KVPR: Efficient LLM Inference
with I/O-Aware KV Cache Partial Recomputation

Anonymous ACL submission

Abstract

Inference for Large Language Models (LLMs)
is computationally demanding. To reduce the
cost of auto-regressive decoding, Key-Value
(KV) cache is used to store intermediate acti-
vations, which significantly lowers the compu-
tational overhead for token generation. How-
ever, the memory required for KV cache grows
rapidly, often exceeding the capacity of GPU
memory. A cost-effective alternative is to of-
fload KV cache to CPU memory, which allevi-
ates GPU memory pressure but shifts the bottle-
neck to the limited bandwidth of the PCle con-
nection between the CPU and GPU. Existing
methods attempt to address these issues by over-
lapping GPU computation with I/O or employ-
ing CPU-GPU heterogeneous execution, but
they are hindered by excessive data movement
and dependence on CPU capabilities. Fully
overlapping PCle communication latency gets
challenging as the size of KV cache grows
and/or the GPU compute capabilities increase.
In this paper, we introduce KVPR, an efficient
I/O-aware LLM inference method where the
CPU first transfers a partial set of activations
from which the GPU can start recomputing the
KV cache values. While the GPU recomputes
the partial KV cache the remaining portion of
the KV cache is concurrently transferred from
the CPU. This approach overlaps GPU recom-
putation with KV cache transfer to minimize
idle GPU time and maximize inference perfor-
mance. KVPR is fully automated by integrat-
ing a profiler module that utilizes input char-
acteristics and system hardware information, a
scheduler module to optimize the distribution
of computation and communication workloads,
and a runtime module to efficiently execute the
derived execution plan. Experimental results
show that KVPR achieves up to 35.8% lower
latency and 46.2% higher throughput during de-
coding compared to state-of-the-art approaches.
The code is available at https://anonymous.
4open.science/r/KVPR-C176/.

1 Introduction

Large language models (LLMs) have made remark-
able progress in recent years, demonstrating their
ability to power diverse applications such as ma-
chine translation (Zhu et al., 2024), summarization
(OpenAl et al., 2024), creative content generation
(Gemini Team, 2024), and personalized recommen-
dations (Geng et al., 2022). Real-time applications,
including conversational agents and live translation
(Li et al., 2023), depend on low latency to provide
seamless user interaction, while large-scale deploy-
ments require high throughput to support concur-
rent users and process substantial data efficiently
(Kwon et al., 2023).

Key-Value (KV) cache is essential in auto-
regressive decoding for LLMs, as it stores the in-
termediate key and value activations from earlier
steps in the attention mechanism. This reduces
the computational complexity of generating each
token from quadratic to linear by eliminating the
need to recompute these activations for every gen-
erated token. However, this comes at a cost: the
size of the KV cache grows linearly with batch
size, sequence length, and model size, leading to
substantial memory demands (Wan et al., 2024).

GPU memory, while optimized for high-
bandwidth access by computation units, is inher-
ently limited and often insufficient to handle the
large and growing size of the KV cache. One
cost-effective approach to address this limitation
is to offload the KV cache to cheaper and plentiful
CPU memory, and could be further offloaded to
hard disks and network storage (Liu et al., 2024a).
While offloading reduces GPU memory pressure,
it introduces a new bottleneck: the slow PCle bus
becomes a limiting factor when transferring the KV
cache from CPU to the GPU for computation. Due
to the long PCle transfer time the overall decod-
ing latency increases and while the token through-
put decreases, hindering the overall inference effi-

https://anonymous.4open.science/r/KVPR-C176/
https://anonymous.4open.science/r/KVPR-C176/
https://anonymous.4open.science/r/KVPR-C176/

ciency of the system (Zhao et al., 2024a).

CPUDRAM | PCle [GPUHBM FP16 312
512GB__ | 32GB/s | 40GB TFLOPS

Figure 1: LLM inference system with an A100 GPU.

Model Hidden Dim K\(/ I\fll]:;jhe PCIe(]I;:;ency Comp(.mLs:;ltency
OPT-6.7B 4,096 512 15.6 0.3509
OPT-13B 5,120 640 19.5 0.4388
OPT-30B 7,168 896 27.3 0.6143

Table 1: PCle latency and computation latency for dif-
ferent KV cache sizes based on the system in Figure 1.

To evaluate the impact of communication over-
head, we set up an LLM inference serving system
(shown in Figure 1) using an NVIDIA A100 GPU.
Data transfer between the CPU DRAM and GPU
HBM occurs over a PCle 4.0 16 lanes with a band-
width of 32 GB/s. Table 1 shows the hidden di-
mension, KV cache size, PCle transfer time, and
GPU computation latency for KV pair computa-
tion. We use FP16 precision with a batch size of 32
and a sequence length of 1024. The results show
that PCle latency exceeds computation latency by
over an order of magnitude. The long transfer time
leads to large GPU idle time which is detrimental
to inference efficiency.

To mitigate the issue of slow PCle bandwidth,
FlexGen (Sheng et al., 2023) and PipeSwitch (Bai
et al., 2020) attempt to overlap GPU computation
of the current layer with KV cache loading for the
next layer. However, the effectiveness of such an
overlap is capped by the task that takes the longest
time. Hence, PCle transfer time overshadows GPU
computation latency, which is generally the case
with large batch and context sizes. FastDecode
(He and Zhai, 2024) suggests computing attention
scores directly on the CPU, which has faster ac-
cess to the KV cache compared to the GPU. Sim-
ilarly, HeteGen (Zhao et al., 2024a), TwinPilots
(Yu et al., 2024), and Park and Egger employ CPU-
GPU heterogeneous execution to hide data transfer
overhead by performing computations on the CPU.
Howeyver, as demonstrate later in our results such an
approach puts burden on the CPU to satisfy the KV
cache computation demands from multiple GPUs
attached to a CPU host, thereby limiting scalability.

In this paper, we propose KVPR, a novel ap-
proach for efficient LLM inference that balances
the GPU computation and PCle bandwidth trade-
offs. Instead of transferring the entire KV cache

from CPU to GPU to compute an attention score,
the CPU transfers a partial set of activations, which
are smaller in size and are required to generate part
of the KV cache, to the GPU. The GPU then starts
recomputing the partial KV cache from the input
activations. Concurrently the CPU transfers the
remaining KV cache over PCle. KVPR ensures
the computation of exact attention scores without
approximation, while minimizing GPU idle time
and improving overall latency and throughput.

One may achieve a perfect overlap of PCle trans-

fer time and GPU recomputation time by determin-
ing the optimal fraction of activations that need to
be recomputed. KVPR is fully automated in de-
termining the recomputation and communication
split. It includes a profiler module that collects sys-
tem hardware information, a scheduler module that
formulates the problem as a linear programming
problem to determine the optimal split point, and a
runtime module that manages memory allocation
on both devices and coordinates data transfer be-
tween them. Experimental results show significant
improvements in inference latency or throughput,
depending on workload. In summary, our contribu-
tions are as follows:

* We propose an efficient CPU-GPU I/O-
aware LLM inference method that leverages
KV cache partial recomputation with asyn-
chronous KV cache transfer that overlaps com-
pute and communication to address the system
bottleneck of loading large KV cache from
CPU memories.

* We develop a framework based on linear
integer programming that achieves optimal
computation-communication distribution.

* Our experimental results show that KVPR
outperforms the current state-of-the-art ap-
proaches up to 35.8% in terms of latency and
46.2% in terms of throughput.

2 Background

LLM inference process. The inference process
of decoder-only LLMs employs an auto-regressive
approach, generating tokens sequentially. It con-
sists of two stages: the prefilling stage and the
decoding stage. In the prefilling stage, the input to
the i-th decoder layer is denoted as X* € Rb*sx",
where i € {1,...,n}, bis the batch size, s is the
prompt length, and A is the input embedding di-
mension. The Multi-Head Attention (MHA) block
computes a set of queries (Q), keys (K), and values

(V) through linear projections of X

Q' =X"W,, K =X Wi, V'=X"W, (1)
where Wé, Wi, W‘Z/ €]Rhf(h are Fhe projection
matrices. The generated K* and V* are stored in
the KV cache.

The self-attention score in MHA is computed as:

i Q' (K" i
7" = softmax (ﬁ) -V 2)
where dpeaq represents the dimension of each atten-
tion head. Finally, the attention score is applied
with a linear projection to produce the output of the
MHA block:

O'=27"-Wp, A3)

where Wé € R"*" is the projection matrix.

The feedforward network (FFN) is followed after
the MHA block, which consists of two fully con-
nected layers with a non-linear activation function
applied between them. It processes the attention
output O° to generate the input for the next decoder
layer as follows:

Xt =g(0" - W) - W3, @)

where Wi € Rh>drN and Wi € RI™<h are the
weight matrices of the two linear layers, and o (-)
denotes the activation function.

In the decoding stage, the i-th decoder layer re-
ceives a single token z* € R®*1*" The KV cache
is updated by concatenating the newly computed
key and value pairs with the existing ones:

K'= concat(Ki, zh W}(),)
V" = concat(V", z" - Wy/).

The remaining attention and feedforward compu-
tations in the decoding stage are identical to those
in the prefilling stage.

3 Proposed Method

LLM inference scheduling. Our approach aims at
LLM inference systems with large KV caches that
are stored on CPU DRAM and fetched into GPU
memory as needed. Since LLMs have many layers
and many batches of inputs to process there are
different scheduling strategies to determine how
computations are performed across batches and
layers to optimize for specific performance goals,
such as minimizing latency or maximizing through-
put. Row-by-row schedule (as shown in Appendix
A.1) processes a batch of sequences for one layer
at a time before moving to the next layer. In this

scenario, model weights are kept in GPU memory
whenever feasible. If the model weights are also
offloaded to the CPU, both the KV cache and the
model weights for a single layer are transferred to
the GPU, processed for the current batch, and then
cleared. This process is repeated layer by layer un-
til a token is generated. When minimizing latency
is the primary goal, this approach is preferred, be-
cause all prompts in a batch are fully processed to
generate their complete context before proceeding
to the next batch.

Column-by-column scheduling (Appendix A.1)
is more effective for maximizing throughput by in-
creasing the effective batch size (number of batches
times batch size) to process more sequences in par-
allel, at the cost of longer latency. In this approach,
the model weights are offloaded to CPU memory
to accommodate a large batch size. The model
weights and KV cache for a single layer are trans-
ferred to GPU memory and processed for the first
batch. Instead of moving to the next layer for the
current batch, subsequent batches are processed
using the same layer while keeping the weights sta-
tionary in GPU memory. Once a group of batches
are processed for the first layer, the process moves
to the second layer for each batch. Note that the
effective batch size is limited by the available stor-
age for activations and KV cache, as they must still
be stored in CPU memory or external storage once
they exceed the GPU memory capacity.

Our proposed design is independent of the
scheduling strategy, whether row-by-row or
column-by-column, and aims to overlap the ma-
jority of the PCle transfer time with GPU computa-
tions, thereby improving overall efficiency.

3.1 Design Overview

Profiler

memory estimation,

Config
init
model, prompt/gen len, batch size, >

@ GPU FLOPS, PClIe bandwidth

quantization, latency/throughput, etc

l @l system
statistics
Scheduler

LP solver — split point

Runtime execution plan
y)

h)
memory management ®

Figure 2: Design overview of KVPR.

To relieve PCle pressure and improve GPU com-
putation utilization, we propose a novel method,
KVPR, that recomputes partial KV cache on GPU
while transferring the rest of KV cache to GPU. As
shown in Figure 2, KVPR comprises three main

modules: the profiler, scheduler and runtime. User
configuration includes performance objective (i.e.,
latency or throughput), data parameters such as
prompt length, generation length, batch size, and
model information like input embedding dimen-
sion and number of layers. The profiler module
gathers system statistics, which provides insights
into hardware characteristics like PCle bandwidth
and GPU processing speed. Using this information
along with the user configuration, the scheduler
module calculates the best KV cache split point
for recomputation by solving a linear programming
problem, aiming to maximize the overlap between
the computation and communication operations
and utilization of both GPU and PCle bandwidth
during the inference process. The runtime module,
in turn, utilizes this execution strategy to process
user inputs and manages the memory allocation
and data transfer streams.

3.2 Scheduler Module

In this section, we describe how KVPR is adopted
to either the row-by-row or column-by-column
schedule.

Row-by-row schedule with KV cache partial re-
computation. If the performance objective is to
minimize latency, the scheduler module will initiate
a row-by-row execution plan. The naive offload-
ing pipeline of a row-by-row schedule is shown in
Figure 3(a), where both the KV cache and model
weights are offloaded to CPU memory. The re-
quired data are transferred asynchronously over
PClIe to the GPU for executing the MHA and FFN
blocks. Storing newly generated KV pairs to CPU
memory is omitted from the figure for simplicity.
Since the KV cache is larger in size compared to
the MHA weights, it arrives at the GPU later during
the asynchronous transfer. The pipeline is slightly
different if model weights are not offloaded to CPU.
In this case, only the MHA block will wait the KV
cache data being transferred to GPU before starting
the computation.

In KVPR, rather than transferring the entire KV
cache from CPU memory to GPU memory, the
GPU recomputes partial KV cache using corre-
sponding input activations that are transferred from
CPU first while the remaining KV cache is asyn-
chronously transferred to the GPU, as illustrated
in Figure 3(b). The GPU then merges the recom-
puted KV cache with the transferred KV cache to
perform MHA computations.

Column-by-column schedule with KV cache par-

GPU FFN
PCle FEN Time

(a) Naive offloading pipeline for row-by-row schedule with
asynchronous data transfer. GPU and PCle denote GPU com-
putation and data transfer, with arrows indicating data depen-
dencies.

GPU
PCle MHA

FEN)
!_) Time

L VA
KV

FFN

(b) Offloading pipeline for row-by-row schedule with KV
cache partial recomputation to minimize latency.

Figure 3: Comparison of two offloading pipelines.

tial recomputation. When the performance ob-
jective is to maximize throughput, the scheduler
module adopts a column-by-column execution plan.
This approach, illustrated in Figure 4, accommo-
dates large batch size inference by reusing model
weights across multiple batches. As soon as the
KV cache for batch 0 is fully transmitted, the acti-
vations for batch 1 is transferred. Simultaneously,
the GPU begins computing the MHA for batch 0.
Unlike the row-by-row schedule, which processes
all layers sequentially within a single batch before
moving to the next batch, the column-by-column
schedule processes multiple batches on the same
layer. As a result, activations corresponding to the
recomputed KV cache must be stored until genera-
tion for that batch is complete.

Figure 4: Offloading pipeline for column-by-column
schedule with KV cache partial recomputation to maxi-
mize throughput.

Determining the optimal KV cache split point.
In both scheduling methods, the objective is to
identify the optimal split point, which defines the
division of the KV cache between the portion re-
computed on the GPU and the portion transferred
from CPU memory. This problem can be formu-
lated as a linear programming problem. The row-
by-row schedule can be viewed as a special case of
the column-by-column schedule, where activations
for recomputing the KV cache are not transferred.
We first formulate the problem for the column-by-
column schedule and then demonstrate how it sim-
plifies to the row-by-row schedule.

Given the current sequence length s’, which is
greater than the prompt length s, the activation
transferred to the GPU in the i-th layer is repre-
sented by X*[0 :], where 0 < [< s’. The remain-

ing KV cache for the subsequent tokens is denoted
by K[l : '] and V?[l : s']. The memory usage of
these activations is:

Mxijoq) =bx 1 X hXxp,

/ (6)
Mpvipge)=2xbx (s =1) x h xp.

Recomputing the KV cache for X [0 : I] requires:
K'[0:1)=X'0:1]- Wk, o
V01 = X0 1] - Wi
This recomputation on the GPU requires floating-
point operations of

Nicyijoa =4 x bx 1 x h? (8)

. . Z
Consequer%tly,'the recomputation time ¢, for the
KV cache is given by
i Ny [0:0]

tTecom = 9
» i)

where v, denotes the GPU processing speed. The
total time ¢* for processing is as follows:

: M [0 : M i[l:s’

pi= Mxioa (t;ewmw L{H) o)
Veom Vecom

where ve,,, represents the data transmission speed

for activations and KV cache.

The objective is to determine the optimal [that
minimizes this total processing time t*, which be-
comes a linear programming problem:

min ¢
! amn

st. 0<1<s Vie{l,...,n}

The optimal split point / depends on the current
sequence length s’, which increases during genera-
tion and must therefore be determined adaptively.
Fortunately, solving this linear programming prob-
lem is computationally negligible because there
is only one integer variable. If the first term in
Eq. (10) is omitted, the problem simplifies to the
row-by-row schedule.

3.3 Runtime Module

Asynchronous overlapping. To enable concur-
rent execution of GPU computation and CPU-GPU
communication, the runtime module employs a
communication parallelism strategy with six pro-
cesses: weight loading, KV cache loading, activa-
tion loading, recomputed activation loading, KV
cache storing, and activation storing, as detailed in
Appendix A.2. By incorporating double buffering
and prefetching techniques, it simultaneously loads
weights for the next layer, and retrieves activations

for KV cache recomputation and KV cache for
the next batch, while storing cache and activations
from the previous batch and processing the current
batch.

Pinned memory. To optimize data transfer, like
prior works (Sheng et al., 2023; Yu et al., 2024),
we utilize pinned CPU memory for recomputed
activation and the weights that are transferred to
the GPU. Using pinned memory enables faster and
asynchronous transfer, as it avoids the need to page
data in and out.

Hiding KV cache partial recomputation. If both
the KV cache and model weights are offloaded, and
the size of the transferred KV cache is smaller than
the size of the model weights, a coarse-grained
computation pipeline with KV cache partial recom-
putation may degrade inference performance. This
occurs because recomputation waits until all MHA
weights (Wq, Wi, Wy, and W) are fully loaded,
as shown in Figure 5(a), which delays the MHA
computation. However, KV cache recomputation
only requires W and Wy, (Eq. (7)), making it un-
necessary to wait for the complete weight loading
process. To address this, we implement a fine-
grained MHA pipeline that prioritizes loading W
and Wy first. Once these weights are available, KV
cache recomputation can begin immediately. As
illustrated in Figure 5(b), W and Wy, are used for
KV cache partial recomputation, followed by the
use of W and W for MHA computation. This
approach effectively overlaps KV cache recompu-
tation with weight loading, ensuring that in the
worst-case scenario, the method performs no worse
than the baseline bottlenecked by weights loading.

GPU
PCle | X

uS MHA
Wy Wo

Time

KV | Wgo Wgx

(a) Coarse-grained offloading pipeline with delayed KV cache
partial recomputation.
GPU
PCle | X

KV & MHA
Wo Wo

Time

KV Wi Wy
(b) Fine-grained offloading pipeline overlapping KV cache

recomputation with weights loading.

Figure 5: Comparison of offloading pipelines with dif-
ferent levels of granularity in the MHA layer.

4 Experiments

Hardware. In our experiments, we utilize an
NVIDIA A100 GPU with 40 GB of memory, con-
nected to the CPU through a PClIe 4.0 x16 interface,
which provides a bandwidth of 32 GB/s. The CPU

is an AMD EPYC processor with 64 cores, operat-
ing at 2.6 GHz. Our method and implementation
are hardware-agnostic, which allows for flexible
deployment across diverse system architectures.
Model. We evaluate KVPR using OPT models
(Zhang et al., 2022) with parameter sizes ranging
from 6.7B to 30B. While our experiments focus
on OPT models, the recomputation technique pre-
sented in this work is compatible with other LLM
architectures, such as LLaMa (Touvron et al., 2023)
and GPT-3 (Brown et al., 2020), due to their similar
attention mechanisms (Vaswani et al., 2017). This
compatibility also extends to models employing
grouped-query attention (Touvron et al., 2023).
Workload. We evaluate KVPR on two types
of workloads: latency-oriented and throughput-
oriented. In the latency-oriented workload, the
model weights are retained in GPU memory to
avoid the costly repeated loading. Due to the
limited memory size of a GPU, experiments are
conducted using OPT-6.7B and OPT-13B. In the
throughput-oriented workload, model weights are
offloaded to the CPU after computation to free
more GPU memory for handling larger batches.
This setup is evaluated using OPT-6.7B, OPT-13B,
and OPT-30B.

To provide accurate comparisons we use the
same datasets as those in FlexGen (Sheng et al.,
2023) with prompts uniformly padded to the same
length, with models configured to generate 32 or
128 tokens per prompt. To evaluate performance
across different input scenarios, our evaluation uses
prompt lengths of 256, 512, and 1024 tokens. Per-
formance metrics include decoding latency (time
taken to generate tokens) for latency-oriented work-
loads and decoding throughput (tokens generated
per second) for throughput-oriented workloads, as
KVPR does not impact prefilling performance. We
report an average decoding latency and throughput
across five test runs, respectively.

Baseline. In our experiments, we use DeepSpeed
Inference (Aminabadi et al., 2022), Hugging Face
Accelerate (Gugger et al., 2022) as the baseline
for latency-oriented workload experiments, as Hug-
ging Face Transformers library currently supports
KV cache offloading to CPU memory while still
retaining the model weights in GPU memory. We
use FlexGen (Sheng et al., 2023) as the baseline
for throughput-oriented workload experiments, as
it supports column-by-column schedule by offload-
ing both model weights and KV cache to CPU.

Implementation. KVPR is implemented on top of

Hugging Face Transformers (v4.46.1) (Wolf et al.,
2020) and FlexGen (Sheng et al., 2023) frameworks
to ensure fair comparison with baselines. In the
Transformers implementation, we utilize double
buffering in GPU memory to overlap KV cache
transfer across decoder layers. For both the Trans-
formers and FlexGen implementations, we utilize
CUDA streams to enable asynchronous overlap-
ping as described in Algorithm 1.

4.1 Latency-oriented Experiments

M DS (OPT-6.7B) M Accel. (OPT-6.7B) _
175 | M KVPR (OPT-6.7B) [J DS (OPT-13B) R~
150 | [Accel. (OPT-13B) [£] KVPR (OPT-13B) :
125 |
100 |-
75 |
50 |-
25 |-

Latency (seconds)

128 128 256 256 512 512
3 128 » 128 » 128

Sequence length

Figure 6: Decoding latency for a single batch of size 64
across different sequence lengths.

We evaluate the decoding latency required to
complete a single batch for settings of different se-
quence lengths. Figure 6 shows that KVPR consis-
tently outperforms the baselines, DeepSpeed Infer-
ence and Hugging Face Accelerate, for both OPT-
6.7B and OPT-13B. The experimental results show
that KVPR reduces decoding latency, especially at
longer generation lengths. For instance, OPT 6.7B
at a prompt length of 128 with 128 tokens gener-
ated, latency is reduced by approximately 35.8%
compared to Hugging Face Accelerate. Detailed
experiential results including KV cache size, GPU
peak memory usage and optimal recomputation
split points over the generation process are pro-
vided in Appendix A.3 and A.4.

4.2 Throughput-oriented Experiments

We also evaluate throughput performance during
the decoding stage, as KVPR does not affect the
prefilling stage. To maximize throughput, we set
the effective batch size to be 32 by 8, meaning
each layer computes on 8 batches of size 32 se-
quentially before moving to the next layer. The
first row of Figure 7 shows the results, demonstrat-
ing that KVPR consistently outperforms FlexGen
under settings of all sequence lengths for different
models. It achieves up to 15.1%, 46.2%, and 29.0%

OPT-6.7B

OPT-13B

OPT-30B

M FlexGen
[l KVPR

80

60

40

20

256 256 512 512 1024 1024

Throughput (tokens/s)

32 128 32 128 32

Sequence length

128 32 128

256 256 512 512 1024 1024

32

Sequence length

256 256 512 512 1024 1024
32 128 32 128 32 128

Sequence length

Effective bs =32 x 8

128 32 128

1 2

4 8 16 32 48 1

Batch size

2 4

Throughput (tokens/s)

Batch size

I
Pt
10 &
N
7.5 =
—
I
5 <
B0
2.5 =)
[}
O o
8 16 32 48 1 2 4 8 16 32 8 F
. A
Batch size

Figure 7: Throughput comparison for various models and configurations.

speedup in throughput for OPT-6.7B, OPT-13B,
and OPT-30B, respectively. Additional experimen-
tal results on a low-end GPU system are provided
in Appendix A.5.

We also compare KVPR with FlexGen for vary-
ing batch sizes from 1 to 48 with a fixed prompt
length of 1,024 and a generation length of 32, as
shown in the second row of Figure 7. KVPR
consistently outperforms FlexGen across all batch
sizes. As the KV cache grows larger, KVPR shows
greater performance benefits due to reduced KV
cache transfer over the PCle bus.

4.3 GPU Utilization

To evaluate the efficiency improvement, we ana-
lyze the temporal resource utilization of KVPR
and FlexGen as shown in Figure 8. At first in the
prefilling stage, both methods reach full GPU uti-
lization since prefilling stage is compute-bound.
However, in the decoding stage, in contrast to Flex-
Gen, KVPR enhances GPU utilization, increasing
it from 85% to 99% on average by overlapping
GPU computations with CPU-GPU data transfer,
while maintaining the same peak memory usage
indicated by the black lines.

4.4 KV Cache Compression

We apply group-wise 4-bit quantization to com-
press the KV cache, which has been shown to
have minimal impact on model accuracy (Sheng
etal., 2023). Figure 9 shows that applying compres-
sion reduces the amount of data transferred to the

— KVPR (C) - - FlexGen (C) — KVPR (M) - - FlexGen (M)
T T

Percentage
~
ot

120 160
Time (s)

200 240

Figure 8: Computation and memory resource usage of
KVPR and FlexGen during decoding stage.

GPU, leading to further improvements in decoding
throughput. These results showcase the compatibil-
ity of KVPR with KV cache compression and its
potential to achieve additional performance gains
by alleviating PCle bandwidth bottlenecks.

60 M w/o KV cache compression

B w/ KV cache compression

40

20

Throughput (tokens/s)

256
32

256 512 512 1024
128 32 128 32

Sequence length

1024
128

Figure 9: Decoding throughput improvement with KV
cache compression enabled on OPT-13B model.

4.5 Ablation Study

Hiding KV cache partial recomputation. To eval-
uate the effectiveness of the fine-grained offload-

ing pipeline that overlaps KV cache recomputation
with weight loading, we conduct experiments us-
ing the OPT-6.7B model. In this ablation, we use a
small KV cache size to ensure that MHA weights
always arrive at the GPU later than the KV cache.
Table 2 presents decoding latency across varying
smaller batch sizes, comparing three configura-
tions: FlexGen, KVPR without hiding KV cache
recomputation, and KVPR with hiding. When the
batch size is 1 and the KV cache size is the smallest,
FlexGen can outperform KVPR without hiding. By
overlapping the transfer of MHA weights with KV
cache recomputation, KVPR ensures performance
that is no worse than FlexGen under this scenario,
particularly when weight loading is the primary
bottleneck. This result shows that KVPR works
well for both small and large batch size settings,
thereby providing a unified approach to improve
decoding performance.

Batch size 1 2 4 8 16 32
KV cache (MB) 3 6 12 24 48 64
FlexGen 1.761 3.488 6.646 12.826 23.795 41.210

KVPR (w/o. hiding
KV recomputation)
KVPR (w. hiding

KV recomputation)

1.749 3.461 6.766 12.930 23.613 43.462

1.774 3.586 6.696 12.986 24.557 43.945

Table 2: OPT-6.7B model with prompt and generation
lengths of 256 and 64, respectively. Each MHA block
(Wq, Wk, Wy, and W) requires 128 MB of memory.

Runtime breakdown. Figure 10 presents the run-
time breakdown of an MHA block in KVPR and
FlexGen during decoding stage. KVPR achieves
a substantial reduction in KV cache transfer time,
decreasing it from 58% to 38%, with activation
transfer contributing only 8% of the total runtime.
By recomputing the partial KV cache from the
transferred activations, GPU computation time in-
creases from 2.3% to 13.3%. This demonstrates
that KVPR effectively overlaps GPU computation
with CPU-GPU communication, substantially re-
ducing the data transfer volume from CPU to GPU
and alleviating the PCle bottleneck that limits LLM
inference performance.

[load-weight M load-cache [load-activation

B compute B store-cache M store-activation
FlexGen e
KVPR]
T T T T S N S N |
0 20 40 60 80 100

Per-unit percentage

Figure 10: Runtime breakdown of KVPR and FlexGen.

5 Related Works

To address the memory demands of LLMs in
resource-constrained settings, offloading tech-
niques aim to minimize the latency of data transfer
between CPUs and GPUs. FlexGen (Sheng et al.,
2023) proposes to offload weights, activations, and
KV cache to CPU memory or external storage and
maximizes throughput for lager batch size by for-
mularizing the optimization as a graph traversal
problem. HeteGen (Zhao et al., 2024a) uses the
CPU for partial computation on offloaded weights
while transferring the remaining workload to the
GPU. TwinPilots (Yu et al., 2024) further optimizes
workload balancing between the CPU and GPU at
the operator level. FastDecode (He and Zhai, 2024)
reduces KV cache data movement by offloading the
KV cache and attention computation entirely to the
CPU. Park and Egger and Neo (Jiang et al., 2024)
overlap GPU linear projection computations with
CPU-based attention computations across multiple
batches to improve resource utilization.

ALISA (Zhao et al., 2024b) compresses the KV
cache based on sparsity and offloads KV cache ex-
ceeding GPU memory capacity. When loading the
KV cache to the GPU, ALISA recomputes a portion
of KV cache first and then transfers the remainder,
where we propose overlapping the recomputation
and transfer by adaptively determining the optimal
split point. Furthermore, ALISA addresses only
for the row-by-row schedule, while KVPR extends
to column-by-column schedule. KVPR is orthog-
onal to CPU-assisted and KV cache compression
approaches, making it compatible for integration
with these techniques to further improve overall
system performance. As shown in the additional
experiments provided in Appendix A.6, we demon-
strate that the CPU can become a bottleneck in
certain distributed system configurations. In con-
trast, KVPR optimizes GPU utilization and data
transfer efficiency without relying on additional
CPU resources or approximations of the KV cache.

6 Conclusion

In this paper, we introduce KVPR, an efficient
CPU-GPU I/O-aware LLM inference method de-
signed to accelerate KV cache loading. KVPR min-
imizes the data transfer between the CPU and GPU
by leveraging KV cache partial recomputation. By
overlapping this recomputation with data transmis-
sion, KVPR significantly reduces idle GPU time
and enhances overall inference performance.

7 Limitations

Our study represents an important step towards
optimizing the efficiency of LLM inference by
leveraging KV cache partial recomputation. How-
ever, KVPR has certain limitations that suggest
avenues for future research. First, our methodology
is currently limited to single-GPU and data-parallel
multi-GPU inference. It does not yet extend to
advanced distributed systems, such as model or
tensor parallelism. Expanding this approach to
these paradigms could enable support for larger
model sizes. Second, while we address PCle band-
width bottlenecks in CPU-GPU communication,
we do not consider scenarios where the KV cache is
loaded from disk or network storage. Nevertheless,
KVPR could potentially be adapted to accelerate
the prefilling stage in such setups. Third, the cur-
rent implementation performs system profiling only
at the start of inference, assuming static hardware
conditions throughout the process. Incorporating
dynamic profiling and runtime adaptive optimiza-
tion could enhance the robustness and efficiency
of the approach, particularly in heterogeneous or
multi-tenant environments.

References

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. Deepspeed-inference: enabling
efficient inference of transformer models at unprece-
dented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1-15. IEEE.

Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020.
PipeSwitch: Fast pipelined context switching for
deep learning applications. In /4th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation (OSDI 20), pages 499-514.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2024. Flashattention: fast and

memory-efficient exact attention with io-awareness.
In Proceedings of the 36th International Conference
on Neural Information Processing Systems, NIPS
22,

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory
Sizov. 2023. Flash decoding: Advances in efficient
text generation.

Google Gemini Team. 2024. Gemini:
of highly capable multimodal models.
arXiv:2312.11805.

A family
Preprint,

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqgiang Ge,
and Yongfeng Zhang. 2022. Recommendation as
language processing (rlp): A unified pretrain, person-
alized prompt & predict paradigm (p5). In Proceed-
ings of the 16th ACM Conference on Recommender
Systems, RecSys ’22, page 299-315.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc
Sun, and Benjamin Bossan. 2022. Accelerate: Train-
ing and inference at scale made simple, efficient and
adaptable. https://github.com/huggingface/
accelerate.

Jiaao He and Jidong Zhai. 2024. Fastdecode: High-
throughput gpu-efficient llm serving using heteroge-
neous pipelines. Preprint, arXiv:2403.11421.

Coleman Richard Charles Hooper, Sehoon Kim, Hiva
Mohammadzadeh, Michael W. Mahoney, Sophia
Shao, Kurt Keutzer, and Amir Gholami. 2024.
KVQuant: Towards 10 million context length LLM
inference with KV cache quantization. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Xuanlin Jiang, Yang Zhou, Shiyi Cao, Ion Stoica, and
Minlan Yu. 2024. Neo: Saving gpu memory cri-
sis with cpu offloading for online 1lm inference.
Preprint, arXiv:2411.01142.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611-626.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong
Sim. 2024. InfiniGen: Efficient generative inference
of large language models with dynamic KV cache
management. In /8th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
24), pages 155-172.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023.
Camel: Communicative agents for "mind" explo-

ration of large language model society. Preprint,
arXiv:2303.17760.

https://www.usenix.org/conference/osdi20/presentation/bai
https://www.usenix.org/conference/osdi20/presentation/bai
https://www.usenix.org/conference/osdi20/presentation/bai
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2411.01142
https://arxiv.org/abs/2411.01142
https://arxiv.org/abs/2411.01142
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi
Yao, Shan Lu, Ganesh Ananthanarayanan, Michael
Maire, Henry Hoffmann, Ari Holtzman, and Junchen
Jiang. 2024a. Cachegen: Kv cache compression and
streaming for fast large language model serving. In
Proceedings of the ACM SIGCOMM 2024 Confer-
ence, ACM SIGCOMM 24, page 38-56.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024b. KIVI: A tuning-free asymmetric 2bit
quantization for KV cache. In Proceedings of the
41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning
Research, pages 32332-32344.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, and et al. 2024. Gpt-4 technical report.
Preprint, arXiv:2303.08774.

Daon Park and Bernhard Egger. 2024. Improving
throughput-oriented 1lm inference with cpu compu-
tations. In Proceedings of the 2024 International
Conference on Parallel Architectures and Compila-
tion Techniques, pages 233-245.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:
high-throughput generative inference of large lan-
guage models with a single gpu. In Proceedings of
the 40th International Conference on Machine Learn-
ing, ICML’23.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,
Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and
Mi Zhang. 2024. Efficient large language models: A
survey. Transactions on Machine Learning Research.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Chengye Yu, Tianyu Wang, Zili Shao, Linjie Zhu,
Xu Zhou, and Song Jiang. 2024. Twinpilots: A new
computing paradigm for gpu-cpu parallel llm infer-
ence. In Proceedings of the 17th ACM International
Systems and Storage Conference, SYSTOR ’24, page
91-103.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for Transformer-Based
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521-538.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Re, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H2o0: Heavy-hitter ora-
cle for efficient generative inference of large language
models. In Thirty-seventh Conference on Neural In-
formation Processing Systems.

Xuanlei Zhao, Bin Jia, Haotian Zhou, Ziming Liu,
Shenggan Cheng, and Yang You. 2024a. Hetegen:
Efficient heterogeneous parallel inference for large
language models on resource-constrained devices. In
MLSys.

Youpeng Zhao, Di Wu, and Jun Wang. 2024b. ALISA:
Accelerating Large Language Model Inference via
Sparsity-Aware KV Caching . In 2024 ACM/IEEE
51st Annual International Symposium on Computer
Architecture (ISCA), pages 1005-1017.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024. Multilingual machine translation with
large language models: Empirical results and analy-
sis. In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 2765-2781.

https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://proceedings.mlr.press/v235/liu24bz.html
https://proceedings.mlr.press/v235/liu24bz.html
https://proceedings.mlr.press/v235/liu24bz.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176

A Appendix

A.1 Scheduling Methods

Figures 11 illustrates two decoding schedules for
generating 2 tokens from a model with three layers
(Lg, L1, and L9) during the decoding stage. In
Figure 11(a), the row-by-row schedule processes
each batch across all layers before moving to the
next batch. In contrast, Figure 11(b) shows the
column-by-column schedule, where each layer is
reused to process a group of batches before moving
to the next layer.

Token 0
HEHEHEHES
@
EoHEHEHEHEHE

(a) Row-by-row schedule.
Token O Token 1

o] WWWH

L1 L2 Lo
L1 L2 Lo

(b) Column-by-column schedule.

Token 1

Batch 0 Lo

Batch 1 Lo

Batch 2

ﬁ 1

Batch 0

Batch 1

Batch 2

Figure 11: Two different schedules, with arrows indicat-
ing the scheduling order.

A.2 KV Cache Partial Recomputation with
Overlapping

Built on FlexGen (Sheng et al., 2023)’s computa-
tion and communication overlapping technique, we
adapt it to support KV cache partial recomputa-
tion. Algorithm 1 enables simultaneous execution
of tasks within the innermost loop, including load-
ing weights for the next layer, loading activations
for KV cache recomputation, recomputing the par-
tial KV cache, loading the rest of KV cache and
activations for the next batch, storing the KV cache
and activations for the previous batch, and perform-
ing computation for the current batch. Although
the algorithm is designed for column-by-column
scheduling, the row-by-row schedule with a single
batch is a special case of it.

11

Algorithm 1 KV Cache Partial Recomputation
with Overlapping

for i = 1 to generation_length do
for j = 1 to num_layers do
for £ = 1 to num_GPU_batches do
// Load the weight of the next layer
load_weight(i,j + 1, k)
/! Load the activation for KV cache re-
computation of the next batch
load_activation_recompute(i, j, k +
1)
// Load the KV cache and activation of
the next batch
load_cache(i, j, k + 1)
load_activation(i,j, k+ 1)
// Compute this batch
compute(, j, k)
// Store the KV cache and activation of
the previous batch
store_activation(i,j, k —
store_cache(i, j, k — 1)
/I Synchronize all devices
synchronize()
end for
end for
end for

)

A.3 Detailed Experimental Results

Table 3 and 4 present detailed experimental results
for latency-oriented workloads using OPT-6.7B
and OPT-13B. The results show the performance
differences between KVPR and the baseline (Hug-
ging Face Transformer with KV cache offloading)
in terms of GPU peak memory, decode latency, and
throughput across various configurations. Notably,
KVPR consistently achieves lower latency while
maintaining comparable memory usage.

A.4 Optimal KV Cache Split Points

Figure 12 presents the optimal KV cache split
points [, obtained by solving the linear program-
ming problem defined in Eq. (11), for the first set-
ting of the latency-oriented workload experiments
in Section 4 (prompt length of 128 and generation
length of 32). Based on system profiling statistics
and KV cache size, the optimal split point [is 182
when the generation length is 1, and [increases to
128 when the generation length is 32.

. Prompt Generation Cache size GPU peak mem Decode latency Decode throughput
Method - Batchsize o0t length (GB) (GB) (sec) (tokens/s)
64 128 32 5.0 14.427 8.905 222.788
64 128 128 8.0 14.708 71.327 113.954
Accel. 64 256 32 9.0 16.337 26.825 73.961
64 256 128 12.0 16.618 88.354 91.993
64 512 32 17.0 20.154 24.390 81.344
64 512 128 20.0 20.576 110.277 73.705
64 128 32 5.0 14.364 6.651 298.284
64 128 128 8.0 14.645 45.766 177.598
KVPR 64 256 32 9.0 16.212 19.138 103.666
64 256 128 12.0 16.493 61.597 131.955
64 512 32 17.0 19.904 20.349 97.501
64 512 128 20.0 20.951 93.932 86.531

Table 3: Detailed experimental results for OPT-6.7B corresponding to Figure 6.

. Prompt Generation Cache size GPU peak mem Decode latency Decode throughput
Method Batch size lengtII)1 length (GB) (pGB) (sec) ’ (tokens/s% ’
64 128 32 7.812 26.083 11.409 173.891
64 128 128 12.500 26.434 73.896 109.993
Accel. 64 256 32 14.062 28.087 19.381 102.368
64 256 128 18.750 28.439 104.115 78.068
64 512 32 26.562 32.851 35.066 56.579
64 512 128 31.250 34.146 168.155 48.336
64 128 32 7.812 26.005 9.148 216.867
64 128 128 12.500 26.356 66.119 122.929
KVPR 64 256 32 14.062 27.931 16.654 119.127
64 256 128 18.750 28.337 88.492 91.850
64 512 32 26.562 33.203 29.215 67.911
64 512 128 31.250 34.615 138.377 58.738
Table 4: Detailed experimental results for OPT-13B corresponding to Figure 6.
= PCle bandwidth are lower in this system setting
20 205 h than those in the default system we used earlier.
=200 |- . Despite the reduced GPU speed and bandwidth,
é 195 |- - KVPR achieves up to 15% higher throughput than
«g 190 |- i FlexGen for OPT-6.7B in the same throughput-
g 185 | | oriented workload, as shown in Table 5.
§) S S S S S E— Seqlen 256/32 256/128 512/32 512/128 1024/32 1024/128
~ 1 4 8 12 16 20 24 28 32 FlexGen 50.057 46779 29.614 28650 15778 16.194
KVPR 53976 49.860 33.666 32277 18.285 18.108
Number of tokens generated
Table 5: Throughput (tokens/s) comparison on a low-

Figure 12: Optimal KV cache split points [over the
generation process.

A.5 System Performance with a Low-end
GPU

To further demonstrate the adaptability of KVPR,
we evaluate it on a low-end system with an AMD
EPYC 32-Core CPU and an NVIDIA Quadro RTX
5000 GPU (16 GB HBM, 89.2 TFLOPS FP16 peak
performance) connected via PCle 4.0 x8 (16 GB/s
bandwidth). GPU TFLOPS, GPU memory and

12

end GPU system.

A.6 Comparing with CPU-assisted
Approaches in Distributed System Setup

In this experiment, we compare the performance of
the CPU-assisted offloading approach, FastDecode
(He and Zhai, 2024), with KVPR on a GPU node
equipped with 8 NVIDIA A100 GPUs and a single
CPU, which is the same AMD EPYC processor
(64 cores with PCle 4.0 128 lanes), as described in
Section 4.

We run multiple concurrent processes of FastDe-
code and KVPR on the available GPUs, with each
GPU dedicated to a single process. This setup sim-
ulates scenarios where either multiple users share
a single computing node or a single user performs
data-parallel inference. FastDecode relies on the
CPU for attention computations, resulting in a per-
formance drop as the CPU becomes a bottleneck
when managing multiple concurrent inference pro-
cesses. In contrast, KVPR eliminates CPU depen-
dency entirely and instead optimizes data transfer
over the PCle bus.

Figure 13 demonstrates that while FastDecode
suffers a significant decline in throughput as the
number of processes increases, KVPR exhibits bet-
ter scalability, maintaining stable performance in
systems with a single CPU and multiple GPUs.

40

30

—a— KVPR
—e— FastDecode

1 2

20

Throughput (tokens/s)

4 8

Number of concurrent GPU processes

Figure 13: Throughput comparison between KVPR and
FastDecode with different GPU workload.

A.7 Extended Related Works

GPU-efficient LLM inference. Maximizing GPU
utilization is crucial for serving LL.Ms efficiently to
achieve low latency and high throughput. Orca (Yu
et al., 2022) employs iteration-level scheduling to
handle batches with varying output lengths, return-
ing completed sequences immediately to serve new
ones. PagedAttention (Kwon et al., 2023) observes
that the KV cache grows and shrinks dynamically
as tokens are generated, though the sequence life-
time and length are not predetermined. It addresses
this by managing the KV cache as non-contiguous
memory blocks. FlashAttention (Dao et al., 2024)
combines attention operations into a single kernel
and tiles QKV matrices into smaller blocks to opti-
mize GPU SRAM usage and reduce HBM access
overhead, while our work mainly focuses on op-
timizing PCle bandwidth. DeepSpeed-Inference
(Aminabadi et al., 2022) enhances multi-GPU infer-
ence for both dense and sparse Transformer mod-

13

els by combining GPU memory and employing a
hybrid inference technique with CPU and NVMe
memory. Flash-Decoding (Dao et al., 2023) ac-
celerates long-context inference by splitting keys
and values into smaller chunks, enabling parallel
attention computations and combining results for
the final output.

KYV cache optimization. Efficient KV cache man-
agement enhances inference performance through
compression or eviction strategies. KIVI (Liu
et al., 2024b) introduces a tuning-free 2-bit quanti-
zation method to compress key cache per channel
and value cache per token. Similarly, KVQuant
(Hooper et al., 2024) applies 3-bit compres-
sion by combining per-channel quantization with
pre-rotary positional embedding quantization for
LLaMA. For eviction, H20 (Zhang et al., 2023)
formulates KV cache eviction as a dynamic sub-
modular problem, prioritizing critical and recent to-
kens to improve throughput. StreamingL.L.M (Xiao
et al., 2024) uses window attention with a fixed-
size sliding window to retain the most recent KV
caches, maintaining constant memory usage and
decoding speed once the cache reaches capacity. In-
finiGen (Lee et al., 2024) stores low-rank key cache
in GPU memory, offloads value cache to the CPU,
and selectively retrieves important values based on
approximate attention scores.

	Introduction
	Background
	Proposed Method
	Design Overview
	Scheduler Module
	Runtime Module

	Experiments
	Latency-oriented Experiments
	Throughput-oriented Experiments
	GPU Utilization
	KV Cache Compression
	Ablation Study

	Related Works
	Conclusion
	Limitations
	Appendix
	Scheduling Methods
	KV Cache Partial Recomputation with Overlapping
	Detailed Experimental Results
	Optimal KV Cache Split Points
	System Performance with a Low-end GPU
	Comparing with CPU-assisted Approaches in Distributed System Setup
	Extended Related Works

