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ABSTRACT

Imitation learning has been an effective tool for bootstrapping sequential decision
making behavior, showing surprisingly strong results as methods are scaled up
to high-dimensional, dexterous problems in robotics. These “behavior cloning”
methods have been further bolstered by the integration of generative modeling
techniques such as diffusion modeling or flow matching for training expressive
multimodal behavior policies. However, these pretrained models do not always
generalize perfectly, and require finetuning to maximize deployment-time per-
formance. This finetuning procedure must retain the strengths of pretraining for
exploration, while being able to quickly correct for local inaccuracies in model
performance. In this work, we propose an efficient reinforcement learning (RL)
framework for fast adaptation of pretrained generative policies. Specifically, our
proposed methodology - residual flow steering, instantiates an efficient RL tech-
nique that quickly adapts a pretrained flow-matching model by steering it jointly
by optimizing a policy for selecting both a latent noise distribution and a resid-
ual action. Doing so allows policies to perform both local (residual actions) and
global exploration (latent noise), data-efficient adaptation. We demonstrate that
this technique is effective for dexterous manipulation problems, serving both as
a tool to pretrain behaviors in simulation and efficiently finetune them in the real
world. Website is here[[]

1 INTRODUCTION

Imitation learning from human data has proven to be a strong tool for obtaining performant poli-
cies in robotics and sequential decision making (Zhao et al., [2023; 2025} |Chi et al., 2023}, [Hussein
et al., 2017; |[Ho and Ermon, 2016). Of particular interest has been the success of generative imita-
tion learning, where powerful generative modeling techniques such as diffusion models (Ho et al.,
2020) or flow models (Lipman et al.l |2022) have been adopted to model the distribution of human
demonstrations. These models have been particularly effective due to the multimodality of human
demonstrations (Chi et al., 2023; |Black et al.| [2024)), allowing them to naturally scale with robust
empirical performance (Team et al.| [2025). However, imitation learning in itself is often insufficient
to generalize to all possible test-time scenarios (Team et al., [2025)), leaving considerable room for
policy improvement with test-time finetuning algorithms to production-level success rates.

While supervised finetuning (Ouyang et al.,[2022; Black et al.l|[2024)) is effective for decision-making
systems, it relies on high-quality, curated expert data. We seek methods that avoid this requirement
by leveraging cheaper, suboptimal, or self-collected data. The conceptual framework of reinforce-
ment learning (and offline reinforcement learning (Levine et al.| 2020)) offers an appealing tool for
this type of behavior improvement, as agents learn optimal behaviors by optimizing a reward max-
imization objective rather than relying on expert human data. While a plethora of techniques have
been proposed to bootstrap imitation learning pre-training with reinforcement learning finetuning
(Rajeswaran et al., [2018a; |Hu et al., [2024aj Nair et al., [2018}; Nakamoto et al.,|2024), these methods
primarily rely on the availability of closed-form likelihoods (Lillicrap et al.,|2015)) and reparameteri-
zation (Wang et al.,|2019), and are thus not directly applicable to rich modern architectures based on
diffusion or flow models. Furthermore, a significant challenge in this setting is striking the balance
between finetuning for new problems and ensuring knowledge retention from the pre-training.
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We specifically consider two promising classes of methods that are able to perform RL adaptation of
generative imitative policies while avoiding the closed-form policy likelihood requirement - resid-
ual policy learning (Ankile et al., 2024b) and diffusion steering (Wagenmaker et al., |2025). While
seemingly distinct, both are instances of a broader class of policy modulation methods that adapt
pre-trained policies by modulating inputs or outputs rather than parameters. Residual learning is
limited to local refinements through additive action corrections, making it difficult to achieve global
behavioral shifts. Diffusion steering, by contrast, can induce significant global changes by modu-
lating latent noise vectors, but struggles to adapt to behaviors outside the coverage of the imitation
policy, limiting dexterous control.

In this work, we instantiate and study a new class of policy modulation algorithms, residual flow
steering (RFS), that adapts pre-trained generative imitation learning policies to new scenarios with
reinforcement learning. The premise of residual flow steering is to allow a reinforcement learning
algorithm to modulate both the initial noise vector for a generative policy and provide an affine
corrective transformation to the outputted action. This balances the semantic modifications needed
for fast adaptation with the required local precision for dexterous manipulation. We introduce a
general framework for RL finetuning with RFS and demonstrate its use for both policy pre-training
and test-time adaptation under online and offline settings.

In this work, we instantiate residual flow steering for dexterous manipulation with multi-fingered
hands. Due to the difficulty of collecting high-quality real-world data, we first develop controllers in
simulation and show that residual flow steering yields robust multi-object grasping policies. These
policies transfer reasonably well to the real world. They can be further refined by continuing to
steer residual flow with limited human demonstration data, enabling data-efficient adaptation to real
system dynamics while maintaining high precision and dexterity.

The contributions of this work are (1) We define the framework of residual flow steering, an effi-
cient way of improving a pretrained flow matching policy, (2) We show that this framework provides
an effective tool for pre-training in simulation, learning complex multifinger coordination behavior
from human data, (3) We show that RFS can enable policy finetuning in the real world via offline re-
inforcement learning, more effectively than typical bootstrapped imitation learning alternatives, (4)
We conduct detailed ablations to identify which RFS components are most critical for performance
in simulation and the real world.

2 RELATED WORK

Imitation-Bootstrapped Reinforcement Learning. Imitation learning (IL) has been widely used
to bootstrap reinforcement learning (RL) for complex robotic tasks (Hu et al.,2024a)) to constrain ex-
ploration and guide policies. (Nair et al.,|2018) systematically uses demonstration for imitation loss,
a replay buffer, and resetting to guide RL exploration. Additionally, (Ball et al.,2023)), (Hester et al.,
2017) balance demonstration data with online data to bootstrap exploration. Though (Rajeswaran
et al., [2018b)) investigates dexterous manipulation in simulation using a 24-DoF hand, it requires a
large amount of demonstrations, and no real-world application is verified. While demonstrations aid
exploration, they are often noisy and insufficient for guiding fine-grained dexterous motions.

Finetuning Diffusion-Based Policies. Reinforcement learning has recently been applied to gener-
ative models such as diffusion policies (Ren et al., 2024) and flow matching (Zhang et al., |2025).
However, the iterative refinement structure of diffusion models and the large action spaces of action-
chunked policies often make direct RL fine-tuning unstable (Ren et al., |2024; Uehara et al., [2024).
To mitigate this, (Park et al., | 2025) proposed training an expressive one-step policy with RL instead
of directly optimizing the iterative flow. In contrast, we follow the approach of (Wagenmaker et al.,
2025)), which leverages reinforcement learning to steer exploration directly in the diffusion model’s
latent noise space. Yet, because steering is confined to the generative model’s latent space, the policy
may fail to generate effective actions outside this space, leading to errors in challenging states.

Residual Policy Learning Residual RL has been explored in various contexts. (Ankile et al.,|2024a)
pre-train an expressive policy on offline data and then refine it online using a residual policy. Resid-
ual learning has been applied to vision-based manipulation (Zeng et al., [2020) and to uncertain
robotic environments (Silver et al.l2019), demonstrating strong improvements over imperfect poli-
cies in complex tasks. To improve stability, (Zhang et al., 2020) proposes a bidirectional target
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network, while (Alakuijala et al.| [2021) extends residual formulations to visual inputs and sparse
rewards with demonstrations. (Davchev et al., 2022} |Carvalho et al., [2022) combine residuals with
structured primitives, enabling efficient residual corrections. Residual policies can refine base ac-
tions, but struggle when the base policy is poor. Our method addresses this by jointly refining the
base with RL while applying residuals only where they are most effective.

3 BACKGROUND

3.1 FLOW MATCHING FOR GENERATIVE POLICY LEARNING

Flow matching (Lipman et al. 2023} [Liu, 2022)) is a generative modeling framework that learns a
time-dependent velocity field transporting a base distribution py (f(e.g., Gaussian or uniform) to a
target data distribution p;. Consider a random variable z; evolving over ¢t € [0, 1] according to
the ODE % = vp(x¢,t) where vg : R% x [0,1] — R? is a neural network parameterizing the
velocity field. The goal of flow matching (Lipman et al., 2023) is to aligns the pushforward of
the source distribution py with the target distribution p; , while avoiding both ODE backpropaga-
tion and closed-form likelihoods by supervising conditional probability paths rather than intractable
marginals (Lipman et al., [2023).

Mechanistically, to train vy with flow matching, one samples pairs (zq,z1) ~ po X p1, picks a
random ¢ € [0, 1], and defines an interpolant x; = (1 — ¢)xo + tx1. The true “velocity” that
transports x; along this straight path to x; is v*(2¢,t) = 21 — xg. The flow-matching loss then
minimizes the squared error between the predicted and true velocities:

L(0) = Epympo, 21 mpr, tntd[0,1] ||U9($t7t) - U*(l‘t’t)Hz- (D

Given this learned velocity field vy, we can then perform sampling from p; by a straightforward
numerical integration of the learned ODE defined by vy, through standard Euler (Lipman et al.,
2023)) integration:

2P = 2P 4 A ’Ug(:Ek,tk), 20 ~po, =~y 2)
This can further be made conditional by learning vy (¢, ¢, ¢), an external conditioning variable c. In
our setting, given a (multimodal) expert human-provided dataset D = {s;,a;},, we can use flow
matching to learn a policy (parameterized as a velocity field). The flow matching training objective
(Eq[3) for training a policy velocity field vg(a, ¢, s) is

2
L(0) = Eqgmpo, (s,0)~D, t~tfo,1] || V0 (at, t,5) — (@ — ao)||"sar = (1 —t)ao +ta. 3)

The learned velocity field vg(ay,t, s) can then be used for sampling by integrating the flow field
(Eq[2). This provides a simple way to model complex, multimodal action distributions, while also
offering knobs for adaptation. For flow-based policies, we will use 7y and vy interchangeably for
notational convenience.

3.2 REINFORCEMENT LEARNING

For adaptation with reinforcement learning (RL), we build on the framework of Markov decision
processes (MDP) M = (S, A, T,r,~). S is the state space, .A is the action space, T'(s’ | s, a) is the
transition kernel, r : S x A — R is the reward function, and v € [0, 1) is a discount factor. The goal
of reinforcement learning algorithms is to leverage interaction to learn a stochastic policy 7 (a | )
that maximizes the expected discounted sum of rewards J(0) = E,., [> =, ~'r(ss, ar)]. There
is a huge variety of algorithms to optimize this objective (Sutton and Barto, [2018) (for instance,
on-policy, off-policy, model-based, and hybrid variants), and we will not be prescriptive on which
precise optimization algorithm is to be used. Instead, it is useful to consider two specific variants of
imitation-bootstrapped RL frameworks that we will build on in this work:

Residual reinforcement learning: These methods aim to learn a small “residual” policy 7, (als)
with reinforcement learning that can correct for the mistakes of a so-called base policy 7y(als) that
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is trained with imitation learning (or variants such as flow matching). Residual RL methods
et al} [2024b; [Silver et al, 2019) execute actions through an additive transformation on the executed
actions, optimizing the following objective:

o0
maxE o . s) s mp(s/]5,a) [Z (s, at)] ;oa=artap,  ar ~7me(als),ap ~ mg(als) (4)
o a=ar+ayp t=0
ar~mr(als), ap~mo(als)

Diffusion steering on latent noise: A recently proposed alternative technique for adapting pre-
trained generative policies to test-time scenarios is diffusion-steering (Wagenmaker et al, 2025).
These methods specifically apply to diffusion and flow-based policies where an initial latent “noise”
vector is pushed forward through an integration process to generate an action. While sampling
from the base policy is performed by choosing the initial latent “noise” vector from a unit Gaussian
distribution, adaptation can be done by directly choosing the initial latent noise from a different
distribution defined by mps(a|s). Using Push(s, ag, vg) as a shorthand for the integration process in
quor the learned flow field vy (ay, s, t), the diffusion steering objective optimizes Eq

Intuitively this optimizes for policy per- -
formance by “steering” the base policy ¢
7y through modulation of the initial latent mm?sx Ea NfroN(];O (|?)’ Z':g](i(\ss 73) ve) L t=0 Tl
noise ag, leading to a reweighting of the OTEpSRaTE Hotel L= (5)
inferred action distribution within the cov-

erage of the base policy vg.

Ordinary flow matching process

ag ~ N (0, 1)——Push(s, ag, vg)

f
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Q
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Figure 1: Overview of Residual Flow Steering (RFS). In ordinary flow matching, noise ap ~ N(0,I) is
sampled and pushed through Push(s, ao,vg) to generate an action ap. RFS instead learns the initial noise
distribution and introduces a residual action a,, enabling direct shifts beyond the flow matching manifold. This
allows actions to be steered toward the desired distribution using the residual policy.

4 RESIDUAL FLOW STEERING FOR POLICY ADAPTATION

In this work, we propose Residual Flow Steering (RFS), a technique that unifies latent steering
for global adaptation with residual actions for fine-grained corrections, building on flow-matching
pretraining. While residual RL (Ankile et al., [2024b} [Silver et al, 2019) and latent noise adapta-
tion (Wagenmaker et al.,[2025)) appear distinct, we show they are both instances of a broader class of
policy modulation methods. Leveraging this connection, RFS enables efficient policy improvement
for high-dexterity problems and supports simulation-to-reality transfer in dexterous manipulation.

4.1 POLICY MODULATION ALGORITHMS FOR ADAPTING PRETRAINED GENERATIVE
POLICIES

We begin by delving more carefully into the structure of both residual RL (Ankile et al.|, [2024b}
Silver et all, 2019) and latent-noise steering (Wagenmaker et all, [2025; [Du and Song| [2025) al-
gorithms, given a generative pretrained policy vg(as,t, s) and a pushforward sampling function
a ~ Push(s, ag,vg); ag ~ N (0, I). Let us put the two objectives side-by-side:
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Figure 2: Side-by-side optimization objectives. Left: diffusion steering. Right: residual RL.

We observe that both objectives modulate the behavior of the base policy vy through different mech-
anisms (initial noise versus an affine transformation of the output). More generally, a policy mod-
ulation algorithm for a generative policy vg(a¢,t, s) is defined as an optimization procedure that
aims to modulate the policy of vy through parametric input (g) or output () modifications, without
modifying the actual parameters of the policy 6.

This general framework can encompass resid- >

ual RL(S1lver et al., 2019 |Ankile et al., 2024a),  max E; ., ().’ ~p(s'|s.a) [Z yrr(se, at)]
latent noise steering(Wagenmaker et al., 2025 ? a=fs(as.s), ao=gs(s) [1=0

Singh et al.,2020), hierarchical skill adaptation ap~Push(s,a0,ve)

(Hu et al.| [2024b; |Sun et al., [2025), and even a ®)

broader class of methods for finetuning diffusion models with RL |[Uehara et al.| (2024)). The differ-
entiating factor between these methods is the particular choice of f and g in Eq

Residual Flow Steering for Joint Local and Global Adaptation: In this work, we choose a
particular instantiation of f and g, which we refer to as residual flow steering (RFS). Put simply,
this performs efficient yet precise adaptation by bringing together the benefits of residual RL (Silver
et al} |2019; |Alakuijala et al.| 2021)) for output modulation, and diffusion steering RL [Wagenmaker
et al.| (2025) for input modulation. By controlling the latent noise of a flow-matching policy, input
modulation provides “global” changes in behavior actions, while output modulation provides the
fine “local” changes needed for precise behavior through an affine transformation on the predicted
push-forward actions.

Intuitively, consider the case of a robotic hand 00

tasked with performing dexterous grasping — max E, _, () s ~p(s/[s,a) [Z vr (s, at)]
(Fig. [[). Modulating the input noise changes """ ag,ar~mrrs(ao.arls) =0

the broad finger gaiting strategy itself, provid- “nggﬁ‘l‘; ve)

ing explore strategies. However, if the desired 9)

precise behavior is not covered under the base policy, then this is unrealizable, no matter what la-
tent noise is chosen. In this often encountered scenario, where a small degree of “off-manifold”
behavior is required, local changes can be made by an additional residual output transforma-
tion. Concisely, we instantiate output modulation f4 as learning a residual action correction
a = Push(s,ap,vg) + ar;a, ~ m.(als) and the input modulation g4 as ag = mg(ag|s). These
can be combined for a high-level modulation policy 7rrs(ao, ar|s) to jointly output both the latent
initial noise ag (for global steering) and the residual action a, (for local refinement):

In this formulation, the policy outputs two components: aq for global adaptation, steering the gen-
erative model toward coherent, task-relevant motions, and a,. for local corrections, compensating
for misalignments from environment variability, controller artifacts, or limited coverage in the base
policy vg. The objective in Eq.[9]can be optimized with various reinforcement learning algorithms
(off-policy, on-policy, or model-based). In Section [5] we present a specific instantiation of RFS for
dexterous manipulation, enabling efficient pretraining in simulation and finetuning in the real world.

5 APPLICATIONS OF RESIDUAL FLOW STEERING TO PROBLEMS IN
DEXTEROUS MANIPULATION

In this section, we instantiate residual flow steering (RFS) for dexterous manipulation. Since safe,
large-scale real-world training is challenging, we adopt a simulation-to-reality approach: pre-train
policies using inexpensive simulated data, then fine-tune with limited real-world data. RFS proves
effective both for exploration in simulation and for data-efficient real-world finetuning. For simplic-
ity, we focus on dexterous grasping, though the method applies more broadly.
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5.1 DATA GENERATION WITH RESIDUAL FLOW STEERING IN SIMULATION

The primary challenge in generating dexterous data is efficient exploration in high-dimensional
spaces. RFS addresses this by seeding exploration with a small set of VR-teleoperated demon-
strations, which train a base policy vy (ay, s, t) via a flow-matching objective (Lipman et al.l|2022).
Although not broadly successful, this policy captures meaningful hand—arm motions and can be
finetuned with RFS. As described in Section a high-level policy mrrg is then trained atop vy
to optimize task-specific rewards such as grasp success and stability (task and reward details in the
Appendix [A.2.T).

For simulation data generation, the RFS policy mrpg outputs (ag, a,.): (1) Latent noise aq steers
the pretrained policy vy toward globally diverse, task-relevant motions, while (2) Residual actions
a, provide fine-grained corrections for local misalignments. This framework refines joint hand—arm
policies over both finger and end-effector actions. To mitigate VR data limitations, we also consider
a variant (Section [6.1.2)) where only finger motion is pretrained with flow matching, and arm motion
is learned from scratch via reinforcement learning.

Using RFS, as described above, we can generate data with low-level privileged state information
s (such as object positions, velocities) in simulation. This generated data can be distilled to point-
cloud based policies with standard student-teacher methodology (Chen et al., 2021), parameteriz-
ing the distillation with visuomotor flow-matching policies v (at, Opc, Spro, t), conditioned on point
cloud (op) and proprioception Sp,, producing hand-arm actions directly a; = (ghand, garm). The
result is a pretrained policy that can be deployed and then adapted in the real world.

5.2 REAL-WORLD PoOLICY FINETUNING WITH OFFLINE RESIDUAL FLOW STEERING

Directly transferring the distilled visuomotor policy v (at, Ope, Spro,t) to the real world often
fails, especially for unseen objects and initial conditions. To bridge this gap, we apply data-
efficient finetuning with an offline variant of RFS, leveraging a small human-collected dataset
D = {((0,5), (a,ap), (0',8"),7): }¥, that records base policy actions aj, human corrections a,
and resulting transitions. Our goal is to train Trrs(ag, ar | Ope, Spro) Via offline RL (Levine et al.,
2020), maximizing reward when combined with the simulation-pretrained v,. For evaluation, we
adopt TD3+BC (Fujimoto and Gu} [2021), which alternates actor—critic updates with an added imi-
tation term. We detail both critic and actor updates below.

Critic Update: The challenge in using an offline RL algorithm on the dataset D =
{((0,5), (a,ap), (¢/,8"),7);} X, is that it does not have actions readily in the form (ag,a,) that
is needed for residual flow-steering. To infer a dataset of this form, we can perform a simple
transformation of the recorded actions (a, ap). a, ap, ag and a, share the following relationships -
a = ap+a, and a;, = Push(o, ag, vy). This suggests that to obtain (ag, a,.) for RFS, we can trivially
construct a, = a — ap. To obtain ag, we need only invert the push operation a; = Push(o, ag, vg).
While many techniques could be used here (such as flow inversion), we opt for a simple opti-
mization based strategy to find the initial noise aq that best explains a; when pushed forward -
ag < argming, ||ap — Push(o, ag,vg)||. These operations then allow us to convert the dataset D
into a form directly amenable to RFS Drrs = {((o, 5), (ag, ar), (o', s"),7);}2¥,. Given this dataset
Drrs we can then instantiate a standard TD-learning critic update as

min B ((5.4) (ao.a,),(o' ) r)~Drrs | 1@ (0,5,0) = 7(s) = 1Qg(0', 8", ")

¢ (10)

a a’ ~1 ( ’ /| / /)
0:@.~TRFs(ag,a,|0",s
a=ap+ar, ap~Push(o,s,a0,v4)
a’=aj+al, aj~Push(o’,s’,a4,v4)

Note that we make the design to provide the critic with the combined actions a, a’ rather than the
separated actions (ay, a,-), which we justify through an empirical comparison in Section

Actor Update: We follow the standard actor-update described in TD3+BC (Fujimoto and Gul 2021},
where the actor maximizes the Q-values while applying a behavior cloning (BC) regularization of
the residual actions a, against the offline data.
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N - 2
arg max B, ) (ag.a,),(0's').r)~Drrs (@ (05 8, @) = Ape |ar — ar[|]
TRES a0,a,~mrrs(-|0,5) (11)
ay~Push(o,s,d0,v¢)
d=ap+inr

6 EXPERIMENTS

We perform the experiments to answer the following research questions: Q1: Can residual refine-
ment further improve grasp success in simulation? Q2: Can RFS policy boost the pretrained policy
for finger motion by steering latent noise? Q3: Which design choices are most effective in both
simulation and real-world settings? Q4: How latent noise augmentation will affect the performance
in real world adaptation? As outlined in Section [5] we first evaluate RFS for simulation data gener-
ation and then for real-world adaptation. Our experiments focus on dexterous grasping(poweﬁﬂ and
pinclﬂ with a multifingered hand, though the approach generalizes to broader tasks.

6.1 RFS AS A DATA GENERATION TOOL IN SIMULATION

Pinch Grasp Objects

Real Grasp Objects

Setup: To evaluate RFS for simulation data genera-
tion, we collected 1441 grasping demonstrations in Isaa-
cLab ‘ using a Franka arm with a 16-
DoF Leap Hand (Fig.[I). Demonstrations were recorded
via an Apple Vision Pro AR device across diverse ob-
jects, from rigid bottles to plush itemﬂ These were used
to pretrain a generative base policy vg(ay, t, s) with flow
matching (Lipman et al 2022). Although not broadly
successful, this policy provides meaningful motion priors
and is finetuned with RFS using PPO Figure 3: Simulation and real objects
[2017), as detailed in Section[5.1] Additional environment used in our experiments.

and RL setup details are in Appendix [A.2] Our focus is on evaluating whether RFS can produce
robust grasping policies across varied objects compared to standard RL baselines.

6.1.1 BASELINES AND ABLATIONS

Baselines: We compare against several alternative methods, which reparameterize action spaces in
different ways for reinforcement learning in simulation - (1) Tabula-rasa RL: We train standard
on-policy RL with PPO using different hand-defined action spaces. We consider both absolute joint
pose control, where actions specify absolute joint values, and relative joint pose, where actions
specify relative changes, (2) Action-Space Reduction with PCA: To reduce action dimensionality,
finger motions are compressed into a 4-D latent space using principal component analysis (PCA),
following 2025). Action Codebooks with VQ-VAE: We consider using a VQ-VAE to
learn a codebook of meaningful coordinated finger motions from the human collected data

2025).

Ablations: To understand the benefits of the combination of both residual action refinement and
latent-noise based steering, we conduct thorough ablations. We evaluate the following ablated vari-
ants of RFS - (1) DSRL (Wagenmaker et al., 2025): Allowing the RL policy to steer the latent
noise of the base policy without residual actions, (2) Residual RL: Only allow the RL policy to
output residual actions, without actually steering the latent noise injected into the base model.

To compare with these methods, we evaluate two different instantiations of our method: RFS with
hand and RFS with hand and arm. RFS w/ hand performs generative pretraining on the hand only,
while RFS w/ hand and arm performs generative pretraining on the whole arm and hand data col-
lected by human demonstrators. We also evaluate the efficacy of predicting action chunks (RFS-
Chunk) rather than one-step actions.

ZPower grasp uses the entire hand to firmly hold an object.
3Pinch grasp uses the thumb and one or two fingers to grip an object.
*Plush items are modeled as rigid bodies in simulation.



Under review as a conference paper at ICLR 2026

6.1.2 EMPIRICAL RESULTS IN SIMULATION

Comparison to Baselines: As shown in Fig. 4| and Tab. |1} the absolute joint pose fails due to
large, unstable finger motions and penetration between fingers, while the relative joint pose strug-
gles on pinch grasps, with 55% of motions infeasible under the penetration metric (Wang et al.,
2023)) (vs. 5% for ours; see Appendix[A.2.3). The PCA baseline fails on power grasps, often losing
fine-grained details such as early finger closure. The VQ-VAE baseline also fails on power grasps,
producing jittery, poorly localized, and unnatural motions;(see Appendix for more analysis).
In conclusion, stable, scalable grasping requires structured exploration and smooth, continuous mo-
tion representations. Additional evaluation images are provided in the Appendix

Comparison to Ablations: As shown in Tab. [I] RFS outperforms all ablations, highlighting the
importance of combining residual and flow-steering components. DSRL (Wagenmaker et al., [2025))
performs on par with PCA, VQ-VAE, and RL-from-scratch baselines, while RFS consistently sur-
passes them through global exploration via flow steering and precise local refinement with resid-
ual actions. Moreover, RFS is more sample-efficient, requiring fewer interactions to match or ex-
ceed baseline performance (Fig. ). We also find that the hand-only setting outperforms hand—-arm
training, likely due to noise and redundancy in teleoperation data. Finally, the chunked variant
(RFS-Chunk), which executes consecutive hand actions with residual refinement, further improves
performance by enforcing smoother motion continuity and temporal consistency.

Given data generated via RFS in simulation on privileged states, we distill a point cloud based policy
via standard student-teacher methods (Chen et al., 2021) for real world deployment. Using ~1,800
simulated demonstrations, the distilled policy achieves a 95% success rate in simulation. However,
this success rate drops considerably on real world deployment, necessitating real-world finetuning
with RFS.

—— absolute joint pose  —— PCA —— DSRL w/ hand ~—— RFS-Chunk(Ours) w/ hand
relative joint pose  —— VQ-VAE RFS(Ours) w/ hand

Pinch Grasp - Success Power Grasp - Success.

Method Overall Pinch Grasp  Power Grasp ‘
absolute joint psose 0.000 £ 0.000  0.000 £ 0.000  0.000 £ 0.000 08
relative joint pose 0.491 +0.491  0.000 + 0.000 0.982 + 0.003 }
PCA 0.394 +0.444  0.838 +0.017  0.000 + 0.000 5061
VQ-VAE 0.419 £ 0.419  0.714 £ 0.074  0.000 + 0.000 ‘
Residual RL w/ hand & arm  0.174 +0.062  0.114 4+ 0.005  0.234 + 0.020 ‘|
DSRL w/ hand & arm 0.625+0.309 0.253 +0.062 0.874 £ 0.048 02
RFS w/ hand & arm (Ours) ~ 0.708 & 0.247  0.485 4+ 0.153  0.930 & 0.021

DSRL w/ hand 0.878 £0.045  0.833 £0.030 0.923 + 0.080 °
RFS w/ hand (Ours) 0.937 £ 0.028 0914 £0.012  0.959 + 0.020

RES-Chunk w/ hand (Ours) ~ 0.959 £ 0.030  0.930 - 0.030  0.988 = 0.060
Figure 4: Comparison of different PPO-based base-

Table 1: Success rates (mean =+ std) of different base- lines on two grasping tasks: pinch grasp (left) and

lines across Overall (Pinch + Power), Power Grasp, and power grasp (right).

Pinch Grasp tasks for three random seeds.

6.2 REAL WORLD RESULTS AND ANALYSIS

Next, we consider adapting distilled policies with offline RFS on a real-world robot setup shown in
Fig. [T} for grasping both seen and unseen objects Fig[3] Real-world experiments were conducted
using a Franka arm with a LEAP hand using a Cartesian impedance control running at 10Hz. For
evaluation, we tested seven objects—two previously seen in simulation and five novel deformable
objects. Unlike rigid simulation objects, real-world objects exhibit varying compliance, contact
dynamics and appearance, introducing a sim-to-real gap that causes pre-trained policies to fail Ap-
pendix [A.4.3). For offline RL finetuning, we collected 50 offline demonstrations using a Space-
Mouse (Appendix for action correction. We programatically defined rewards by leveraging
SAM2 (Ravi et al.l[2024) to track the object and then extract its centroid (details in Appendix [A.4.2)).

6.2.1 BASELINES AND ABLATIONS

Baselines: We evaluate RFS with offline RL (Section[5.2) as a data-efficient and performant method
for finetuning policies from simulation. We compare RFS to a few different class of baseline adap-
tation methods (1) Zero-Shot Transfer, where the distilled policy from simulation is deployed di-
rectly without fine-tuning, (2) BC Fine-Tuning, Collecting and using 50 real-world demonstrations
to finetune the distilled policy from simulation with flow matching, (3) Co-Training, performing
finetuning of the sim-distilled policy with flow matching, but mixing 50 real demonstrations with
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Early gripper closure ‘Weak/wrong grasp pose Bad grasp location

Figure 5: Illustration of three typical failure modes during real-world manipulation: (left) early hand closure,
(middle) weak or incorrect grasp pose, and (right) poor grasp location. The top row shows the failure cases when
using only the base policy, while the bottom row shows the corrected outcomes after applying our Residual Flow
Steering (RFS) method. RES effectively mitigates these errors, leading to more stable and successful grasps.

collected simulation data. We will show that using offline RL for finetuning rather than just standard
flow matching based finetuning is more performant.

Critic Design Choices: Besides these comparisons to supervised fine-tuning, we also compare with
different ablations and offline RL variants. Specifically, we compare three variants for critic design
in offline-RL: (1) Q(a., 0): The critic evaluates the residual action res, only and the observation
0. (2) Q([ar, ap], 0): The critic takes as input the concatenation of the residual action and the base
policy action, allowing evaluation of both, (3) Q(ap + a,0) (Ours): The critic evaluates only the
final executed action, which is the sum of the base policy output and the residual correction.

Ablations: We also perform ablative analysis of performing offline RL with just residual actions
Residual RL, as well as offline RL with only latent noise steering DSRL.

6.3 EMPIRICAL RESULTS IN THE REAL WORLD

Comparison to Supervised Fine-Tuning: As shown in Fig.[6] the zero-shot policy performs poorly,
with failures such as translational offset, rotational offset, and insufficient finger tightness, highlight-
ing a significant sim2real gap. Though co-training substantially improves performance on known
objects (83.3% success), generalization to unseen objects remains poor. The noisy and inconsis-
tent nature of human-collected data leads to instability and rollout failures, underscoring the limited
generalization for novel objects.

Objects (Mean = sta)

Comparison to Variants of Of- RES(Ours): Olar + 2p.of e
. . . DSRL: Q(a, + ap, 0) B—a75
fline RL: As discussed in Sec. 5.2} Residual RL: Q@ + 35, 0) e
TD3+BC uses the actor output as Residual RL: Q. a1, 0){ 00
input to the critic, leaving several Residual RL: Qlar. o} 0

. BC w/ real data(50 demos) 73.3 =i 35.0
options for how to represent the Contraining —— A
Q-function. We evaluate policies Zero-shot sim2Real B o
trained with three such Q-function R

designs(Fig. [l  Both Q(a,,0) and
Q([ar, ap), 0) fail to generate consis-
tent stable grasp poses. In contrast,
Q(ap + ar,0) achieved significantly
higher performance over all baselines. This shows that coupling residuals directly with executed
base actions is beneficial to the final performance.

Figure 6: Real-world evaluation results. Bars and red values
indicate mean success rates, with error bars showing the standard
deviation.

Comparison to Ablations of RFS: We compared against variants using only residual actions
(m(ar|o)) and only DSRL latent noise steering (m(ao|o0)). As shown in Fig. |6 our full model
m(ap, ar|o) achieves the best performance, particularly on unseen objects. Qualitatively, this is be-
cause latent noise steering guides global exploration, while residual actions refine local adjustments,
making their combination more effective than either alone.

7 CONCLUSION

We introduced Residual Flow Steering (RFS), a reinforcement learning framework that unifies la-
tent noise steering for global exploration with residual corrections for local refinement. Our results
across simulation and real-world dexterous grasping show that RFS substantially outperforms con-
ventional baselines, including residual-only and diffusion-steering approaches, by enabling efficient
pretraining in simulation and data-efficient finetuning in the real world.
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Reproducibility Statement:

We have taken several steps to ensure the reproducibility of our results. The main text (Sections
M and [5) provides details of our proposed Residual Flow Steering (RFS) framework, including
algorithmic design, training objectives, and ablation studies. Appendix[A.2]describes the simulation
setup, reinforcement learning design choices, and evaluation metrics in detail, while Appendix
provides descriptions of real-world experiments, reward specification, and data collection protocols.
To further facilitate replication, we include more details for the baseline methods, hyperparameter
choices, and ablation analyses in the appendix for both the simulation and the real experiment.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

In this paper, we primarily use LLMs for language polishing, making our writing more concise and
accessible. We provide raw drafts and ask the LLM to refine them. We also use LLMs for guidance
on figure preparation, such as creating illustrations in Inkscape and adjusting figure size and font in
Matplotlib.

A.2 SIMULATION SETUP AND TRAINING
A.2.1 REINFORCEMENT LEARNING DESIGN CHOICES

To enhance robustness and mitigate controller misalignment for sim-to-real transfer, we introduce
the following design choices:

Arm Initialization: Randomize the initial joint configuration of the arm at the start of each episode
to improve generalization.

External Disturbances: Apply random external disturbances to each joint at intervals of 2-5 steps,
encouraging the policy to recover from perturbations.

Observation Space: In the simulation RL training, we use state-based information, including the
robot proprioception, the current object pose, the target object pose, and binary contact signals
between each fingertip and the object.

Action Space: The action space in our RL training depends on the specific method used for hand
motion generation, with a detailed comparison provided in Tab.[2] Across all methods, the arm is
controlled using a 6D delta pose controller (3D translation + 3D rotation). The delta translational
range is constrained to [—0.03,0.03] m per step, while the delta rotational range is limited to
[—0.1,0.1] rad per step. The control frequency in simulation is set to 20 Hz.

Reward Function: The reward consists of three stages: encouraging finger—object proximity to
guide fingers toward the object, promoting stable fingertip-palm contact for secure grasping, and
encouraging successful lifting to a target height while penalizing unsafe behavior such as excessive
lifting or joint limit violations.

Success Indicator: A grasp is deemed successful if the object is lifted at least 20 cm above the table
while the end-effector maintains a feasible pose without unnatural or unstable joint configurations.
Each checkpoint is evaluated over 1,024 episodes.

Data Collection: We use the Vision Pro for data collection, leveraging an application built on
IsaacLab Mittal et al.| (2023)).

A.2.2 CFM TRAINING IN SIMULATION

In simulation, we trained two flow matching policies: one using only finger joint poses as obser-
vations, and another using both finger and arm actions with object pose and robot proprioception.
Both policies predict the following two consecutive actions.

Latent noise motion: Latent noise exploration generates diverse hand motions from the same initial
configuration, enabling adaptation to varied settings (Fig. [7). Furthermore, our method converges
faster and achieves higher normalized rewards than baselines (Fig. ), highlighting both efficiency
and robustness.
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Figure 7: Illustration of latent noise conditioning on hand motion. The left column (blue) shows the given
joint poses. The right columns (red) show two-step predictions from the same initial pose, where labels 1 and
2 indicate different latent noise conditions.

Table 2: Comparison of action dimension across different methods.

Method Action Dimension

Relative joint pose 6 (delta arm pose) + 16 (relative finger joint pose)
Absolute joint pose 6 (delta arm pose) + 16 (absolute finger joint pose)
PCA 6 (delta arm pose) + 4 (PCA latent codes)
VQ-VAE 6 (delta arm pose) + 8 (VQ codes) x2 (horizon)
Residual RL (w/ arm & hand) 22 (residual actions)

DSRL (w/ arm & hand) 23 x 2 (horizon)

RFS (Ours, w/ arm & hand) 23 X 2 (horizon) + 22 (delta pose)

DSRL (w/ hand) 6 (delta arm pose) + 16 x 2 (horizon)

RFS/RFS-Chunk (Ours, w/ hand) 6 (delta arm pose) + 16 x 2 (horizon) + 16 (delta pose)

A.2.3 BASELINES

Tabula-Rasa RL: While Tabula-Rasa RL with relative joint poses achieves a success rate compa-
rable to our method, a closer inspection of the finger motions (Fig. [J) reveals severe inter-finger
penetration. To quantify this, we follow (Wang et al., 2023) and use Kaolin to compute the pene-
tration depth between fingers. If the penetration exceeds 0.5 cm, we regard the grasp as infeasible.
Under this criterion, although the relative joint pose policy reports a 98% success rate, at least 55%
of the motions are infeasible, compared to only 5% with our method.

PCA: We reduce the high-dimensional finger actions into four latent values using PCA, and employ
RL to explore this latent space. The raw demonstration data is used to define the minimum and
maximum latent values, and RL actions are scaled accordingly. As shown in Fig. [f] PCA achieves
performance comparable to DSRL on pinch grasps; however, for power grasps (Fig. [9), the thumb
closing timing remains misaligned.

15



Under review as a conference paper at ICLR 2026

Figure 9: Simulation rollouts comparing our proposed method (RSF-Chunk) with baseline approaches
(Tabula-rasa RL, PCA, and VQ-VAE). Our method produces more stable and collision-free hand motions,
whereas Tabula-rasa RL frequently suffers from severe finger.

VQ-VAE: Following (Xue et al., 2025), we adopt a 1D-CNN encoder with a GRU decoder, where
the model predicts the following two finger motions conditioned on the previous joint pose. During
RL training, we steer the latent space and add residual actions for fine-grained correction, applying
the same residual adjustment across two steps to ensure temporal consistency. As shown in Tab. [T}
the VQ-VAE achieves a relatively high success rate in simulation for pinch grasps, but fails on
power grasps (e.g., pushing). Fig.[0further illustrates that the thumb often closes prematurely before
reaching the object, resulting in misalignment and making training more challenging.

A.2.4 ROBUSTNESS ANALYSIS relative joint pose(Power Grasp) —— VQ-VAE(Power Grasp)

~——— RFS-Chunk(Ours,w/ hand)(Power/Pinch Grasp) —— PCA(Pinch Grasp)

To evaluate the robustness and stability of grasp

motions, we conducted robustness analysis by .
gradually applying external forces and torques
to each joint and measuring the success rate
(Fig. [B). Since not all baseline methods can
solve the task, we only compare their feasi-

ble grasp motions with our method. In con-

o
By

Success Rate

°
s

trast, our method is evaluated across all grasp- o,

ing tasks and consistently maintains a higher

success rate under larger perturbations, demon- P M et miorcetperont
strating greater robustness and flexibility of the Figure 8: Robustness evaluation: We evaluate the
generated motions. robustness of our RFS method against baseline ap-

proaches under varying levels of external disturbances.

A.2.5 PoOLICY DISTILLATION

For better sim-to-real transfer, we use the point cloud as the visual observation. To offset devia-
tions caused by camera calibration and hardware settings, we collect simulation data from multiple
camera angles and calibrate the point cloud to the robot base. Additionally, random noise is added
to the camera transformation matrix during data collection and to the point cloud during training,
improving robustness. In the simulation, we have collected 1,800 demonstrations for the policy
training.
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A.3 REAL WORLD EXPERIMENT DETAILS

A.3.1 REAL ROBOT EVALUATION

For real robot evaluation, we tested our policy within a 40 x 20 cm region (Fig. [12)), located 0.45—
0.65 m from the robot base and spanning —0.25 to 0.25 m horizontally. We evaluated two known
objects with 20 trials each, and seven unknown objects with 10 trials each.

A.4 TELEOPERATION DATA COLLECTION

For real-world teleoperation data collection in the co-training setup, we developed a Vision Pro
application built on top of [Park and Agrawal| (2024)), supporting teleoperation with a controlled
frequency of 10Hz.

A.4.1 OFFLINE DATA COLLECTION

When the hand is within ~10 cm of the table—where most failures occur (Fig. EI), we enable human
intervention via a SpaceMouse (Fig.[TT). Rather than granting full manual control, which would shift
the policy distribution, we compute residual corrections as bounded deltas from the base policy out-
put, conditioned on the current observation. Specifically, the CFM module predicts the next action,
and we take the difference between this rollout and the operator’s input. Residuals are constrained
to <1.5cm in Cartesian translation and <0.05rad for finger motion, applied uniformly across all
joints. In practice, corrections were limited to Cartesian translation and minor finger adjustments,
with the SpaceMouse z-axis mapped to finger motion.

Helpful chicken expert

Last Frame Reward over Time

Figure 10: Reward progression over time in real-world experi- Figure 11: Offline real-world data collec-
ments. tion setup using the Leap Hand V1 and a
space mouse interface.

A.4.2 REWARD FUNCTION DESIGN

Ours (RFS) Zero-Shot

In the real world, the reward is constructed us-
ing SAM2 @ to track the object 1.00 0.70 1.00 0.30 0.60 0.33
in image space and extract its point cloud, from
which the object center is computed. The re-
ward consists of two terms: (1) the distance be-
tween the object center and the palm, obtained
via forward kinematics, and (2) the object’s lift- .. _ o .,
ing height, which encourages stable grasp exe- =

. . . 0.0 0.2 0.4 0.6 0.8 1‘,0
cution. Figure[[0]illustrates the reward trend. Figure 12: We evaluate the success rate of the bunny

plush placement in different regions of the table using
A.4.3 FAILURE ANALYSIS our method and a zero-shot transfer policy.

As shown in Fig.[5] a common failure mode oc-
curs when the fingers fail to grasp the object tightly. This arises for two main reasons: (1) the
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sim-to-real gap in actuator dynamics and controller behavior for the Leap Hand, and (2) the mis-
match in object properties, as plush objects are modeled as rigid bodies in simulation but are much
softer in the real world, requiring greater force for a stable grasp. These discrepancies highlight the
necessity of real-world adaptation to bridge the gap between simulation and deployment.

A.4.4 REGIONAL ROBUSTNESS ANALYSIS IN REAL-WORLD EXPERIMENTS

To better understand whether failures in real-robot tasks arise from environmental randomness or
policy limitations, we conducted an experiment measuring the bunny grasp success rate across dif-
ferent segmentation regions using our RFS method. As shown in Fig.[T2] RFS achieves consistently
higher success rates across a broader region compared to the zero-shot baseline, indicating improved
robustness and reliability.
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