
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RFS: REINFORCEMENT LEARNING WITH RESIDUAL
FLOW STEERING FOR DEXTEROUS MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation learning has been an effective tool for bootstrapping sequential decision
making behavior, showing surprisingly strong results as methods are scaled up
to high-dimensional, dexterous problems in robotics. These “behavior cloning”
methods have been further bolstered by the integration of generative modeling
techniques such as diffusion modeling or flow matching for training expressive
multimodal behavior policies. However, these pretrained models do not always
generalize perfectly, and require finetuning to maximize deployment-time per-
formance. This finetuning procedure must retain the strengths of pretraining for
exploration, while being able to quickly correct for local inaccuracies in model
performance. In this work, we propose an efficient reinforcement learning (RL)
framework for fast adaptation of pretrained generative policies. Specifically, our
proposed methodology - residual flow steering, instantiates an efficient RL tech-
nique that quickly adapts a pretrained flow-matching model by steering it jointly
by optimizing a policy for selecting both a latent noise distribution and a resid-
ual action. Doing so allows policies to perform both local (residual actions) and
global exploration (latent noise), data-efficient adaptation. We demonstrate that
this technique is effective for dexterous manipulation problems, serving both as
a tool to pretrain behaviors in simulation and efficiently finetune them in the real
world. Website is here 1.

1 INTRODUCTION

Imitation learning from human data has proven to be a strong tool for obtaining performant poli-
cies in robotics and sequential decision making (Zhao et al., 2023; 2025; Chi et al., 2023; Hussein
et al., 2017; Ho and Ermon, 2016). Of particular interest has been the success of generative imita-
tion learning, where powerful generative modeling techniques such as diffusion models (Ho et al.,
2020) or flow models (Lipman et al., 2022) have been adopted to model the distribution of human
demonstrations. These models have been particularly effective due to the multimodality of human
demonstrations (Chi et al., 2023; Black et al., 2024), allowing them to naturally scale with robust
empirical performance (Team et al., 2025). However, imitation learning in itself is often insufficient
to generalize to all possible test-time scenarios (Team et al., 2025), leaving considerable room for
policy improvement with test-time finetuning algorithms to production-level success rates.

While supervised finetuning (Ouyang et al., 2022; Black et al., 2024) is effective for decision-making
systems, it relies on high-quality, curated expert data. We seek methods that avoid this requirement
by leveraging cheaper, suboptimal, or self-collected data. The conceptual framework of reinforce-
ment learning (and offline reinforcement learning (Levine et al., 2020)) offers an appealing tool for
this type of behavior improvement, as agents learn optimal behaviors by optimizing a reward max-
imization objective rather than relying on expert human data. While a plethora of techniques have
been proposed to bootstrap imitation learning pre-training with reinforcement learning finetuning
(Rajeswaran et al., 2018a; Hu et al., 2024a; Nair et al., 2018; Nakamoto et al., 2024), these methods
primarily rely on the availability of closed-form likelihoods (Lillicrap et al., 2015) and reparameteri-
zation (Wang et al., 2019), and are thus not directly applicable to rich modern architectures based on
diffusion or flow models. Furthermore, a significant challenge in this setting is striking the balance
between finetuning for new problems and ensuring knowledge retention from the pre-training.

1https://residualflowsteering-png.github.io/residualflowsteering-png/

1

https://residualflowsteering-png.github.io/residualflowsteering-png/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We specifically consider two promising classes of methods that are able to perform RL adaptation of
generative imitative policies while avoiding the closed-form policy likelihood requirement - resid-
ual policy learning (Ankile et al., 2024b) and diffusion steering (Wagenmaker et al., 2025). While
seemingly distinct, both are instances of a broader class of policy modulation methods that adapt
pre-trained policies by modulating inputs or outputs rather than parameters. Residual learning is
limited to local refinements through additive action corrections, making it difficult to achieve global
behavioral shifts. Diffusion steering, by contrast, can induce significant global changes by modu-
lating latent noise vectors, but struggles to adapt to behaviors outside the coverage of the imitation
policy, limiting dexterous control.

In this work, we instantiate and study a new class of policy modulation algorithms, residual flow
steering (RFS), that adapts pre-trained generative imitation learning policies to new scenarios with
reinforcement learning. The premise of residual flow steering is to allow a reinforcement learning
algorithm to modulate both the initial noise vector for a generative policy and provide an affine
corrective transformation to the outputted action. This balances the semantic modifications needed
for fast adaptation with the required local precision for dexterous manipulation. We introduce a
general framework for RL finetuning with RFS and demonstrate its use for both policy pre-training
and test-time adaptation under online and offline settings.

In this work, we instantiate residual flow steering for dexterous manipulation with multi-fingered
hands. Due to the difficulty of collecting high-quality real-world data, we first develop controllers in
simulation and show that residual flow steering yields robust multi-object grasping policies. These
policies transfer reasonably well to the real world. They can be further refined by continuing to
steer residual flow with limited human demonstration data, enabling data-efficient adaptation to real
system dynamics while maintaining high precision and dexterity.

The contributions of this work are (1) We define the framework of residual flow steering, an effi-
cient way of improving a pretrained flow matching policy, (2) We show that this framework provides
an effective tool for pre-training in simulation, learning complex multifinger coordination behavior
from human data, (3) We show that RFS can enable policy finetuning in the real world via offline re-
inforcement learning, more effectively than typical bootstrapped imitation learning alternatives, (4)
We conduct detailed ablations to identify which RFS components are most critical for performance
in simulation and the real world.

2 RELATED WORK

Imitation-Bootstrapped Reinforcement Learning. Imitation learning (IL) has been widely used
to bootstrap reinforcement learning (RL) for complex robotic tasks (Hu et al., 2024a) to constrain ex-
ploration and guide policies. (Nair et al., 2018) systematically uses demonstration for imitation loss,
a replay buffer, and resetting to guide RL exploration. Additionally, (Ball et al., 2023), (Hester et al.,
2017) balance demonstration data with online data to bootstrap exploration. Though (Rajeswaran
et al., 2018b) investigates dexterous manipulation in simulation using a 24-DoF hand, it requires a
large amount of demonstrations, and no real-world application is verified. While demonstrations aid
exploration, they are often noisy and insufficient for guiding fine-grained dexterous motions.

Finetuning Diffusion-Based Policies. Reinforcement learning has recently been applied to gener-
ative models such as diffusion policies (Ren et al., 2024) and flow matching (Zhang et al., 2025).
However, the iterative refinement structure of diffusion models and the large action spaces of action-
chunked policies often make direct RL fine-tuning unstable (Ren et al., 2024; Uehara et al., 2024).
To mitigate this, (Park et al., 2025) proposed training an expressive one-step policy with RL instead
of directly optimizing the iterative flow. In contrast, we follow the approach of (Wagenmaker et al.,
2025), which leverages reinforcement learning to steer exploration directly in the diffusion model’s
latent noise space. Yet, because steering is confined to the generative model’s latent space, the policy
may fail to generate effective actions outside this space, leading to errors in challenging states.

Residual Policy Learning Residual RL has been explored in various contexts. (Ankile et al., 2024a)
pre-train an expressive policy on offline data and then refine it online using a residual policy. Resid-
ual learning has been applied to vision-based manipulation (Zeng et al., 2020) and to uncertain
robotic environments (Silver et al., 2019), demonstrating strong improvements over imperfect poli-
cies in complex tasks. To improve stability, (Zhang et al., 2020) proposes a bidirectional target

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

network, while (Alakuijala et al., 2021) extends residual formulations to visual inputs and sparse
rewards with demonstrations. (Davchev et al., 2022; Carvalho et al., 2022) combine residuals with
structured primitives, enabling efficient residual corrections. Residual policies can refine base ac-
tions, but struggle when the base policy is poor. Our method addresses this by jointly refining the
base with RL while applying residuals only where they are most effective.

3 BACKGROUND

3.1 FLOW MATCHING FOR GENERATIVE POLICY LEARNING

Flow matching (Lipman et al., 2023; Liu, 2022) is a generative modeling framework that learns a
time-dependent velocity field transporting a base distribution p0 (f(e.g., Gaussian or uniform) to a
target data distribution p1. Consider a random variable xt evolving over t ∈ [0, 1] according to
the ODE dxt

dt = vθ(xt, t) where vθ : Rd × [0, 1] → Rd is a neural network parameterizing the
velocity field. The goal of flow matching (Lipman et al., 2023) is to aligns the pushforward of
the source distribution p0 with the target distribution p1 , while avoiding both ODE backpropaga-
tion and closed-form likelihoods by supervising conditional probability paths rather than intractable
marginals (Lipman et al., 2023).

Mechanistically, to train vθ with flow matching, one samples pairs (x0, x1) ∼ p0 × p1, picks a
random t ∈ [0, 1], and defines an interpolant xt = (1 − t)x0 + t x1. The true “velocity” that
transports xt along this straight path to x1 is v⋆(xt, t) = x1 − x0. The flow-matching loss then
minimizes the squared error between the predicted and true velocities:

L(θ) = Ex0∼p0, x1∼p1, t∼U [0,1]

∥∥vθ(xt, t)− v⋆(xt, t)
∥∥2. (1)

Given this learned velocity field vθ, we can then perform sampling from p1 by a straightforward
numerical integration of the learned ODE defined by vθ, through standard Euler (Lipman et al.,
2023) integration:

xk+1 = xk + ∆tk vθ(x
k, tk), x0 ∼ p0, xK ≈ x1. (2)

This can further be made conditional by learning vθ(xt, t, c), an external conditioning variable c. In
our setting, given a (multimodal) expert human-provided dataset D = {si, ai}Ni=1, we can use flow
matching to learn a policy (parameterized as a velocity field). The flow matching training objective
(Eq 3) for training a policy velocity field vθ(at, t, s) is

L(θ) = Ea0∼p0, (s,a)∼D, t∼U [0,1]

∥∥vθ(at, t, s)− (a− a0)
∥∥2, at = (1− t) a0 + t a. (3)

The learned velocity field vθ(at, t, s) can then be used for sampling by integrating the flow field
(Eq 2). This provides a simple way to model complex, multimodal action distributions, while also
offering knobs for adaptation. For flow-based policies, we will use πθ and vθ interchangeably for
notational convenience.

3.2 REINFORCEMENT LEARNING

For adaptation with reinforcement learning (RL), we build on the framework of Markov decision
processes (MDP)M = (S,A, T , r, γ). S is the state space,A is the action space, T (s′ | s, a) is the
transition kernel, r : S ×A → R is the reward function, and γ ∈ [0, 1) is a discount factor. The goal
of reinforcement learning algorithms is to leverage interaction to learn a stochastic policy πθ(a | s)
that maximizes the expected discounted sum of rewards J(θ) = Eτ∼pπ [

∑∞
t=0 γ

tr(st, at)] . There
is a huge variety of algorithms to optimize this objective (Sutton and Barto, 2018) (for instance,
on-policy, off-policy, model-based, and hybrid variants), and we will not be prescriptive on which
precise optimization algorithm is to be used. Instead, it is useful to consider two specific variants of
imitation-bootstrapped RL frameworks that we will build on in this work:

Residual reinforcement learning: These methods aim to learn a small “residual” policy πr(a|s)
with reinforcement learning that can correct for the mistakes of a so-called base policy πθ(a|s) that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

is trained with imitation learning (or variants such as flow matching). Residual RL methods (Ankile
et al., 2024b; Silver et al., 2019) execute actions through an additive transformation on the executed
actions, optimizing the following objective:

max
πr

E s0∼p0(s),s
′∼p(s′|s,a)

a=ar+ab

ar∼πr(a|s), ab∼πθ(a|s)

[∞∑
t=0

γtr(st, at)

]
; a = ar + ab, ar ∼ πr(a|s), ab ∼ πθ(a|s) (4)

Diffusion steering on latent noise: A recently proposed alternative technique for adapting pre-
trained generative policies to test-time scenarios is diffusion-steering (Wagenmaker et al., 2025).
These methods specifically apply to diffusion and flow-based policies where an initial latent “noise”
vector is pushed forward through an integration process to generate an action. While sampling
from the base policy is performed by choosing the initial latent “noise” vector from a unit Gaussian
distribution, adaptation can be done by directly choosing the initial latent noise from a different
distribution defined by πDS(a|s). Using Push(s, a0, vθ) as a shorthand for the integration process in
Eq 2 for the learned flow field vθ(at, s, t), the diffusion steering objective optimizes Eq 5

max
πDS

E s0∼p0(s), s
′∼p(s′|s,a)

a0∼πDS(a0|s), a=Push(s,a0,vθ)

[∞∑
t=0

γtr(st, at)

]
(5)

Intuitively this optimizes for policy per-
formance by “steering” the base policy
πθ through modulation of the initial latent
noise a0, leading to a reweighting of the
inferred action distribution within the cov-
erage of the base policy vθ.

Figure 1: Overview of Residual Flow Steering (RFS). In ordinary flow matching, noise a0 ∼ N (0, I) is
sampled and pushed through Push(s, a0, vθ) to generate an action ab. RFS instead learns the initial noise
distribution and introduces a residual action ar , enabling direct shifts beyond the flow matching manifold. This
allows actions to be steered toward the desired distribution using the residual policy.

4 RESIDUAL FLOW STEERING FOR POLICY ADAPTATION

In this work, we propose Residual Flow Steering (RFS), a technique that unifies latent steering
for global adaptation with residual actions for fine-grained corrections, building on flow-matching
pretraining. While residual RL (Ankile et al., 2024b; Silver et al., 2019) and latent noise adapta-
tion (Wagenmaker et al., 2025) appear distinct, we show they are both instances of a broader class of
policy modulation methods. Leveraging this connection, RFS enables efficient policy improvement
for high-dexterity problems and supports simulation-to-reality transfer in dexterous manipulation.

4.1 POLICY MODULATION ALGORITHMS FOR ADAPTING PRETRAINED GENERATIVE
POLICIES

We begin by delving more carefully into the structure of both residual RL (Ankile et al., 2024b;
Silver et al., 2019) and latent-noise steering (Wagenmaker et al., 2025; Du and Song, 2025) al-
gorithms, given a generative pretrained policy vθ(at, t, s) and a pushforward sampling function
a ∼ Push(s, a0, vθ); a0 ∼ N (0, I). Let us put the two objectives side-by-side:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

max
πDS

E s0∼p0(s)
s′∼p(s′|s,a)

a=Push(s,a0,vθ)
a0∼πDS(a0|s)

[∞∑
t=0

γtr(st, at)

]
(6)

max
πr

E s0∼p0(s)
s′∼p(s′|s,a)
a=ar+ab

ar∼πr(a|s)
ab∼Push(s,a0,vθ); a0∼N (0,I)

[∞∑
t=0

γtr(st, at)

]

(7)

Figure 2: Side-by-side optimization objectives. Left: diffusion steering. Right: residual RL.

We observe that both objectives modulate the behavior of the base policy vθ through different mech-
anisms (initial noise versus an affine transformation of the output). More generally, a policy mod-
ulation algorithm for a generative policy vθ(at, t, s) is defined as an optimization procedure that
aims to modulate the policy of vθ through parametric input (g) or output (f) modifications, without
modifying the actual parameters of the policy θ.

max
ϕ

Es0∼p0(s),s
′∼p(s′|s,a)

a=fϕ(ab,s), a0=gϕ(s)
ab∼Push(s,a0,vθ)

[∞∑
t=0

γtr(st, at)

]
(8)

This general framework can encompass resid-
ual RL(Silver et al., 2019; Ankile et al., 2024a),
latent noise steering(Wagenmaker et al., 2025;
Singh et al., 2020), hierarchical skill adaptation
(Hu et al., 2024b; Sun et al., 2025), and even a
broader class of methods for finetuning diffusion models with RL Uehara et al. (2024). The differ-
entiating factor between these methods is the particular choice of f and g in Eq 8.

Residual Flow Steering for Joint Local and Global Adaptation: In this work, we choose a
particular instantiation of f and g, which we refer to as residual flow steering (RFS). Put simply,
this performs efficient yet precise adaptation by bringing together the benefits of residual RL (Silver
et al., 2019; Alakuijala et al., 2021) for output modulation, and diffusion steering RL Wagenmaker
et al. (2025) for input modulation. By controlling the latent noise of a flow-matching policy, input
modulation provides “global” changes in behavior actions, while output modulation provides the
fine “local” changes needed for precise behavior through an affine transformation on the predicted
push-forward actions.

max
πRFS

Es0∼p0(s),s
′∼p(s′|s,a)

a0,ar∼πRFS(a0,ar|s)
ab∼Push(s,a0,vθ)

a=ar+ab

[∞∑
t=0

γtr(st, at)

]

(9)

Intuitively, consider the case of a robotic hand
tasked with performing dexterous grasping
(Fig. 1). Modulating the input noise changes
the broad finger gaiting strategy itself, provid-
ing explore strategies. However, if the desired
precise behavior is not covered under the base policy, then this is unrealizable, no matter what la-
tent noise is chosen. In this often encountered scenario, where a small degree of “off-manifold”
behavior is required, local changes can be made by an additional residual output transforma-
tion. Concisely, we instantiate output modulation fϕ as learning a residual action correction
a = Push(s, a0, vθ) + ar; ar ∼ πr(a|s) and the input modulation gϕ as a0 = πH(a0|s). These
can be combined for a high-level modulation policy πRFS(a0, ar|s) to jointly output both the latent
initial noise a0 (for global steering) and the residual action ar (for local refinement):

In this formulation, the policy outputs two components: a0 for global adaptation, steering the gen-
erative model toward coherent, task-relevant motions, and ar for local corrections, compensating
for misalignments from environment variability, controller artifacts, or limited coverage in the base
policy vθ. The objective in Eq. 9 can be optimized with various reinforcement learning algorithms
(off-policy, on-policy, or model-based). In Section 5, we present a specific instantiation of RFS for
dexterous manipulation, enabling efficient pretraining in simulation and finetuning in the real world.

5 APPLICATIONS OF RESIDUAL FLOW STEERING TO PROBLEMS IN
DEXTEROUS MANIPULATION

In this section, we instantiate residual flow steering (RFS) for dexterous manipulation. Since safe,
large-scale real-world training is challenging, we adopt a simulation-to-reality approach: pre-train
policies using inexpensive simulated data, then fine-tune with limited real-world data. RFS proves
effective both for exploration in simulation and for data-efficient real-world finetuning. For simplic-
ity, we focus on dexterous grasping, though the method applies more broadly.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5.1 DATA GENERATION WITH RESIDUAL FLOW STEERING IN SIMULATION

The primary challenge in generating dexterous data is efficient exploration in high-dimensional
spaces. RFS addresses this by seeding exploration with a small set of VR-teleoperated demon-
strations, which train a base policy vθ(at, s, t) via a flow-matching objective (Lipman et al., 2022).
Although not broadly successful, this policy captures meaningful hand–arm motions and can be
finetuned with RFS. As described in Section 4.1, a high-level policy πRFS is then trained atop vθ
to optimize task-specific rewards such as grasp success and stability (task and reward details in the
Appendix A.2.1).

For simulation data generation, the RFS policy πRFS outputs (a0, ar): (1) Latent noise a0 steers
the pretrained policy vθ toward globally diverse, task-relevant motions, while (2) Residual actions
ar provide fine-grained corrections for local misalignments. This framework refines joint hand–arm
policies over both finger and end-effector actions. To mitigate VR data limitations, we also consider
a variant (Section 6.1.2) where only finger motion is pretrained with flow matching, and arm motion
is learned from scratch via reinforcement learning.

Using RFS, as described above, we can generate data with low-level privileged state information
s (such as object positions, velocities) in simulation. This generated data can be distilled to point-
cloud based policies with standard student-teacher methodology (Chen et al., 2021), parameteriz-
ing the distillation with visuomotor flow-matching policies vϕ(at, opc, spro, t), conditioned on point
cloud (opc) and proprioception spro, producing hand-arm actions directly at = (qhand, qarm). The
result is a pretrained policy that can be deployed and then adapted in the real world.

5.2 REAL-WORLD POLICY FINETUNING WITH OFFLINE RESIDUAL FLOW STEERING

Directly transferring the distilled visuomotor policy vϕ(at, opc, spro, t) to the real world often
fails, especially for unseen objects and initial conditions. To bridge this gap, we apply data-
efficient finetuning with an offline variant of RFS, leveraging a small human-collected dataset
D = {((o, s), (a, ab), (o′, s′), r)i}Ni=1 that records base policy actions ab, human corrections a,
and resulting transitions. Our goal is to train πRFS(a0, ar | opc, spro) via offline RL (Levine et al.,
2020), maximizing reward when combined with the simulation-pretrained vϕ. For evaluation, we
adopt TD3+BC (Fujimoto and Gu, 2021), which alternates actor–critic updates with an added imi-
tation term. We detail both critic and actor updates below.

Critic Update: The challenge in using an offline RL algorithm on the dataset D =
{((o, s), (a, ab), (o′, s′), r)i}Ni=1 is that it does not have actions readily in the form (a0, ar) that
is needed for residual flow-steering. To infer a dataset of this form, we can perform a simple
transformation of the recorded actions (a, ab). a, ab, a0 and ar share the following relationships -
a = ab+ar and ab = Push(o, a0, vθ). This suggests that to obtain (a0, ar) for RFS, we can trivially
construct ar = a − ab. To obtain a0, we need only invert the push operation ab = Push(o, a0, vθ).
While many techniques could be used here (such as flow inversion), we opt for a simple opti-
mization based strategy to find the initial noise a0 that best explains ab when pushed forward -
a0 ← argmina0 ∥ab − Push(o, a0, vθ)∥. These operations then allow us to convert the dataset D
into a form directly amenable to RFSDRFS = {((o, s), (a0, ar), (o′, s′), r)i}Ni=1. Given this dataset
DRFS we can then instantiate a standard TD-learning critic update as

min
ϕ

E ((o,s),(a0,ar),(o
′,s′),r)∼DRFS

a′
0,a

′
r∼πRFS(a′

0,a
′
r|o

′,s′)
a=ab+ar, ab∼Push(o,s,a0,vϕ)

a′=a′
b+a′

r, a′
b∼Push(o′,s′,a′

0,vϕ)

[
||Qϕ

(
o, s, a)− r(s)− γQϕ̄(o

′, s′, a′)||2
]

(10)

Note that we make the design to provide the critic with the combined actions a, a′ rather than the
separated actions (a0, ar), which we justify through an empirical comparison in Section 6.2

Actor Update: We follow the standard actor-update described in TD3+BC (Fujimoto and Gu, 2021),
where the actor maximizes the Q-values while applying a behavior cloning (BC) regularization of
the residual actions ar against the offline data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

arg max
πRFS

E((o,s),(a0,ar),(o
′,s′),r)∼DRFS

â0,âr∼πRFS(·|o,s)
âb∼Push(o,s,â0,vϕ)

â=âb+âr

[Q
(
o, s, â)− λBC ∥âr − ar∥2]

(11)

6 EXPERIMENTS

We perform the experiments to answer the following research questions: Q1: Can residual refine-
ment further improve grasp success in simulation? Q2: Can RFS policy boost the pretrained policy
for finger motion by steering latent noise? Q3: Which design choices are most effective in both
simulation and real-world settings? Q4: How latent noise augmentation will affect the performance
in real world adaptation? As outlined in Section 5, we first evaluate RFS for simulation data gener-
ation and then for real-world adaptation. Our experiments focus on dexterous grasping(power2 and
pinch3 with a multifingered hand, though the approach generalizes to broader tasks.

6.1 RFS AS A DATA GENERATION TOOL IN SIMULATION

Figure 3: Simulation and real objects
used in our experiments.

Setup: To evaluate RFS for simulation data genera-
tion, we collected 1441 grasping demonstrations in Isaa-
cLab (Mittal et al., 2023) using a Franka arm with a 16-
DoF Leap Hand (Fig. 1). Demonstrations were recorded
via an Apple Vision Pro AR device across diverse ob-
jects, from rigid bottles to plush items4. These were used
to pretrain a generative base policy vθ(at, t, s) with flow
matching (Lipman et al., 2022). Although not broadly
successful, this policy provides meaningful motion priors
and is finetuned with RFS using PPO (Schulman et al.,
2017), as detailed in Section 5.1. Additional environment
and RL setup details are in Appendix A.2. Our focus is on evaluating whether RFS can produce
robust grasping policies across varied objects compared to standard RL baselines.

6.1.1 BASELINES AND ABLATIONS

Baselines: We compare against several alternative methods, which reparameterize action spaces in
different ways for reinforcement learning in simulation - (1) Tabula-rasa RL: We train standard
on-policy RL with PPO using different hand-defined action spaces. We consider both absolute joint
pose control, where actions specify absolute joint values, and relative joint pose, where actions
specify relative changes, (2) Action-Space Reduction with PCA: To reduce action dimensionality,
finger motions are compressed into a 4-D latent space using principal component analysis (PCA),
following (Li et al., 2025). Action Codebooks with VQ-VAE: We consider using a VQ-VAE to
learn a codebook of meaningful coordinated finger motions from the human collected data (Xue
et al., 2025).

Ablations: To understand the benefits of the combination of both residual action refinement and
latent-noise based steering, we conduct thorough ablations. We evaluate the following ablated vari-
ants of RFS - (1) DSRL (Wagenmaker et al., 2025): Allowing the RL policy to steer the latent
noise of the base policy without residual actions, (2) Residual RL: Only allow the RL policy to
output residual actions, without actually steering the latent noise injected into the base model.

To compare with these methods, we evaluate two different instantiations of our method: RFS with
hand and RFS with hand and arm. RFS w/ hand performs generative pretraining on the hand only,
while RFS w/ hand and arm performs generative pretraining on the whole arm and hand data col-
lected by human demonstrators. We also evaluate the efficacy of predicting action chunks (RFS-
Chunk) rather than one-step actions.

2Power grasp uses the entire hand to firmly hold an object.
3Pinch grasp uses the thumb and one or two fingers to grip an object.
4Plush items are modeled as rigid bodies in simulation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6.1.2 EMPIRICAL RESULTS IN SIMULATION

Comparison to Baselines: As shown in Fig. 4 and Tab. 1, the absolute joint pose fails due to
large, unstable finger motions and penetration between fingers, while the relative joint pose strug-
gles on pinch grasps, with 55% of motions infeasible under the penetration metric (Wang et al.,
2023) (vs. 5% for ours; see Appendix A.2.3). The PCA baseline fails on power grasps, often losing
fine-grained details such as early finger closure. The VQ-VAE baseline also fails on power grasps,
producing jittery, poorly localized, and unnatural motions;(see Appendix A.2.3 for more analysis).
In conclusion, stable, scalable grasping requires structured exploration and smooth, continuous mo-
tion representations. Additional evaluation images are provided in the Appendix A.2.

Comparison to Ablations: As shown in Tab. 1, RFS outperforms all ablations, highlighting the
importance of combining residual and flow-steering components. DSRL (Wagenmaker et al., 2025)
performs on par with PCA, VQ-VAE, and RL-from-scratch baselines, while RFS consistently sur-
passes them through global exploration via flow steering and precise local refinement with resid-
ual actions. Moreover, RFS is more sample-efficient, requiring fewer interactions to match or ex-
ceed baseline performance (Fig. 4). We also find that the hand-only setting outperforms hand–arm
training, likely due to noise and redundancy in teleoperation data. Finally, the chunked variant
(RFS-Chunk), which executes consecutive hand actions with residual refinement, further improves
performance by enforcing smoother motion continuity and temporal consistency.

Given data generated via RFS in simulation on privileged states, we distill a point cloud based policy
via standard student-teacher methods (Chen et al., 2021) for real world deployment. Using ∼1,800
simulated demonstrations, the distilled policy achieves a 95% success rate in simulation. However,
this success rate drops considerably on real world deployment, necessitating real-world finetuning
with RFS.

Method Overall Pinch Grasp Power Grasp
absolute joint psose 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
relative joint pose 0.491 ± 0.491 0.000 ± 0.000 0.982 ± 0.003
PCA 0.394 ± 0.444 0.838 ± 0.017 0.000 ± 0.000
VQ-VAE 0.419 ± 0.419 0.714 ± 0.074 0.000 ± 0.000

Residual RL w/ hand & arm 0.174 ± 0.062 0.114 ± 0.005 0.234 ± 0.020
DSRL w/ hand & arm 0.625 ± 0.309 0.253 ± 0.062 0.874 ± 0.048
RFS w/ hand & arm (Ours) 0.708 ± 0.247 0.485 ± 0.153 0.930 ± 0.021

DSRL w/ hand 0.878 ± 0.045 0.833 ± 0.030 0.923 ± 0.080
RFS w/ hand (Ours) 0.937 ± 0.028 0.914 ± 0.012 0.959 ± 0.020
RFS-Chunk w/ hand (Ours) 0.959 ± 0.030 0.930 ± 0.030 0.988 ± 0.060

Table 1: Success rates (mean ± std) of different base-
lines across Overall (Pinch + Power), Power Grasp, and
Pinch Grasp tasks for three random seeds.

Figure 4: Comparison of different PPO-based base-
lines on two grasping tasks: pinch grasp (left) and
power grasp (right).

6.2 REAL WORLD RESULTS AND ANALYSIS

Next, we consider adapting distilled policies with offline RFS on a real-world robot setup shown in
Fig. 1, for grasping both seen and unseen objects Fig.3. Real-world experiments were conducted
using a Franka arm with a LEAP hand using a Cartesian impedance control running at 10Hz. For
evaluation, we tested seven objects—two previously seen in simulation and five novel deformable
objects. Unlike rigid simulation objects, real-world objects exhibit varying compliance, contact
dynamics and appearance, introducing a sim-to-real gap that causes pre-trained policies to fail Ap-
pendix A.4.3). For offline RL finetuning, we collected 50 offline demonstrations using a Space-
Mouse (Appendix A.4.1) for action correction. We programatically defined rewards by leveraging
SAM2 (Ravi et al., 2024) to track the object and then extract its centroid (details in Appendix A.4.2).

6.2.1 BASELINES AND ABLATIONS

Baselines: We evaluate RFS with offline RL (Section 5.2) as a data-efficient and performant method
for finetuning policies from simulation. We compare RFS to a few different class of baseline adap-
tation methods (1) Zero-Shot Transfer, where the distilled policy from simulation is deployed di-
rectly without fine-tuning, (2) BC Fine-Tuning, Collecting and using 50 real-world demonstrations
to finetune the distilled policy from simulation with flow matching, (3) Co-Training, performing
finetuning of the sim-distilled policy with flow matching, but mixing 50 real demonstrations with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Illustration of three typical failure modes during real-world manipulation: (left) early hand closure,
(middle) weak or incorrect grasp pose, and (right) poor grasp location. The top row shows the failure cases when
using only the base policy, while the bottom row shows the corrected outcomes after applying our Residual Flow
Steering (RFS) method. RFS effectively mitigates these errors, leading to more stable and successful grasps.

collected simulation data. We will show that using offline RL for finetuning rather than just standard
flow matching based finetuning is more performant.

Critic Design Choices: Besides these comparisons to supervised fine-tuning, we also compare with
different ablations and offline RL variants. Specifically, we compare three variants for critic design
in offline-RL: (1) Q(ar, o): The critic evaluates the residual action resa only and the observation
o. (2) Q([ar, ab], o): The critic takes as input the concatenation of the residual action and the base
policy action, allowing evaluation of both, (3) Q(ab + ar, o) (Ours): The critic evaluates only the
final executed action, which is the sum of the base policy output and the residual correction.

Ablations: We also perform ablative analysis of performing offline RL with just residual actions
Residual RL, as well as offline RL with only latent noise steering DSRL.

6.3 EMPIRICAL RESULTS IN THE REAL WORLD

Comparison to Supervised Fine-Tuning: As shown in Fig. 6, the zero-shot policy performs poorly,
with failures such as translational offset, rotational offset, and insufficient finger tightness, highlight-
ing a significant sim2real gap. Though co-training substantially improves performance on known
objects (83.3% success), generalization to unseen objects remains poor. The noisy and inconsis-
tent nature of human-collected data leads to instability and rollout failures, underscoring the limited
generalization for novel objects.

Figure 6: Real-world evaluation results. Bars and red values
indicate mean success rates, with error bars showing the standard
deviation.

Comparison to Variants of Of-
fline RL: As discussed in Sec. 5.2,
TD3+BC uses the actor output as
input to the critic, leaving several
options for how to represent the
Q-function. We evaluate policies
trained with three such Q-function
designs(Fig. 6. Both Q(ar, o) and
Q([ar, ab], o) fail to generate consis-
tent stable grasp poses. In contrast,
Q(ab + ar, o) achieved significantly
higher performance over all baselines. This shows that coupling residuals directly with executed
base actions is beneficial to the final performance.

Comparison to Ablations of RFS: We compared against variants using only residual actions
(π(ar|o)) and only DSRL latent noise steering (π(a0|o)). As shown in Fig. 6, our full model
π(a0, ar|o) achieves the best performance, particularly on unseen objects. Qualitatively, this is be-
cause latent noise steering guides global exploration, while residual actions refine local adjustments,
making their combination more effective than either alone.

7 CONCLUSION

We introduced Residual Flow Steering (RFS), a reinforcement learning framework that unifies la-
tent noise steering for global exploration with residual corrections for local refinement. Our results
across simulation and real-world dexterous grasping show that RFS substantially outperforms con-
ventional baselines, including residual-only and diffusion-steering approaches, by enabling efficient
pretraining in simulation and data-efficient finetuning in the real world.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement:

We have taken several steps to ensure the reproducibility of our results. The main text (Sections
4 and 5) provides details of our proposed Residual Flow Steering (RFS) framework, including
algorithmic design, training objectives, and ablation studies. Appendix A.2 describes the simulation
setup, reinforcement learning design choices, and evaluation metrics in detail, while Appendix A.3
provides descriptions of real-world experiments, reward specification, and data collection protocols.
To further facilitate replication, we include more details for the baseline methods, hyperparameter
choices, and ablation analyses in the appendix for both the simulation and the real experiment.

REFERENCES

Minttu Alakuijala, Gabriel Dulac-Arnold, Julien Mairal, Jean Ponce, and Cordelia Schmid. Resid-
ual reinforcement learning from demonstrations, 2021. URL https://arxiv.org/abs/
2106.08050.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement – residual rl for precise assembly, 2024a. URL https://arxiv.org/abs/
2407.16677.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement - residual RL for precise visual assembly. CoRR, abs/2407.16677, 2024b. doi: 10.
48550/ARXIV.2407.16677. URL https://doi.org/10.48550/arXiv.2407.16677.

Philip J. Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data, 2023. URL https://arxiv.org/abs/2302.02948.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-
language-action flow model for general robot control. arXiv preprint arXiv:2410.24164, 2024.
URL https://arxiv.org/abs/2410.24164.

Joao Carvalho, Dorothea Koert, Marek Daniv, and Jan Peters. Residual robot learning for object-
centric probabilistic movement primitives, 2022. URL https://arxiv.org/abs/2203.
03918.

Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-orientation. In Alek-
sandra Faust, David Hsu, and Gerhard Neumann, editors, Conference on Robot Learning, 8-11
November 2021, London, UK, volume 164 of Proceedings of Machine Learning Research, pages
297–307. PMLR, 2021. URL https://proceedings.mlr.press/v164/chen22a.
html.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of
Robotics: Science and Systems (RSS), 2023.

Todor Davchev, Kevin Sebastian Luck, Michael Burke, Franziska Meier, Stefan Schaal, and Sub-
ramanian Ramamoorthy. Residual learning from demonstration: Adapting dmps for contact-rich
manipulation. IEEE Robotics and Automation Letters, 7(2):4488–4495, April 2022. ISSN 2377-
3774. doi: 10.1109/lra.2022.3150024. URL http://dx.doi.org/10.1109/LRA.2022.
3150024.

Maximilian Du and Shuran Song. Dynaguide: Steering diffusion polices with active dynamic guid-
ance, 2025. URL https://arxiv.org/abs/2506.13922.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo,
and Audrunas Gruslys. Deep q-learning from demonstrations, 2017. URL https://arxiv.
org/abs/1704.03732.

10

https://arxiv.org/abs/2106.08050
https://arxiv.org/abs/2106.08050
https://arxiv.org/abs/2407.16677
https://arxiv.org/abs/2407.16677
https://doi.org/10.48550/arXiv.2407.16677
https://arxiv.org/abs/2302.02948
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2203.03918
https://arxiv.org/abs/2203.03918
https://proceedings.mlr.press/v164/chen22a.html
https://proceedings.mlr.press/v164/chen22a.html
http://dx.doi.org/10.1109/LRA.2022.3150024
http://dx.doi.org/10.1109/LRA.2022.3150024
https://arxiv.org/abs/2506.13922
https://arxiv.org/abs/1704.03732
https://arxiv.org/abs/1704.03732

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 29, pages 4565–4573, 2016. URL https://papers.nips.cc/paper/
6391-generative-adversarial-imitation-learning.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pages 6840–6851, 2020. URL
https://arxiv.org/abs/2006.11239.

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learn-
ing, 2024a. URL https://arxiv.org/abs/2311.02198.

Jiaheng Hu, Zizhao Wang, Peter Stone, and Roberto Martı́n-Martı́n. Disentangled unsupervised skill
discovery for efficient hierarchical reinforcement learning, 2024b. URL https://arxiv.
org/abs/2410.11251.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning:
A survey of learning methods. ACM Comput. Surv., 50(2), April 2017. ISSN 0360-0300. doi:
10.1145/3054912. URL https://doi.org/10.1145/3054912.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tu-
torial, review, and perspectives on open problems, 2020. URL https://arxiv.org/abs/
2005.01643.

Kailin Li, Puhao Li, Tengyu Liu, Yuyang Li, and Siyuan Huang. Maniptrans: Efficient dexterous bi-
manual manipulation transfer via residual learning, 2025. URL https://arxiv.org/abs/
2503.21860.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. CoRR, abs/1509.02971, 2015. URL https://api.semanticscholar.org/
CorpusID:16326763.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022. URL https://arxiv.
org/abs/2210.02747.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling, 2023. URL https://arxiv.org/abs/2210.02747.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport, 2022. URL
https://arxiv.org/abs/2209.14577.

Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023. doi:
10.1109/LRA.2023.3270034.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations, 2018. URL https://
arxiv.org/abs/1709.10089.

Mitsuhiko Nakamoto, Yuexiang Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning, 2024. URL https://arxiv.org/abs/2303.05479.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155, 2022. URL https://arxiv.org/abs/2203.02155.

11

https://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning
https://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2311.02198
https://arxiv.org/abs/2410.11251
https://arxiv.org/abs/2410.11251
https://doi.org/10.1145/3054912
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2503.21860
https://arxiv.org/abs/2503.21860
https://api.semanticscholar.org/CorpusID:16326763
https://api.semanticscholar.org/CorpusID:16326763
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.14577
https://arxiv.org/abs/1709.10089
https://arxiv.org/abs/1709.10089
https://arxiv.org/abs/2303.05479
https://arxiv.org/abs/2203.02155

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning, 2025. URL https://arxiv.
org/abs/2502.02538.

Younghyo Park and Pulkit Agrawal. Using apple vision pro to train and control robots, 2024. URL
https://github.com/Improbable-AI/VisionProTeleop.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations, 2018a. URL https://arxiv.org/abs/1709.10087.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations, 2018b. URL https://arxiv.org/abs/1709.10087.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714,
2024. URL https://arxiv.org/abs/2408.00714.

Allen Z. Ren, Justin Lidard, Lars L. Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion, 2024. URL https://arxiv.org/abs/2409.00588.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual policy learning, 2019.
URL https://arxiv.org/abs/1812.06298.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning, 2020. URL https://arxiv.org/
abs/2011.10024.

Jiankai Sun, Aidan Curtis, Yang You, Yan Xu, Michael Koehle, Qianzhong Chen, Suning Huang,
Leonidas Guibas, Sachin Chitta, Mac Schwager, and Hui Li. Arch: Hierarchical hybrid learn-
ing for long-horizon contact-rich robotic assembly, 2025. URL https://arxiv.org/abs/
2409.16451.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 2nd edition, 2018. ISBN 978-0-262-03924-6. URL http://
incompleteideas.net/book/the-book-2nd.html.

TRI LBM Team, Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau,
Hongkai Dai, Ching-Hsin Fang, Kunimatsu Hashimoto, Muhammad Zubair Irshad, Masha Itk-
ina, Naveen Kuppuswamy, Kuan-Hui Lee, Katherine Liu, Dale McConachie, Ian McMahon,
Haruki Nishimura, Calder Phillips-Grafflin, Charles Richter, Paarth Shah, Krishnan Srinivasan,
Blake Wulfe, Chen Xu, Mengchao Zhang, Alex Alspach, Maya Angeles, Kushal Arora, Vi-
tor Campagnolo Guizilini, Alejandro Castro, Dian Chen, Ting-Sheng Chu, Sam Creasey, Sean
Curtis, Richard Denitto, Emma Dixon, Eric Dusel, Matthew Ferreira, Aimee Goncalves, Grant
Gould, Damrong Guoy, Swati Gupta, Xuchen Han, Kyle Hatch, Brendan Hathaway, Allison
Henry, Hillel Hochsztein, Phoebe Horgan, Shun Iwase, Donovon Jackson, Siddharth Karamcheti,
Sedrick Keh, Joseph Masterjohn, Jean Mercat, Patrick Miller, Paul Mitiguy, Tony Nguyen, Jeremy
Nimmer, Yuki Noguchi, Reko Ong, Aykut Onol, Owen Pfannenstiehl, Richard Poyner, Leticia
Priebe Mendes Rocha, Gordon Richardson, Christopher Rodriguez, Derick Seale, Michael Sher-
man, Mariah Smith-Jones, David Tago, Pavel Tokmakov, Matthew Tran, Basile Van Hoorick,
Igor Vasiljevic, Sergey Zakharov, Mark Zolotas, Rares Ambrus, and Kerri Fetzer-Borelli. A care-
ful examination of large behavior models for multitask dexterous manipulation. arXiv preprint
arXiv:2507.05331, 2025. URL https://arxiv.org/abs/2507.05331.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review, 2024. URL
https://arxiv.org/abs/2407.13734.

12

https://arxiv.org/abs/2502.02538
https://arxiv.org/abs/2502.02538
https://github.com/Improbable-AI/VisionProTeleop
https://arxiv.org/abs/1709.10087
https://arxiv.org/abs/1709.10087
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2409.00588
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1812.06298
https://arxiv.org/abs/2011.10024
https://arxiv.org/abs/2011.10024
https://arxiv.org/abs/2409.16451
https://arxiv.org/abs/2409.16451
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2507.05331
https://arxiv.org/abs/2407.13734

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
latent space reinforcement learning, 2025. URL https://arxiv.org/abs/2506.15799.

Huan Wang, Stephan Zheng, Caiming Xiong, and Richard Socher. On the generalization gap in
reparameterizable reinforcement learning, 2019. URL https://arxiv.org/abs/1905.
12654.

Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu, Puhao Li, Tengyu Liu, and He Wang.
Dexgraspnet: A large-scale robotic dexterous grasp dataset for general objects based on simula-
tion, 2023. URL https://arxiv.org/abs/2210.02697.

Han Xue, Jieji Ren, Wendi Chen, Gu Zhang, Yuan Fang, Guoying Gu, Huazhe Xu, and Cewu Lu.
Reactive diffusion policy: Slow-fast visual-tactile policy learning for contact-rich manipulation.
In Proceedings of Robotics: Science and Systems (RSS), 2025.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics, 2020. URL https://arxiv.org/
abs/1903.11239.

Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. Deep residual reinforcement learn-
ing, 2020. URL https://arxiv.org/abs/1905.01072.

Tonghe Zhang, Chao Yu, Sichang Su, and Yu Wang. Reinflow: Fine-tuning flow matching policy
with online reinforcement learning, 2025. URL https://arxiv.org/abs/2505.22094.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In Proceedings of Robotics: Science and Systems (RSS),
2023. URL https://arxiv.org/abs/2304.13705. ALOHA: Action Chunking with
Transformers (ACT).

Tony Z. Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Seyed Kamyar Seyed Ghasemipour,
Chelsea Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. In Pro-
ceedings of The 8th Conference on Robot Learning (CoRL), volume 270 of Proceedings of Ma-
chine Learning Research, pages 1910–1924. PMLR, 2025. URL https://proceedings.
mlr.press/v270/zhao25b.html.

13

https://arxiv.org/abs/2506.15799
https://arxiv.org/abs/1905.12654
https://arxiv.org/abs/1905.12654
https://arxiv.org/abs/2210.02697
https://arxiv.org/abs/1903.11239
https://arxiv.org/abs/1903.11239
https://arxiv.org/abs/1905.01072
https://arxiv.org/abs/2505.22094
https://arxiv.org/abs/2304.13705
https://proceedings.mlr.press/v270/zhao25b.html
https://proceedings.mlr.press/v270/zhao25b.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this paper, we primarily use LLMs for language polishing, making our writing more concise and
accessible. We provide raw drafts and ask the LLM to refine them. We also use LLMs for guidance
on figure preparation, such as creating illustrations in Inkscape and adjusting figure size and font in
Matplotlib.

A.2 SIMULATION SETUP AND TRAINING

A.2.1 REINFORCEMENT LEARNING DESIGN CHOICES

To enhance robustness and mitigate controller misalignment for sim-to-real transfer, we introduce
the following design choices:

Arm Initialization: Randomize the initial joint configuration of the arm at the start of each episode
to improve generalization.

External Disturbances: Apply random external disturbances to each joint at intervals of 2–5 steps,
encouraging the policy to recover from perturbations.

Observation Space: In the simulation RL training, we use state-based information, including the
robot proprioception, the current object pose, the target object pose, and binary contact signals
between each fingertip and the object.

Action Space: The action space in our RL training depends on the specific method used for hand
motion generation, with a detailed comparison provided in Tab. 2. Across all methods, the arm is
controlled using a 6D delta pose controller (3D translation + 3D rotation). The delta translational
range is constrained to [−0.03, 0.03]m per step, while the delta rotational range is limited to
[−0.1, 0.1] rad per step. The control frequency in simulation is set to 20 Hz.

Reward Function: The reward consists of three stages: encouraging finger–object proximity to
guide fingers toward the object, promoting stable fingertip-palm contact for secure grasping, and
encouraging successful lifting to a target height while penalizing unsafe behavior such as excessive
lifting or joint limit violations.

Success Indicator: A grasp is deemed successful if the object is lifted at least 20 cm above the table
while the end-effector maintains a feasible pose without unnatural or unstable joint configurations.
Each checkpoint is evaluated over 1,024 episodes.

Data Collection: We use the Vision Pro for data collection, leveraging an application built on
IsaacLab Mittal et al. (2023).

A.2.2 CFM TRAINING IN SIMULATION

In simulation, we trained two flow matching policies: one using only finger joint poses as obser-
vations, and another using both finger and arm actions with object pose and robot proprioception.
Both policies predict the following two consecutive actions.

Latent noise motion: Latent noise exploration generates diverse hand motions from the same initial
configuration, enabling adaptation to varied settings (Fig. 7). Furthermore, our method converges
faster and achieves higher normalized rewards than baselines (Fig. 4), highlighting both efficiency
and robustness.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 7: Illustration of latent noise conditioning on hand motion. The left column (blue) shows the given
joint poses. The right columns (red) show two-step predictions from the same initial pose, where labels 1 and
2 indicate different latent noise conditions.

Table 2: Comparison of action dimension across different methods.

Method Action Dimension
Relative joint pose 6 (delta arm pose) + 16 (relative finger joint pose)
Absolute joint pose 6 (delta arm pose) + 16 (absolute finger joint pose)
PCA 6 (delta arm pose) + 4 (PCA latent codes)
VQ-VAE 6 (delta arm pose) + 8 (VQ codes) ×2 (horizon)
Residual RL (w/ arm & hand) 22 (residual actions)
DSRL (w/ arm & hand) 23× 2 (horizon)
RFS (Ours, w/ arm & hand) 23× 2 (horizon) + 22 (delta pose)
DSRL (w/ hand) 6 (delta arm pose) + 16× 2 (horizon)
RFS/RFS-Chunk (Ours, w/ hand) 6 (delta arm pose) + 16× 2 (horizon) + 16 (delta pose)

A.2.3 BASELINES

Tabula-Rasa RL: While Tabula-Rasa RL with relative joint poses achieves a success rate compa-
rable to our method, a closer inspection of the finger motions (Fig. 9) reveals severe inter-finger
penetration. To quantify this, we follow (Wang et al., 2023) and use Kaolin to compute the pene-
tration depth between fingers. If the penetration exceeds 0.5 cm, we regard the grasp as infeasible.
Under this criterion, although the relative joint pose policy reports a 98% success rate, at least 55%
of the motions are infeasible, compared to only 5% with our method.

PCA: We reduce the high-dimensional finger actions into four latent values using PCA, and employ
RL to explore this latent space. The raw demonstration data is used to define the minimum and
maximum latent values, and RL actions are scaled accordingly. As shown in Fig. 4, PCA achieves
performance comparable to DSRL on pinch grasps; however, for power grasps (Fig. 9), the thumb
closing timing remains misaligned.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 9: Simulation rollouts comparing our proposed method (RSF-Chunk) with baseline approaches
(Tabula-rasa RL, PCA, and VQ-VAE). Our method produces more stable and collision-free hand motions,
whereas Tabula-rasa RL frequently suffers from severe finger.

VQ-VAE: Following (Xue et al., 2025), we adopt a 1D-CNN encoder with a GRU decoder, where
the model predicts the following two finger motions conditioned on the previous joint pose. During
RL training, we steer the latent space and add residual actions for fine-grained correction, applying
the same residual adjustment across two steps to ensure temporal consistency. As shown in Tab. 1,
the VQ-VAE achieves a relatively high success rate in simulation for pinch grasps, but fails on
power grasps (e.g., pushing). Fig. 9 further illustrates that the thumb often closes prematurely before
reaching the object, resulting in misalignment and making training more challenging.

A.2.4 ROBUSTNESS ANALYSIS

Figure 8: Robustness evaluation: We evaluate the
robustness of our RFS method against baseline ap-
proaches under varying levels of external disturbances.

To evaluate the robustness and stability of grasp
motions, we conducted robustness analysis by
gradually applying external forces and torques
to each joint and measuring the success rate
(Fig. 8). Since not all baseline methods can
solve the task, we only compare their feasi-
ble grasp motions with our method. In con-
trast, our method is evaluated across all grasp-
ing tasks and consistently maintains a higher
success rate under larger perturbations, demon-
strating greater robustness and flexibility of the
generated motions.

A.2.5 POLICY DISTILLATION

For better sim-to-real transfer, we use the point cloud as the visual observation. To offset devia-
tions caused by camera calibration and hardware settings, we collect simulation data from multiple
camera angles and calibrate the point cloud to the robot base. Additionally, random noise is added
to the camera transformation matrix during data collection and to the point cloud during training,
improving robustness. In the simulation, we have collected 1,800 demonstrations for the policy
training.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 REAL WORLD EXPERIMENT DETAILS

A.3.1 REAL ROBOT EVALUATION

For real robot evaluation, we tested our policy within a 40 × 20 cm region (Fig. 12), located 0.45–
0.65 m from the robot base and spanning −0.25 to 0.25m horizontally. We evaluated two known
objects with 20 trials each, and seven unknown objects with 10 trials each.

A.4 TELEOPERATION DATA COLLECTION

For real-world teleoperation data collection in the co-training setup, we developed a Vision Pro
application built on top of Park and Agrawal (2024), supporting teleoperation with a controlled
frequency of 10Hz.

A.4.1 OFFLINE DATA COLLECTION

When the hand is within∼10 cm of the table—where most failures occur (Fig. 5), we enable human
intervention via a SpaceMouse (Fig. 11). Rather than granting full manual control, which would shift
the policy distribution, we compute residual corrections as bounded deltas from the base policy out-
put, conditioned on the current observation. Specifically, the CFM module predicts the next action,
and we take the difference between this rollout and the operator’s input. Residuals are constrained
to ≤1.5 cm in Cartesian translation and ≤0.05 rad for finger motion, applied uniformly across all
joints. In practice, corrections were limited to Cartesian translation and minor finger adjustments,
with the SpaceMouse z-axis mapped to finger motion.

Figure 10: Reward progression over time in real-world experi-
ments.

Figure 11: Offline real-world data collec-
tion setup using the Leap Hand V1 and a
space mouse interface.

A.4.2 REWARD FUNCTION DESIGN

Figure 12: We evaluate the success rate of the bunny
plush placement in different regions of the table using
our method and a zero-shot transfer policy.

In the real world, the reward is constructed us-
ing SAM2 (Ravi et al., 2024) to track the object
in image space and extract its point cloud, from
which the object center is computed. The re-
ward consists of two terms: (1) the distance be-
tween the object center and the palm, obtained
via forward kinematics, and (2) the object’s lift-
ing height, which encourages stable grasp exe-
cution. Figure 10 illustrates the reward trend.

A.4.3 FAILURE ANALYSIS

As shown in Fig. 5, a common failure mode oc-
curs when the fingers fail to grasp the object tightly. This arises for two main reasons: (1) the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

sim-to-real gap in actuator dynamics and controller behavior for the Leap Hand, and (2) the mis-
match in object properties, as plush objects are modeled as rigid bodies in simulation but are much
softer in the real world, requiring greater force for a stable grasp. These discrepancies highlight the
necessity of real-world adaptation to bridge the gap between simulation and deployment.

A.4.4 REGIONAL ROBUSTNESS ANALYSIS IN REAL-WORLD EXPERIMENTS

To better understand whether failures in real-robot tasks arise from environmental randomness or
policy limitations, we conducted an experiment measuring the bunny grasp success rate across dif-
ferent segmentation regions using our RFS method. As shown in Fig. 12, RFS achieves consistently
higher success rates across a broader region compared to the zero-shot baseline, indicating improved
robustness and reliability.

18

	Introduction
	Related Work
	Background
	Flow Matching for Generative Policy Learning
	Reinforcement Learning

	Residual Flow Steering for Policy Adaptation
	Policy Modulation Algorithms for Adapting Pretrained Generative Policies

	Applications of Residual Flow Steering to Problems in Dexterous Manipulation
	Data Generation with Residual Flow Steering in Simulation
	Real-World Policy Finetuning with Offline Residual Flow Steering

	Experiments
	RFS as a data generation tool in simulation
	Baselines and Ablations
	Empirical Results in Simulation

	Real World Results and Analysis
	Baselines and Ablations

	Empirical Results in the Real World

	Conclusion
	Appendix
	The Use of Large Language Models
	Simulation Setup and Training
	Reinforcement Learning Design Choices
	CFM training in simulation
	Baselines
	Robustness Analysis
	Policy Distillation

	Real World Experiment Details
	Real Robot evaluation

	Teleoperation Data Collection
	offline data collection
	Reward Function Design
	Failure analysis
	Regional Robustness Analysis in Real-World Experiments

