
KVPR: Efficient LLM Inference
with I/O-Aware KV Cache Partial Recomputation

Anonymous ACL submission

Abstract001

Inference for Large Language Models (LLMs)002
is computationally demanding. To reduce the003
cost of auto-regressive decoding, Key-Value004
(KV) cache is used to store intermediate acti-005
vations, which significantly lowers the compu-006
tational overhead for token generation. How-007
ever, the memory required for KV cache grows008
rapidly, often exceeding the capacity of GPU009
memory. A cost-effective alternative is to of-010
fload KV cache to CPU memory, which allevi-011
ates GPU memory pressure but shifts the bottle-012
neck to the limited bandwidth of the PCIe con-013
nection between the CPU and GPU. Existing014
methods attempt to address these issues by over-015
lapping GPU computation with I/O or employ-016
ing CPU-GPU heterogeneous execution, but017
they are hindered by excessive data movement018
and dependence on CPU capabilities. Fully019
overlapping PCIe communication latency gets020
challenging as the size of KV cache grows021
and/or the GPU compute capabilities increase.022
In this paper, we introduce KVPR, an efficient023
I/O-aware LLM inference method where the024
CPU first transfers a partial set of activations025
from which the GPU can start recomputing the026
KV cache values. While the GPU recomputes027
the partial KV cache the remaining portion of028
the KV cache is concurrently transferred from029
the CPU. This approach overlaps GPU recom-030
putation with KV cache transfer to minimize031
idle GPU time and maximize inference perfor-032
mance. KVPR is fully automated by integrat-033
ing a profiler module that utilizes input char-034
acteristics and system hardware information, a035
scheduler module to optimize the distribution036
of computation and communication workloads,037
and a runtime module to efficiently execute the038
derived execution plan. Experimental results039
show that KVPR achieves up to 35.8% lower040
latency and 46.2% higher throughput during de-041
coding compared to state-of-the-art approaches.042
The code is available at https://anonymous.043
4open.science/r/KVPR-C176/.044

1 Introduction 045

Large language models (LLMs) have made remark- 046

able progress in recent years, demonstrating their 047

ability to power diverse applications such as ma- 048

chine translation (Zhu et al., 2024), summarization 049

(OpenAI et al., 2024), creative content generation 050

(Gemini Team, 2024), and personalized recommen- 051

dations (Geng et al., 2022). Real-time applications, 052

including conversational agents and live translation 053

(Li et al., 2023), depend on low latency to provide 054

seamless user interaction, while large-scale deploy- 055

ments require high throughput to support concur- 056

rent users and process substantial data efficiently 057

(Kwon et al., 2023). 058

Key-Value (KV) cache is essential in auto- 059

regressive decoding for LLMs, as it stores the in- 060

termediate key and value activations from earlier 061

steps in the attention mechanism. This reduces 062

the computational complexity of generating each 063

token from quadratic to linear by eliminating the 064

need to recompute these activations for every gen- 065

erated token. However, this comes at a cost: the 066

size of the KV cache grows linearly with batch 067

size, sequence length, and model size, leading to 068

substantial memory demands (Wan et al., 2024). 069

GPU memory, while optimized for high- 070

bandwidth access by computation units, is inher- 071

ently limited and often insufficient to handle the 072

large and growing size of the KV cache. One 073

cost-effective approach to address this limitation 074

is to offload the KV cache to cheaper and plentiful 075

CPU memory, and could be further offloaded to 076

hard disks and network storage (Liu et al., 2024a). 077

While offloading reduces GPU memory pressure, 078

it introduces a new bottleneck: the slow PCIe bus 079

becomes a limiting factor when transferring the KV 080

cache from CPU to the GPU for computation. Due 081

to the long PCIe transfer time the overall decod- 082

ing latency increases and while the token through- 083

put decreases, hindering the overall inference effi- 084

1

https://anonymous.4open.science/r/KVPR-C176/
https://anonymous.4open.science/r/KVPR-C176/
https://anonymous.4open.science/r/KVPR-C176/


ciency of the system (Zhao et al., 2024a).085

CPU DRAM
512 GB

GPU HBM
40 GB

PCIe

32 GB/s
FP16 312
TFLOPS

Figure 1: LLM inference system with an A100 GPU.

Model Hidden Dim KV Cache
(MB)

PCIe Latency
(ms)

Comp. Latency
(ms)

OPT-6.7B 4,096 512 15.6 0.3509
OPT-13B 5,120 640 19.5 0.4388
OPT-30B 7,168 896 27.3 0.6143

Table 1: PCIe latency and computation latency for dif-
ferent KV cache sizes based on the system in Figure 1.

To evaluate the impact of communication over-086

head, we set up an LLM inference serving system087

(shown in Figure 1) using an NVIDIA A100 GPU.088

Data transfer between the CPU DRAM and GPU089

HBM occurs over a PCIe 4.0 16 lanes with a band-090

width of 32 GB/s. Table 1 shows the hidden di-091

mension, KV cache size, PCIe transfer time, and092

GPU computation latency for KV pair computa-093

tion. We use FP16 precision with a batch size of 32094

and a sequence length of 1024. The results show095

that PCIe latency exceeds computation latency by096

over an order of magnitude. The long transfer time097

leads to large GPU idle time which is detrimental098

to inference efficiency.099

To mitigate the issue of slow PCIe bandwidth,100

FlexGen (Sheng et al., 2023) and PipeSwitch (Bai101

et al., 2020) attempt to overlap GPU computation102

of the current layer with KV cache loading for the103

next layer. However, the effectiveness of such an104

overlap is capped by the task that takes the longest105

time. Hence, PCIe transfer time overshadows GPU106

computation latency, which is generally the case107

with large batch and context sizes. FastDecode108

(He and Zhai, 2024) suggests computing attention109

scores directly on the CPU, which has faster ac-110

cess to the KV cache compared to the GPU. Sim-111

ilarly, HeteGen (Zhao et al., 2024a), TwinPilots112

(Yu et al., 2024), and Park and Egger employ CPU-113

GPU heterogeneous execution to hide data transfer114

overhead by performing computations on the CPU.115

However, as demonstrate later in our results such an116

approach puts burden on the CPU to satisfy the KV117

cache computation demands from multiple GPUs118

attached to a CPU host, thereby limiting scalability.119

In this paper, we propose KVPR, a novel ap-120

proach for efficient LLM inference that balances121

the GPU computation and PCIe bandwidth trade-122

offs. Instead of transferring the entire KV cache123

from CPU to GPU to compute an attention score, 124

the CPU transfers a partial set of activations, which 125

are smaller in size and are required to generate part 126

of the KV cache, to the GPU. The GPU then starts 127

recomputing the partial KV cache from the input 128

activations. Concurrently the CPU transfers the 129

remaining KV cache over PCIe. KVPR ensures 130

the computation of exact attention scores without 131

approximation, while minimizing GPU idle time 132

and improving overall latency and throughput. 133

One may achieve a perfect overlap of PCIe trans- 134

fer time and GPU recomputation time by determin- 135

ing the optimal fraction of activations that need to 136

be recomputed. KVPR is fully automated in de- 137

termining the recomputation and communication 138

split. It includes a profiler module that collects sys- 139

tem hardware information, a scheduler module that 140

formulates the problem as a linear programming 141

problem to determine the optimal split point, and a 142

runtime module that manages memory allocation 143

on both devices and coordinates data transfer be- 144

tween them. Experimental results show significant 145

improvements in inference latency or throughput, 146

depending on workload. In summary, our contribu- 147

tions are as follows: 148

• We propose an efficient CPU-GPU I/O- 149

aware LLM inference method that leverages 150

KV cache partial recomputation with asyn- 151

chronous KV cache transfer that overlaps com- 152

pute and communication to address the system 153

bottleneck of loading large KV cache from 154

CPU memories. 155

• We develop a framework based on linear 156

integer programming that achieves optimal 157

computation-communication distribution. 158

• Our experimental results show that KVPR 159

outperforms the current state-of-the-art ap- 160

proaches up to 35.8% in terms of latency and 161

46.2% in terms of throughput. 162

2 Background 163

LLM inference process. The inference process 164

of decoder-only LLMs employs an auto-regressive 165

approach, generating tokens sequentially. It con- 166

sists of two stages: the prefilling stage and the 167

decoding stage. In the prefilling stage, the input to 168

the i-th decoder layer is denoted as Xi ∈ Rb×s×h, 169

where i ∈ {1, . . . , n}, b is the batch size, s is the 170

prompt length, and h is the input embedding di- 171

mension. The Multi-Head Attention (MHA) block 172

computes a set of queries (Q), keys (K), and values 173

2



(V ) through linear projections of Xi:174

Qi = Xi ·W i
Q, Ki = Xi ·W i

K , V i = Xi ·W i
V , (1)175

where W i
Q,W

i
K ,W i

V ∈ Rh×h are the projection176

matrices. The generated Ki and V i are stored in177

the KV cache.178

The self-attention score in MHA is computed as:179

Zi = softmax
(
Qi(Ki)T√

dhead

)
· V i, (2)180

where dhead represents the dimension of each atten-181

tion head. Finally, the attention score is applied182

with a linear projection to produce the output of the183

MHA block:184

Oi = Zi ·W i
O, (3)185

where W i
O ∈ Rh×h is the projection matrix.186

The feedforward network (FFN) is followed after187

the MHA block, which consists of two fully con-188

nected layers with a non-linear activation function189

applied between them. It processes the attention190

output Oi to generate the input for the next decoder191

layer as follows:192

Xi+1 = σ(Oi ·W i
1) ·W i

2 , (4)193

where W i
1 ∈ Rh×dFFN and W i

2 ∈ RdFFN×h are the194

weight matrices of the two linear layers, and σ(·)195

denotes the activation function.196

In the decoding stage, the i-th decoder layer re-197

ceives a single token xi ∈ Rb×1×h. The KV cache198

is updated by concatenating the newly computed199

key and value pairs with the existing ones:200

Ki = concat(Ki, xi ·W i
K),

V i = concat(V i, xi ·W i
V ).

(5)201

The remaining attention and feedforward compu-202

tations in the decoding stage are identical to those203

in the prefilling stage.204

3 Proposed Method205

LLM inference scheduling. Our approach aims at206

LLM inference systems with large KV caches that207

are stored on CPU DRAM and fetched into GPU208

memory as needed. Since LLMs have many layers209

and many batches of inputs to process there are210

different scheduling strategies to determine how211

computations are performed across batches and212

layers to optimize for specific performance goals,213

such as minimizing latency or maximizing through-214

put. Row-by-row schedule (as shown in Appendix215

A.1) processes a batch of sequences for one layer216

at a time before moving to the next layer. In this217

scenario, model weights are kept in GPU memory 218

whenever feasible. If the model weights are also 219

offloaded to the CPU, both the KV cache and the 220

model weights for a single layer are transferred to 221

the GPU, processed for the current batch, and then 222

cleared. This process is repeated layer by layer un- 223

til a token is generated. When minimizing latency 224

is the primary goal, this approach is preferred, be- 225

cause all prompts in a batch are fully processed to 226

generate their complete context before proceeding 227

to the next batch. 228

Column-by-column scheduling (Appendix A.1) 229

is more effective for maximizing throughput by in- 230

creasing the effective batch size (number of batches 231

times batch size) to process more sequences in par- 232

allel, at the cost of longer latency. In this approach, 233

the model weights are offloaded to CPU memory 234

to accommodate a large batch size. The model 235

weights and KV cache for a single layer are trans- 236

ferred to GPU memory and processed for the first 237

batch. Instead of moving to the next layer for the 238

current batch, subsequent batches are processed 239

using the same layer while keeping the weights sta- 240

tionary in GPU memory. Once a group of batches 241

are processed for the first layer, the process moves 242

to the second layer for each batch. Note that the 243

effective batch size is limited by the available stor- 244

age for activations and KV cache, as they must still 245

be stored in CPU memory or external storage once 246

they exceed the GPU memory capacity. 247

Our proposed design is independent of the 248

scheduling strategy, whether row-by-row or 249

column-by-column, and aims to overlap the ma- 250

jority of the PCIe transfer time with GPU computa- 251

tions, thereby improving overall efficiency. 252

3.1 Design Overview 253

Config
model, prompt/gen len, batch size,

quantization, latency/throughput, etc

Profiler
memory estimation,

GPU FLOPS, PCIe bandwidth

Scheduler
LP solver → split point

Runtime
memory management

init

system
statistics

execution plan

Figure 2: Design overview of KVPR.

To relieve PCIe pressure and improve GPU com- 254

putation utilization, we propose a novel method, 255

KVPR, that recomputes partial KV cache on GPU 256

while transferring the rest of KV cache to GPU. As 257

shown in Figure 2, KVPR comprises three main 258

3



modules: the profiler, scheduler and runtime. User259

configuration includes performance objective (i.e.,260

latency or throughput), data parameters such as261

prompt length, generation length, batch size, and262

model information like input embedding dimen-263

sion and number of layers. The profiler module264

gathers system statistics, which provides insights265

into hardware characteristics like PCIe bandwidth266

and GPU processing speed. Using this information267

along with the user configuration, the scheduler268

module calculates the best KV cache split point269

for recomputation by solving a linear programming270

problem, aiming to maximize the overlap between271

the computation and communication operations272

and utilization of both GPU and PCIe bandwidth273

during the inference process. The runtime module,274

in turn, utilizes this execution strategy to process275

user inputs and manages the memory allocation276

and data transfer streams.277

3.2 Scheduler Module278

In this section, we describe how KVPR is adopted279

to either the row-by-row or column-by-column280

schedule.281

Row-by-row schedule with KV cache partial re-282

computation. If the performance objective is to283

minimize latency, the scheduler module will initiate284

a row-by-row execution plan. The naive offload-285

ing pipeline of a row-by-row schedule is shown in286

Figure 3(a), where both the KV cache and model287

weights are offloaded to CPU memory. The re-288

quired data are transferred asynchronously over289

PCIe to the GPU for executing the MHA and FFN290

blocks. Storing newly generated KV pairs to CPU291

memory is omitted from the figure for simplicity.292

Since the KV cache is larger in size compared to293

the MHA weights, it arrives at the GPU later during294

the asynchronous transfer. The pipeline is slightly295

different if model weights are not offloaded to CPU.296

In this case, only the MHA block will wait the KV297

cache data being transferred to GPU before starting298

the computation.299

In KVPR, rather than transferring the entire KV300

cache from CPU memory to GPU memory, the301

GPU recomputes partial KV cache using corre-302

sponding input activations that are transferred from303

CPU first while the remaining KV cache is asyn-304

chronously transferred to the GPU, as illustrated305

in Figure 3(b). The GPU then merges the recom-306

puted KV cache with the transferred KV cache to307

perform MHA computations.308

Column-by-column schedule with KV cache par-309

Time
GPU
PCIe

MHA FFN

MHA KV FFN

(a) Naive offloading pipeline for row-by-row schedule with
asynchronous data transfer. GPU and PCIe denote GPU com-
putation and data transfer, with arrows indicating data depen-
dencies.

Time
GPU
PCIe

KV MHA FFN

MHA KV FFN

(b) Offloading pipeline for row-by-row schedule with KV
cache partial recomputation to minimize latency.

Figure 3: Comparison of two offloading pipelines.

tial recomputation. When the performance ob- 310

jective is to maximize throughput, the scheduler 311

module adopts a column-by-column execution plan. 312

This approach, illustrated in Figure 4, accommo- 313

dates large batch size inference by reusing model 314

weights across multiple batches. As soon as the 315

KV cache for batch 0 is fully transmitted, the acti- 316

vations for batch 1 is transferred. Simultaneously, 317

the GPU begins computing the MHA for batch 0. 318

Unlike the row-by-row schedule, which processes 319

all layers sequentially within a single batch before 320

moving to the next batch, the column-by-column 321

schedule processes multiple batches on the same 322

layer. As a result, activations corresponding to the 323

recomputed KV cache must be stored until genera- 324

tion for that batch is complete. 325

Time
GPU
PCIe

KV0 MHA0 KV1 MHA1

MHA X0 KV0 X1 KV1 · · ·

Figure 4: Offloading pipeline for column-by-column
schedule with KV cache partial recomputation to maxi-
mize throughput.

Determining the optimal KV cache split point. 326

In both scheduling methods, the objective is to 327

identify the optimal split point, which defines the 328

division of the KV cache between the portion re- 329

computed on the GPU and the portion transferred 330

from CPU memory. This problem can be formu- 331

lated as a linear programming problem. The row- 332

by-row schedule can be viewed as a special case of 333

the column-by-column schedule, where activations 334

for recomputing the KV cache are not transferred. 335

We first formulate the problem for the column-by- 336

column schedule and then demonstrate how it sim- 337

plifies to the row-by-row schedule. 338

Given the current sequence length s′, which is 339

greater than the prompt length s, the activation 340

transferred to the GPU in the i-th layer is repre- 341

sented by Xi[0 : l], where 0 ≤ l ≤ s′. The remain- 342

4



ing KV cache for the subsequent tokens is denoted343

by Ki[l : s′] and V i[l : s′]. The memory usage of344

these activations is:345

MXi[0:l] = b× l × h× p,

MKV i[l:s′] = 2× b× (s′ − l)× h× p.
(6)346

Recomputing the KV cache for Xi[0 : l] requires:347

Ki[0 : l] = Xi[0 : l] ·W i
K ,

V i[0 : l] = Xi[0 : l] ·W i
V .

(7)348

This recomputation on the GPU requires floating-349

point operations of350

NKV i[0:l] = 4× b× l × h2. (8)351

Consequently, the recomputation time tigpu for the352

KV cache is given by353

tirecomp =
NKV i[0:l]

vgpu
, (9)354

where vgpu denotes the GPU processing speed. The355

total time ti for processing is as follows:356

ti =
MXi[0:l]

vcom
+max

(
tirecomp,

MKV i[l:s′]

vcom

)
, (10)357

where vcom represents the data transmission speed358

for activations and KV cache.359

The objective is to determine the optimal l that360

minimizes this total processing time ti, which be-361

comes a linear programming problem:362

min
l

ti

s.t. 0 ≤ l ≤ s ∀i ∈ {1, . . . , n}.
(11)363

The optimal split point l depends on the current364

sequence length s′, which increases during genera-365

tion and must therefore be determined adaptively.366

Fortunately, solving this linear programming prob-367

lem is computationally negligible because there368

is only one integer variable. If the first term in369

Eq. (10) is omitted, the problem simplifies to the370

row-by-row schedule.371

3.3 Runtime Module372

Asynchronous overlapping. To enable concur-373

rent execution of GPU computation and CPU-GPU374

communication, the runtime module employs a375

communication parallelism strategy with six pro-376

cesses: weight loading, KV cache loading, activa-377

tion loading, recomputed activation loading, KV378

cache storing, and activation storing, as detailed in379

Appendix A.2. By incorporating double buffering380

and prefetching techniques, it simultaneously loads381

weights for the next layer, and retrieves activations382

for KV cache recomputation and KV cache for 383

the next batch, while storing cache and activations 384

from the previous batch and processing the current 385

batch. 386

Pinned memory. To optimize data transfer, like 387

prior works (Sheng et al., 2023; Yu et al., 2024), 388

we utilize pinned CPU memory for recomputed 389

activation and the weights that are transferred to 390

the GPU. Using pinned memory enables faster and 391

asynchronous transfer, as it avoids the need to page 392

data in and out. 393

Hiding KV cache partial recomputation. If both 394

the KV cache and model weights are offloaded, and 395

the size of the transferred KV cache is smaller than 396

the size of the model weights, a coarse-grained 397

computation pipeline with KV cache partial recom- 398

putation may degrade inference performance. This 399

occurs because recomputation waits until all MHA 400

weights (WQ, WK , WV , and WO) are fully loaded, 401

as shown in Figure 5(a), which delays the MHA 402

computation. However, KV cache recomputation 403

only requires WK and WV (Eq. (7)), making it un- 404

necessary to wait for the complete weight loading 405

process. To address this, we implement a fine- 406

grained MHA pipeline that prioritizes loading WK 407

and WV first. Once these weights are available, KV 408

cache recomputation can begin immediately. As 409

illustrated in Figure 5(b), WK and WV are used for 410

KV cache partial recomputation, followed by the 411

use of WQ and WO for MHA computation. This 412

approach effectively overlaps KV cache recompu- 413

tation with weight loading, ensuring that in the 414

worst-case scenario, the method performs no worse 415

than the baseline bottlenecked by weights loading. 416

Time
GPU
PCIe

KV MHA

X KV WQ WK WV WO

(a) Coarse-grained offloading pipeline with delayed KV cache
partial recomputation.

Time
GPU
PCIe

KV MHA

X KV WK WV WQ WO

(b) Fine-grained offloading pipeline overlapping KV cache
recomputation with weights loading.

Figure 5: Comparison of offloading pipelines with dif-
ferent levels of granularity in the MHA layer.

4 Experiments 417

Hardware. In our experiments, we utilize an 418

NVIDIA A100 GPU with 40 GB of memory, con- 419

nected to the CPU through a PCIe 4.0 x16 interface, 420

which provides a bandwidth of 32 GB/s. The CPU 421

5



is an AMD EPYC processor with 64 cores, operat-422

ing at 2.6 GHz. Our method and implementation423

are hardware-agnostic, which allows for flexible424

deployment across diverse system architectures.425

Model. We evaluate KVPR using OPT models426

(Zhang et al., 2022) with parameter sizes ranging427

from 6.7B to 30B. While our experiments focus428

on OPT models, the recomputation technique pre-429

sented in this work is compatible with other LLM430

architectures, such as LLaMa (Touvron et al., 2023)431

and GPT-3 (Brown et al., 2020), due to their similar432

attention mechanisms (Vaswani et al., 2017). This433

compatibility also extends to models employing434

grouped-query attention (Touvron et al., 2023).435

Workload. We evaluate KVPR on two types436

of workloads: latency-oriented and throughput-437

oriented. In the latency-oriented workload, the438

model weights are retained in GPU memory to439

avoid the costly repeated loading. Due to the440

limited memory size of a GPU, experiments are441

conducted using OPT-6.7B and OPT-13B. In the442

throughput-oriented workload, model weights are443

offloaded to the CPU after computation to free444

more GPU memory for handling larger batches.445

This setup is evaluated using OPT-6.7B, OPT-13B,446

and OPT-30B.447

To provide accurate comparisons we use the448

same datasets as those in FlexGen (Sheng et al.,449

2023) with prompts uniformly padded to the same450

length, with models configured to generate 32 or451

128 tokens per prompt. To evaluate performance452

across different input scenarios, our evaluation uses453

prompt lengths of 256, 512, and 1024 tokens. Per-454

formance metrics include decoding latency (time455

taken to generate tokens) for latency-oriented work-456

loads and decoding throughput (tokens generated457

per second) for throughput-oriented workloads, as458

KVPR does not impact prefilling performance. We459

report an average decoding latency and throughput460

across five test runs, respectively.461

Baseline. In our experiments, we use DeepSpeed462

Inference (Aminabadi et al., 2022), Hugging Face463

Accelerate (Gugger et al., 2022) as the baseline464

for latency-oriented workload experiments, as Hug-465

ging Face Transformers library currently supports466

KV cache offloading to CPU memory while still467

retaining the model weights in GPU memory. We468

use FlexGen (Sheng et al., 2023) as the baseline469

for throughput-oriented workload experiments, as470

it supports column-by-column schedule by offload-471

ing both model weights and KV cache to CPU.472

Implementation. KVPR is implemented on top of473

Hugging Face Transformers (v4.46.1) (Wolf et al., 474

2020) and FlexGen (Sheng et al., 2023) frameworks 475

to ensure fair comparison with baselines. In the 476

Transformers implementation, we utilize double 477

buffering in GPU memory to overlap KV cache 478

transfer across decoder layers. For both the Trans- 479

formers and FlexGen implementations, we utilize 480

CUDA streams to enable asynchronous overlap- 481

ping as described in Algorithm 1. 482

4.1 Latency-oriented Experiments 483

128
32

128
128

256
32

256
128

512
32

512
128

0

25

50

75

100

125

150

175

Sequence length

L
at

en
cy

(s
ec

on
ds

) DS (OPT-6.7B) Accel. (OPT-6.7B)
KVPR (OPT-6.7B) DS (OPT-13B)
Accel. (OPT-13B) KVPR (OPT-13B)

Figure 6: Decoding latency for a single batch of size 64
across different sequence lengths.

We evaluate the decoding latency required to 484

complete a single batch for settings of different se- 485

quence lengths. Figure 6 shows that KVPR consis- 486

tently outperforms the baselines, DeepSpeed Infer- 487

ence and Hugging Face Accelerate, for both OPT- 488

6.7B and OPT-13B. The experimental results show 489

that KVPR reduces decoding latency, especially at 490

longer generation lengths. For instance, OPT 6.7B 491

at a prompt length of 128 with 128 tokens gener- 492

ated, latency is reduced by approximately 35.8% 493

compared to Hugging Face Accelerate. Detailed 494

experiential results including KV cache size, GPU 495

peak memory usage and optimal recomputation 496

split points over the generation process are pro- 497

vided in Appendix A.3 and A.4. 498

4.2 Throughput-oriented Experiments 499

We also evaluate throughput performance during 500

the decoding stage, as KVPR does not affect the 501

prefilling stage. To maximize throughput, we set 502

the effective batch size to be 32 by 8, meaning 503

each layer computes on 8 batches of size 32 se- 504

quentially before moving to the next layer. The 505

first row of Figure 7 shows the results, demonstrat- 506

ing that KVPR consistently outperforms FlexGen 507

under settings of all sequence lengths for different 508

models. It achieves up to 15.1%, 46.2%, and 29.0% 509

6



256
32

256
128

512
32

512
128

1024
32

1024
128

0

20

40

60

80

Sequence length

T
hr

ou
gh

pu
t(

to
ke

ns
/s

) OPT-6.7B
FlexGen
KVPR

256
32

256
128

512
32

512
128

1024
32

1024
128

0

10

20

30

40

50

Sequence length

OPT-13B

256
32

256
128

512
32

512
128

1024
32

1024
128

0

5

10

15

20

25

Sequence length

E
ff

ec
tiv

e
bs

=
32

x
8OPT-30B

1 2 4 8 16 32 48
0

5

10

15

20

25

Batch size

T
hr

ou
gh

pu
t(

to
ke

ns
/s

)

1 2 4 8 16 32 48
0

5

10

15

Batch size
1 2 4 8 16 32 48

0

2.5

5

7.5

10

Batch size Se
q

le
ng

th
=1

02
4+

32

Figure 7: Throughput comparison for various models and configurations.

speedup in throughput for OPT-6.7B, OPT-13B,510

and OPT-30B, respectively. Additional experimen-511

tal results on a low-end GPU system are provided512

in Appendix A.5.513

We also compare KVPR with FlexGen for vary-514

ing batch sizes from 1 to 48 with a fixed prompt515

length of 1,024 and a generation length of 32, as516

shown in the second row of Figure 7. KVPR517

consistently outperforms FlexGen across all batch518

sizes. As the KV cache grows larger, KVPR shows519

greater performance benefits due to reduced KV520

cache transfer over the PCIe bus.521

4.3 GPU Utilization522

To evaluate the efficiency improvement, we ana-523

lyze the temporal resource utilization of KVPR524

and FlexGen as shown in Figure 8. At first in the525

prefilling stage, both methods reach full GPU uti-526

lization since prefilling stage is compute-bound.527

However, in the decoding stage, in contrast to Flex-528

Gen, KVPR enhances GPU utilization, increasing529

it from 85% to 99% on average by overlapping530

GPU computations with CPU-GPU data transfer,531

while maintaining the same peak memory usage532

indicated by the black lines.533

4.4 KV Cache Compression534

We apply group-wise 4-bit quantization to com-535

press the KV cache, which has been shown to536

have minimal impact on model accuracy (Sheng537

et al., 2023). Figure 9 shows that applying compres-538

sion reduces the amount of data transferred to the539

0 40 80 120 160 200 240
0

25

50

75

100

Time (s)

Pe
rc

en
ta

ge

KVPR (C) FlexGen (C) KVPR (M) FlexGen (M)

Figure 8: Computation and memory resource usage of
KVPR and FlexGen during decoding stage.

GPU, leading to further improvements in decoding 540

throughput. These results showcase the compatibil- 541

ity of KVPR with KV cache compression and its 542

potential to achieve additional performance gains 543

by alleviating PCIe bandwidth bottlenecks. 544

256
32

256
128

512
32

512
128

1024
32

1024
128

0

20

40

60

Sequence length

T
hr

ou
gh

pu
t(

to
ke

ns
/s

)

w/o KV cache compression
w/ KV cache compression

Figure 9: Decoding throughput improvement with KV
cache compression enabled on OPT-13B model.

4.5 Ablation Study 545

Hiding KV cache partial recomputation. To eval- 546

uate the effectiveness of the fine-grained offload- 547

7



ing pipeline that overlaps KV cache recomputation548

with weight loading, we conduct experiments us-549

ing the OPT-6.7B model. In this ablation, we use a550

small KV cache size to ensure that MHA weights551

always arrive at the GPU later than the KV cache.552

Table 2 presents decoding latency across varying553

smaller batch sizes, comparing three configura-554

tions: FlexGen, KVPR without hiding KV cache555

recomputation, and KVPR with hiding. When the556

batch size is 1 and the KV cache size is the smallest,557

FlexGen can outperform KVPR without hiding. By558

overlapping the transfer of MHA weights with KV559

cache recomputation, KVPR ensures performance560

that is no worse than FlexGen under this scenario,561

particularly when weight loading is the primary562

bottleneck. This result shows that KVPR works563

well for both small and large batch size settings,564

thereby providing a unified approach to improve565

decoding performance.566

Batch size 1 2 4 8 16 32
KV cache (MB) 3 6 12 24 48 64
FlexGen 1.761 3.488 6.646 12.826 23.795 41.210
KVPR (w/o. hiding
KV recomputation)

1.749 3.461 6.766 12.930 23.613 43.462

KVPR (w. hiding
KV recomputation)

1.774 3.586 6.696 12.986 24.557 43.945

Table 2: OPT-6.7B model with prompt and generation
lengths of 256 and 64, respectively. Each MHA block
(WQ, WK , WV , and WO) requires 128 MB of memory.

Runtime breakdown. Figure 10 presents the run-567

time breakdown of an MHA block in KVPR and568

FlexGen during decoding stage. KVPR achieves569

a substantial reduction in KV cache transfer time,570

decreasing it from 58% to 38%, with activation571

transfer contributing only 8% of the total runtime.572

By recomputing the partial KV cache from the573

transferred activations, GPU computation time in-574

creases from 2.3% to 13.3%. This demonstrates575

that KVPR effectively overlaps GPU computation576

with CPU-GPU communication, substantially re-577

ducing the data transfer volume from CPU to GPU578

and alleviating the PCIe bottleneck that limits LLM579

inference performance.580

FlexGen

KVPR

0 20 40 60 80 100

Per-unit percentage

load-weight load-cache load-activation
compute store-cache store-activation

0 20 40 60 80 100

Figure 10: Runtime breakdown of KVPR and FlexGen.

5 Related Works 581

To address the memory demands of LLMs in 582

resource-constrained settings, offloading tech- 583

niques aim to minimize the latency of data transfer 584

between CPUs and GPUs. FlexGen (Sheng et al., 585

2023) proposes to offload weights, activations, and 586

KV cache to CPU memory or external storage and 587

maximizes throughput for lager batch size by for- 588

mularizing the optimization as a graph traversal 589

problem. HeteGen (Zhao et al., 2024a) uses the 590

CPU for partial computation on offloaded weights 591

while transferring the remaining workload to the 592

GPU. TwinPilots (Yu et al., 2024) further optimizes 593

workload balancing between the CPU and GPU at 594

the operator level. FastDecode (He and Zhai, 2024) 595

reduces KV cache data movement by offloading the 596

KV cache and attention computation entirely to the 597

CPU. Park and Egger and Neo (Jiang et al., 2024) 598

overlap GPU linear projection computations with 599

CPU-based attention computations across multiple 600

batches to improve resource utilization. 601

ALISA (Zhao et al., 2024b) compresses the KV 602

cache based on sparsity and offloads KV cache ex- 603

ceeding GPU memory capacity. When loading the 604

KV cache to the GPU, ALISA recomputes a portion 605

of KV cache first and then transfers the remainder, 606

where we propose overlapping the recomputation 607

and transfer by adaptively determining the optimal 608

split point. Furthermore, ALISA addresses only 609

for the row-by-row schedule, while KVPR extends 610

to column-by-column schedule. KVPR is orthog- 611

onal to CPU-assisted and KV cache compression 612

approaches, making it compatible for integration 613

with these techniques to further improve overall 614

system performance. As shown in the additional 615

experiments provided in Appendix A.6, we demon- 616

strate that the CPU can become a bottleneck in 617

certain distributed system configurations. In con- 618

trast, KVPR optimizes GPU utilization and data 619

transfer efficiency without relying on additional 620

CPU resources or approximations of the KV cache. 621

6 Conclusion 622

In this paper, we introduce KVPR, an efficient 623

CPU-GPU I/O-aware LLM inference method de- 624

signed to accelerate KV cache loading. KVPR min- 625

imizes the data transfer between the CPU and GPU 626

by leveraging KV cache partial recomputation. By 627

overlapping this recomputation with data transmis- 628

sion, KVPR significantly reduces idle GPU time 629

and enhances overall inference performance. 630

8



7 Limitations631

Our study represents an important step towards632

optimizing the efficiency of LLM inference by633

leveraging KV cache partial recomputation. How-634

ever, KVPR has certain limitations that suggest635

avenues for future research. First, our methodology636

is currently limited to single-GPU and data-parallel637

multi-GPU inference. It does not yet extend to638

advanced distributed systems, such as model or639

tensor parallelism. Expanding this approach to640

these paradigms could enable support for larger641

model sizes. Second, while we address PCIe band-642

width bottlenecks in CPU-GPU communication,643

we do not consider scenarios where the KV cache is644

loaded from disk or network storage. Nevertheless,645

KVPR could potentially be adapted to accelerate646

the prefilling stage in such setups. Third, the cur-647

rent implementation performs system profiling only648

at the start of inference, assuming static hardware649

conditions throughout the process. Incorporating650

dynamic profiling and runtime adaptive optimiza-651

tion could enhance the robustness and efficiency652

of the approach, particularly in heterogeneous or653

multi-tenant environments.654

References655

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-656
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,657
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff658
Rasley, et al. 2022. Deepspeed-inference: enabling659
efficient inference of transformer models at unprece-660
dented scale. In SC22: International Conference for661
High Performance Computing, Networking, Storage662
and Analysis, pages 1–15. IEEE.663

Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. 2020.664
PipeSwitch: Fast pipelined context switching for665
deep learning applications. In 14th USENIX Sym-666
posium on Operating Systems Design and Implemen-667
tation (OSDI 20), pages 499–514.668

Tom Brown, Benjamin Mann, Nick Ryder, Melanie669
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind670
Neelakantan, Pranav Shyam, Girish Sastry, Amanda671
Askell, Sandhini Agarwal, Ariel Herbert-Voss,672
Gretchen Krueger, Tom Henighan, Rewon Child,673
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens674
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-675
teusz Litwin, Scott Gray, Benjamin Chess, Jack676
Clark, Christopher Berner, Sam McCandlish, Alec677
Radford, Ilya Sutskever, and Dario Amodei. 2020.678
Language models are few-shot learners. In Ad-679
vances in Neural Information Processing Systems,680
volume 33, pages 1877–1901.681

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,682
and Christopher Ré. 2024. Flashattention: fast and683

memory-efficient exact attention with io-awareness. 684
In Proceedings of the 36th International Conference 685
on Neural Information Processing Systems, NIPS 686
’22. 687

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory 688
Sizov. 2023. Flash decoding: Advances in efficient 689
text generation. 690

Google Gemini Team. 2024. Gemini: A family 691
of highly capable multimodal models. Preprint, 692
arXiv:2312.11805. 693

Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, 694
and Yongfeng Zhang. 2022. Recommendation as 695
language processing (rlp): A unified pretrain, person- 696
alized prompt & predict paradigm (p5). In Proceed- 697
ings of the 16th ACM Conference on Recommender 698
Systems, RecSys ’22, page 299–315. 699

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp 700
Schmid, Zachary Mueller, Sourab Mangrulkar, Marc 701
Sun, and Benjamin Bossan. 2022. Accelerate: Train- 702
ing and inference at scale made simple, efficient and 703
adaptable. https://github.com/huggingface/ 704
accelerate. 705

Jiaao He and Jidong Zhai. 2024. Fastdecode: High- 706
throughput gpu-efficient llm serving using heteroge- 707
neous pipelines. Preprint, arXiv:2403.11421. 708

Coleman Richard Charles Hooper, Sehoon Kim, Hiva 709
Mohammadzadeh, Michael W. Mahoney, Sophia 710
Shao, Kurt Keutzer, and Amir Gholami. 2024. 711
KVQuant: Towards 10 million context length LLM 712
inference with KV cache quantization. In The Thirty- 713
eighth Annual Conference on Neural Information 714
Processing Systems. 715

Xuanlin Jiang, Yang Zhou, Shiyi Cao, Ion Stoica, and 716
Minlan Yu. 2024. Neo: Saving gpu memory cri- 717
sis with cpu offloading for online llm inference. 718
Preprint, arXiv:2411.01142. 719

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 720
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 721
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 722
memory management for large language model serv- 723
ing with pagedattention. In Proceedings of the 29th 724
Symposium on Operating Systems Principles, SOSP 725
’23, page 611–626. 726

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong 727
Sim. 2024. InfiniGen: Efficient generative inference 728
of large language models with dynamic KV cache 729
management. In 18th USENIX Symposium on Op- 730
erating Systems Design and Implementation (OSDI 731
24), pages 155–172. 732

Guohao Li, Hasan Abed Al Kader Hammoud, Hani 733
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023. 734
Camel: Communicative agents for "mind" explo- 735
ration of large language model society. Preprint, 736
arXiv:2303.17760. 737

9

https://www.usenix.org/conference/osdi20/presentation/bai
https://www.usenix.org/conference/osdi20/presentation/bai
https://www.usenix.org/conference/osdi20/presentation/bai
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://doi.org/10.1145/3523227.3546767
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2403.11421
https://arxiv.org/abs/2411.01142
https://arxiv.org/abs/2411.01142
https://arxiv.org/abs/2411.01142
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://www.usenix.org/conference/osdi24/presentation/lee
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760


Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,738
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi739
Yao, Shan Lu, Ganesh Ananthanarayanan, Michael740
Maire, Henry Hoffmann, Ari Holtzman, and Junchen741
Jiang. 2024a. Cachegen: Kv cache compression and742
streaming for fast large language model serving. In743
Proceedings of the ACM SIGCOMM 2024 Confer-744
ence, ACM SIGCOMM ’24, page 38–56.745

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,746
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and747
Xia Hu. 2024b. KIVI: A tuning-free asymmetric 2bit748
quantization for KV cache. In Proceedings of the749
41st International Conference on Machine Learning,750
volume 235 of Proceedings of Machine Learning751
Research, pages 32332–32344.752

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,753
Lama Ahmad, and et al. 2024. Gpt-4 technical report.754
Preprint, arXiv:2303.08774.755

Daon Park and Bernhard Egger. 2024. Improving756
throughput-oriented llm inference with cpu compu-757
tations. In Proceedings of the 2024 International758
Conference on Parallel Architectures and Compila-759
tion Techniques, pages 233–245.760

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan761
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-762
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:763
high-throughput generative inference of large lan-764
guage models with a single gpu. In Proceedings of765
the 40th International Conference on Machine Learn-766
ing, ICML’23.767

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier768
Martinet, Marie-Anne Lachaux, Timothée Lacroix,769
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal770
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard771
Grave, and Guillaume Lample. 2023. Llama: Open772
and efficient foundation language models. Preprint,773
arXiv:2302.13971.774

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob775
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz776
Kaiser, and Illia Polosukhin. 2017. Attention is all777
you need. In Advances in Neural Information Pro-778
cessing Systems, volume 30.779

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam,780
Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,781
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and782
Mi Zhang. 2024. Efficient large language models: A783
survey. Transactions on Machine Learning Research.784

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien785
Chaumond, Clement Delangue, Anthony Moi, Pier-786
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,787
Joe Davison, Sam Shleifer, Patrick von Platen, Clara788
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le789
Scao, Sylvain Gugger, Mariama Drame, Quentin790
Lhoest, and Alexander M. Rush. 2020. Transform-791
ers: State-of-the-art natural language processing. In792
Proceedings of the 2020 Conference on Empirical793
Methods in Natural Language Processing: System794
Demonstrations.795

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 796
Han, and Mike Lewis. 2024. Efficient streaming lan- 797
guage models with attention sinks. In The Twelfth 798
International Conference on Learning Representa- 799
tions. 800

Chengye Yu, Tianyu Wang, Zili Shao, Linjie Zhu, 801
Xu Zhou, and Song Jiang. 2024. Twinpilots: A new 802
computing paradigm for gpu-cpu parallel llm infer- 803
ence. In Proceedings of the 17th ACM International 804
Systems and Storage Conference, SYSTOR ’24, page 805
91–103. 806

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo- 807
jeong Kim, and Byung-Gon Chun. 2022. Orca: A 808
distributed serving system for Transformer-Based 809
generative models. In 16th USENIX Symposium 810
on Operating Systems Design and Implementation 811
(OSDI 22), pages 521–538. 812

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 813
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 814
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi- 815
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel 816
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu 817
Wang, and Luke Zettlemoyer. 2022. Opt: Open 818
pre-trained transformer language models. Preprint, 819
arXiv:2205.01068. 820

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 821
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 822
dong Tian, Christopher Re, Clark Barrett, Zhangyang 823
Wang, and Beidi Chen. 2023. H2o: Heavy-hitter ora- 824
cle for efficient generative inference of large language 825
models. In Thirty-seventh Conference on Neural In- 826
formation Processing Systems. 827

Xuanlei Zhao, Bin Jia, Haotian Zhou, Ziming Liu, 828
Shenggan Cheng, and Yang You. 2024a. Hetegen: 829
Efficient heterogeneous parallel inference for large 830
language models on resource-constrained devices. In 831
MLSys. 832

Youpeng Zhao, Di Wu, and Jun Wang. 2024b. ALISA: 833
Accelerating Large Language Model Inference via 834
Sparsity-Aware KV Caching . In 2024 ACM/IEEE 835
51st Annual International Symposium on Computer 836
Architecture (ISCA), pages 1005–1017. 837

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, 838
Shujian Huang, Lingpeng Kong, Jiajun Chen, and 839
Lei Li. 2024. Multilingual machine translation with 840
large language models: Empirical results and analy- 841
sis. In Findings of the Association for Computational 842
Linguistics: NAACL 2024, pages 2765–2781. 843

10

https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://proceedings.mlr.press/v235/liu24bz.html
https://proceedings.mlr.press/v235/liu24bz.html
https://proceedings.mlr.press/v235/liu24bz.html
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://doi.org/10.1145/3688351.3689164
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.1109/ISCA59077.2024.00077
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176


A Appendix844

A.1 Scheduling Methods845

Figures 11 illustrates two decoding schedules for846

generating 2 tokens from a model with three layers847

(L0, L1, and L2) during the decoding stage. In848

Figure 11(a), the row-by-row schedule processes849

each batch across all layers before moving to the850

next batch. In contrast, Figure 11(b) shows the851

column-by-column schedule, where each layer is852

reused to process a group of batches before moving853

to the next layer.854

L0Batch 0 L1

Token 0

L2 L0 L1

Token 1

L2

L0Batch 1 L1 L2 L0 L1 L2

L0Batch 2 L1 L2 L0 L1 L2

(a) Row-by-row schedule.

L0Batch 0 L1

Token 0

L2 L0 L1

Token 1

L2

L0Batch 1 L1 L2 L0 L1 L2

L0Batch 2 L1 L2 L0 L1 L2

(b) Column-by-column schedule.

Figure 11: Two different schedules, with arrows indicat-
ing the scheduling order.

A.2 KV Cache Partial Recomputation with855

Overlapping856

Built on FlexGen (Sheng et al., 2023)’s computa-857

tion and communication overlapping technique, we858

adapt it to support KV cache partial recomputa-859

tion. Algorithm 1 enables simultaneous execution860

of tasks within the innermost loop, including load-861

ing weights for the next layer, loading activations862

for KV cache recomputation, recomputing the par-863

tial KV cache, loading the rest of KV cache and864

activations for the next batch, storing the KV cache865

and activations for the previous batch, and perform-866

ing computation for the current batch. Although867

the algorithm is designed for column-by-column868

scheduling, the row-by-row schedule with a single869

batch is a special case of it.870

Algorithm 1 KV Cache Partial Recomputation
with Overlapping

for i = 1 to generation_length do
for j = 1 to num_layers do

for k = 1 to num_GPU_batches do
// Load the weight of the next layer
load_weight(i, j + 1, k)
// Load the activation for KV cache re-
computation of the next batch
load_activation_recompute(i, j, k +
1)
// Load the KV cache and activation of
the next batch
load_cache(i, j, k + 1)
load_activation(i, j, k + 1)
// Compute this batch
compute(i, j, k)
// Store the KV cache and activation of
the previous batch
store_activation(i, j, k − 1)
store_cache(i, j, k − 1)
// Synchronize all devices
synchronize()

end for
end for

end for

A.3 Detailed Experimental Results 871

Table 3 and 4 present detailed experimental results 872

for latency-oriented workloads using OPT-6.7B 873

and OPT-13B. The results show the performance 874

differences between KVPR and the baseline (Hug- 875

ging Face Transformer with KV cache offloading) 876

in terms of GPU peak memory, decode latency, and 877

throughput across various configurations. Notably, 878

KVPR consistently achieves lower latency while 879

maintaining comparable memory usage. 880

A.4 Optimal KV Cache Split Points 881

Figure 12 presents the optimal KV cache split 882

points l, obtained by solving the linear program- 883

ming problem defined in Eq. (11), for the first set- 884

ting of the latency-oriented workload experiments 885

in Section 4 (prompt length of 128 and generation 886

length of 32). Based on system profiling statistics 887

and KV cache size, the optimal split point l is 182 888

when the generation length is 1, and l increases to 889

128 when the generation length is 32. 890

11



Method Batch size
Prompt
length

Generation
length

Cache size
(GB)

GPU peak mem
(GB)

Decode latency
(sec)

Decode throughput
(tokens/s)

Accel.

64 128 32 5.0 14.427 8.905 222.788
64 128 128 8.0 14.708 71.327 113.954
64 256 32 9.0 16.337 26.825 73.961
64 256 128 12.0 16.618 88.354 91.993
64 512 32 17.0 20.154 24.390 81.344
64 512 128 20.0 20.576 110.277 73.705

KVPR

64 128 32 5.0 14.364 6.651 298.284
64 128 128 8.0 14.645 45.766 177.598
64 256 32 9.0 16.212 19.138 103.666
64 256 128 12.0 16.493 61.597 131.955
64 512 32 17.0 19.904 20.349 97.501
64 512 128 20.0 20.951 93.932 86.531

Table 3: Detailed experimental results for OPT-6.7B corresponding to Figure 6.

Method Batch size
Prompt
length

Generation
length

Cache size
(GB)

GPU peak mem
(GB)

Decode latency
(sec)

Decode throughput
(tokens/s)

Accel.

64 128 32 7.812 26.083 11.409 173.891
64 128 128 12.500 26.434 73.896 109.993
64 256 32 14.062 28.087 19.381 102.368
64 256 128 18.750 28.439 104.115 78.068
64 512 32 26.562 32.851 35.066 56.579
64 512 128 31.250 34.146 168.155 48.336

KVPR

64 128 32 7.812 26.005 9.148 216.867
64 128 128 12.500 26.356 66.119 122.929
64 256 32 14.062 27.931 16.654 119.127
64 256 128 18.750 28.337 88.492 91.850
64 512 32 26.562 33.203 29.215 67.911
64 512 128 31.250 34.615 138.377 58.738

Table 4: Detailed experimental results for OPT-13B corresponding to Figure 6.

1 4 8 12 16 20 24 28 32
180

185

190

195

200

205

Number of tokens generated

R
ec

om
pu

ta
tio

n
le

ng
th

l

Figure 12: Optimal KV cache split points l over the
generation process.

A.5 System Performance with a Low-end891

GPU892

To further demonstrate the adaptability of KVPR,893

we evaluate it on a low-end system with an AMD894

EPYC 32-Core CPU and an NVIDIA Quadro RTX895

5000 GPU (16 GB HBM, 89.2 TFLOPS FP16 peak896

performance) connected via PCIe 4.0 x8 (16 GB/s897

bandwidth). GPU TFLOPS, GPU memory and898

PCIe bandwidth are lower in this system setting 899

than those in the default system we used earlier. 900

Despite the reduced GPU speed and bandwidth, 901

KVPR achieves up to 15% higher throughput than 902

FlexGen for OPT-6.7B in the same throughput- 903

oriented workload, as shown in Table 5. 904

Seq len 256/32 256/128 512/32 512/128 1024/32 1024/128
FlexGen 50.057 46.779 29.614 28.650 15.778 16.194
KVPR 53.976 49.860 33.666 32.277 18.285 18.108

Table 5: Throughput (tokens/s) comparison on a low-
end GPU system.

A.6 Comparing with CPU-assisted 905

Approaches in Distributed System Setup 906

In this experiment, we compare the performance of 907

the CPU-assisted offloading approach, FastDecode 908

(He and Zhai, 2024), with KVPR on a GPU node 909

equipped with 8 NVIDIA A100 GPUs and a single 910

CPU, which is the same AMD EPYC processor 911

(64 cores with PCIe 4.0 128 lanes), as described in 912

Section 4. 913

12



We run multiple concurrent processes of FastDe-914

code and KVPR on the available GPUs, with each915

GPU dedicated to a single process. This setup sim-916

ulates scenarios where either multiple users share917

a single computing node or a single user performs918

data-parallel inference. FastDecode relies on the919

CPU for attention computations, resulting in a per-920

formance drop as the CPU becomes a bottleneck921

when managing multiple concurrent inference pro-922

cesses. In contrast, KVPR eliminates CPU depen-923

dency entirely and instead optimizes data transfer924

over the PCIe bus.925

Figure 13 demonstrates that while FastDecode926

suffers a significant decline in throughput as the927

number of processes increases, KVPR exhibits bet-928

ter scalability, maintaining stable performance in929

systems with a single CPU and multiple GPUs.930

1 2 4 8

20

30

40

Number of concurrent GPU processes

T
hr

ou
gh

pu
t(

to
ke

ns
/s

)

KVPR
FastDecode

Figure 13: Throughput comparison between KVPR and
FastDecode with different GPU workload.

A.7 Extended Related Works931

GPU-efficient LLM inference. Maximizing GPU932

utilization is crucial for serving LLMs efficiently to933

achieve low latency and high throughput. Orca (Yu934

et al., 2022) employs iteration-level scheduling to935

handle batches with varying output lengths, return-936

ing completed sequences immediately to serve new937

ones. PagedAttention (Kwon et al., 2023) observes938

that the KV cache grows and shrinks dynamically939

as tokens are generated, though the sequence life-940

time and length are not predetermined. It addresses941

this by managing the KV cache as non-contiguous942

memory blocks. FlashAttention (Dao et al., 2024)943

combines attention operations into a single kernel944

and tiles QKV matrices into smaller blocks to opti-945

mize GPU SRAM usage and reduce HBM access946

overhead, while our work mainly focuses on op-947

timizing PCIe bandwidth. DeepSpeed-Inference948

(Aminabadi et al., 2022) enhances multi-GPU infer-949

ence for both dense and sparse Transformer mod-950

els by combining GPU memory and employing a 951

hybrid inference technique with CPU and NVMe 952

memory. Flash-Decoding (Dao et al., 2023) ac- 953

celerates long-context inference by splitting keys 954

and values into smaller chunks, enabling parallel 955

attention computations and combining results for 956

the final output. 957

KV cache optimization. Efficient KV cache man- 958

agement enhances inference performance through 959

compression or eviction strategies. KIVI (Liu 960

et al., 2024b) introduces a tuning-free 2-bit quanti- 961

zation method to compress key cache per channel 962

and value cache per token. Similarly, KVQuant 963

(Hooper et al., 2024) applies 3-bit compres- 964

sion by combining per-channel quantization with 965

pre-rotary positional embedding quantization for 966

LLaMA. For eviction, H2O (Zhang et al., 2023) 967

formulates KV cache eviction as a dynamic sub- 968

modular problem, prioritizing critical and recent to- 969

kens to improve throughput. StreamingLLM (Xiao 970

et al., 2024) uses window attention with a fixed- 971

size sliding window to retain the most recent KV 972

caches, maintaining constant memory usage and 973

decoding speed once the cache reaches capacity. In- 974

finiGen (Lee et al., 2024) stores low-rank key cache 975

in GPU memory, offloads value cache to the CPU, 976

and selectively retrieves important values based on 977

approximate attention scores. 978

13


	Introduction
	Background
	Proposed Method
	Design Overview
	Scheduler Module
	Runtime Module

	Experiments
	Latency-oriented Experiments
	Throughput-oriented Experiments
	GPU Utilization
	KV Cache Compression
	Ablation Study

	Related Works
	Conclusion
	Limitations
	Appendix
	Scheduling Methods
	KV Cache Partial Recomputation with Overlapping
	Detailed Experimental Results
	Optimal KV Cache Split Points
	System Performance with a Low-end GPU
	Comparing with CPU-assisted Approaches in Distributed System Setup
	Extended Related Works


