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Summary
The integration of AI into high-stakes decision-making domains demands safety and ac-

countability. Traditional contextual bandit algorithms for online and adaptive decision-making
must balance exploration and exploitation, posing significant risks when applied to critical
environments where exploratory actions can lead to severe consequences. To address these
challenges, we propose MixUCB, a flexible human-in-the-loop contextual bandit framework
that enhances safe exploration by incorporating human expertise and oversight with machine
automation. Based on the model’s confidence and the associated risks, MixUCB intelligently
determines when to seek human intervention. The reliance on human input gradually reduces
as the system learns and gains confidence. Theoretically, we analyzed the regret and query
complexity in order to rigorously answer the question of when to query. Empirically, we vali-
date the effectiveness through extensive experiments on both synthetic and real-world datasets.
Our findings underscore the importance of designing decision-making frameworks that are not
only theoretically and technically sound, but also align with societal expectations of account-
ability and safety.

Contribution(s)
1. We introduce MixUCB, a novel human-in-the-loop contextual bandit framework that dy-

namically determines when to seek human intervention based on uncertainty, enhancing
safe exploration in high-stakes decision-making tasks. MixUCB is flexible in accepting
various types of expert feedback.
Context: Our approach unifies learning from experts (as in active learning, imitation learn-
ing, etc.) with learning from experience (as in reinforcement learning).

2. We provide a theoretical analysis of our framework, offering guarantees on regret and query
complexity. This addresses the fundamental question of when to rely on expert input while
balancing the cost and quality of the feedback.
Context: While traditional online learning or bandit algorithms focus on fixed feedback
settings, our analysis demonstrates MixUCB’s adaptability to varying levels of expert in-
volvement.

3. We demonstrate the practical effectiveness of MixUCB through experiments on both syn-
thetic and real-world datasets, showcasing the superiority of combining human expertise
and AI in comparison to fully automated decision-making. We highlight the importance of
designing AI systems that are not only technically sound but also emphasize safety, account-
ability, and human-centric decision-making, setting a new standard for safe exploration in
contextual bandit problems.
Context: Our experiments cover a range of feedback settings, showcasing MixUCB’s abil-
ity to maintain high performance even when expert feedback is limited or noisy.
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Abstract

The integration of AI into high-stakes decision-making domains demands safety and ac-1
countability. Traditional contextual bandit algorithms for online and adaptive decision-2
making must balance exploration and exploitation, posing significant risks when applied3
to critical environments where exploratory actions can lead to severe consequences. To4
address these challenges, we propose MixUCB, a flexible human-in-the-loop contex-5
tual bandit framework that enhances safe exploration by incorporating human expertise6
and oversight with machine automation. Based on the model’s confidence and the asso-7
ciated risks, MixUCB intelligently determines when to seek human intervention. The8
reliance on human input gradually reduces as the system learns and gains confidence.9
Theoretically, we analyze the regret and query complexity in order to rigorously answer10
the question of when to query. Empirically, we validate the effectiveness through exten-11
sive experiments on both synthetic and real-world datasets. Our findings underscore the12
importance of designing decision-making frameworks that are not only theoretically13
and technically sound, but also align with societal expectations of accountability and14
safety.15

1 Introduction16

Distinct from typical machine learning applications that focus on tasks with limited risks, the17
deployment of AI algorithms in high-stakes decision-making domains—such as self-driving cars18
(Sikar et al., 2024), medical diagnostics (Esteva et al., 2017), and criminal justice (Dressel & Farid,19
2018)—can have profound impacts and carry much greater responsibility (Amodei et al., 2016).20
The potential consequences of actions taken in these domains are far-reaching, spanning from life-21
and-death situations for individuals, to the broader societal, ethical, and legal challenges that affect22
humanity as a whole. Therefore, it is crucial that AI decision-making processes are built upon23
safety, accountability, responsibility, trustworthiness, and transparency, instead of excessively pur-24
suing maximum efficiency.25

However, despite the necessity of safe, reliable, and responsible AI systems, implementing them in26
high-stakes environments presents significant challenges. Traditional learning and decision-making27
algorithms, such as the contextual bandits (Wang et al., 2005), rely on balancing exploration and28
exploitation. While this exploration is acceptable and often beneficial in lower-risk domains like29
recommendation systems (Li et al., 2010), in high-stakes settings, exploratory actions can lead to30
unacceptable risks and severe consequences. For example, a self-driving car experimenting with31
unfamiliar maneuvers could result in accidents, endangering human lives.32

To address these challenges, we propose a human-in-the-loop contextual bandit framework (Fig-33
ure 1) that can balance the benefits of automation with the need for human expertise and oversight34
in critical situations. In particular, our approach allows for human intervention when the AI model35
lacks confidence or when decisions carry significant risk, preventing potential catastrophic errors36
and ensuring safe exploration. One of the key strengths of our framework is its ability to incorporate37
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Figure 1: Illustration of our setting, which augments the traditional feedback loop between algorithm
(left) and environment (middle) to include the presence of a human expert (right).

both observed consequences and expert advice. As the learner interacts more with the environment38
and gathers data—both from autonomous actions and expert interventions—it becomes more con-39
fident so the reliance on expert intervention reduces over time. Beyond the immediate benefits of40
safety, our framework offers several additional advantages. Firstly, the high-quality data collected41
during expert interventions/feedback can significantly accelerate the model’s learning process. Sec-42
ondly, actively involving humans in the decision-making process allows for a clearer assignment of43
responsibility, clarifying liability in cases of failure or harm.44

In summary, our main contributions are as follows: (1) We develop a flexible human-in-the-loop45
contextual bandit algorithm MixUCB that dynamically determines when to seek human intervention.46
MixUCB accepts various types of expert advice. (2) We provide theoretical analyses on the regret47
and query complexity, answering the question of when to rely on expert advice. (3) We validate our48
approach through experiments on both synthetic and real-world datasets, showcasing the practical49
applicability and benefits of MixUCB. (4) A key finding is that combining AI and human expertise50
outperforms alternatives, underscoring the importance of complementing AI and human to achieve51
more robust and effective decision-making.52

2 Related Work53

Contextual bandits The standard setting in contextual bandit does not assume the existence of54
human experts and the learner can only learn from the feedback (i.e., reward signals) by interacting55
with the environment by herself (Langford & Zhang, 2007; Beygelzimer et al., 2011; Dani et al.,56
2008; Abbasi-Yadkori et al., 2011; Li et al., 2010). While these algorithms achieve near-optimal57
regret bounds in the long term, they can play potentially unsafe actions during their exploration58
phases. Thus, these algorithms cannot be directly applied to safety-critical applications.59

Selective sampling and active learning Active learning or selective sampling is a learning60
paradigm that is designed to reduce query complexity by only querying for labels at selected data61
points (Cesa-Bianchi et al., 2005; Dekel et al., 2012; Agarwal, 2013; Hanneke & Yang, 2015; 2021;62
Zhu & Nowak, 2022; Sekhari et al., 2024b;a). These prior work do not assume the learner can63
receive reward feedback at the rounds where they do not query experts.64

Interactive learning from humans Querying human experts for inputs has been studied in the65
context of imitation learning (Ross et al., 2011; Ross & Bagnell, 2014; Sun et al., 2017; Pan et al.,66
2017). While these prior works focus on the more general Markov Decision Processes, they do not67
study how to reduce the number of expert queries using active learning techniques. While we focus68
on the contextual bandit setting (i.e., RL with horizon being one), our technique can be potentially69
extended to the full MDP setting by treating each step in the MDP as a contextual bandit problem70
(Sekhari et al., 2024b).71
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Learning to defer Madras et al. (2018) proposed learning to defer, demonstrating its effects in72
improving system accuracy and fairness. Follow up works such as those by Raghu et al. (2019);73
Keswani et al. (2021); Narasimhan et al. (2022); Mozannar & Sontag (2020); Joshi et al. (2021);74
Sikar et al. (2024) studied when to defer to human judgment and when to accept automated predic-75
tions in standard ML and supervised learning settings, rather than an active learning setting.76

3 Problem Formulation77

3.1 Contextual Bandit78

We consider the following contextual bandit setting with arbitrary (potentially adversarial) contexts79
and stochastic rewards. At each round t ∈ [T ], the learner observes the contextual information80
xt ∈ X for the context space X , which it may use to inform its choice of action. For example, in81
recommendation system, context xt could be features of a user logging onto the system. The learner82
chooses an action at ∈ A, where A is the learner’s action space. We assume that A is a finite set83
with cardinality K. Then, only the reward rt ∼ R(xt, at) of the chosen action at is observed, where84
R : X ×A → ∆([0, 1]) is the reward function.85

Assume that the learner has access to a class of functions F ⊂ (X×A → [0, 1]) that model the mean86
of the reward function, such as linear functions or neural networks. Assume there exists f∗ ∈ F87
such that f∗(x, a) = Er∼R(x,a)[r], i.e., the class F is rich enough to contain a function that can88
perfectly predict the expected reward of any action under any context. This realizability assumption89
is rather standard and has been used in many previous works (Chu et al., 2011; Foster & Rakhlin,90
2020; Foster et al., 2018a; Agarwal et al., 2012).91

The learner’s goal is to compete against the optimal policy π∗ : X → A that picks the action with92
the highest expected reward, i.e., a∗ = argmaxa∈A f∗(x, a). Formally, the learner’s goal is to93
minimize the expected regret94

Reg(T ) =

T∑
t=1

f∗(xt, a
∗
t )− f∗(xt, at) . (1)

3.2 Expert Feedback95

We augment the decision-making setting by considering the presence of human experts who can be96
queried for guidance. In addition to selecting an action at, the learner can opt to query a human97
expert (Zt = 1) or take an action autonomously (Zt = 0). Different human experts may offer98
different types of feedback, either directly suggesting an action or predicting the rewards associated99
with each action. In particular, we explore three types of expert feedback. These types of feedback100
vary in the level of information provided to the learner and the cognitive or computational burden101
placed on the expert.102

I: Action Only The expert selects and takes an action ã∗. The learner observes the action but does103
not observe the resulting reward.104
II: Action + Associated Reward The expert selects and takes an action ã∗. The learner observes105
both the action and the resulting reward rt.106
III: Rewards for All Actions The expert provides predicted rewards r̃t,a for all actions a ∈ A.107

These three types of feedback capture the fact that experts vary in their level of expertise and access108
to information, which influences the quality and depth of the feedback they can offer. Type-I feed-109
back is applicable in situations where reward feedback is not available once the human expert takes110
over. For example, in a medical setting, once a doctor takes over selecting a treatment, the learner111
may never observe the patient’s outcome. Type-II feedback is slightly more informative since the112
learner is able to observe the outcome of the expert’s action. For example, a robot may be guided113
by an expert operator who suggests manipulation actions. The robot can then observe whether this114
action successfully picks up an object. Type-III feedback is applicable in situations where an expert115
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has full information and can analyze all potential outcomes. By providing information about not116
only the action taken but also the alternatives, the expert provides the learner with a comprehen-117
sive view of the reward landscape. This type of feedback is highly informative, but it comes at a118
significant cost.119

Beyond the type of feedback, experts vary in the quality of feedback. Humans often exhibit bounded120
rationality in decision-making, so the expert action ã∗ is not necessarily equal to the optimal action.121
We model the Type-I and Type-II expert choices using the a reward-rational choice model, in122
particular the Boltzmann-rational model (Luce, 1959; 1977; Ziebart et al., 2010) with rationality123
parameter α ≥ 0:124

P (ã∗t = a|xt) ∝ exp(αf∗(xt, a)). (2)

When α → ∞, the expert behaves perfectly rationally, always selecting the optimal action; when125
α = 0, the expert chooses actions at random, independent of the rewards. This model allows us to126
capture the natural variability in human decision-making and reflect different levels of competence127
across experts.128

For Type-III feedback, we assume that the expert predicted rewards are bounded and unbiased, i.e.129
that they satisfy E[r̃t,a|xt] = f∗(xt, a).130

3.3 Online Regression Oracles131

For a contextual bandit learner to be successful, it is necessary to learn efficiently from interactions132
with the environment and the human expert. This is formalized by the following definition.133

Definition 1 (Online Regression Oracle). An online regression oracle for a convex loss ℓ w.r.t.134
the class F , provides, for any sequence {(z1, y1), · · · , (zT , yT )}, predictors ft ∈ F such that the135
prediction regret is bounded:136

T∑
t=1

ℓ(ft(xt), yt)− inf
f∈F

T∑
t=1

ℓ(f(xt), yt) ≤ Regℓ(F ;T )

Different regression oracles are appropriate for different types of feedback available to the learner.137
The square loss online regression oracle is appropriate for learning from observed rewards. In138
this setting, ℓ is the standard square loss, and the sequence contains context, action, reward tuples139
{((x1, a1), r1), · · · , ((xt, at), rt), · · · ((xT , aT ), rT )}. If the learner has Type-III expert feedback,140
the predicted rewards for all actions can be incorporated into this sequence as well. The square141
loss oracle regret bound Regsq(F , T ) typically grows sublinearly with T and can be implemented142
efficiently (Krishnamurthy et al., 2019; Foster et al., 2018a; Rakhlin & Sridharan, 2014). For ex-143
ample, for finite function classes F , the regret bound is Regsq(F ;T ) = O(log(T ) log(|F|)), while144
Regsq(F ;T ) = O(d log(T )) when F is a d-dimensional linear class as in (5).145

The online logistic regression oracle is appropriate for learning from actions selected by bounded-146
rational experts. In this setting, ℓ is the logistic loss, and the sequence contains context and action147
tuples {(x1, a1), · · · , (xT , aT )} observed through either Type-I or Type-II feedback. Similar to the148
square loss oracle, when F is finite, we have a regret bound Reglr(F ;T ) = O(log(T ) log(|F|))149
(Cesa-Bianchi & Lugosi, 2006), while for Flin, there exists efficient improper learner with regret150
bound Reglr(F ;T ) = O(d log(T )) (Foster et al., 2018b).151

4 Human-in-the-loop Contextual Bandit Framework152

We present a framework for seeking and incorporating expert advice in a contextual bandit setting.153
We call this framework MixUCB. In Algorithm 1, we present the typical scenario where experts154
recommend actions directly (Type-I or Type-II) according to a Boltzmann-rational model. This155
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Algorithm 1 MixUCB (Type-I and II feedback)

Input: Query threshold ∆, total rounds T , function class F , initial confidence set Esq
1 = E lr

1

for t = 1, · · · , T do
Let Et = Esq

t ∩ E lr
t

aucbt = argmaxa∈A maxf∈Et
f(xt, a) and wt = maxf∈Et f(xt, a

ucb
t )−minf∈Et f(xt, a

ucb
t )

if wt ≥ ∆ then
Query (Zt = 1) and play expert action ã∗t . Update Dlr

t , E lr
t with (xt, ã

∗
t ) according to (4).

if Type-II Feedback then
Observe rt ∼ r(xt, ã

∗
t ) and update Dsq

t and Esq
t with (xt, ã

∗
t , rt) according to (3).

else
Set Zt = 0. Play aucbt and observe rt ∼ r(xt, a

ucb
t ). Update Dsq

t and Esq
t with (xt, a

ucb
t , rt)

according to (3).

setting highlights the key challenges in leveraging diverse types of feedback. An extension to Type-156
III feedback is presented in the appendix and investigated in numerical experiments in Section 5.157

Designing a human-in-the-loop contextual bandit framework presents two primary challenges: de-158
ciding when to query and effectively learning from feedback. To address the first challenge, our159
algorithm uses a measure of uncertainty. First, the learner follows the standard “optimism in the160
face of uncertainty" principle to compute the upper confidence bound (UCB) action, aucbt . Then,161
the learner computes a pessimistic lower bound on the reward of this action. The uncertainty is162
defined as the difference between the optimistic upper bound and the pessimistic lower bound. If the163
learner’s uncertainty in aucbt falls above a predefined threshold ∆, i.e., the learner is not confident164
about this action, it queries the expert for the optimal action rather than taking the risk.165

The second challenge is to integrate various types of feedback to enhance learning. Accurate con-166
fidence sets are crucial for optimism/pessimism during action selection and the querying decision.167
Ideally, the learner should become more confident over time through interaction with the environ-168
ment or expert. In the standard bandit setting, only autonomous environment interactions are con-169
sidered, while in active learning settings, only expert advice is considered. Our approach combines170
these two sources of information to construct confidence sets from both expert advice and observed171
rewards. In the next section, we discuss how to overcome a key challenge of Type-I and Type-II172
feedback, which is that experts don’t provide information on rewards directly, but rather provide a173
(noisy) suggested action.174

4.1 Constructing Confidence Sets175

In Algorithm 1, we construct two confidence sets: one based on rewards observed after interaction176
with the environment, and another based on expert feedback.177

Given a sequence of context-action-reward data observed up to time t, Dsq
t = {(xk, ak, rk)}, the178

estimated reward function fsq
t is given by the square loss oracle. Then the confidence set is defined179

Esq
t = {f ∈ F |

∑
x,a∈Dsq

t

(fsq
t (xt, at)− f(xt, at))

2 ≤ βsq
t } . (3)

This expression is justified because for stochastic rewards following the realizability assumption,180
Foster & Rakhlin (2020) show that when βsq

t = Regsq(F ; t) from the online regression oracle181
(Definition 1), f∗ ∈ Esq

t with high probability.182

Similarly, given a sequence of expert context-action data observed up to time t, Dlr
t = {(xk, ak)},183

the estimated reward function f lr
t is given by the logistic regression oracle. Then the confidence set184

is defined as185

E lr
t = {f ∈ F |

∑
x,a∈Dlr

t

(f lr
t (xt, at)− f(xt, at))

2 ≤ βlr
t } . (4)
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This expression is justified because for bounded-rational experts and rewards following the real-186
izability assumption, Sekhari et al. (2024b) show that when βlr

t = Reglr(F ; t) from the online187
regression oracle (Definition 1), f∗ ∈ E lr

t with high probability.188

Therefore, with high probability, the true reward function lies in the intersection of these sets f∗ ∈189
Esq
t ∩ E lr

t . Algorithm 1 makes use of both estimates and both confidence sets, to combine bandit190
feedback with expert advice.191

Linear Contextual Bandits (Chu et al., 2011) We focus on the special case of linear contextual192
bandits, where the online regression oracles and confidence sets can be written concretely. Consider193
a featurization of context-action pairs ϕ : X ×A → Rd, and a linear function class,194

Flin = {(x, a) → θ⊤ϕ(x, a) | θ ∈ Rd, ∥θ∥2 ≤ 1} . (5)

Linear contextual bandit operates under the linear realizability assumption, i.e that there exists195
weight vector θ∗ ∈ Rd with ∥θ∗∥ ≤ 1 and E[rt|xt, at] = ϕ(xt, at)

⊤θ∗ for all xt and at.196

In this case, the regression oracles are simply standard linear and logistic regression algorithms with197
regularization parameters λsq and λlr. The regression oracle regret scales as O(d log(T )). The198
confidence sets over linear functions are equivalent to ellipsoidal confidence sets over parameters θ,199
taking the form200

∥θ − θt∥2Vt
≤ βt, Vt =

∑
x,a∈Dt

ϕ(x, a)ϕ(x, a)⊤ + λI

Therefore, the optimistic/pessimistic computation in algorithm 1 involves solving a conic optimiza-201
tion problem over possible parameters θ: the objective function is linear and there are two ellipsoidal202
constraints. While this problem does not have a clean closed-form solution, it is computationally203
feasible to solve to high precision with modern optimizers.204

4.2 Theoretical results205

We provide a theoretical analysis of Algorithm 1 that characterizes its safety, performance, and206
querying behavior. For ease of exposition, the theoretical results focus on the linear contextual207
bandit setting. We present all proofs in the appendix.208

Assumption 1. The reward function is linear as in (5) with dimension d, and the feature function209
satisfies ∥ϕ(xt, a)∥2 ≤ L,∀t ∈ [T ], a ∈ A.210

The above assumption is standard in linear bandits (Abbasi-Yadkori et al., 2011). Next, we assume211
that the confidence sets Esq

t and E lr
t are valid, i.e. that they contain the true reward function. In the212

appendix, we use results from Foster & Rakhlin (2020); Sekhari et al. (2024b) to define βsq
t and βlr

t213
such that this assumption holds with high probability.214

Assumption 2. The confidence sets satisfy215

1. 1 ≤ βsq
1 ≤ βsq

2 ≤ · · · ≤ βsq
T and 1 ≤ βlr

1 ≤ βlr
2 ≤ · · · ≤ βlr

T .216

2. ∀t ∈ [T ], f∗ ∈ Esq
t ∩ E lr

t .217

Under these assumptions, we characterize the performance of MixUCB. First, we show that the218
query condition prevents the learner from autonomously taking highly sub-optimal actions. As219
such, MixUCB guarantees that autonomous actions are always safe.220

Lemma 1 (Autonomous Sub-optimality). Under Assumptions 1 and 2, a learner following Algo-221
rithm 1 never autonomously takes an action aucbt with sub-optimality greater than ∆.222

Next, we consider the fact that experts may take sub-optimal actions due to their bounded rationality.223
The following lemma bounds the cost of the expert’s bounded rationality.224
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Lemma 2 (Expert Sub-optimality). Let R∞ = maxx∈X ,a∈A f∗(x, a). Then under the Boltzmann-225
rational model, the expected sub-optimality of an α rational expert is bounded by226

c(α) ≤ R∞(K − 1)

exp(αR∞) +K − 1
(6)

The cost of bounded rationality increases as the rationality α decreases. It also increases with the227
number of actions K. Combining these results, we characterize the regret of MixUCB (Algorithm228
1) in terms of the total number of queries that it makes.229

Proposition 1 (MixUCB Regret). Under Assumptions 1 and 2, the expected regret of Algorithm 1230
satisfies231

Reg(T ) ≤
2∆βsq

T

√
T −Q√

log2(1 + ∆2)

√
d log2(1 +

(T−Q)L2

λd ) +Qc(α) (7)

where Q =
∑T

t=1 Zt is the total number of queries made by the algorithm.232

Next, we upper bound the query complexity Q.233

Theorem 1 (Query complexity). Under Assumptions 1 and 2, the query complexity of Algorithm 1234
is bounded:235

Q =

T∑
t=1

Zt ≤
10max{1, βsq

T , βlr
T }d

∆2
. (8)

Note that max{βsq
T , βlr

T } = O(d log T ), therefore, the query complexity has only a weak depen-236
dence on the horizon T . In other words, expert feedback will be sought for a small, almost constant,237
portion of the interaction horizon. The proof of this result crucially relies on the fact that MixUCB238
uses the logistic regression oracle to learn from expert feedback. In the absence of incorporating239
expert advice, it is possible that the learner would never shrink the confidence set and would thus240
query indefinitely. We therefore emphasize that observing the expert’s action is crucial to this online241
bandit setting. Interestingly, observing the outcome of the expert’s action is not so important—the242
above results hold for either Type-I or Type-II feedback.243

Finally, we address the question of how to set the query threshold ∆. In some applications, this244
threshold may be determined purely by safety considerations (Lemma 1). In such settings, it is245
undesirable to allow a learner to try sub-optimal actions. In other applications, the overall perfor-246
mance may be the main criterion. Our final result is a summary theorem which provides guidance247
on setting ∆. We also characterize when MixUCB will outperform the purely autonomous LinUCB248
(Abbasi-Yadkori et al., 2011), which is equivalent to MixUCB with ∆ → ∞.249

Theorem 2. Assume that max{1, βsq
T , βlr

T } = O(d log T ) and Assumptions 1 and 2 holds. Then by250

setting ∆ = Θ( 3

√
d2c(α)

T ), the regret of MixUCB bounded by251

Reg(T ) = O( 3
√
c(α)d2T 2) (9)

Moreover, if c(α) ≤ O( d√
T
), the regret is no worse than LinUCB.252

Proof. By Lemmas 1 and 2, the total regret on the rounds that we don’t query is bounded by ∆,253
while the regret on the rounds that we query is bounded by c(α), thus, MixUCB-I regret is at most254

c(α)Q+∆(T −Q) = (c(α)−∆)Q+∆T = O

(
d2c(α)

∆2
+∆T

)
= O( 3

√
c(α)d2T 2) (10)

where we take ∆ = Θ( 3

√
d2c(α)

T ). To ensure that this is no worse than the LinUCB regret O(d
√
T )255

(Abbasi-Yadkori et al., 2011), we need c(α) ≤ O( d√
T
).256
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Categories Algorithms Action taken Information/Feedback
Zt = 0 Zt = 1 Zt = 0 Zt = 1

Human-AI hybrid
MixUCB-I

aucb
t

ã∗
t

r(xt, a
ucb
t )

ã∗
t

MixUCB-II ã∗
t r(xt, ã

∗
t ) and ã∗

t
MixUCB-III a∗

t f∗(xt, a), ∀a ∈ A

AI LinUCB aucb
t r(xt, a

ucb
t )

Linear Oracle Classification argmaxa θ̂⊤
lrϕ(xt, a) -

Regression argmaxa θ̂⊤
sqϕ(xt, a) -

Table 1: Summary of the algorithms and baselines.

This theorem shows that the querying threshold should increase for higher dimensions or expert257
costs (i.e. noisier experts), and decrease for longer interaction horizons. Furthermore, by compar-258
ing against the performance of LinUCB, this result justifies the intuition that MixUCB performs259
best when the cost is sufficiently small. In particular, the cost should be small compared with the260
dimension of the reward function, and inversely with the interaction horizon.261

As a final remark, we note that the cost of bounded rationality c(α) could be replaced with c(α) + c262
where c is some additional cost of obtaining expert advice, e.g. due to monetary payment or degraded263
user experience.264

5 Experiments265

In this section, we conduct experiments in multiple settings to illustrate the effectiveness of our266
approach using both synthetic and real world datasets.267

Baselines We compare MixUCB (I, II, III) with LinUCB, the standard purely autonomous algo-268
rithm which always takes aucbt and corresponds to MixUCB with ∆ → ∞, and two Linear Oracles,269
which select actions according to the best linear model in hindsight. The Oracles represent the per-270
formance of (unrealistically) having access to all information about the contexts and rewards ahead271
of time. The Linear Classification Oracle computes the best linear classifier θ̂lr for action selection272
using the (multiclass) logistic loss. The Linear Regression Oracle computes the best linear predictor273
θ̂lr of rewards using the squared loss. The algorithms and baselines are summarized in Table 1.274

Online Regression and Confidence Sets For all methods and datasets, we define ϕ(x, a) = x⊗ea275
where ea is a standard basis vector, so that d = dxK and we can write θ = (θ1, . . . , θK). For276
computational simplicity, we define a joint estimate and confidence set which directly combines the277
squared and logistic losses on the datasets Dsq

t and Dlr
t respectively. This formulation results in a278

single estimate θ̂t and an ellipsoidal confidence set. The advantage of this joint formulation is that279
the optimistic/pessimistic optimization has a closed form solution. Further details are provided in280
the appendix.281

Evaluation Metrics We report Cumulative Reward and Average Autonomous Reward. Cumulative282
reward measures the actual rewards accumulated over time (thus mixing autonomous and expert283
actions), while average autonomous reward is the reward averaged over the time steps in which the284
algorithm didn’t query. Additionally, we evaluate the cost of MixUCB with Cumulative Queries.285

5.1 Synthetic Experiments286

For synthetic data, we set dx = 2 and fix a true parameter θ∗a ∼ N (0, I) for a = 1, 2, 3 and define287
f∗(xt, a) = ⟨θ∗a, xt⟩. The observed reward is r(xt, a) = f∗(xt, a) + N (0, σ2). For Type I and II288
feedback, the expert selects an action according to (2) with rationality α = 1. For Type III feedback,289
the expert reveals f∗(xt, a) for a = 1, ...,K. We sample xt ∼ N (0, I) at each time step. We present290
results for a variety of query thresholds ∆ in the appendix.291
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Figure 2: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
(with query threshold ∆ = 3.0) on synthetic data.

As shown in Figure 2, MixUCB-III achieves a cumulative reward comparable to that of the linear292
oracles, while MixUCB-II attains a slightly lower cumulative reward. Both outperform LinUCB in293
terms of cumulative reward, whereas MixUCB-I performs worse than LinUCB. However, despite the294
limited initial information, MixUCB-I eventually achieves autonomous rewards similar to MixUCB-295
II and III and the linear oracles. This indicates that the poor overall performance of MixUCB-I arises296
from the fact that the noisy expert takes suboptimal actions. Also notice that, unlike LinUCB, the297
MixUCB algorithms never attain very low or negative autonomous reward, highlighting the safety298
guarantees. The cumulative queries plot further illustrates the efficiency of the MixUCB variants:299
MixUCB-I stops querying after approximately 100 time steps, whereas MixUCB-II and MixUCB-300
III cease querying in fewer than 30 steps. So, all the MixUCB variants efficiently reduce their301
dependence on queries while achieving strong performance. This demonstrates that all MixUCB302
variants effectively balance expert feedback with autonomous learning, reducing reliance on queries303
while maintaining strong performance. Additionally, MixUCB-II and MixUCB-III leverage expert304
feedback more efficiently, quickly transitioning to autonomous decision-making.305

5.2 Real Data Experiments306

Full details on data preprocessing are in the appendix.307

Robot Manipulation We consider a robot-assisted bite acquisition setting where contexts are308
pieces of food, K = 6 actions are different orientations of the end-effector, and rewards are suc-309
cessful acquisition. We use a dataset from Feng et al. (2019) which contains images of food and310
success rates of the actions. We perform PCA on the embeddings of the images to define contexts311
with dx = 5. We define f∗(xt, a) as the success rate and sample the observed reward r(xt, a) from312
a Bernoulli distribution. We define expert feedback using f∗(xt, a) as in the synthetic setting.313

Medical Classification Datasets We define additional settings using medical classification314
datasets: heart disease (Bou Rjeily et al., 2019) and MedNIST (Yang et al., 2023). We use PCA315
on the features to define contexts with dx = 6, define each class as an action (K = 2 and 6 re-316
spectively), and define the observed reward r(xt, a) as 1 when a is the correct classification and 0317
otherwise. Since we do not have access to the expected reward f∗(xt, a), we define expert feedback318
based on the observed rewards for Type-III, and give the true class label for Types-I and II.319

Results We present the results for all the three real world dataset (Robot Manipulation, Heart320
Disease, and MedNIST) in Figure 3. Unlike in the synthetic setting, the rewards are not necessarily321
linearly realizable. This is illustrated by the performance of the Linear Oracles: the regression322
oracle (which attempts to predict rewards) performs poorly compared with the classification oracle323
(which need only distinguish between actions). As a result, methods that rely most heavily on324
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(a) Robot Manipulation Dataset (Feng et al., 2019).
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(b) Heart Disease Dataset (Bou Rjeily et al., 2019).
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(c) MedNIST Dataset (Yang et al., 2023).

Figure 3: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on Robot Manipulation Dataset (3a), Heart Disease Dataset (3b), and MedNIST Dataset (3c) using
∆ = 4.0, ∆ = 5.0, and ∆ = 5.0 respectively.
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linear regression (LinUCB and the Linear Regression Oracle) do not perform well. On the other325
hand, methods that follow the experts advice and learn from classification feedback (MixUCB and326
the Linear Classification Oracle) perform better. In the MedNIST dataset, the realizability issue327
is particularly pronounced: the Linear Regression Oracle attains 10% performance of the Linear328
Classification Oracle. The violation of the linear realizability assumption is worse for algorithms329
that rely on linear regression, like LinUCB and MixUCB-III. The effect on total reward is mitigated330
for MixUCB-III because of the high rewards from expert actions.331

MixUCB-I and II fair better in the real data settings due to 1) learning from classification style feed-332
back and 2) gaining high rewards from expert actions. This second point is particularly pronounced333
for the classification datasets, where we do not directly simulate the noisiness of the expert—as a334
result, for the heart disease data, MixUCB-I outperforms the Linear Classification Oracle in terms335
of total reward. However, MixUCB-I and II are still able to perform well even with noisy expert336
advice in the robot manipulation setting.337

Among the three MixUCB variants, MixUCB-I queries the most frequently, while MixUCB-III338
queries the least, with MixUCB-II falling in between. This aligns with expectations—MixUCB-339
III gains more information per query, while MixUCB-I obtains the least. In all cases, the algo-340
rithm queries the most in the beginning, but then slowly stops querying. Finally, we observe that341
when MixUCB stops querying, there is a brief period of performance fluctuation before stabiliza-342
tion. This can be attributed to the sudden shift from relying on expert feedback to autonomous343
decision-making. However, within 100 steps, the model effectively adapts, demonstrating its ability344
to generalize from the acquired knowledge.345

6 Conclusion346

In this paper, we propose MixUCB, a flexible human-in-the-loop contextual bandit framework that347
enhances safe exploration by integrating human expertise with machine automation. Our results348
demonstrate that human and AI can complement each other to enable safer and more effective349
decision-making. Our experiments highlight the effectiveness of MixUCB in balancing query ef-350
ficiency and reward maximization. Compared with LinUCB, MixUCB consistently achieves a fa-351
vorable trade-off, efficiently navigating between querying experts and autonomous decision-making.352

References353

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic354
bandits. Advances in neural information processing systems, 24, 2011.355

Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In Interna-356
tional Conference on Machine Learning, pp. 1220–1228. PMLR, 2013.357

Alekh Agarwal, Miroslav Dudík, Satyen Kale, John Langford, and Robert Schapire. Contextual ban-358
dit learning with predictable rewards. In Artificial Intelligence and Statistics, pp. 19–26. PMLR,359
2012.360

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-361
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.362

Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandit363
algorithms with supervised learning guarantees. In Proceedings of the Fourteenth International364
Conference on Artificial Intelligence and Statistics, pp. 19–26. JMLR Workshop and Conference365
Proceedings, 2011.366

Carine Bou Rjeily, Georges Badr, Amir Hajjarm El Hassani, and Emmanuel Andres. Medical data367
mining for heart diseases and the future of sequential mining in medical field. Machine learning368
paradigms: Advances in data analytics, pp. 71–99, 2019.369

11



Under review for RLC 2025, to be published in RLJ 2025

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university370
press, 2006.371

Nicolo Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient pre-372
diction. IEEE Transactions on Information Theory, 51(6):2152–2162, 2005.373

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff func-374
tions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and375
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.376

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit377
feedback. In 21st Annual Conference on Learning Theory, pp. 355–366, 2008.378

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from379
single and multiple experts. The Journal of Machine Learning Research, 13(1):2655–2697, 2012.380

Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism. Science381
advances, 4(1):eaao5580, 2018.382

Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and383
Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.384
nature, 542(7639):115–118, 2017.385

Ryan Feng, Youngsun Kim, Gilwoo Lee, Ethan K Gordon, Matt Schmittle, Shivaum Kumar, Tapo-386
mayukh Bhattacharjee, and Siddhartha S Srinivasa. Robot-assisted feeding: Generalizing skewer-387
ing strategies across food items on a plate. In The International Symposium of Robotics Research,388
pp. 427–442. Springer, 2019.389

Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with390
regression oracles. In International Conference on Machine Learning, pp. 3199–3210. PMLR,391
2020.392

Dylan Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert Schapire. Practical con-393
textual bandits with regression oracles. In International Conference on Machine Learning, pp.394
1539–1548. PMLR, 2018a.395

Dylan J Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik Sridharan. Logistic re-396
gression: The importance of being improper. In Conference On Learning Theory, pp. 167–208.397
PMLR, 2018b.398

Steve Hanneke and Liu Yang. Minimax analysis of active learning. J. Mach. Learn. Res., 16(1):399
3487–3602, 2015.400

Steve Hanneke and Liu Yang. Toward a general theory of online selective sampling: Trading off401
mistakes and queries. In International Conference on Artificial Intelligence and Statistics, pp.402
3997–4005. PMLR, 2021.403

Shalmali Joshi, Sonali Parbhoo, and Finale Doshi-Velez. Learning-to-defer for sequential medical404
decision-making under uncertainty. arXiv preprint arXiv:2109.06312, 2021.405

Vijay Keswani, Matthew Lease, and Krishnaram Kenthapadi. Towards unbiased and accurate de-406
ferral to multiple experts. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and407
Society, pp. 154–165, 2021.408

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Ac-409
tive learning for cost-sensitive classification. Journal of Machine Learning Research, 20(65):410
1–50, 2019.411

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side412
information. Advances in neural information processing systems, 20, 2007.413

12



Enter Your Running Title Here

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to414
personalized news article recommendation. In Proceedings of the 19th international conference415
on World wide web, pp. 661–670, 2010.416

R Duncan Luce. Individual choice behavior, volume 4. Wiley New York, 1959.417

R Duncan Luce. The choice axiom after twenty years. Journal of mathematical psychology, 15(3):418
215–233, 1977.419

David Madras, Toni Pitassi, and Richard Zemel. Predict responsibly: improving fairness and accu-420
racy by learning to defer. Advances in neural information processing systems, 31, 2018.421

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert. In422
International Conference on Machine Learning, pp. 7076–7087. PMLR, 2020.423

Harikrishna Narasimhan, Wittawat Jitkrittum, Aditya K Menon, Ankit Rawat, and Sanjiv Kumar.424
Post-hoc estimators for learning to defer to an expert. Advances in Neural Information Processing425
Systems, 35:29292–29304, 2022.426

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntaek Lee, Xinyan Yan, Evangelos Theodorou,427
and Byron Boots. Agile autonomous driving using end-to-end deep imitation learning. arXiv428
preprint arXiv:1709.07174, 2017.429

Maithra Raghu, Katy Blumer, Greg Corrado, Jon Kleinberg, Ziad Obermeyer, and Sendhil Mul-430
lainathan. The algorithmic automation problem: Prediction, triage, and human effort. arXiv431
preprint arXiv:1903.12220, 2019.432

Alexander Rakhlin and Karthik Sridharan. Online non-parametric regression. In Conference on433
Learning Theory, pp. 1232–1264. PMLR, 2014.434

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret435
learning. arXiv preprint arXiv:1406.5979, 2014.436

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-437
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-438
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference439
Proceedings, 2011.440

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Contextual bandits and imitation441
learning with preference-based active queries. Advances in Neural Information Processing Sys-442
tems, 36, 2024a.443

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Selective sampling and imitation444
learning via online regression. Advances in Neural Information Processing Systems, 36, 2024b.445

Daniel Sikar, Artur Garcez, Tillman Weyde, Robin Bloomfield, and Kaleem Peeroo. When to accept446
automated predictions and when to defer to human judgment? arXiv preprint arXiv:2407.07821,447
2024.448

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply ag-449
grevated: Differentiable imitation learning for sequential prediction. In International conference450
on machine learning, pp. 3309–3318. PMLR, 2017.451

Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. Bandit problems with side observations.452
IEEE Transactions on Automatic Control, 50(3):338–355, 2005.453

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, and454
Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image455
classification. Scientific Data, 10(1):41, 2023.456

13



Under review for RLC 2025, to be published in RLJ 2025

Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. Advances in Neural457
Information Processing Systems, 35:35379–35391, 2022.458

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of459
maximum causal entropy. 2010.460

14



Enter Your Running Title Here

Supplementary Materials461

The following content was not necessarily subject to peer review.462
463

7 Main Proofs464

Proof of Lemma 2. Let R∞ = maxx∈X ,a∈A f∗(x, a),465

c(α) = max
x∈X

(
max
a∈A

f∗(x, a)

)
− Ea[f

∗(x, a)]

≤ max
x∈X

R∞ −
∑
a∈A

exp(αf∗(x, a))∑
a′∈A exp(αf∗(x, a′))

f∗(x, a)

≤ R∞ − min
∥r⃗∥∞=R∞

⟨exp(αr⃗), r⃗⟩
⟨exp(αr⃗), 1⟩

= R∞ − R∞ exp(αR∞)

exp(αR∞) +K − 1

where the final equality holds when r⃗ has one element being R∞ while the rest being 0. (For466
example, when r⃗ = [R∞, 0, · · · , 0]). Such r⃗ attain the minimum, as the element-wise derivative of467
⟨exp(αr⃗),r⃗⟩
⟨exp(αr⃗),1⟩ is increasing. The final expression holds by simplifying the difference of fractions.468

469

Proof of Proposition 1. Let Esq
t = {θ ∈ Rd, ∥θ∥ ≤ 1 : ∥θ − θsqt−1∥2V sq

t−1
≤ βsq

t } and E lr
t = {θ ∈470

Rd, ∥θ∥ ≤ 1 : ∥θ − θlrt−1∥2V lr
t−1

≤ βlr
t } be the confidence set from square loss oracle and logistic471

regression oracle, respectively, and let Et = E lr
t ∩Esq

t be the confidence set that contains the true pa-472
rameter θ∗. Recall from Algorithm 1 that the UCB action aucbt = argmaxa∈A maxθ∈Et

θ⊤ϕ(xt, a)473
and the confidence width of aucbt is wt = maxθ∈Et

θ⊤ϕ(xt, a
ucb
t )−minθ∈Et

θ⊤ϕ(xt, a
ucb
t ).474

Case 1. The algorithm is not confident about its predicted action, i.e., wt ≥ ∆, which satisfies the475
query condition. In this case, the algorithm takes action from noisy expert ã∗t , and incurs regrets476
RExP

t (ã∗t ), which is controlled by how noisy the expert is.477

Case 2. the algorithm is confidence about its predicted action aucbt , i.e, wt < ∆, so it will play the478
UCB action aucbt . Let a∗t be the optimal action at round t, i.e., a∗t = argmaxa∈A⟨θ∗, ϕ(xt, a)⟩, the479
regret of playing this action is bounded as480

RNoE
t = ⟨θ∗, ϕ(xt, a

∗
t )⟩ − ⟨θ∗, ϕ(xt, a

ucb
t )⟩

≤ max
a∈A

max
θ∈Et

θ⊤ϕ(xt, a)−min
θ∈Et

θ⊤ϕ(xt, a
ucb
t )

= max
θ∈Et

θ⊤ϕ(xt, a
ucb
t )−min

θ∈Et

θ⊤ϕ(xt, a
ucb
t )

= wt < ∆

(11)

On the other hand, let θ̄t = argmaxθ∈Et
θ⊤ϕ(xt, a

ucb
t ) and θt = argminθ∈Et

θ⊤ϕ(xt, a
ucb
t ), it481

holds that482
RNoE

t ≤ max
θ∈Et

θ⊤ϕ(xt, a
ucb
t )−min

θ∈Et

θ⊤ϕ(xt, a
ucb
t )

= θ̄⊤t ϕ(xt, a
ucb
t )− θ⊤t ϕ(xt, a

ucb
t )

= ⟨θ̄t − θt, ϕ(xt, a
ucb
t )⟩

≤ ∥θ̄t − θt∥V sq
t−1

· ∥ϕ(xt, a
ucb
t )∥(V sq

t−1)
−1

≤ 2
√
βsq
t · ∥ϕ(xt, a

ucb
t )∥(V sq

t−1)
−1

(12)
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Putting them together, we have483

RNoE
t ≤ min{∆, 2

√
βsq
t · ∥ϕ(xt, a

ucb
t )∥(V sq

t−1)
−1} (13)

From assumption 2, we have that βsq
T ≥ max{1, βsq

t }, and thus484

RNoE
t ≤ 2

√
βsq
T min{∆, ∥ϕ(xt, a

ucb
t )∥(V sq

t−1)
−1} (14)

and485
(RNoE

t )2 ≤ 4βsq
T min{∆2, ∥ϕ(xt, a

ucb
t )∥2(V sq

t−1)
−1}

≤ 4βsq
T · ∆2

log2(1 + ∆2)
· log2(1 + ∥ϕ(xt, a

ucb
t )∥2(V sq

t−1)
−1)

(15)

where we used the fact that for any ∆ < 1 and u ≥ 0, min{∆2, u} ≤ logv(1+u) = log2(1+u)
log2 v with486

log2 v = log2(1+∆2)
∆2 .487

Now, we will bound the sum over log2(1 + ∥ϕ(xt, a
ucb
t )∥2

(V sq
t−1)

−1):488

For any t ≥ 1, we have489

V sq
t =V sq

t−1 + Z̄t · ϕ(xt, a
ucb
t )ϕ(xt, a

ucb
t )⊤

=(V sq
t−1)

1/2(I + Z̄t(V
sq
t−1)

−1/2ϕ(xt, a
ucb
t )ϕ(xt, a

ucb
t )⊤(V sq

t−1)
−1/2)(V sq

t−1)
1/2

(16)

and thus490

det(V sq
t ) =det(V sq

t−1) det(I + Z̄t(V
sq
t−1)

−1/2ϕ(xt, a
ucb
t )ϕ(xt, a

ucb
t )⊤(V sq

t−1)
−1/2)

=det(V sq
t−1) ·

(
1 + Z̄t∥ϕ(xt, a

ucb
t )∥2(V sq

t−1)
−1

) (17)

where it follows because matrix I + yy⊤ has eigenvalues 1+ ∥y∥22 and 1, as well as the fact that the491
determinant of a matrix is the product of its eigenvalues.492

T∑
t=1

Z̄t · log2(1 + ∥ϕ(xt, a
ucb
t )∥2(V sq

t−1)
−1)

=

T∑
t=1

log2(1 + Z̄t∥ϕ(xt, a
ucb
t )∥2(V sq

t−1)
−1)

=

T∑
t=1

log
det(V sq

t )

det(V sq
t−1)

= log
det(V sq

T )

det(V sq
0 )

≤ log
Πd

i=1λ
sq
i

det(V sq
0 )

≤ log
( 1dTr(V

sq
T ))d

det(V sq
0 )

≤ log
( 1d (dλ+

∑T
t=1 Z̄tL

2))d

λd

≤d log(1 +
(
∑T

t=1 Z̄t)L
2

λd
)

(18)

where λsq
1 , · · · , λsq

d are the eigenvalues of V sq
T .493
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The total regret on the rounds that we don’t query is494

T∑
t=1

RNoE
t Z̄t ≤

√√√√( T∑
t=1

Z̄t

)
·

(
T∑

t=1

Z̄t · (RNoE
t )2

)

≤

√√√√( T∑
t=1

Z̄t

)
·

(
T∑

t=1

Z̄t · 4βsq
T · ∆2

log2(1 + ∆2)
· log2(1 + ∥ϕ(xt, aucbt )∥2

(V sq
t−1)

−1)

)

=
2∆βsq

T√
log2(1 + ∆2)

√√√√ T∑
t=1

Z̄t

√√√√ T∑
t=1

Z̄t log2(1 + ∥ϕ(xt, aucbt )∥2
(V sq

t−1)
−1)

≤
2∆βsq

T√
log2(1 + ∆2)

√√√√ T∑
t=1

Z̄t

√
d log2(1 +

(
∑T

t=1 Z̄t)L2

λd
)

(19)
Putting case 1 and case 2 together, we have the overall regret495

Reg(T ) =
T∑

t=1

Z̄tR
NoE
t +

T∑
t=1

ZtR
ExP
t

≤
2∆βsq

T√
log2(1 + ∆2)

√√√√ T∑
t=1

Z̄t

√
d log2(1 +

(
∑T

t=1 Z̄t)L2

λd
) +

T∑
t=1

ZtR
ExP
t (ã∗t )

(20)

496

Proof of Theorem 1. let θ̄t = argmaxθ∈Et
θ⊤ϕ(xt, a

ucb
t ), θt = argminθ∈Et

θ⊤ϕ(xt, a
ucb
t ), and497

a∗t = argmaxa∈A⟨θ∗, ϕ(xt, a)⟩. Recall that wt = maxθ∈Et
θ⊤ϕ(xt, a

ucb
t )−minθ∈Et

θ⊤ϕ(xt, a
ucb
t )498

T∑
t=1

Zt =

T∑
t=1

1{wt ≥ ∆}

=

T∑
t=1

1{⟨θ̄t − θt, ϕ(xt, a
ucb
t )⟩ ≥ ∆}

≤
T∑

t=1

1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}+

T∑
t=1

1{⟨θ∗ − θt, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}

(21)

Using Lemma 7 from Sekhari et al. (2024b), we have499

T∑
t=1

1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}

=

T∑
t=1

Zt1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}+

T∑
t=1

Z̄t1{⟨θ̄t − θ∗, ϕ(xt, a
ucb
t )⟩ ≥ ∆

2
}

≤
(
4βsq

T

∆2
+ 1

)
d+

(
4βlr

T

∆2
+ 1

)
d

≤10βT d

∆2

(22)

500
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Algorithm 2 MixUCB-I (Detailed)

Input: Query threshold ∆, total rounds T .
Let V sq

0 = V lr
0 = λI , the initial confidence set Esq

1 = E lr
1 = {θ ∈ Rd, ∥θ∥ ≤ 1}

for t = 1, · · · , T do
Construct the current parameter space Et = Esq

t ∩ E lr
t

Learner predict the UCB action aucbt = argmaxa∈A maxθ∈Et θ
⊤ϕ(xt, a)

Compute the confidence of aucbt : wt = maxθ∈Et θ
⊤ϕ(xt, a

ucb
t )−minθ∈Et θ

⊤ϕ(xt, a
ucb
t )

if wt ≥ ∆ then
Query the expert to get the noisy optimal action ã∗t and play ã∗t , and Zt = 1.

else
Play the UCB action aucbt and observe the reward rt and Zt = 0.

Update V sq
t = V sq

t−1 + Z̄t · xt
aucb
t

(xt
aucb
t

)⊤ and V lr
t = V lr

t−1 + Zt ·
∑

a∈A xt
a(x

t
a)

⊤, where
xt
a = ϕ(xt, a)

\\ Update the square loss oracle and its confidence set
Update the square loss parameter estimation θsqt = (V sq

t )
−1

(
∑t−1

s=1 x
s
aucb
s

rs+ Z̄t ·xt
aucb
t

rt) and

confidence set Esq
t+1 = {θ ∈ Rd, ∥θ∥ ≤ 1 : ∥θ − θsqt ∥2

V sq
t

≤ βsq
t }

\\ Update the logistic loss oracle and its confidence set
Update logistic regression oracle and get the new parameter estimation θlrt =
Oθlr

t−1
({xt, ã

∗
t })Zt + Oθlr

t−1
(∅)Z̄t, then update the confidence set E lr

t+1 = {θ ∈ Rd, ∥θ∥ ≤
1 : ∥θ − θlrt ∥2

V lr
t

≤ βlr
t }

Return

8 Detailed Algorithms501

Let xt
a = ϕ(x, a) be the feature vector of action a at step t.502

Algorithm 3 MixUCB (Type-III feedback)

Input: Query threshold ∆, total rounds T , function class F , initial confidence set E1
for t = 1, · · · , T do
aucbt = argmaxa∈A maxf∈Et

f(xt, a)
wt = maxf∈Et f(xt, a

ucb
t )−minf∈Et f(xt, a

ucb
t )

if wt ≥ ∆ then
Set Zt = 1. Query the experts and observe the rewards for all the actions rt,a ∼
r(xt, a),∀a ∈ A and play optimal action a∗t = argmaxa∈A r(xt, a).
Update Dt and Et with (xt, a, rt,a) according to

Et = {f ∈ F |
∑

x,a∈Dt

(ft(xt, at)− f(xt, at))
2 ≤ βt} . (23)

.
else

Set Zt = 0. Play aucbt and observe rt ∼ r(xt, a
ucb
t ).

Update Dt and Et with (xt, a
ucb
t , rt) according to (23).

Return

9 Experimental details503

Online regression and confidence sets The joint loss is defined as504 ∑
x,a∈Dlr

t

ℓlr(θ, x, a) +
∑

x,a,r∈Dsq
t

ℓsq(θ, (x, a), r) + λ∥θ∥22
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where ℓlr is the cross entropy loss and ℓsq is the squared loss. Then we define θ̂t for all algorithms505
as the minimizer of this loss and the confidence set as Et = {θ | ∥θ − θ̂t∥2Vt(β)

≤ 1} where506

Vt(β) =
1

(βlr)2

∑
x,a∈Dlr

t

ϕ(x, a)ϕ(x, a)⊤ +
1

(βsq)2

∑
x,a∈Dsq

t

ϕ(x, a)ϕ(x, a)⊤ +
1

(βsq)2
λI .

The advantage of this joint definition is that the optimistic/pessimistic optimization has a closed507
form solution: maxf∈Et f(x, a) = θ̂⊤t ϕ(x, a) + ∥x∥Vt(β).508

Robotics dataset We consider a dataset from the challenging robot manipulation problem of509
robot-assisted bite acquisition (Feng et al., 2019), in which the task of the robotic agent is to ac-510
quire bite-sized food items. The dataset include images from 16 different food types. In this setting,511
the raw observation space O consists of RGB images of the bite-sized food items. We derive a512
context space X ⊂ R5 by first extracting a lower-dimensional intermediate context xint ∈ R2048513
by passing the each image through the SPANet network (a supervised network developed in (Feng514
et al., 2019) for this domain) and extracting the penultimate layer (which is a linear layer). We then515
run PCA with n = 5 components to get the final context x ∈ R5. The action space A consists516
of 6 discrete actions, corresponding to different orientations of the robot end-effector. The rewards517
r ∈ R represent the probability of a successful acquisition.518

Medical datasets In this study, we utilize a heart disease dataset sourced from the UCI Machine519
Learning Repository, which is publicly available (Bou Rjeily et al., 2019). The dataset comprises520
297 instances and 14 attributes. These attributes include age, sex, cholesterol levels, chest pain type521
(e.g., typical or non-anginal), resting blood pressure, maximum heart rate, and results from tests522
like resting ECG and Thallium stress tests. Additional variables such as exercise-induced angina523
and ST depression assess heart performance under stress. The dataset also includes attributes like524
the number of major vessels and fasting blood sugar. The target variable, ’Diagnosis,’ indicates525
whether a patient has heart disease (1 = yes, 0 = no), and serves as the dependent variable, while526
the remaining 13 attributes act as independent variables. No personally identifiable information is527
included. We derive a context space x ∈ R6 by running PCA with n = 6 components from the528
original context xint ∈ R13. The action space A consists of 2 discrete actions.529

MedNIST (Yang et al., 2023) consists of 28×28 images with corresponding classification labels. We530
randomly select 20 samples from each of the 6 classes: ’BreastMRI’, ’HeadCT’, ’CXR’, ’ChestCT’,531
’Hand’, and ’AbdomenCT’. We derive a context space x ∈ R6 by running PCA with n = 6 compo-532
nents. The action space A consists of 6 discrete actions.533

10 Complete experimental results534

In Figure 4, Figure 5, Figure 6 and Figure 7, we show the complete result of different query thresh-535
old ∆ for synthetic data, robot manipulation dataset, MedNIST dataset and Heart Disease dataset,536
respectively.537
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Figure 4: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on synthetic data with different query threshold ∆ = {2, 3, 4}.
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Figure 5: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on Robot manipulation dataset with different query threshold ∆ = {3, 4, 5}.
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Figure 6: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on MedNIST dataset with different query threshold ∆ = {4, 5, 6}.
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Figure 7: Cumulative Reward, Average Autonomous Reward, and Cumulative Queries for MixUCB
on Heart disease dataset with different query threshold ∆ = {4, 5, 6}.
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