modules and the layerNorm
layers.

GLIP (Li et al., 2022c) and GLIPv2 (Zhang et al., 2022) use a localization loss along with a word-region
alignment loss for pre-training corresponding encoders using image-text-box annotations. BLIP (Li et al.,
2022b) employs image and text encoders connected through a cross-modality multi-head attention which are
pre-trained on image-text pairs using contrastive and language modeling objectives. OmniVL (Wang et al.,
2022a) utilizes a unified image (and video) encoder and a text encoder pre-trained on image-text, image-label,
video-text, and video-label pairs using unified vision-language contrastive, vision-language matching and
language modeling losses. Furthermore, a visual-grounded alignment decoder is also present for facilitating
better learning and alignment between various modalities. X-VLM (Zeng et al., 2022) employs a vision
transformer to extract features from the subset of patches representing images/regions/objects. These patch
features are then paired with associated text features for contrastive learning, matching, and masked language
modeling. Additionally, image and text pairings are also done for bounding-box prediction which is used to
locate visual concepts in the image. CMAL (Ma et al., 2022) proposes interactions between features (obtained
from respective image and text encoders) via cross-modal associative mappings which help in fine-grained
semantic alignment between the learned representations. LOUPE (Li et al., 2022a) implements token-level
and semantics-level Shapley interaction modeling with global image-text contrastive loss (in a dual-encoder
setting) for explicit learning of fine-grained semantic alignment between visual regions and textual phrases
without using expensive bounding-box annotations. FILIP (Yao et al., 2022) removes the need for cross-
modality attention fusion by modeling the fine-grained semantic alignment between visual and textual tokens
via a novel cross-modal late interaction mechanism in contrastive loss. TCL (Yang et al., 2022b) uses global
cross-modal alignment, intra-modal alignment, and local mutual information maximization losses along with
masked language modeling and image-text matching to learn robust image-text representations during pre-
training. UniCL (Yang et al., 2022a) utilizes a unified learning method with a two-way contrastive loss
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(image-to-text and text-to-image) in the image-text-label space which can learn representations from either
of the image-label and image-text data or both. UniTAB (Yang et al., 2022c) employs a transformer-based
encoder-decoder framework that can jointly output open-ended text and box, encouraging alignment between
words and boxes.

In order to accelerate the convergence of VL pretraining, Wang et al. (2023c) proposed free language modeling
(FLM) which addresses the issues inherent to masked language modeling (MLM) and autoregressive mod-
eling. Using FLM as a pre-training objective, the authors have achieved impressive performance on several
downstream tasks. Fame-ViL (Han et al., 2023) introduces a parameter-efficient VLP approach employing a
task-versatile architecture with cross-attention and task-specific adapters. Fame-ViL applies a single model
for various heterogeneous fashion tasks achieving performance gains over previous SOTA benchmarks. Wang
et al. (2023b) have introduced a simple yet effective position-guided text prompt (PTP) paradigm to improve
the visual grounding capability of existing cross-modal VL architectures and help them better handle various
downstream tasks. Park & Han (2023) have proposed a VL framework based on the explainable soft feature
masking and regularization via diversification strategies for improving the performance of VL models in
several downstream tasks. Li et al. (2023a) have devised BLIP-2, where a lightweight querying transformer
is pre-trained using a two-stage strategy to bridge the modality gap. A frozen encoder is used in the first
stage to bootstrap VL representation learning, and vision-to-language generative learning is bootstrapped
in the second stage employing a frozen LLM, allowing zero-shot generation capabilities. Jang et al. (2023)
have developed a simple and unified VL model (as a single tower) in a modality-agnostic manner. BEiT-3
(Wang et al., 2023d) introduces a general-purpose multimodal foundation model to pre-train a multiway
transformer by performing masked data modeling on inputs irrespective of modalities (i.e., images, texts,
and image-text pairs). FLIP (Li et al., 2023b) extends CLIP (Radford et al., 2021) by performing contrastive
learning on pairs of masked image patches and corresponding texts without reconstructing the masked image
content. GIT (Wang et al., 2023a) unifies the VL architecture (an image encoder and a text decoder) under a
single language modeling task while also scaling up the pre-training data and the model size to gain superior
performance on captioning and question-answering downstream tasks.

FIBER (Dou et al., 2022a) fuses vision and language encoder backbones through merged co-attention which
are then pre-trained on 4M data with two-stage pre-training (coarse- and fine-grained). Image-text pairs are
used in the coarse-grained pre-training stage which is then followed by a fine-grained pre-training stage with
image-text-box annotations. However, these bounding box annotations come with extra overheads. There-
fore, in our model, VoLTA, we propose an alternate solution for optimal-transport based local feature-level
alignment using global image-caption annotations which performs well not only on coarse-grained tasks (such
as VQA and Image Captioning), but also on fine-grained tasks (such as Referring Expression Comprehen-
sion and Object Detection). Table B.1 encapsulates an overview of the details of all these aforementioned
methods.

C Downstream Datasets

Our downstream tasks can be categorized into three groups: uni-modal, multi-modal coarse-grained, and
multi-modal fine-grained.

Uni-modal: For uni-modal tasks, we fine-tune (and validate) our pre-trained model on ImageNet-1k (Deng
et al., 2009) for image classification, VOC07+12 (Everingham et al., 2010) for image classification and object
detection, and COCO (Lin et al., 2014) for image classification, object detection, and instance segmentation.

Multi-modal Coarse-grained: Here, we fine-tune (and validate) our pre-trained model on VQAv2 (Antol
et al., 2015) for visual question answering, NLVR2 (Suhr et al., 2019) for visual reasoning, Flickr30k (Plummer
et al., 2015) for image and text retrieval, and COCO (Lin et al., 2014) for image captioning.

Multi-modal Fine-grained: For these tasks, we fine-tune (and validate) our pre-trained model on Re-
fCOCO, RefCOCO+, and RefCOCOg (Kazemzadeh et al., 2014; Yu et al., 2016) for referring expression
comprehension, and COCO (Lin et al., 2014) and LVIS Mini (Gupta et al., 2019) for language-conditioned
object detection.
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Modality Task Dataset Image Src #Images #Text Metric

Uni-modal

Image Classfn.
IN−1K IN−1K 1.3M - Accuracy
COCO COCO 123K - F1

VOC07+12 VOC07+12 16K - mAP

Object Det. COCO COCO 123K - APbb

VOC07+12 VOC07+12 16K -
Instance Seg. COCO COCO 123K - APmk

Multi-modal
coarse-grained

VQA VQA COCO 204K 1.1M VQA-Score
NLVR2 NLVR2 Web Crawled 214K 107K Accuracy
IR-TR Flickr30K Flickr30K 32K 160K Recall@1
Captioning COCO COCO 123K 615K B@4,M,C,S

Multi-modal
fine-grained

Ref. Exp. Comp.
RefCOCO

COCO
20K 142K

AccuracyRefCOCO+ 20K 142K
RefCOCOg 26K 95K

Mul. Obj. Det. COCO COCO 123K 615K APLVIS Mini COCO 123K 615K

Table C.1: Dataset statistics for uni-modal and multi-modal downstream tasks.

Several multi-modal downstream tasks are built based on the COCO dataset, where the validation and test
splits of these downstream tasks are scattered across the raw COCO splits. Therefore, during pre-training,
we carefully selected the portion of the COCO dataset which does not overlap with the validation/test splits
of these multi-modal downstream tasks.

D Implementation Details & Hyper-parameter Values

D.1 Data Augmentation

We use ResNet50/Swin-T/Swin-B (He et al., 2016; Liu et al., 2021) as image encoder and RoBERTa (Liu
et al., 2019) as text encoder. Each encoder is followed by a projector network which is a 3-layer MLP with
the configuration [d-2048-2048-1024]. Here, d represents the embedding dimension of the encoder’s output.

Data Type View # Augmentation Probability

Image

1 RandomResizedCrop 1.0
1 RandomHorizontalFlip 0.5
1 ColorJitter 0.8
1 RandomGrayscale 0.2
1 GaussianBlur 1.0
1 Solarization 0.0
2 RandomResizedCrop 1.0
2 RandomHorizontalFlip 0.5
2 ColorJitter 0.8
2 RandomGrayscale 0.2
2 GaussianBlur 0.1
2 Solarization 0.2

Text

1 Synonym Replacement 0.1
1 Random Insertion 0.1
1 Random Swap 0.1
1 Random Deletion 0.1
2 Synonym Replacement 0.1
2 Random Insertion 0.2
2 Random Swap 0.1
2 Random Deletion 0.2

Table D.1: Image and text augmentation details.

Image Augmentations: Two sets of random transformations sampled from an augmentation pool are
applied on each input image to generate two disparate distorted views. The augmentation policy is com-
posed of RandomResizedCrop, RandomHorizontalFlip, ColorJitter, RandomGrayscale, GaussianBlur,
and Solarization augmentations. RandomResizedCrop is applied with a probability of 1.0, whereas the
remaining ones are applied randomly with varying probabilities following Zbontar et al. (2021) (see Table
D.1).
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Text Augmentations: Two sets of random transformations are applied on input text using EDA (Wei
& Zou, 2019) including synonym replacement, random insertion, random swap, and random deletion with
different probabilities as outlined in Table D.1.

D.2 Pre-training Setup

Table D.2 shows the details of hyper-parameters used during training.

VoLTA comprises a vision encoder and a language encoder with a merged co-attention for cross-modality
fusion. In our experiments, we have considered two types of vision encoder backbones - ResNet-50 (He et al.,
2016) and Swin Transformer (Liu et al., 2021). For fair comparisons with related works (Dou et al., 2022b;a),
the input image resolution for ResNet-50 encoder backbone is kept as 224 × 224, whereas for Swin-B, it is
384 × 384. The output embedding dimension of the image encoder in both cases is 1024. Similarly, to be
consistent with Dou et al. (2022b;a), we have selected RoBERTa as the language encoder with a vocabulary
size of 50265, a tokenizer as ‘roberta-base’, a maximum input text length of 30, and an output embedding
dimension of 768 (please refer to Table D.2 for more details).

Separate projector heads follow vision and language encoders. A projector head consists of 3 linear layers,
each with 2048 output units (except for the last one, which has 1024 output units), followed by a Batch
Normalization layer and ReLU activation (for exact configuration, please refer to Table D.2). The final
projected output denotes the input (image/text) feature representation used in downstream tasks. The
embeddings (i.e., output from respective encoders) are fed into the loss function of VoLTA to learn these
representations.

The loss function of VoLTA includes four different loss components, namely, multi-modal Barlow Twins
for intra- and inter-modality redundancy reduction, GOT for alignment of local features, and MLM and
ITM together for encouraging cross-modal attention fusion. For MLM, we randomly mask 15%2 (MLM
probability in Table D.2) of the input tokens, and the model is trained to reconstruct the original tokens.
For ITM, the model predicts whether a given image-text pair is matched.

For optimization, we follow the same protocol as described in Zbontar et al. (2021), where we use the LARS
(You et al., 2017) optimizer to train our model for 20 epochs with a batch size of 256. A base LR of 0.1 is
used for the weights and 0.0048 for the biases and batch normalization parameters which are then multiplied
by a factor of 2. We employ a learning rate warm-up (linear) up to a period of 2 epochs followed by a cosine
decay schedule to reduce the LR by a factor of 1000. A weight decay parameter 1e-6 is used, excluding the
biases and batch normalization parameters. We conduct a grid search for the GOT loss hyperparameter
(wGOT), and we empirically found the best value to be 100.

Pre-training Cost: Our Swin-B backbone takes 6 hours per epoch to train on 64 V100 GPUs, with per
GPU batch-size of 4.

D.3 Downstream Setup

D.3.1 Uni-modal downstream tasks

Linear Evaluation: For ImageNet, the linear classifier has been trained for 100 epochs with a batch size
of 256, an LR of 0.3, and a cosine LR schedule. Cross-entropy loss is minimized with SGDM optimizer
(momentum of 0.9), and a weight decay of 1e-6. For both COCO and VOC, the linear classifier has been
trained for 100 epochs with AdamW optimizer with batch size of 256, an LR of 5e-2, and a weight decay of
1e-6.

Object Detection: For training the detection model, the detectron2 library (Wu et al., 2019) has been
used. The backbone networks for Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al., 2017) has
been initialized using our pre-trained model.

For VOC07+12, we used the trainval set comprising 16K images for training a Faster R-CNN (Ren et al.,
2015) C-4 backbone for 24K iterations using a batch size of 16 across 8 GPUs (using SyncBatchNorm). The

2Following BERT, we decompose this 15% into 10% random words, 10% unchanged, and 80% with a special token [MASK].
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Hyper-parameters Notation Value
Model

Img. proj. layer config. - [di − 2048 − 2048 − 1024]
Img. embed. dim di 1024
Img. reso. (RN-50 & Swin-T) - 224 × 224
Img. reso. (Swin-B) - 384 × 384
Txt. proj. layer config. - [dt − 2048 − 2048 − 1024]
Txt. embed. dim dt 768
Tokenizer - ’roberta-base’
Vocab size - 50265
MLM prob. - 0.15
Max. length of text - 30
# Heads of Xformer - 12
# Layers of Xformer - 12
# Fusion block - 6
Dropout rate - 0.1
Task names - ’BTGOT, MLM, ITM’

Training
Batch size - 256
Epochs - 20
Lambda_BT λ 0.005
WD and GWD loss weight γ 0.1
GOT loss weight wGOT 100.0
Optimizer - LARS
Base LR for weights - 0.1
Base LR for biases - 0.0048
Momentum - 0.9
LR scheduler - Cosine LR decay (with linear warm-up)
Warm-up steps - 2 × Epochs
Weight decay - 1e-6
End LR factor - 0.001
Cosine LR amplitude factor - 0.5

Table D.2: Pre-training hyper-parameter details for VoLTA.

initial learning rate for the model is 0.15, which is reduced by a factor of 10 after 18K and 22K iterations.
Linear warmup (Goyal et al., 2017) is used with a slope of 0.333 for 1000 iterations.

For COCO, Mask R-CNN (He et al., 2017) with a C-4 backbone on the COCO 2017 train split is used for
training, and the results are reported on the val split. A learning rate of 0.03 is used, and other parameters
are kept the same as in the 1× schedule in detectron2 (Wu et al., 2019).

D.3.2 Coarse-grained multi-modal downstream tasks

Vision-Language Classification (VQAv2 and NLVR2): Vision-Language Classification task encom-
passes VQAv2 and NLVR2, whose hyper-parameter setup has been taken from METER (Dou et al., 2022b)
and FIBER (Dou et al., 2022a). Model finetuning is done with peak learning rates of 2e-5 for the backbones,
1e-4 for the cross-modal parameters, and 1e-3 for the head layer for 10 epochs with a batch size of 512.
The image resolutions are set to 576 for VQAv2 and 384 for NLVR2 and the models are evaluated with the
VQA-Scores for VQAv2 and accuracy for NLVR2 (Table C.1).

Image-Text Retrieval (IRTR): We follow Dou et al. (2022a) for IR-TR setup for the Flickr30k dataset,
where the cross-attention layers in the backbones are removed during IR-TR fine-tuning and evaluation. The
peak learning rates are set to 2e-5 for the backbones, and 1e-4 for the head layer. Furthermore, a batch size
of 1024 is considered, and each image resolution is set to 576. We evaluate the Recall@1 metric for both the
text and image retrieval tasks as outlined in Table C.1.

Image Captioning: For image captioning, only the image-to-text attentions are kept for the cross-modality
attention fusion, and the model is converted into a standard seq2seq model (Dou et al., 2022a). We used
a causal mask on the decoding side, and the outputs are predicted auto-regressively (Dou et al., 2022a).
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Caption: A microwave oven is kept on the
kitchen countertop.Caption: Red peppers are kept on the table.

Caption: A collection of apples in wooden crates. Caption: A person is taking a photo.

Figure E.1: Limitations of our method: tiny and hindered objects in cluttered environments are not
distinctly attended by VoLTA. We look at the optimal transport plan from GOT to represent the alignment
between the words in red with the corresponding input image. The visualizations are generated with 224p
images, resulting in sequences of 196 tokens for 16 × 16 patches. All image-caption pairs are taken from the
COCO2017 train split.

Models are trained with the cross-entropy loss for 5 epochs with the peak learning rates of 5e-5 for the
backbones, and 2.5e-4 for the rest of the parameters, followed by a two-stage finetuning. In the first stage,
finetuning with GOLD (Pang & He, 2021) is done for 5 epochs with a peak learning rate of 1e-5 for the
backbones, since it is efficient and has been proven to be effective when the model input can correspond to
different outputs. The second stage of fine-tuning involves CIDEr optimization where the learning rate is
further reduced to 1e-6, and the model is trained for 3 epochs. A batch size of 512 is considered in both
these cases, and a beam size of 5 is used during inference. Evaluation metrics include BLEU (Papineni et al.,
2002), METEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al.,
2016) scores (shown in Table C.1).

D.3.3 Fine-grained multi-modal downstream tasks

Referring Expression Comprehension (REC): We follow Dou et al. (2022a) for training and evaluation
on 3 different datasets (RefCOCO, RefCOCO+, and RefCOCO) where the models are finetuned with a batch
size of 16 for 20 epochs. A warmup of 2000 steps with a peak LR of 1e-5 is used for the OD head as well as
the rest of the model’s parameters. LR drops twice, once at 67% and the other at 89% of the total number
of steps. Horizontal flip augmentation has been turned off during REC training because it was observed
by Dou et al. (2022a) that horizontal flip adversely affected the performance, particularly on the RefCOCO
dataset. Accuracy is used as the evaluation metric in this case (Table C.1).

Object Detection: We follow the training and evaluation setup of Dou et al. (2022a) for text-conditioned
(multi-modal) object detection. For both COCO and LVIS datasets, the model has been finetuned for 24
epochs with a batch size of 32, an LR of 1e-5, and two learning rate drops, once at 67% and the other at
89% of the total number of steps. AP scores are used in this case for model evaluation (Table C.1).

E Error Analysis

Although VoLTA learns impressive fine-grained region-level understanding during pre-training, there are still
some cases where the model fails to identify tiny and hindered objects, especially in cluttered environments.
We show four such examples in Figure E.1. In the first image, the object ‘red peppers’ is barely visible
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Method #Pre-train
Data

VQAv2 NLVR2 F30k IRTR Method #Pre-train
Data

COCO Captioning
dev std dev test-P IR@1 TR@1 B@4 M C S

Models pre-trained on COCO (123k) and/or VG (108k) Models fine-tuned without CIDEr optimization
SCAN 108k − − − − 48.6 67.4 VL-T5 180k 34.5 28.7 116.5 21.9
SCG 108k − − − − 49.3 71.8 VL-BART 180k 35.1 28.7 116.6 21.5
PFAN 108k − − − − 50.4 70.0 Unified VLP 3M 36.5 28.4 117.7 21.3
MaxEnt 123k 54.1 54.8 − − − − OSCAR 4M 36.5 30.3 123.7 23.1
VisualBERT 123k 70.8 71.0 67.4 67.0 − − UFO-B 4M 36.0 28.9 122.8 22.2
LXMERT 231k 72.4 72.5 74.9 74.5 − − ViTCAP 4M 36.3 29.3 125.2 22.6
SOHO 231k 73.2 73.4 76.3 77.3 72.5 86.5 METER-CLIP-B 4M 38.8 30.0 128.2 23.0
Models pre-trained on COCO, VG, SBU (1M) and/or CC (3M) VinVL-B 4M 38.2 30.3 129.3 23.6

ViLBERT 3M 70.5 70.9 − − 58.2 − XGPT 3.1M 37.2 28.6 120.1 21.8
UNITER-B 4M 72.7 72.9 77.2 77.9 72.5 85.9 FIBER-B 4M 39.1 30.4 128.4 23.1
VILLA-B 4M 73.6 73.7 78.4 79.3 74.7 86.6 FIBER-GOLD-B 4M 40.3 30.7 133.6 23.6
UNIMO-B 4M 73.8 74.0 − − − − VoLTA-GOLD-B 231k 38.9 30.5 128.5 23.4
ViLT-B 4M 71.3 - 75.7 76.1 64.4 83.5 Models fine-tuned with CIDEr optimization
ALBEF-B 4M 74.5 74.7 80.2 80.5 82.8 94.3 ViTCAP 4M 41.2 30.1 138.1 24.1
VLMo-B 4M 76.6 76.9 82.8 83.3 79.3 92.3 VinVL-B 4M 40.9 30.9 140.4 25.1
METER-Swin-B 4M 76.4 76.4 82.2 83.5 79.0 92.4 FIBER-B 4M 42.8 31.0 142.8 24.3
FIBER-B 4M 78.6 78.4 84.6 85.5 81.4 92.9 FIBER-GOLD-B 4M 43.4 31.3 144.4 24.6
VoLTA-B 231k 74.6 74.6 76.7 78.1 72.7 83.6 VoLTA-GOLD-B 231k 40.2 30.9 137.5 23.7

Table F.1: Multi-modal coarse-grained downstream: visual question answering, visual reason-
ing, retrieval, and captioning. Methods pre-training with a significantly larger dataset are colored gray.
For captioning, 4 metrics are reported - B@4: BLEU@4, M: METEOR, C: CIDEr, S: SPICE. The best
comparable results are in bold. VoLTA-B denotes Swin-B backbone.

even in human eyes, and thus, VoLTA can not precisely identify these objects. However, it can identify the
coarse region (the fruit basket) where ‘red peppers’ can be present. In the second image, VoLTA confuses
a ‘dishwasher’ with a ‘microwave oven,’ probably because the ‘microwave oven’ is present in a cluttered
environment, and both objects have similar appearances in low-resolution frames. In the third image,
VoLTA can correctly identify ‘red apples’, but fails to spot ‘green apples’, probably because VoLTA has not
seen enough such samples. In the last image, the face of the ‘person’ is hindered by the camera, and VoLTA
fails to locate it. Since we pre-train VoLTA with 224 × 224 images, such tiny objects are often hard to be
distinguished. However, higher-resolution images will be more helpful in addressing such intricate scenarios,
which we plan to explore in future works.

F Additional Quantitative Results on Coarse-grained Vision-Language Tasks:
Comparison with Methods using More Pre-training Data

Table F.1 presents a comparison of VoLTA on the multi-modal coarse-grained tasks with state-of-the-art
methods pre-trained using magnitude more data. On VQA, VoLTA beats ViLBERT, UNITER-B, VILLA-
B, UNIMO-B, and ViLT-B, each pre-trained on 3 − 4M datasets. Please note that VoLTA is trained only
on COCO and VG, whereas the other methods use a combination of COCO, VG, CC, and SBU datasets.
Such strong performance proves the generalizability of VoLTA. On captioning, VoLTA beats Unified VLP,
OSCAR, UFO-B, ViTCAP, VinVL-B, METER-CLIP-B, and XGPT. However, for IRTR and NLVR VoLTA
can not yield better performance over these baselines. We assume that the large domain difference between
pre-training and downstream datasets is the reason behind the limited performance on IRTR and NLVR.

G Additional Qualitative Results

Visual Question Answering and Visual Reasoning: Visual question answering (VQA) is a widely
recognized multi-modal task that infers an answer in response to a text-based question about an image. In
Figure G.1, we demonstrated several examples image-question pairs and corresponding answers predicted
by VoLTA on the VQAv2 validation set. The primary aim of the visual reasoning task is to ascertain the
veracity of a natural language statement against an associated image pair. Figure G.2 displays examples of
responses (True/False) predicted by VoLTA on the NLVR2 validation set.
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Figure G.1: Examples on Visual Question Answering from VQAv2 validation dataset. We display
a variety of examples (e.g., number of items, the color of objects, type of objects, events, and actions) with
respective answers predicted by VoLTA.

Language-conditioned Object Detection: Object detection forms an indispensable constituent of several
multi-modal understanding systems. However, the conventional object detection pipeline is employed as a
black-box tool and predicts all possible objects in the image. On the other hand, for better apprehension of
combinations of these objects in free-form texts, a language-conditioned object detection task is considered
(Kamath et al., 2021; Dou et al., 2022a). We use pre-trained VoLTA and fine-tuned and evaluated COCO and
LVIS datasets for the text-conditioned object detection task. As illustrated in Figure G.3, VoLTA predicts
bounding boxes relevant to the text prompts (captions) and labels them with the corresponding spans from
the text. For example, the top-middle image has 4 objects. However, based on the text prompt, our model
predicts boxes only for person and cup.

Referring Expression Comprehension (REC): The objective of REC is to align the entire referring
expression (text) with the corresponding box by disambiguating among the several occurrences of an object
belonging to the same category and therefore, one box per expression is to be predicted. For example, the
bottom-left image in Figure G.4 depicts VoLTA’s box prediction for the corresponding referring expression:
the slice of cake on the left.
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Figure G.2: Examples on Visual Reasoning from NLVR2 validation dataset. For each statement
(text prompt), 2 images are shown alongside each other and VoLTA predicts whether the given statement is
True (green box) or False (red box).

Figure G.3: Examples of Object Detection from COCO validation dataset with various text
prompts. Our model predicts boxes relevant to the text (caption) and labels them with the corresponding
spans.

Comparison of CLIP vs. VoLTA on Referring Expression Comprehension (REC): Figure G.5
shows a comparative qualitative evaluation between frozen CLIP + dynamic head (Dai et al., 2021), and
VoLTA. We concatenate the vision and text features from the CLIP encoders and train a dynamic head on
top of frozen features for the REC task. Since CLIP is a dual-encoder system pre-trained with image-level
features, it can not learn superior fine-grained features. Hence, CLIP fails on harder REC samples. For
example, if multiple similar-looking objects (benches or bowls) exist in an image, CLIP fails to distinguish
between them. However, VoLTA succeeds on such complex samples, which can be attributed to the fine-
grained alignment achieved by the GOT objective.
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Figure G.4: Examples of Referring Expression Comprehension from RefCOCO (top), Ref-
COCO+ (middle) and RefCOCOg (bottom) validation datasets. The expressions in RefCOCOg
typically have florid and longer constructions as compared to RefCOCO and RefCOCO+. The model has
access to the entire text and uses it to disambiguate amongst different objects in the image.

(a) Simpler samples, both CLIP and VoLTA succeed. (b) Harder samples, CLIP fails, but VoLTA succeeds.

Figure G.5: Comparative qualitative evaluation between frozen CLIP + Dynamic Head (Dai et al., 2021),
and VoLTA on different RefCOCO, RefCOCOg, RefCOCO+ validation samples.
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Figure G.6: This figure shows how different words in captions attend relevant image regions,
produced by the GOT module of VoLTA pre-trained on COCO. Extension of Figure 4. All image-
caption pairs are taken from the COCO2017 train split. The visualizations are generated with 224p images,
resulting in sequences of 196 tokens for 16 × 16 patches.
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