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ABSTRACT

The appropriate methods for aligning neural network models to the brain remain
controversial. Ideally, a good alignment method should be powerful enough to en-
able accurate predictions of neural responses under a mapping from model units
to neurons, while also being specific enough to distinguish the target system (e.g.
a particular brain area) from other systems. It has generally been assumed that the
goals of predictivity and specificity are in tension with each other, with methods
that severely restrict the possible relationships between model and target being
better for specificity, and more flexible methods yielding higher predictivity. We
show that this apparent tension does not in fact exist. Fundamentally, this is be-
cause specificity requires not only distinguishing response patterns from different
brain areas (i.e. separation), but also recognizing response patterns from the same
brain area as being similar across subjects (i.e. identification). Taking this into ac-
count, we find that relatively flexible methods, like linear regression, can exhibit
greater specificity compared to stricter methods, while also enabling better pre-
dictions. Motivated by the idea that the correct balance between strict and loose
is manifested by the empirical relationships between subjects in a population, we
introduce an alignment method that incorporates known aspects of the biological
circuit, further improving predictivity without reducing specificity.

1 INTRODUCTION

Many deep learning models trained to perform cognitive tasks predict trial-averaged spiking re-
sponses accurately under linear regression (Yamins et al., 2014; Storrs et al., 2021; Kell et al., 2018;
Zhuang et al., 2021). This raises the question of how to align model features to neural responses in
order to assess the quality of neural networks as mechanistic models of the brain.

However, aligning neural networks to the brain has been challenging because it has been unclear
what the criteria for good alignment methods are. Ideally, a good alignment method should succeed
on two fronts. First, it should enable accurate predictions of neural activity, implemented via a map-
ping from model components to neural components that aligns simulated and real activity. Second,
an alignment method should exhibit specificity: it should identify response patterns from the same
part (e.g. brain area or model layer) as being similar across different instances of the population,
while distinguishing response patterns from different parts as being dissimilar.
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Predictivity is motivated on practical and philosophical grounds. A practical motivation is that we
often want to use mechanistic models as stand-ins for real brains (or brain areas) by accurately sim-
ulating brain responses. In order for mechanistic models to be useful as stand-ins, high mechanistic
similarity should go hand-in-hand with high predictive accuracy with respect to brain responses.
In addition, recent philosophical work on mechanistic models in neuroscience argues that a good
mechanistic model of a system should have variables that can be accurately mapped to some set of
variables in the target system that are causally sufficient to generate the behavior of interest (Cao
& Yamins, 2021). More specifically, we should be able to transform one runnable model or system
into another under an appropriate mapping. In what follows, our working assumption is that firing
rates are causally sufficient to generate the behaviors we want to explain, and we therefore assess
similarity by mapping between model responses and firing rates in a population of animals.

The motivation for specificity is that, in order to be a mechanistic mapping, the model-brain mapping
should identify similarity between response patterns of the same type while distinguishing response
patterns of different types. For example, if an alignment method mapped retinal responses onto IT
responses with high accuracy, then it would be eliding important functional distinctions between
brain areas that are performing very different operations. At the same time, the alignment method
should be able to identify genuine functional similarities between response patterns from the same
brain area, even when they come from different subjects and therefore are not exactly identical.

It has been widely presumed that the goals of predictivity and specificity are in tension with each
other Ivanova et al. (2021). Intuitively, more flexible transform classes appear better for prediction,
while stricter transform classes appear better for separation. To the extent that this trade-off exists,
there is an inherent divergence between the goals of accurate prediction (e.g. building brain-machine
interfaces) and scientific understanding (e.g. systems identification). Indeed, this assumption has
had substantial influence on metric design, with researchers pursuing scientific understanding fa-
voring stricter methods Williams et al. (2021) and those pursuing engineering applications favoring
more flexible methods Schrimpf et al. (2018).

However, the literature overlooks a crucial aspect of specificity: identifying similarity between re-
sponse patterns of the same type (e.g. from the same brain area or model layer) (Fig. 1B). Indeed, an
alignment method that indiscriminately separated all response patterns would be incapable of recog-
nizing target systems of the same type (e.g. the same brain area and species) as similar to each other,
and therefore would lack specificity. Considering both aspects of specificity suggests that rather than
a trade-off, there is an optimal balance between strictness and flexibility, where we want the nar-
rowest class of transforms that accurately maps responses between subjects for the same brain area
(Fig. 1C). Once this transform class has been identified, it is then possible to measure model-brain
similarly using this same transform class, in effect computing how well an ANN can masquerade
as an element of the real population using the same ”rules of similarity” as needed to compare real
animals (Fig. 1D). To better approximate the ideal transform class, we propose a transform class
that accounts for known aspects of the biological circuit, increasing predictivity without reducing
specificity.

This framework helps address recent debates about how strict or flexible a similarity score should
be. For example, many researchers (Kornblith et al., 2019; Ding et al., 2021; Conwell et al., 2022;
Finzi et al., 2022) have pushed for stricter similarity assessments than linear regression. One recent
example is Khosla & Williams (2023)’s soft matching method, which assesses similarity with respect
to tuning curves of individual neurons, while also being able to handle neuronal populations of
different sizes and satisfying criteria for a mathematical metric, following prior work (Williams
et al., 2021). Our approach requires a good transform class to map accurately across subjects for
the same brain area (while still distinguishing different brain areas), and a transform class that fails
to do so will therefore be too strict. Moreover, it may turn out that a good transform class leads to
similarity scores that do not satisfy metric criteria.

We find that a good transform class must take into account aspects of the Linear-Nonlinear structure
that occurs in biological (and artificial) neural networks. To see why, consider that even if linear filter
outputs at each layer (before applying the non-linear activation function) are linearly related between
subjects, this does not imply that firing rates (which are post-non-linearity) are so related. The non-
linear activation function may well distort the inter-subject transforms. Indeed, when we look at
a population of DNN models of mice, we find that post-non-linearity responses in intermediate
layers are not very similar according to a linear transform, but pre-non-linearity responses are. By
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Figure 1: Inter-animal transforms as a framework for model-brain comparison (A) Predictivity: An
alignment method should provide a mapping from model units to neurons, so that a good model can
predict neural activity for scientific understanding or engineering applications (e.g. brain-computer
interfaces). (B) Specificity: An alignment method should also exhibit specificity, meaning that it
separates response patterns of different types (high separability), such as responses from different
brain areas, while also identifying similarity between response patterns of the same type (high identi-
fiability), such as responses from the same brain area. Identifiability is just as critical as separability
to specificity, though it is often overlooked. (C) A natural way to achieve both predictivity and
specificity is to identify the narrowest class of transforms that maps responses between subjects for
a given brain area and species. (D) Once identified, the inter-animal transform class can be used to
map a candidate model’s responses in a given layer to a given brain area in order to assess how well
the model responses can masquerade as responses of a typical animal subject.

analogy to the models, we hypothesize that the linear-nonlinear structure of the biological network
also modifies the inter-animal transform class.

To account for details of the biological mechanism, we propose a transform class, Linear Nonlinear,
that approximately inverts the biological non-linearity, applies a linear transform, and then re-applies
a non-linearity (exponential) to predict the target neuron’s firing rates. On an electrophysiological
dataset of 31 mouse subjects, Linear Nonlinear increases same-area similarity scores relative to ridge
regression and soft matching, while maintaining inter-area separability. Finally, we assess model-
brain similarity for several models of the mouse visual system under different transform classes. We
find that Linear Nonlinear and Ridge are just as good at separating models as Soft Matching, but
only when both directions of fit (model to brain and brain to model) are taken into account. Thus,
as with the models, there is no systematic tradeoff between predictivity and specificity.

Section 2 details our results in mapping between instances in a simulated population of DNN models
of the mouse visual system to show how the form of the mechanism constrains the inter-model (and,
we hypothesize, inter-animal) transform class. In section 3, we develop our biologically motivated
transform class and show that Linear Nonlinear improves both predictivity and specificity on the
model population. Finally, section 4 investigates how well our results on the model population
generalize to a real mouse population.
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2 A MODEL-BASED APPROACH TO DEVELOPING AN IMPROVED TRANSFORM
CLASS

To generate hypotheses for a good transform class, we do model-model mappings in a simulated
population of subjects using a state-of-the-art model of mouse visual cortex (Nayebi et al., 2022)
in order to observe how well candidate transform classes map across model instances for the same
layer. As we will see, the model-model mappings yield insights about how the form of the mech-
anism (perfectly observable in the case of the models) constrains a good transform class. Another
benefit of using models is that we can observe responses for every unit and arbitrarily many stimuli
(unlike the electrophysiological data) and therefore get more accurate similarity scores according to
each candidate transform class.

Our models are based on a modified AlexNet architecture developed by Nayebi et al. (2022), which
was found to predict mouse visual responses better than other models using linear regression. This
model has relatively low-resolution 64x64 inputs and is trained on an unsupervised objective (In-
stance Discrimination) over the ImageNet training set. We further modified these models to use
a softplus activation function (App. C) followed by Poisson-like noise (App. D) to better mimic
neuronal response characteristics. To generate the population of “conspecific” models, we vary the
random seed controlling the weight initialization and training data order. Each model subject is
trained to have equally good performance as the original model on both the contrastive objective
and on transfer performance on ImageNet object categorization (which it was not explicitly trained
on). We hypothesize that varying the random seed leads to model response variability for a given
layer that is approximately similar to variability in animal responses for a given brain area. To the
extent that this approximation holds, a good inter-model transform class should also be a good inter-
animal transform class, and the ranking of different transform classes (in terms of how accurately
they map across subjects) should be roughly similar for both the simulated model population and
the mouse population. As we will see in Sec. 4 (compare Fig. 3 and Fig. 4), this is the case.

2.1 PRE-NONLINEARITY ACTIVATIONS ARE HIGHLY SIMILAR UNDER A LINEAR
TRANSFORM, LEADING TO A HIERARCHICAL TRANSFORM CLASS

With our model population, we now ask how well responses for different model subjects predict
each other for the same layer using ridge regression. We see that post-softplus responses look fairly
dissimilar at intermediate layers between models according to ridge regression (Fig. 2A). This is
a striking result given that ridge regression has been criticized as too flexible. If model instances
are not similar even according to ridge regression at the intermediate layers, one might suspect
that the relations between different model instances are highly non-linear, involving (for instance)
a sequence of non-linear operations similar to those in a deep neural network. If so, then different
model instances perform very different operations in intermediate layers, even though we see that
the first and last layers are somewhat similar, presumably because they are closer to the inputs and
outputs, which are the same across model instances. This explanation sounds plausible, since it isn’t
obvious that differently seeded models must use similar operations to transform identical inputs to
identical outputs, even for the same architecture (although they could, for all we know).

However, this explanation turns out to be wrong. As it turns out, pre-softplus responses are highly
similar under a linear transform (Fig. 2A). The softplus non-linearity interferes with the response
similarity according to linear transform at each layer of the model. This result reveals a non-obvious
convergence between differently seeded model instances at intermediate layers. If no such con-
vergence had occurred, then it would be unclear whether or not different model instances have
functionally similar response patterns, and in turn, whether different mouse subjects have similar
response patterns.

These results suggest that response similarity is most evident when assessed pre-nonlinearity and
under a linear regression. The implication for mapping models to animals (or animals to each other)
is that we should use linear regression to map pre-non-linearity responses to each other instead of
post-non-linearity responses. Therefore, to compare models to brains, it may be useful to collect
EPSP data in the future instead of spiking activities (Fig. 2B). However, given that EPSPs are
currently difficult to measure, it is useful to develop a good transform class for post-non-linearity
responses.
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Figure 2: A good transform class should take into account the neuronal activation function. (A)
When ridge regression is applied to post-softplus responses (dark green), same-layer predictivity is
somewhat low between different model subjects. However, same-layer predictivity is much higher
for ridge regression when evaluated pre-softplus (light green). (B) Pre-softplus responses can be
thought of as corresponding to trial-averaged EPSPs in a biological neuron, while post-softplus
responses correspond to trial-averaged firing rates. Since EPSPs are hard to measure, we want an
alignment method that works well for post-non-linearity responses. (C) Taking into account the non-
linearity requires a transform class with a hierarchical structure. Step 1 inverts the non-linearity in
order to recover the pre-non-linearity activations of one model, step 2 applies a fitted linear transform
to predict the pre-non-linearity activations of the other model, and step 3 re-applies the non-linearity
to predict the post-non-linearity activations of the other model.

3 A BIOLOGICALLY MOTIVATED TRANSFORM CLASS

Given that pre-non-linearity responses are highly similar under a linear transform, a natural way
to map post-non-linearity responses between two sets of neurons would be to, first, invert the non-
linearity to recover the pre-non-linearity responses of the source neurons; second, apply a linear map
to predict the pre-non-linearity responses of the target neurons; and finally, re-apply the non-linearity
to predict the post-non-linearity responses of the target neurons (Fig. 2C).

For real firing rate data, we do not generally know the exact form of the activation function for
each neuron, so we started with a transform class that only approximately captures the activation
function. Linear Nonlinear approximately inverts the activation function using Yeo-Johnson scaling
(Appendix E) and then applies a linear transform followed by the exponential function to approx-
imate the smooth activation function in the models (see Appendix F for details). As with ridge
regression, we use a cross-validated ridge penalty on the weights of the linear mapping to reduce
over-fitting.

We also investigated what would happen if we did account more precisely for the activation func-
tion by considering two variants of Linear Nonlinear. Linear Softplus applies the softplus activation
function in the last step of the hierarchical transform (Fig. 2C) instead of the exponential. Pre Lin-
ear Softplus goes one step further, mapping pre-non-linearity responses of one model subject to
post-non-linearity responses of the other, which amounts to exactly (instead of just approximately)
inverting the activation function in the first step. These progressive improvements lead to greater
predictivity. Thus, accounting for aspects of the biological mechanism seems to be crucial for max-
imizing the predictivity of the transform class.

Finally, to compare these relatively flexible methods to a much stricter method, we evaluated soft
matching, which assesses tuning curve similarity of individual neurons between two neural popu-
lations. It turns out that soft matching can be formulated as a predictive mapping (see App. B),
and therefore can be evaluated for predictivity. We find that soft matching predictivity is low at all
layers, especially intermediate layers (Fig. 3A). Therefore, soft matching is too strict to characterize
the inter-model transform class.

Although our biologically motivated transform class (and its variants) performs better on predictiv-
ity, a crucial question is whether this improvement comes at the cost of specificity. In fact, given that
we are now using non-linear transform classes (and non-linear transform classes are often thought
of as being very flexible), this is a natural worry to have. We therefore evaluate all of the above
methods for specificity.
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Figure 3: Results on simulated population. (A) Same-layer predictivity on model subjects. Ac-
counting for aspects of the biological mechanism, specifically the activation function, improves
predictivity. Pre Linear Softplus, which exactly accounts for the softplus activation function, best
predicts post-softplus responses. The remaining gap between Pre Linear Softplus and Ridge Pre can
be attributed to the fact that Ridge Pre predicts pre-softplus responses whereas Pre Linear Softplus
predicts post-softplus responses, and so the R2 score (which depends on the total variance of the
target variable) can be different in the two cases. (B and C) Overall same-layer predictivity vs speci-
ficity. We do not see a systematic tradeoff between predictivity and specificity. In fact, the most
predictive methods have the greatest specificity. RSA, which does not enable firing rate predictions,
does have high specificity, but not as high as Pre Linear Softplus. (D) To understand why improving
predictivity can improve specificity, we can visualize the assessed dissimilarities between response
profiles using multi-dimensional scaling. The distances between points in the 2D plot are optimized
to be as close as possible to the assessed dissimilarites between response profiles. The MDS plot
reveals that methods with higher predictivity improve identifiability, a crucial component of speci-
ficity, while largely maintaining inter-layer separability. Of course, if separability had been lost,
then the increased predictivity would not have resulted in increased specificity (cf. Fig. 1B).

To take into account both aspects of specificity (identifiability and separability), we compute the
silhouette score Rousseeuw (1987), which is close to 1 just in case responses for different layers are
separated much more than responses for the same layer. The silhouette score for response profile i
is:

s(i) =
b(i)− a(i)

max(b(i), a(i))

where a(i) is the mean dissimilarity between i and other response profiles for the same model layer,
and b(i) is the mean dissimilarity between i and responses from the next most similar model layer.
We compute the mean silhouette score over all model subjects and layers.

Rather than finding a trade-off, we find that increased predictivity can improve specificity (Fig.
3B, C) as long as inter-layer separation is maintained. For example, ridge (post-softplus) exhibits
more specificity than soft matching (Fig. 3B). This is because ridge clusters same-layer responses
more tightly than soft matching, thus improving identifiability, a key component of specificity, while
maintaining inter-layer separation (Fig. 3D). Pre Linear Softplus achieves an even higher silhouette
score, again because higher predictivity lead to higher identifiability. In fact, a maximally specific
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transform class should achieve maximum predictivity for same-layer responses (to improve identi-
fiability), while being as narrowly defined as possible (to improve or at least maintain separability).

It is worth stressing that, while more predictive methods can exhibit greater specificity, this is not
always the case. For example, an extremely flexible alignment method, such as a deep multi-layer
perception, could in principle map between many pairs of response profiles with high accuracy, re-
gardless of whether they came from different brain areas or the same brain area. This would be
a situation where we had high predictivity but low specificity (because of a lack of separability).
One reason separability was maintained for our biological transform class is that it is not an un-
constrained alignment method. Indeed, a core contribution of our approach is that the correct inter-
animal transform class must take into account aspects of the biological mechanism and is therefore
highly constrained.

4 EVALUATING TRANSFORM CLASSES ON MOUSE ELECTROPHYSIOLOGY
DATA

We investigate how well our results generalize to a mouse dataset containing Neuropixels recordings
for 31 subjects in response to 118 naturalistic stimuli, averaged over 50 trials (de Vries et al., 2020).
With only about 50 neurons measured per subject and brain area, we pool N-1 subjects’ neurons to
evaluate same-area predictivity for a target subject. Overall, the rank ordering of alignment methods
in terms of same-area predictivity is similar for the real population as for the simulated population
(Fig. 4A). This helps validate our simulated population as a model of inter-animal variability, at
least to some degree.

The fact that Linear Softplus does not seem to perform significantly better than Linear Nonlinear
means that we cannot tell, based on the transform class performance, that softplus is a better ap-
proximation to the activation functions in play than the exponential. However, it is worth noting
that Linear Nonlinear is easier to fit, as it does not require an extra scaling parameter as Linear Soft-
plus does. This means that on a limited number of stimuli, Linear Nonlinear may achieve strong
performance, even if the exponential function is less similar to biological activation functions than
softplus.

With predictivity scores in hand, we also want to evaluate specificity on the mouse data. When pool-
ing across subjects, we cannot compute silhouette scores. We therefore assess specificity indirectly
by considering the average difference between 4 candidate models in terms of assessed similarity
to each brain area. A method with low specificity would not be able to differentiate models that
are more similar to the brain from those that are less similar, and therefore would have low model
separability. We consider four different models: the ReLU-based AlexNet model of mouse visual
cortex (Nayebi et al., 2022), our noisy softplus version of that model, a ResNet model trained on
ImageNet categorization with 64x64 resolution stimuli, and a VGG-16 model trained on ImageNet
categorization, with 224x224 resolution stimuli (unlike the relatively low resolution mouse visual
system).

We map model-to-brain as well as brain-to-model. For model-to-brain, soft matching separates
models better, consistent with Khosla & Williams (2023), but for brain-to-model, Ridge and Linear
Nonlinear separate models better (Fig. 4B). A possible reason is that model responses can have
patterns not present in the brain data, and flexible mappings like Ridge or Linear Nonlinear may only
detect such a discrepancy when mapping from brain to model. When mapping in both directions,
model separability is as good for Ridge and Linear Nonlinear as it is for soft matching. Overall,
there is not a trade-off between predictivity and model separability (Fig. 4C, D).

5 CONCLUSION

There is not a systematic trade-off between predictivity and specificity. In fact, both goals should be
achieved by the narrowest class of transforms under which subjects’ responses predict each other
with high accuracy for that area. To better approximate that class, we introduce a method that ac-
counts for the activation function, improving predictivity while maintaining specificity. Because the
ideal inter-animal transform class should be as narrowly defined as possible to improve separability
(subject to the requirement of maximizing predictivity), future research should investigate whether
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Figure 4: Results on mouse electrophysiology data. (A) Same-area predictivity when pooling neu-
rons over N-1 subjects to predict responses in a held-out subject. The ordering of transform classes
in terms of predictivity is roughly consistent with that observed in the simulated population (cf.
Fig. 3A). (B) Mean separation between different candidate models in terms of their assessed brain
similarity. We consider four candidate models: the ReLU based AlexNet model of mouse cortex by
Nayebi et al. (2022), our noisy softplus version of that model, ResNet, and VGG16. We map models
to brains, brains to models, and also do both directions (averaging the similarity scores over both
directions before computing the separation between models). (C and D) Overall same-layer predic-
tivity vs model separability. We do not see a systematic tradeoff between same-layer predictivity
and model separability.

we can further constrain Linear Nonlinear (or its variants) in a way that improves specificity without
reducing predictivity.
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A CENTRAL HYPERCOLUMN SELECTION

In order to map between units with similar functional roles (at least for the same model layer), we
do our model-model fits using only the central hyper-column of units in each layer (i.e. the units
whose receptive field is directly at the middle of the input image). Indeed, even when constraining
the mapping to use only the central hyper-column, we are able to identify high similarity across
model instances for the same layer, at least when assessing pre-non-linearity responses using a
linear transform.

B SOFT MATCHING AS A TRANSFORM CLASS

While Khosla & Williams (2023) do not explicitly formulate the soft matching score as a predictive
mapping, it can be formulated as one. Computing the soft matching score involves maximizing:

Σi,jTijCij

where T is the transport matrix, subject to the constraints that the columns of the matrix sum to
1/NY , while the rows sum to 1/NX , and C is the matrix of Pearson correlations between each
source neuron and each target neuron. The transport matrix can be interpreted as a joint probability
distribution over source neurons and target neurons (where the marginal distributions are uniform
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discrete). Thus, the soft matching score is the expected correlation between source and target neu-
rons, according to joint probabilities encoded by the optimal transport matrix.

Since maximizing the above objective requires identifying source neurons that are highly correlated
with each target neuron, we can use the source neurons to predict the value of each target neuron,
weighted by the probabilities in the optimal transport matrix. First, for each source neuron Xi and
target neuron Yj , we can predict Yj’s responses across a set of stimuli (symbolized as the vector Yj)
based on Xi’s responses to those stimuli (symbolized as Xj) as:

Ŷj =
σ(Yj)

σ(Xi)
[Xi − X̄i]Cij + Ȳj

This is essentially using the correlation Cij to do ordinary least squares between Xi’s responses and
Yj’s responses.

For a single target neuron Yj , we compute the expected value of these correlation-based predic-
tions across source neurons, if we sampled source neurons according to the conditional probability
distribution P (X = Xi|Y = Yj). Since Tij = P (Xi, Yj) and P (Yj) = 1/NY , it follows that
P (X = Xi|Y = Yj) = NY Tij . Using these conditional probabilities, the overall prediction Ŷj

then becomes:

Ŷj = NY σ(Yj)Σi
Xi − X̄i

σ(Xi)
TijCij + Ȳj

C MOTIVATING THE SOFTPLUS ACTIVATION FUNCTION WITH A SIMPLE
MODEL OF A NOISY SPIKING PROCESS
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Figure 5: A more biologically consistent activation function. (A) Biological activation functions
are the result of a noisy spiking process. Because summed inputs to neurons are noisy, the firing
probability is positive even when the mean input is sub-threshold. Here, the probability of spiking
is represented as the size of the blue region. (B) The resulting activation function, unlike ReLU, is
strictly positive and increasing. Dots represent simulated spike counts, which are Poisson-distributed
in the limit of very small firing rates. (C) Fitting different activations to simulated spike counts, al-
lowing for scaling and translation. Softplus fits spike counts the best in the sub-threshold regime.
The exponential activation also function performs somewhat better than ReLU. Intuitively, the rea-
son ReLU does not fit as well is that it has a hinge that prevents it from capturing the smooth increase
in firing rate. Spike counts are plotted for a single trial. (D) We replaced each ReLU non-linearity
in the models with a softplus non-linearity and a Poisson-like noise sampler.

Our simulation of spike counts is based on the following highly simplified model. We assume that
a neuron receives total input X ∼ N (µ, σ2) and that during a single time interval equal to the
neuron’s refractory period, the neuron either fires once or not at all, depending on whether X > T ,
where T is a fixed threshold. We count the number of spikes over a 100 ms time range, and average
over 100 trials.

Under this model, the total mean (over trials) spike count St(µ) over a time period t (expressed
as a function of the mean total input to the neuron µ) is equal to t/R ∗ Φ(µ − T, σ2), where Φ
is the Gaussian CDF. This means that the activation function should have a sigmoid shape, which
saturates at sufficiently high mean inputs. However, many cortical neurons are thought to fire in the
fluctuation driven, unsaturated regime (Van Vreeswijk & Sompolinsky, 1996). We therefore focus
on unsaturating functions like softplus and fit these functions to spike counts that we simulated in
the unsaturated regime.
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D NOISY SOFTPLUS ALEXNET MODELS

To obtain our noisy softplus variant of the AlexNet mouse model, every ReLU sub-layer in the
AlexNet models is exchanged for a Softplus sub-layer followed by a Poisson-like noise block whose
mean is the output of the Softplus sub-layer. PyTorch enables noisy models to be trained using a
reparameterization trick, but only for certain probability distributions (not for the Poisson distribu-
tion). We use the Gamma distribution as a stand-in for Poisson, choosing shape parameter k = λ,
where λ is the Poisson parameter (which is chosen to be the output of the Softplus sub-layer), and
scale parameter θ = 1. This allows us to replicate two statistical properties of Poisson variables:
non-negative samples, and variance-mean ratio of 1, both of which are important for using the Lin-
ear Nonlinear transform (which uses a Poisson GLM) to predict the responses. To avoid numerical
difficulties for small values of k = λ, we scale the softplus outputs by 100 before sampling from
the Gamma distribution. We then train the noisy softplus models so that their instance recognition
training score (as well as validation score on ImageNet categorization) are equal to those of the
ReLU-based AlexNet models.

E YEO-JOHNSON SCALING IN LINEAR NONLINEAR AND ILSP

When mapping models to models or models to brains, we can just use the pre-non-linearity features
of the source model to assess response similarity. However, when mapping animals to animals (or,
if enough neurons are measured, animals to models), we cannot easily obtain EPSP data, nor can
we easily invert the activation function if we do not know its exact form for a given neuron. Yeo-
Johnson scaling uses a power transformation to make the features closer to normally distributed over
the stimuli. We expect this transformation to make the post-non-linearity features more correlated
with pre-non-linearity responses because the non-linear activation function skews the distribution of
the pre-non-linearity responses (which are roughly normally distributed over the stimuli). Indeed,
we find that Yeo-Johnson scaling noticeably increases the Pearson correlation (Fig. 6) with the pre-
non-linearity responses for the noisy softplus models, almost as much as if you had directly applied
the inverse of the softplus activation function to the post-non-linearity responses. We hypothesize
that Yeo-Johnson scaling has a similar effect in the case of animal firing rates.
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Figure 6: Correlation between post-non-linearity responses and pre-non-linearity responses after
transforming the post-non-linearity responses in different ways (responses are for the noisy softplus
models, averaged over 50 trials). We focus on correlation here because Yeo-Johnson scaling does
not improve the R2 score with respect to pre-non-linearity features (i.e. it does not directly match
them), which makes sense as it is merely unskewing the distribution of post-NL features, which are
already rather correlated with pre-NL features. Nevertheless, increased correlation implies that the
pre-NL features can be more easily matched after linear re-weighting, as is done in Linear Nonlinear
or Linear Softplus.
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F IMPLEMENTATION DETAILS OF LINEAR NONLINEAR AND LINEAR
SOFTPLUS

We implement Yeo-Johnson scaling with the PowerTransformer class in sklearn. The power trans-
form fits one parameter. We put the PowerTransformer object followed by a generalized linear
model (GLM) object into an sklearn Pipeline, so that the power parameter is only fit on the training
data, not on test data.

The GLM object is created using the glum package. Each GLM specifies the inverse link function
that relates the linear prediction to the response variable (such as ReLU, exponential or softplus), and
the assumed noise structure in the response variable (Poisson noise in the case of Linear Nonlinear or
Linear Softplus). The weights of the specified GLM are then optimized through Iterative Reweighted
Least Squares.

The softplus inverse link function in LSP involves a scaling parameter c. When predicting noisy
softplus model responses, we set c = 100, the same softplus scaling we used when training the
models themselves. But when fitting LSP to predict mouse responses, we do not know a priori the
optimal scaling parameter and must cross-validate values of c along with the ridge penalty using
GridSearchCV in sklearn.
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