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ABSTRACT

With the success of pre-trained language models (PLMs) in various application
fields beyond natural language processing, language models have raised emerg-
ing attention in the field of time series forecasting (TSF) and have shown great
prospects. However, current PLM-based TSF methods still fail to achieve satis-
factory prediction accuracy matching the strong sequential modeling power of
language models. To address this issue, we propose Cross-Model and Cross-
Modality Learning with PLMs for time series forecasting (CC-Time). We ex-
plore the potential of PLMs for time series forecasting from two aspects: 1) what
time series features could be modeled by PLMs, and 2) whether relying solely on
PLMs is sufficient for building time series models. In the first aspect, CC-Time
incorporates cross-modality learning to model temporal dependency and chan-
nel correlations in the language model from both time series sequences and their
corresponding text descriptions. In the second aspect, CC-Time further proposes
the cross-model fusion block to adaptively integrate knowledge from the PLMs
and time series model to form a more comprehensive modeling of time series
patterns. Extensive experiments on nine real-world datasets demonstrate that CC-
Time achieves state-of-the-art prediction accuracy in both full-data training and
few-shot learning situations.

Resources: https://anonymous.4open.science/r/CC-Time-7E86.

1 INTRODUCTION

With the rapid growth of the Internet of Things, vast amounts of time series data are being generated,
driving increasing interest in time series forecasting (TSF) Kaastra & Boyd (1996); Faloutsos et al.
(2018). Current TSF methods primarily design specific modules to exploit the inherent knowledge
of the time series data, and achieve good prediction accuracy Liu et al. (2024c); Nie et al. (2023),
which we call time-series-specific models in this paper.

Recently, pre-trained language models (PLMs) have demonstrated remarkable success across diverse
fields Wang et al. (2024); Wu et al. (2024), prompting exploration in TSF Zhou et al. (2023); Jin et al.
(2024a). Some approaches attempt to leverage the representation capacity and sequential modeling
capability of PLMs to capture time series patterns for TSF, which we call PLM-based models Liu
et al. (2024d). Although these methods show good prospects, they have not yet achieved satisfactory
prediction accuracy, leaving an under-explored problem of how to effectively activate the potential
of PLMs for TSF. Motivated by this, we raise and explore two important questions:

What time series characteristics could be modeled by pre-trained LMs? Real-world multivariate
time series exhibit two critical characteristics: (1) temporal dependencies across time steps and (2)
correlations with different channels. Capturing these features is essential for modeling the under-
lying data structure and improving prediction performance. However, existing PLM-based meth-
ods mainly focus on modeling temporal dependency and typically adopt a channel-independent
approach, overlooking the potential of leveraging text modality knowledge stored in PLMs to model
channel correlations Zhou et al. (2023); Liu et al. (2024d). Meanwhile, time-series-specific meth-
ods are restricted to a single time-series modality, and they are more susceptible to numerical noise
Cheng et al. (2023) and lack the capacity to model correlations from other perspectives, such as
the semantic perspective. Consequently, effectively modeling temporal dependency and channel
correlations with multi-modality knowledge is necessary.
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Is relying solely on pre-trained LMs sufficient for building time series models? Recent studies indi-
cate that PLM-based models and time-series-specific models focus on different aspects of modeling
time series patternsJin et al. (2024a;b), and we also observe this phenomenon in the cross-model
analysis of Section 4.4. Time-series-specific models excel at capturing basic patterns, such as trend
and seasonality patterns Jin et al. (2024b), and language models possess strong semantic under-
standing capability and multi-domain knowledge, which provide additional analytical perspectives
for forecasting Jin et al. (2024a); Liu et al. (2024d). Therefore, integrating these two types of models
provides a more comprehensive understanding of time series patterns. However, a straightforward
fusion, such as feature concatenation or knowledge distillation Phuong & Lampert (2019); Kim &
Rush (2016), does not bridge the gap between semantic information and numerical representations.
Furthermore, due to the heterogeneity of time-series-specific models and PLMs, the correspondence
between knowledge from both models is unclear. Therefore, a novel fusion method to adaptively
integrate knowledge from both models is necessary.

To address these challenges, we propose Cross-Model and Cross-Modality Modeling, namely CC-
Time, to explore the potential of PLMs for TSF. CC-Time is a dual-branch framework that contains
a PLM branch and a time series branch, together with their cross-model fusion.

For the first aspect: In the PLM branch, we propose cross-modality modeling with PLMs to capture
temporal dependency and channel correlations, aiming at fully utilizing multi-modality knowledge
in modeling complex time series patterns. In addition to capturing temporal dependency through
patching with PLMs, we innovatively explore the potential of PLMs to model complex channel cor-
relations by leveraging their stored knowledge. To enhance this process, we incorporate time series
data with corresponding channel text descriptions as bimodal inputs, enabling PLMs to access both
numerical patterns and semantic information for more complex and robust channel correlations. Im-
portantly, these descriptions can be automatically acquired without requiring any additional human
effort. For the second aspect: To better leverage the strength of both PLMs and time-series-specific
models in capturing time series patterns, we propose a Cross-model Fusion Block (CMF Block) to
adaptively integrate knowledge from the PLM branch and the time series branch of CC-Time. At
each layer of CC-Time, the CMF Block leverages the current attention, memory attention, and gated
fusion mechanism to adaptively fuse different-level features derived from the current layer and pre-
vious layers of the PLM branch. This fusion process makes the model capture complex features
that encapsulate the semantic information and the intricate time series correlations. Subsequently,
the CMF Block further integrates these features with features extracted from the time series branch.
Overall, this adaptive cross-model fusion empowers CC-Time with a more comprehensive under-
standing of time series. Specifically, our contributions are as follows:

• We propose cross-modality modeling with PLMs to capture temporal dependency and
channel correlations based on time series and corresponding text descriptions, which can be
automatically acquired without requiring additional human effort, effectively mining and
activating PLM knowledge related to time series.

• We further propose a cross-model fusion block to adaptively integrate knowledge from
PLMs and time-series-specific models, empowering the model with a more comprehensive
understanding of time series.

• Extensive experiments on nine datasets have demonstrated that CC-Time achieves state-of-
the-art prediction accuracy in both full-data and few-shot situations.

2 RELATED WORK

Channel Correlation Modeling Channel correlation modeling has been proven to be essential
for time series forecasting. Some existing methods adopt a channel-independent strategy Nie et al.
(2023); Lin et al. (2024); Xu et al. (2024); Liu et al. (2024e), where the same weights are shared
across all channels. Numerous studies employ Graph Neural Network (GNN) to capture the channel
correlations Liu et al. (2022); Yi et al. (2023); Shang et al. (2021). MTGNN Wu et al. (2020) ex-
tends the application of GNN from spatio-temporal prediction to multivariate time series forecasting
and proposes a method for computing an adaptive cross-channel graph. In addition to GNN-based
methods, transformer-based models have made various attempts to capture correlations between
channels Zhang & Yan (2023); Liu et al. (2024c); Yang et al. (2024); Wang et al. (2023). Cross-
former Zhang & Yan (2023) proposed a two-stage attention layer to capture the cross-time and
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Figure 1: The framework of the proposed Cross-Model and Cross-Modality Modeling (CC-Time)
consists of three components: the PLM Branch, Cross-Model Fusion, and the Time Series Branch.

cross-channel dependency efficiently. However, these models primarily design specific modules and
only rely on time series modality to model correlations, which limits their capacity to fully capture
complex channel correlations. CC-Time incorporates channel text descriptions and leverages lan-
guage models to model channel correlations from a semantic perspective, empowering CC-Time’s
completeness of modeling correlations.

Pre-trained LMs for Time Series Forecasting Pre-trained language models (PLMs) make
progress in various fields beyond natural language processing. Recently, numerous studies have uti-
lized powerful sequence modeling and representation capabilities of PLMs to model complex time
series patterns, showcasing their potential in forecasting Zhang et al. (2024); Jiang et al. (2024); Hu
et al. (2025). These studies primarily involve direct usage Gruver et al. (2023); Xue & Salim (2024),
parameter-efficient fine-tuning Zhou et al. (2023); Chang et al. (2023); Tan et al. (2024), prompting
Liu et al. (2024d;b); Cao et al. (2024); Pan et al. (2024), and modal alignment Jin et al. (2024a);
Sun et al. (2024); Liu et al. (2024a; 2025c;b;a). For example, GPT4TS Zhou et al. (2023) fine-tunes
the limited parameters of PLMs, demonstrating competitive performance by transferring knowledge
from large-scale pre-training text data. UniTime Liu et al. (2024b) designs domain instructions to
align time series and text modality. Time-LLM Jin et al. (2024a) reprograms time series into text
to align the representation of PLMs. However, existing PLM-based methods primarily use PLMs
as simple feature extractors and have not fully exploited their potential for modeling time series
patterns. CC-Time proposes cross-model fusion to combine the strengths of both language models
and time-series-specific models, adaptively integrating their knowledge to achieve a more holistic
understanding of time series.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

To better exploit the potential of pre-trained language models (PLMs) for TSF and comprehensively
model time series patterns, we propose cross-model and cross-modality modeling (CC-Time). As
illustrated in Figure 1, it comprises three components: the PLM branch, the time series branch, and
the cross-model fusion. In the PLM branch, we propose cross-modality modeling to fully utilize
multi-modal knowledge in modeling temporal dependency and channel correlations. For temporal
modeling, time series features are extracted by embedding time series patches and inputting them
into the PLM temporal layer. For channel modeling, considering that directly modeling channel cor-
relations solely from time series can easily be affected by numerical noise, we incorporate both chan-
nel text descriptions and time series as multi-modal inputs. By modeling channel correlations from
the semantic space by the PLM channel layer, we obtain robust and complex correlation features.
However, relying solely on PLMs is insufficient to fully model time series patterns. To address this,
we further integrate the strengths of PLMs and time-series-specific models through a novel cross-
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model fusion module. This module performs a two-step fusion: (1) adaptively fusing hierarchical
features among layers within the PLM branch, and (2) performing cross-model fusion between the
PLM and the time series branch. Through this novel fusion process, CC-Time effectively combines
knowledge from both branches, enhancing its capability for time series understanding.

3.2 CROSS-MODALITY MODELING WITH PLMS

In the PLM branch, we propose cross-modality modeling with PLMs to fully utilize multi-modality
knowledge. Unlike existing PLM-based methods, we not only adopt a patching strategy to model
temporal dependencies Zhou et al. (2023), but also, for the first time, exploit PLMs to capture com-
plex channel correlations from a semantic perspective. Specifically, as shown in the PLM branch
of Figure 1, we construct a cross-modality embedding by integrating channel text descriptions with
time series, providing semantic context for channel modeling. Based on the embedding, we design
the PLM Channel Layer that models sample-specific channel correlations from a semantic perspec-
tive. Together with the global correlations captured by the Correlation Extractor from the entire
training data, they jointly form comprehensive channel representations. Finally, the channel repre-
sentations are fused with temporal representations extracted by the PLM Temporal Layer, yielding
the final output representation at each PLM layer.

Cross-Modality Embedding The time series modality introduces a perspective of building chan-
nel correlations based on the dynamic time series features. However, only focusing on this single
modality limits the completeness of correlation modeling, as it does not well utilize language mod-
els’ abilities to model complex semantic features. Motivated by this, we innovatively generate and
utilize text descriptions of each channel for correlation modeling, which brings a new perspective
on the semantic meanings of channels and naturally utilizes PLMs’ powerful language processing
and understanding capabilities.

Our proposed cross-modality embedding uses two modalities as the inputs: time series Xtime ∈
RC×T and text descriptions Xtext ∈ RC×L, where C represents the number of channels, and T
and L represent the lengths of the time series and their text descriptions. For the input time series
Xtime ∈ RC×T , channel embedding is used to describe the overall temporal properties of each
channel, with a linear mapping along the temporal dimension yielding Echan ∈ RC×Dl , where Dl

represents the dimension of the embedded features. The corresponding text descriptions for each
channel consist of two parts: channel semantic description and channel statistical information. The
former provides a detailed semantic explanation for each channel, such as physical interpretations
and causal relationships, and the latter offers relevant quantitative statistical details about these chan-
nels, such as the mean, variance. These descriptions about channels can be automatically acquired
without requiring any additional human effort. The details about the channel text descriptions con-
struction process are provided in Appendix A. To effectively integrate the embedding of the two
modalities, we use linear mapping to compress the text embedding, aligning it with the dimension
of channels. Then we add the text embedding and time series channels embedding to get the cross-
modality embedding Ecross ∈ RC×Dl .
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Figure 2: Cross-modality correlation modeling with PLMs.

Correlation modeling with PLMs
As illustrated in Figure 2, based on
the cross-modality embedding as the
input, the PLM channel layer lever-
ages the PLMs’ knowledge to model
sample-specific channel correlations
from a semantic perspective. In par-
allel, we introduce a correlation ex-
tractor to capture global correlations
across the entire training data. These
two modules complement each other,
enabling more comprehensive and ro-
bust modeling of channel correla-
tions. Given that channel correlations
dynamically change over time, rely-
ing solely on the current time series sample and corresponding text descriptions to capture sample-
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specific correlations is not enough. To address this, the correlation extractor is designed to pre-
serve global channel features across the entire training data while learning latent global correlations.
Specifically, as shown in Figure 2, we initialize a learnable correlation extractor E ∈ RC×Dr to
preserve global channel features, where Dr denotes the dimension of feature space. We use a linear
projection to map the cross-modality embedding Ecross into the feature space of the correlation ex-
tractor E as current channel features Ef . Subsequently, by utilizing the current channel features with
the correlation extractor, a global correlation map Mg ∈ RC×C is adaptively learned. The process
is as follows:

Mi,j
g =

exp(Ef [i] ∗ET [j])∑C
j=1 exp(Ef [i] ∗ET [j])

, (1)

where Mi,j
g represents the weight of correlation between the i-th channel and the j-th channel. To

make the correlations extracted from the extractor more global and generalizable, we use the current
time series sample to update the correlation extractor. Specifically, we perform matrix multiplication
between the global correlation map Mg and the extractor E to get new channel features, followed
by weighted integration with the existing channel features to produce the updated extractor E′.

To leverage pre-trained knowledge in the PLM, we reuse its layers to model correlations among
channels, denoted as PLM channel layers. As illustrated in Figure 2, the cross-modality embed-
ding Ecross is the input of the PLM Channel Layer, we perform linear transformations to obtain the
query, key, and value in attention operations, denoted as Qchan, Kchan, and Vchan ∈ RDl×Dl . Then
the current attention map Mc ∈ RC×C is computed from the query and key, which serves as the
correlation map of the current time series. To capture complex channel correlations and mitigate
the focus on only the current time series, we perform a weighted fusion operation on the current
correlation map and the global correlation map from the correlation extractor to obtain the final cor-
relation map. Then we perform matrix multiplication with Vchan to obtain the output representation
Attnchan ∈ RC×Dl of the attention process:

Mc =Softmax(QchanK
T
chan/

√
Dl), Attnchan = (ϵMg + (1− ϵ)Mc)Vchan (2)

where ϵ is the parameter to balance the global correlation and the current local correlation. After
attention operation, a feed-forward network is used to process the representation of each channel to
obtain the final output Zchan ∈ RC×Dl of the PLM channel layer.

Temporal modeling with PLMs For temporal modeling, considering the sequential modeling ca-
pability of PLMs, we simultaneously leverage the pre-trained LM layers to capture complex tempo-
ral patterns, denoted as PLM temporal layers. Specifically, we adopt a patching strategy with PLMs
Zhou et al. (2023), where the time series Xtime ∈ RC×T is divided into Np patches based on a patch
size S. These patches are then passed through patch embedding to obtain Epatch ∈ RC×Np×Dl ,
which is subsequently fed into the PLM temporal layer to model temporal dependencies, resulting
in the final output Ztem ∈ RC×Np×Dl .

To integrate language models’ knowledge from both temporal and correlation modeling, we perform
concatenation fusion on the temporal features Ztem and the correlation features Zchan to get the
complex features Zplm ∈ RC×Nm×Dl , where Nm denotes the number of concatenated patches.

3.3 CROSS-MODEL FUSION

Considering the advantage of PLMs and time-series-specific models, specific models focus on mod-
eling patterns from numerical representations, while PLMs demonstrate strong generalization and
complex-patterns-modeling capabilities, which provide additional perspectives for forecasting. Mo-
tivated by this, we propose the cross-model fusion to adaptively integrate knowledge from the two
types of models, thus fully leveraging their respective strengths. Our proposed fusion module per-
forms a two-step fusion: 1) adaptively fusing hierarchical features among layers from the PLMs
to enhance the richness of the PLM representations, and 2) cross-model fusion between the PLM
branch and the time series branch to construct a comprehensive understanding of time series.

Time series Branch modeling We use the time series as the input to model time series patterns.
Similar to the patch embedding in the PLM branch, the time series Xtime ∈ RC×T is divided into
Np patches and then processed by patch embedding to get E′

patch ∈ RC×Np×Dt , where Dt is the

5
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feature dimension of the time series model. As depicted in Figure 1, the time series branch is based
on a transformer structure. For the ith layer, the transformer layer extracts the temporal dynamics
between patches and obtains the output Zi

ts ∈ RC×Np×Dt of the layer as time series features.

Cross-model fusion Block Due to the heterogeneity of time series models and language models,
the correspondence between knowledge from these two types of models is unclear. Direct layer-to-
layer integration of features captured by these models could lead to feature mismatch. Therefore, we
first adaptively fuse the PLM features derived from the current layer and the previous layers to get
comprehensive complex features. Specifically, for the adaptive fusion process at the ith layer, the
Cross-model Fusion Block (CMF block) takes the mixed features from the i− 1th layer, denoted
as Zi−1

mix ∈ RC×Nm×Dl , and the features Zi
plm ∈ RC×Nm×Dl of current layer. To better integrate

these features, we propose two types of attention mechanisms, called memory attention and current
attention. Memory attention uses the features Zi

plm from the current layer as a query to selectively
focus on the accumulated features from the previous layer, yielding Attnmix ∈ RC×Nm×Dl .

Qplm = Zi
plmWQc

,Kmix = Zi−1
mixWKm ,Vmix = Zi−1

mixWVm ,

Attnmix = Softmax(QplmK
T
mix/

√
Dl)Vmix.

(3)

In contrast, current attention uses the output complex features Zi−1
mix from the previous layer as

a query to dynamically focus on the features from the current layer, resulting in Attnplm ∈
RC×Nm×Dl .

Qmix = Zi−1
mixWQm ,Kplm = Zi

plmWKc ,Vplm = Zi
plmWVc ,

Attnplm = Softmax(QmixK
T
plm/

√
Dl)Vplm.

(4)

Then we leverage gated fusion to adaptively fuse Attnplm and Attnmix to get the mixed features
Zi

mix for ith layer:
Zi

mix = βAttnmix + (1− β)Attnplm, (5)
where β is a learnable parameter, controlling the fusion of current features and accumulated features.

Based on the mixed cross-layer features Zi
mix from the PLM branch and the features Zi−1

ts from the
time series branch, we further perform cross-model fusion between these two models. Specially, we
perform learnable linear transformations on Zi

mix to get the key and value, denoted as Kcross and
Vcross ∈ RC×Nm×Dt , and use Zi−1

l to obtain query Qcross ∈ RC×Np×Dt . Then we compute the
cross attention to get the fused features Attncross ∈ RC×Np×Dt corresponding to the time series:

Attncorss = Softmax(QcrossK
T
cross/

√
Dt)Vcross. (6)

Finally, the features Attncross and the features Zi
ts from the time series branch are added to obtain

the cross-model features Zi
cross ∈ RC×Np×Dt for ith layer.

3.4 TRAIN AND INFERENCE

During the model training phase, to enhance training effectiveness and maintain the advantages of
pre-trained language models, we freeze most of the parameters in the PLM branch and only fine-tune
the positional encoding and layer normalization. All parameters in the cross-model fusion Block and
time series branch are fine-tuned. For the training loss function, we calculate the loss between the
outputs of the PLM branch and time series branch, Ŷplm and Ŷts, and the ground truth Y, the total
loss is as follows:

Ltotal = λ|Ŷplm −Y|+ (1− λ)|Ŷts −Y|, (7)
where λ is the hyperparameter. In the inference stage, only the output from the time series branch
Ŷts is used as the model prediction in the inference stage.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets To evaluate the prediction accuracy of CC-Time, we select nine real-world time series
benchmarks from various domains, including energy, weather, nature, and traffic. These datasets
include ETT (ETTh1, ETTh2, ETTm1, ETTm2), Weather, Electricity, Traffic, ZafNoo, and CzeLan.

6
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Baselines We select eight state-of-the-art models for time series forecasting as baselines, includ-
ing PLM-based models: S2IP-LLM Pan et al. (2024), FSCAHu et al. (2025), Time-LLM Jin et al.
(2024a), UniTime Liu et al. (2024b), and GPT4TS Zhou et al. (2023), and time-series-specific mod-
els: iTransformer Liu et al. (2024c), Crossformer Zhang & Yan (2023), PatchTST Nie et al. (2023).

Settings For a fair comparison, we set the input length T to 96 and the output length F to 96, 192,
336, and 720 for all baseline models and CC-Time. At the same time, all models do not use the
drop last strategy Qiu et al. (2024). Refer to GPT4TS Zhou et al. (2023), we set GPT2 as the default
architecture for the PLM branch of CC-Time and all pre-trained LM-based baselines. Meanwhile,
in the PLM Layers of CC-Time, we only fine-tune the positional encoding and layer normalization
to reduce learnable parameters.

4.2 MAIN RESULTS

Full-data Forecasting As illustrated in Table 1, CC-Time achieves state-of-the-art prediction ac-
curacy, demonstrating the effectiveness of the model. Specifically, neither the PLM-based methods
nor the time-series-specific methods consistently achieve the second-best accuracy, indicating that
relying solely on PLMs or specific models is suboptimal. Therefore, an effective cross-model mod-
eling approach proves to be promising. Compared to time-series-specific models, CC-Time out-
performs the best model by 7.8% and 8.1% in MSE and MAE metrics. Compared to PLM-based
models, CC-Time outperforms the best baseline by 7.9% and 8.9% in MSE and MAE metrics.
PLM-based methods perform well on smaller datasets like ETTh1 and ETTh2, indicating that these
models exhibit strong generalization capabilities and are well-suited for scenarios with limited or
sparse data. For datasets with strong channel correlations, such as Electricity and Traffic, CC-Time
consistently outperforms correlation modeling methods like iTransformer and Crossformer. We also
compare CC-Time with recent time series foundation models in the Appendix D.

Model CC-Time FSCA S2IP-LLM Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.375 0.377 0.398 0.406 0.396 0.395 0.410 0.409 0.385 0.399 0.389 0.397 0.387 0.400 0.407 0.409 0.513 0.495

ETTm2 0.274 0.314 0.281 0.324 0.282 0.327 0.296 0.340 0.293 0.334 0.285 0.331 0.280 0.326 0.288 0.332 0.757 0.610

ETTh1 0.424 0.424 0.430 0.437 0.447 0.439 0.446 0.443 0.442 0.447 0.447 0.436 0.468 0.454 0.454 0.447 0.529 0.522

ETTh2 0.363 0.389 0.374 0.402 0.384 0.408 0.389 0.408 0.377 0.402 0.381 0.408 0.386 0.406 0.383 0.406 0.942 0.683

Weather 0.240 0.260 0.255 0.274 0.261 0.281 0.274 0.290 0.253 0.276 0.264 0.284 0.258 0.280 0.257 0.277 0.258 0.315

Electricity 0.174 0.257 0.187 0.237 0.198 0.283 0.223 0.309 0.215 0.304 0.205 0.290 0.204 0.290 0.178 0.269 0.244 0.344

Traffic 0.427 0.262 0.466 0.300 0.486 0.315 0.541 0.358 0.480 0.308 0.488 0.317 0.481 0.304 0.428 0.282 0.549 0.304

ZafNoo 0.545 0.434 0.589 0.473 0.577 0.470 0.591 0.481 0.581 0.478 0.594 0.477 0.576 0.466 0.577 0.471 0.550 0.449

CzeLan 0.240 0.261 0.273 0.299 0.262 0.290 0.272 0.303 0.275 0.306 0.273 0.295 0.268 0.298 0.274 0.302 0.914 0.585

Table 1: Time series forecasting results with the input length T = 96 and the prediction length
F = {96, 192, 336, 720}. Bold: the best and underline: the second best. Complete results are in
Table 10, and comparisons with time series foundation models are provided in Appendix D.

Few-shot Forecasting We conduct few-shot forecasting using 10% of the training data on the
ETT and Weather datasets to assess the few-shot learning capabilities of PLMs. As shown in
Table 2, our proposed CC-Time achieves state-of-the-art prediction accuracy. Overall, CC-Time
and PLM-based methods significantly outperform time-series-specific methods like PatchTST and
iTransformer. This indicates that PLM-based methods have strong generalization capabilities, mak-
ing them well-suited for scenarios with limited or sparse time series data, highlighting the potential
of PLMs for time series forecasting.

4.3 ABLATION STUDIES

Cross-model Fusion We conduct substitution experiments using four methods: feature summa-
tion, feature concatenation, attention fusion, and knowledge distillation with five different random
seeds. We also conduct ablation experiments on each specific module of the cross-model fusion in
Appendix E. To further evaluate the fusion effect, we also compare their performance against using
only the PLM branch. As shown in Figure 3 (a), compared to these existing fusion methods, our pro-
posed fusion method achieves significant results, demonstrating the effectiveness of our cross-model
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Method CC-Time FSCA S2IP-LLM Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.406 0.399 0.422 0.416 0.429 0.421 0.424 0.413 0.424 0.419 0.415 0.408 0.421 0.416 0.450 0.431 0.635 0.590

ETTm2 0.291 0.335 0.308 0.346 0.310 0.347 0.306 0.347 0.303 0.346 0.300 0.345 0.300 0.347 0.305 0.349 1.226 0.805

ETTh1 0.459 0.448 0.477 0.457 0.484 0.461 0.479 0.462 0.482 0.459 0.470 0.457 0.479 0.458 0.660 0.551 0.834 0.689

ETTh2 0.412 0.416 0.416 0.423 0.443 0.443 0.410 0.420 0.425 0.431 0.419 0.425 0.423 0.424 0.435 0.439 1.225 0.845

Weather 0.259 0.275 0.268 0.289 0.265 0.288 0.273 0.290 0.270 0.289 0.270 0.288 0.271 0.285 0.272 0.290 0.593 0.592

Table 2: 10% few shot forecasting results with the input length T = 96 and the prediction length F =
{96, 192, 336, 720}. Bold: the best and underline: the second best. Full results are in Table 11.

fusion. The attention fusion method performs second best, indicating that it partially integrates the
corresponding knowledge. However, it lacks an adaptive process, leading to incomplete knowledge
utilization from these two models.

Cross-modality Modeling We perform ablation studies on the text description, correlation ex-
tractor, and cross-modality correlation learning with five random seeds. Figure 3 (b) shows the dis-
tinct impact of each module. Removing cross-modality correlation learning significantly decreased
prediction accuracy, particularly on the CzeLan dataset, indicating that cross-modality learning ef-
fectively and comprehensively models complex channel correlations. The text description provides
semantic information to PLMs, aiding them in understanding complex channel correlations from dif-
ferent perspectives, thereby improving prediction accuracy. The correlation extractor learns global
correlations from the dataset and complements the sample-specific correlations extracted by the
PLM channel layer, leading to more comprehensive modeling of correlations.
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CC-Time w/o Text w/o Register w/o Cross-modality
(a) Cross model fusion (b) Cross modality modeling

Figure 3: Ablation about cross-model fusion and cross-modality modeling with five different random
seeds, with observed variations bounded within ±0.0015.

4.4 MODEL ANALYSIS

Due to the limitation of space, we conduct the channel text quality analysis, time series branch
analysis, sensitivity analysis, efficiency analysis, and varying the input length in Appendix F.3, F.4,
F.2, F.5, and F.6.

Replacement of PLM Architecture We replace GPT-2 with several more advanced pre-trained
language models, including Flan-T5-250M Chung et al. (2024), LLaMA-7B Touvron et al. (2023),
and LLaMA-13B. As shown in Table 3, different PLM architectures exhibit varying impacts on
prediction performance. Overall, adopting stronger PLMs leads to improved forecasting accuracy
in CC-Time, demonstrating its ability to leverage the knowledge of PLMs. Interestingly, we ob-
serve that the performance improvement from LLaMA-7B to LLaMA-13B is relatively marginal.
This suggests that CC-Time may not heavily rely on the additional capabilities of larger models
(e.g., reasoning), but instead primarily benefits from their semantic understanding and representa-
tion learning. Further experiments about the effectiveness of PLMs are in Appendix F.1.

Cross-modality Correlation Modeling Analysis To evaluate the effectiveness of correlation
modeling, we select two baselines: iTransformer and GPT4TS, to compare with CC-Time. In-
spired by the experiment demonstrations of the channel correlations in iTransformer, we calculate
the Pearson Correlation Coefficients, a commonly used metric for approximately assessing correla-
tions, between the predicted series and the future series for each model and normalize these results to
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Models GPT2 Flan-T5-250m Llama-7B Llama-13B

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.424 0.424 0.435 0.442 0.420 0.418 0.419 0.418

ETTh2 0.363 0.389 0.368 0.396 0.356 0.380 0.355 0.381

Table 3: Performance of CC-Time with different modality knowledge of PLMs.

analyze correlation modeling. We provide a case visualization in Figure 4. Compared to GPT4TS, a
channel-independent method, iTransformer and CC-Time effectively model correlations. Compared
to iTransformer, the channel correlations predicted by CC-Time are closer to the correlations from
the future series, indicating that the correlation modeling of CC-Time is more effective and compre-
hensive. These observations also further illustrate the potential of PLMs for correlation modeling.

GPT4TS iTransformer CC-Time Future Correlation

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Figure 4: Visualization of channel correlations for different time series forecasting models.

Cross-model Analysis We analyze the modeling approaches of CC-Time, PLM-based meth-
ods, and time-series-specific methods. We use a standard metric: the centered kernel alignment
(CKA) Kornblith et al. (2019) to assess the similarity between features and original data. A
higher CKA indicates greater similarity, suggesting that the model learns simpler features, while
a lower CKA suggests the model learns more complex features. As shown in Figure 5, time-
series-specific methods exhibit high CKA values, while PLM-based methods exhibit low CKA
values. This suggests that the features learned by the two types of methods differ significantly.

CKA Similarity

M
SE

0.75 0.9

0.44

0.45
GPT4TS

TimeLLM

Crossformer

iTransformer

CC-Time(ours)

PatchTST

CKA Similarity

M
SE

0.75 0.9

0.55

0.58

GPT4TS
TimeLLM

Crossformer

iTransformer

CC-Time(ours)

PatchTST

(a) ZafNoo Dataset (b) ETTh1 Dataset

S2IP-LLM

S2IP-LLM

Figure 5: Cross-model analysis. Higher CKA values indi-
cate that the model captures simpler features.

The CKA similarity value of CC-
Time is intermediate between the two
categories of methods, and it achieves
the lowest MSE, indicating that the
model effectively captures the ap-
propriate complex features through
a cross-model modeling approach.
Furthermore, CC-Time achieves the
best prediction accuracy on two dif-
ferent types of datasets, demonstrat-
ing that this cross-model modeling
approach can better adapt to diverse
time series.

5 CONCLUSION

In this paper, we propose Cross-Model and Cross-Modality time series forecasting, namely CC-
Time, to comprehensively model time series patterns. To leverage the capability of LLM for mod-
eling complex patterns, CC-Time incorporates cross-modality modeling to capture temporal depen-
dency and channel correlations in the LLMs from both time series sequences and their corresponding
channel text descriptions. Furthermore, CC-Time proposes the cross-model fusion block to adap-
tively integrate knowledge from the LLMs and time-series-specific models to form a more compre-
hensive modeling of time series patterns. These innovative designs empower CC-Time to achieve
state-of-the-art prediction accuracy in both full-data training and few-shot learning situations. At
the same time, CC-Time exhibits better efficiency compared with most LLM-based methods. We
provide our code at https://anonymous.4open.science/r/CC-Time-7E86.
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A CHANNEL DESCRIPTIONS

As shown in Figure 6, for generating semantic descriptions, we construct prompts for each channel:
This is <dataset name>from <domain>, including <channel name1>, <channel name2>, ...,
please describe these channels and their correlations. We just need to input the dataset name,
domain name, and the specific channel names into the predefined prompt. Then, by entering it
into a large language model like ChatGPT, the semantic descriptions of channels are generated. For
example, in the Weather dataset Wu et al. (2021), the description of the temperature channel (denoted
as ”T (degC)” in the dataset) is generated from LLMs as follows: Temperature is a key parameter
that describes climate conditions. It is closely related to humidity. As the temperature rises, the
air can hold more moisture, affecting humidity. CC-Time can leverage this semantic information
to understand the correlation between temperature and humidity in the real world, which helps in
better modeling patterns.

For statistic information, we calculate the maximum value, minimum value, mean, variance, and
other statistics for each time series channel. Then, the semantic description and statistical informa-
tion for each channel are concatenated to form the complete text description of each channel. These
text descriptions Xtext are input into a pre-trained text tokenizer to obtain text embedding results
Etext ∈ RC×L×Dl .

Semantic Description:

Statistic Information:

LLMs 

Prompt

This is <dataset name> from 
<domain>, including <channel 
name1>, ..., please describe 
these variables and correlations.

The statistics of channel name1:                              
minimum:  <min_val>
maximum: <max_val>
mean: <mean_val>
variance: <variance_var>

The statistics of channel name N:

<channel name1>  is ...

Example:
T(degC) is a key parameter that 
describes climate conditions. It is 
closely related to humidity. As the 
temperature rises, the air can hold 
more moisture...

channel name 1

channel name N
Calculate 

Concatenation 

Example:
This is weather dataset from 
meteorology, including 
T(degC), ..., please describe 
these variables.

Figure 6: The construction process of channel text descriptions Xtext.

B DATASETS

ETT (Electric Transformer Temperature) Zhou et al. (2021) collected from two different electric
transformers, spans from July 2016 to July 2018, and includes 7 channels. ETT is divided into
four subsets: ETTh1 and ETTh2, recorded hourly, and ETTm1 and ETTm2, recorded every 15
minutes. (2) Weather Wu et al. (2021) includes 21 different meteorological indicators that provide
comprehensive data on weather conditions. These indicators, such as temperature, barometric pres-
sure, humidity and others, offer a broad perspective on the atmospheric environment. (3) Electricity
Trindade (2015) contains the electricity consumption of 321 customers from July 2016 to July 2019,
recorded hourly. (4) Traffic Wu et al. (2021) contains road occupancy rates measured by 862 sensors
on freeways in the San Francisco Bay Area from 2015 to 2016, recorded hourly. (5) ZafNoo Poyatos
et al. (2020) is from the Sapflux data project including sap flow measurements and environmental

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

variables. (6) CzeLan Poyatos et al. (2020) is from the Sapflux data project including sap flow mea-
surements and environmental variables. We split each evaluation dataset into train-validation-test
sets and detailed descriptions of evaluation datasets are shown in Table 4. According to the chan-
nel description generation method proposed in section 3.2, the corresponding text for datasets is
generated without requiring any additional human effort.

Dataset Domain Frequency Lengths Channels Split

ETTh1 Electricity 1 hour 14400 7 6:2:2
ETTh2 Electricity 1 hour 14400 7 6:2:2
ETTm1 Electricity 15 mins 57600 7 6:2:2
ETTm2 Electricity 15 mins 57600 7 6:2:2

Electricity Electricity 1 hour 26304 321 7:1:2
Weather Environment 10 mins 52696 21 7:1:2
Traffic Transport 1 hour 17544 862 7:1:2
ZafNoo Nature 30 mins 19225 11 7:1:2
CzeLan Nature 30 mins 19934 11 7:1:2

Table 4: Detailed dataset descriptions.

C BASELINES

• S2IP-LLM Pan et al. (2024) aligns the semantic space of pre-trained PLMs with time se-
ries embedding space and enhances the representation of time series using semantic space
informed prompting to improve forecasting performance.

• FSCA Hu et al. (2025) builds the consistent context through structural alignment, logical
alignment, and dual-scale GNNs, enabling PLMs to better understand time series.

• Time-LLM Jin et al. (2024a) aligns the time series features into the language feature space
through reprogramming techniques, then concatenates them with the text prompt before
inputting them into a pre-trained large language model for feature extraction.

• UniTime Liu et al. (2024b) designs domain instructions as prompts and uses the language
model architecture for multi-source time series pre-training to extract broad knowledge.

• GPT4TS Zhou et al. (2023) uses the pre-trained GPT2 as the backbone and adapts it to the
time series space for feature extraction by fine-tuning the positional encoding and normal-
ization layers.

• iTransformer Liu et al. (2024c) treats the entire set of variables as tokens and uses the
Transformer architecture to model the correlations between the entire set of channels.

• Crossformer Zhang & Yan (2023) proposes a two-stage attention mechanism (cross-time
attention and cross-dimension attention) to model the dynamics of time and the correlations
between channels.

• PatchTST Nie et al. (2023) employs a patching strategy to preserve local information and
uses the Transformer architecture to capture the correlation between different patches for
temporal modeling. It also applies a channel-independent strategy on the channel dimen-
sion.

• FEDformer Zhou et al. (2022) proposes a frequency-enhanced decomposed Transformer
architecture to model temporal dynamics from the perspective of frequency.

• TimesNet Wu et al. (2023) transforms one-dimensional time series into a two-dimensional
structure using Fourier transforms, enabling the modeling of 2D temporal variations to
capture multi-periodicity time series patterns.
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D COMPARED WITH TIME SERIES FOUNDATION MODELS

To further validate the prediction performance of CC-Time, we conduct comparative experiments
with several state-of-the-art time series foundation models, including Chronos Ansari et al. (2024),
MORIAI Woo et al. (2024), Timer Liu et al. (2024e), and TTMs Ekambaram et al. (2024). The
evaluation is performed on ETT and Weather datasets, with input lengths of {96, 336, 512} and
output lengths spanning {96, 192, 336, 720}. The final results are selected based on the optimal
performance across the three input lengths. As shown in Table 5, CC-Time achieves state-of-the-art
prediction performance in most forecasting scenarios, outperforming the four baseline models. This
demonstrates that CC-Time not only exhibits strong generalization capabilities but also effectively
leverages knowledge from pre-trained language models, leading to significant improvements in time
series forecasting accuracy.

Models CC-Time Chronos MORIAI Timer TTMs

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.357 0.389 0.388 0.387 0.394 0.399 0.413 0.424 0.361 0.392

192 0.397 0.415 0.440 0.416 0.430 0.422 0.487 0.459 0.393 0.415

336 0.415 0.429 0.477 0.434 0.450 0.437 0.501 0.471 0.411 0.429

720 0.436 0.453 0.474 0.446 0.457 0.458 0.538 0.505 0.426 0.450

ETTh2

96 0.265 0.328 0.292 0.328 0.285 0.329 0.324 0.366 0.270 0.330

192 0.342 0.376 0.362 0.371 0.352 0.374 0.409 0.410 0.362 0.384

336 0.359 0.395 0.400 0.404 0.384 0.403 0.419 0.428 0.367 0.400

720 0.382 0.421 0.412 0.420 0.419 0.432 0.451 0.456 0.384 0.425

ETTm1

96 0.276 0.327 0.339 0.340 0.464 0.404 0.335 0.359 0.285 0.336

192 0.323 0.354 0.392 0.372 0.488 0.422 0.424 0.406 0.326 0.363

336 0.354 0.374 0.440 0.398 0.520 0.442 0.450 0.428 0.357 0.380

720 0.412 0.407 0.530 0.442 0.598 0.482 0.514 0.465 0.413 0.413

ETTm2

96 0.159 0.242 0.181 0.248 0.224 0.283 0.185 0.264 0.165 0.248

192 0.216 0.283 0.253 0.296 0.308 0.335 0.257 0.311 0.225 0.295

336 0.272 0.320 0.318 0.337 0.369 0.374 0.313 0.351 0.275 0.328

720 0.354 0.375 0.417 0.396 0.460 0.430 0.402 0.408 0.367 0.385

Weather

96 0.144 0.181 0.183 0.216 0.206 0.220 0.172 0.218 0.149 0.198

192 0.188 0.224 0.227 0.258 0.278 0.269 0.235 0.261 0.190 0.234

336 0.238 0.267 0.286 0.297 0.335 0.312 0.296 0.305 0.248 0.279

720 0.314 0.318 0.368 0.348 0.413 0.368 0.380 0.356 0.318 0.329

Table 5: Full forecasting with input lengths {96, 336, 512} and prediction lengths
{96, 192, 336, 720}. The results are the best prediction across three input lengths.

E ABLATION ABOUT CROSS-MODEL FUSION

We conduct ablation experiments on each specific module within the cross-model fusion block, in-
cluding current attention, memory attention, and gating fusion. As shown in Figure 7, compared
to using only the PLM branch and CC-Time, we find that each module contributes uniquely to the
overall performance. Among them, removing current attention has the most significant effect, in-
dicating that the fusion of features from two types of models at the corresponding layers is crucial.
Meanwhile, the memory attention ablation experiment shows that, in addition to fusion at the cor-
responding layers, by incorporating features from previous layers of the PLM branch, the effective
fusion of the two models can be further enhanced, achieving better prediction accuracy.
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Figure 7: Each module ablation of cross-model fusion on the ETTm1 and CzeLan datasets. w/o
current, w/o memory, and w/o gating represent removing current attention, memory attention, and
gating fusion, respectively. PLM represents only the use of the PLM branch.

F MODEL ANALYSIS

F.1 EFFECTIVENESS OF PRE-TRAINED LANGUAGE MODELS

To evaluate the effectiveness of pre-trained language models (PLMs), we conduct two types of ex-
periments. In the first experiment, we consider three aspects: the number of PLM layers, parameter
initialization, and whether to freeze PLM parameters. Specifically, CC-Time(3) and CC-Time(12)
denote using 3 and 12 GPT layers, respectively, while the default CC-Time uses 6 layers. ”Ran-
dom init” refers to replacing pre-trained language model parameters with random initialization. ”No
freeze” represents that all PLM parameters are fine-tuned without freezing. As shown in Table 6,
using too few or too many PLM layers decreases prediction accuracy. Too few layers may lead to
insufficient extraction of complex features from PLMs, while too many layers can result in overly
abstract features. Additionally, random parameter initialization significantly decreases accuracy,
highlighting the importance of PLM knowledge in CC-Time for time series forecasting. Further-
more, not freezing PLM can cause catastrophic forgetting and overfitting, leading to poor prediction
accuracy.

Models CC-Time CC-Time(3) CC-Time(12) Random init No freeze

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.424 0.424 0.438 0.429 0.437 0.431 0.445 0.438 0.452 0.447

ETTh2 0.364 0.389 0.372 0.393 0.369 0.392 0.376 0.403 0.382 0.408

Table 6: Large language model analysis experiment.

In the second experiment, refer to Tan et al. (2024), we further validate the effectiveness of PLMs
in CC-Time. Specifically, we focus on three aspects: removing the entire PLM layers of CC-Time
(W/O PLM), replacing the PLM layers with a single layer of untrained Attention (LLM2Attn), and
replacing the PLM layers with a single layer of untrained Transformer (LLM2Trsf). As shown in
Table 7, CC-Time effectively utilizes LLM knowledge to model time series. When comparing W/O
PLM with CC-Time, the results indicate that relying solely on basic time series modules like Patch-
ing and ReVIN is insufficient, and that effectively exploring the potential of PLM knowledge for
time series forecasting is crucial. When comparing LLM2Attn and LLM2Trf with CC-Time, the
results indicate that relying on single-layer attention or transformer for feature extraction is inad-
equate, and that fully leveraging the strengths of PLMs and time-series-specific models to capture
time series features comprehensively is essential.
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Models CC-Time W/O LLM LLM2Attn LLM2Trsf

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.424 0.424 0.458 0.450 0.446 0.440 0.452 0.442

ETTh2 0.363 0.389 0.385 0.406 0.388 0.409 0.378 0.401

Table 7: Performance of CC-Time with removing or replacing PLM layers.

F.2 PARAMETER SENSITIVITY ANALYSIS

We conduct hyper-parameter sensitivity analysis of two key parameters in CC-Time on the ETTm1
dataset with five different random seeds: the loss weight λ, and the correlation weight ϵ. Both the
input length and prediction length are set to 96. As illustrated in Figure 8 (a), CC-Time achieves
better prediction accuracy when λ is set to 0.6. This suggests that the loss weight for the time series
branch should be set relatively higher than that for the PLM Branch, as updating the time series
branch also influences the corresponding PLM layers through cross-model fusion. Furthermore,
Figure 8 (b) shows that CC-Time performs best when ϵ is set to 0.4, indicating that while balancing
current and global correlation, it is beneficial to assign slightly more weight to focus on the current
correlation. Overall, CC-Time exhibits relatively stable prediction accuracy with different values of
the two hyperparameters.
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Figure 8: The effect of parameter λ and parameter ϵ. The results represent the mean across five
independent runs with different random seeds, with observed variations bounded within ±0.001 for
λ and ±0.0015 for ϵ.

F.3 TEXT QUALITY ANALYSIS

To verify whether the PLM Branch in CC-Time truly understands the semantics of the channel text
descriptions and is robust to text quality. We design three types of interventions: removing the
channel text descriptions, replacing them with randomly generated text, and injecting noise into the
constructed channel text descriptions. As shown in the Figure 9, injecting noise into the text leads to
only a slight drop in prediction accuracy, indicating that CC-Time is robust to minor degradation in
text quality. In contrast, replacing the channel descriptions with random text results in a significant
performance drop—even worse than using no text at all—demonstrating that PLM Branch of the
CC-Time understands and utilizes the semantic information in the channel descriptions to enhance
the modeling of channel semantic correlations.

F.4 TIME SERIES BRANCH REPLACEMENT ANALYSIS

To evaluate whether the PLM Branch and Cross-Model Fusion in CC-Time enhance other time series
models, we replace its original time-series branch with two state-of-the-art time series models: HD-
Mixer and PatchMixer. As shown in Table 8, the experimental results show consistent improvements
across three different datasets. This demonstrates that the proposed PLM Branch and Cross-Model
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Figure 9: Channel text descriptions analysis on the ETTm1 and CzeLan datasets. w/o text represents
removing channel text descriptions, Add Noise represents injecting noise into the constructed text
descriptions, and Random Text represents randomly generating text descriptions.

Fusion effectively leverage the knowledge encoded in pre-trained language models and integrate it
with time-series branches to comprehensively model temporal patterns, thereby improving forecast-
ing performance. Moreover, the results highlight the strong generalizability of our method.

Models HDMixer +CC-Time PatchMixer +CC-Time

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.345 0.373 0.320 0.340 0.322 0.353 0.312 0.335
192 0.380 0.391 0.364 0.370 0.363 0.380 0.358 0.367
336 0.400 0.409 0.390 0.388 0.398 0.404 0.391 0.389
720 0.466 0.443 0.450 0.432 0.455 0.439 0.448 0.427
avg 0.397 0.404 0.381 0.382 0.384 0.394 0.377 0.379

CzeLan

96 0.203 0.256 0.190 0.237 0.204 0.251 0.189 0.232
192 0.232 0.270 0.222 0.251 0.235 0.272 0.218 0.248
336 0.255 0.296 0.249 0.273 0.267 0.294 0.253 0.276
720 0.307 0.330 0.289 0.311 0.309 0.329 0.289 0.310
avg 0.249 0.288 0.237 0.268 0.253 0.286 0.238 0.267

Weather

96 0.171 0.221 0.155 0.189 0.172 0.215 0.157 0.192
192 0.223 0.263 0.208 0.242 0.219 0.252 0.202 0.235
336 0.276 0.302 0.264 0.286 0.271 0.295 0.258 0.281
720 0.345 0.347 0.340 0.334 0.349 0.344 0.342 0.336
avg 0.253 0.283 0.241 0.263 0.252 0.276 0.239 0.261

Table 8: Time Series Branch Analysis. ”+CC-Time” represents replacing the time series branch of
CC-Time with other time series models.

F.5 EFFICIENCY ANALYSIS

We conduct an efficiency comparison experiment between CC-Time and the baselines on the ETTh1
dataset, with both input and output lengths set to 96. We analyze the results from two aspects: train-
ing time per epoch and the number of trainable parameters. As illustrated in Figure 10, compared to
PLM-based methods, such as Time-LLM and UniTime, CC-Time not only achieves superior predic-
tion accuracy but also demonstrates significant advantages in training time and trainable parameters.
In comparison to time-series-specific models, while iTransformer and PatchTST show better ef-
ficiency than CC-Time, their prediction accuracy is notably lower. Furthermore, in the few-shot
forecasting scenario, where the training data is limited, the increase in CC-Time’s cost compared
to iTransformer and PatchTST is minor. Compared to Crossformer and FEDformer, CC-Time also
exhibits advantages in efficiency. Overall, CC-Time effectively balances efficiency and prediction
performance, and we believe that it is worthwhile to use PLMs to enhance prediction in CC-Time.
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Figure 10: The efficiency analysis of CC-Time.

F.5.1 INFERENCE EFFICIENCY

To better evaluate the inference efficiency of CC-Time, we compare it with several PLM-based
models (Time-LLM, UniTime, and GPT4TS) as well as time series foundation models (MOIRAI,
Chronos, and Timer). We adopt two evaluation metrics: maximum GPU memory usage and average
inference time per batch. As shown in Table 9, CC-Time consistently demonstrates fast inference
speed and low GPU memory consumption compared to both LLM-based models and time series
foundation models.

CC-Time Time-LLM UniTime GPT4TS MOIRAI Large Chronos Large Timer

GPU(MB) 1261 8192 1878 1095 2009 10269 1435

Inference(s) 0.019 0.201 0.039 0.006 0.100 34.330 0.080

Table 9: The inference analysis of CC-Time and other baselines on the ETTh1 dataset with batch
size of 1. We report the Max GPU Memory and Average Inference Time per batch.

F.6 VARYING THE INPUT LENGTH

For time series forecasting, the input length determines the amount of historical information the
model receives. To better assess the prediction accuracy of CC-Time, we select the top-performing
models listed in Table 1 and conduct experiments using varying input lengths, specifically T =
{48, 96, 192, 336, 512}. As illustrated in Figure 11, CC-Time consistently achieves state-of-the-art
prediction accuracy across all input lengths. Notably, as the input length increases, the prediction
metrics—MSE and MAE—demonstrate a clear downward trend. This reduction highlights CC-
Time’s ability to effectively model and leverage longer sequences, further showcasing its strength in
capturing complex temporal dependencies.

G FULL RESULTS

The full results about full forecasting and few-shot forecasting are provided in Tables 10 and 11.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In CC-Time, we employ a pre-trained language model (GPT2) as the encoder in the PLM branch to
extract features, thereby enhancing the model’s capacity for time series understanding. It is worth
emphasizing that LLMs were not involved in any part of the paper writing process
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Table 10: Full forecasting results with the input length T = 96 and the prediction length F =
{96, 192, 336, 720}.

Models CC-Time FSCA S2IP-LLM Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer FEDformer TimesNet

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.309 0.333 0.336 0.371 0.334 0.363 0.359 0.381 0.322 0.363 0.329 0.364 0.329 0.367 0.334 0.368 0.404 0.426 0.379 0.419 0.338 0.375

192 0.354 0.363 0.376 0.391 0.377 0.382 0.383 0.393 0.366 0.387 0.368 0.382 0.367 0.385 0.377 0.391 0.450 0.451 0.426 0.441 0.374 0.387

336 0.386 0.387 0.411 0.414 0.404 0.400 0.416 0.414 0.398 0.407 0.400 0.403 0.399 0.410 0.426 0.420 0.532 0.515 0.445 0.459 0.410 0.411

720 0.451 0.426 0.470 0.449 0.469 0.437 0.483 0.449 0.454 0.440 0.460 0.439 0.454 0.439 0.491 0.459 0.666 0.589 0.543 0.490 0.478 0.450

Avg 0.375 0.377 0.398 0.406 0.396 0.395 0.410 0.409 0.385 0.399 0.389 0.397 0.387 0.400 0.407 0.409 0.513 0.495 0.448 0.452 0.400 0.405

ETTm2

96 0.171 0.248 0.181 0.261 0.177 0.261 0.193 0.280 0.183 0.266 0.178 0.263 0.175 0.259 0.180 0.264 0.287 0.366 0.203 0.287 0.187 0.267

192 0.237 0.292 0.243 0.302 0.244 0.301 0.257 0.318 0.251 0.310 0.245 0.306 0.241 0.302 0.250 0.309 0.414 0.492 0.269 0.328 0.249 0.309

336 0.296 0.330 0.303 0.339 0.306 0.343 0.317 0.353 0.319 0.351 0.309 0.347 0.305 0.343 0.311 0.348 0.597 0.542 0.325 0.366 0.321 0.351

720 0.395 0.389 0.398 0.396 0.404 0.403 0.419 0.411 0.420 0.410 0.409 0.408 0.402 0.400 0.412 0.407 1.730 1.042 0.421 0.415 0.408 0.403

Avg 0.274 0.314 0.281 0.324 0.282 0.327 0.296 0.340 0.293 0.334 0.285 0.331 0.280 0.326 0.288 0.332 0.757 0.610 0.304 0.349 0.291 0.332

ETTh1

96 0.374 0.391 0.368 0.396 0.393 0.403 0.398 0.410 0.397 0.418 0.376 0.397 0.414 0.419 0.386 0.405 0.423 0.448 0.376 0.419 0.384 0.402

192 0.414 0.417 0.425 0.426 0.443 0.429 0.442 0.435 0.434 0.439 0.438 0.426 0.460 0.445 0.441 0.436 0.471 0.474 0.420 0.448 0.436 0.429

336 0.450 0.437 0.454 0.448 0.472 0.447 0.474 0.454 0.468 0.457 0.479 0.446 0.501 0.466 0.487 0.458 0.570 0.546 0.459 0.465 0.491 0.469

720 0.449 0.454 0.476 0.480 0.480 0.478 0.471 0.472 0.469 0.477 0.495 0.476 0.500 0.488 0.503 0.491 0.653 0.621 0.506 0.507 0.521 0.500

Avg 0.421 0.424 0.430 0.437 0.447 0.439 0.446 0.443 0.442 0.447 0.447 0.436 0.468 0.454 0.454 0.447 0.529 0.522 0.440 0.460 0.458 0.450

ETTh2

96 0.282 0.330 0.294 0.346 0.309 0.364 0.295 0.346 0.296 0.345 0.295 0.348 0.302 0.348 0.297 0.349 0.745 0.584 0.358 0.397 0.340 0.374

192 0.350 0.376 0.362 0.390 0.380 0.396 0.386 0.399 0.374 0.394 0.386 0.404 0.388 0.400 0.380 0.400 0.877 0.656 0.429 0.439 0.402 0.414

336 0.405 0.419 0.383 0.408 0.422 0.432 0.447 0.443 0.415 0.427 0.421 0.435 0.426 0.433 0.428 0.432 1.043 0.731 0.496 0.487 0.452 0.452

720 0.413 0.433 0.458 0.466 0.425 0.442 0.428 0.444 0.425 0.444 0.422 0.445 0.431 0.446 0.427 0.445 1.104 0.763 0.463 0.474 0.462 0.468

Avg 0.362 0.389 0.374 0.402 0.384 0.408 0.389 0.408 0.377 0.402 0.381 0.408 0.386 0.406 0.383 0.406 0.942 0.683 0.437 0.449 0.414 0.427

Weather

96 0.157 0.192 0.176 0.216 0.181 0.220 0.195 0.233 0.171 0.214 0.182 0.223 0.177 0.218 0.174 0.214 0.158 0.230 0.217 0.296 0.172 0.220

192 0.205 0.236 0.211 0.243 0.227 0.258 0.240 0.269 0.217 0.254 0.231 0.263 0.225 0.259 0.221 0.254 0.206 0.277 0.276 0.336 0.219 0.261

336 0.261 0.280 0.278 0.296 0.280 0.298 0.293 0.306 0.274 0.293 0.283 0.300 0.278 0.297 0.278 0.296 0.272 0.335 0.339 0.380 0.280 0.306

720 0.339 0.332 0.355 0.344 0.358 0.348 0.368 0.354 0.351 0.343 0.360 0.350 0.354 0.348 0.358 0.347 0.398 0.418 0.403 0.428 0.365 0.359

Avg 0.240 0.260 0.255 0.274 0.261 0.281 0.274 0.290 0.253 0.276 0.264 0.284 0.258 0.280 0.257 0.277 0.258 0.315 0.309 0.360 0.259 0.287

Electricity

96 0.147 0.233 0.160 0.248 0.175 0.258 0.204 0.293 0.196 0.287 0.185 0.272 0.181 0.270 0.148 0.240 0.219 0.314 0.193 0.30-8 0.168 0.272

192 0.165 0.247 0.172 0.260 0.182 0.270 0.207 0.295 0.199 0.291 0.189 0.276 0.188 0.274 0.162 0.253 0.231 0.322 0.201 0.315 0.184 0.289

336 0.176 0.262 0.195 0.280 0.192 0.282 0.219 0.308 0.214 0.305 0.204 0.291 0.204 0.293 0.178 0.269 0.246 0.337 0.214 0.329 0.198 0.300

720 0.209 0.289 0.221 0.306 0.245 0.322 0.263 0.341 0.254 0.335 0.245 0.324 0.246 0.324 0.225 0.317 0.280 0.363 0.246 0.355 0.220 0.320

Avg 0.174 0.257 0.187 0.273 0.198 0.283 0.223 0.309 0.215 0.304 0.205 0.290 0.204 0.290 0.178 0.269 0.244 0.344 0.214 0.327 0.192 0.295

Traffic

96 0.400 0.243 0.455 0.287 0.466 0.300 0.536 0.359 0.458 0.301 0.468 0.307 0.462 0.295 0.395 0.268 0.522 0.290 0.587 0.366 0.593 0.321

192 0.415 0.255 0.460 0.295 0.478 0.313 0.532 0.354 0.468 0.306 0.476 0.311 0.466 0.296 0.417 0.276 0.530 0.293 0.604 0.373 0.617 0.336

336 0.432 0.264 0.472 0.306 0.489 0.320 0.530 0.349 0.485 0.310 0.488 0.317 0.482 0.304 0.433 0.283 0.558 0.305 0.621 0.383 0.629 0.336

720 0.463 0.283 0.480 0.315 0.512 0.328 0.569 0.371 0.510 0.315 0.521 0.333 0.514 0.322 0.467 0.302 0.589 0.328 0.626 0.382 0.640 0.350

Avg 0.427 0.262 0.466 0.300 0.486 0.315 0.541 0.358 0.480 0.308 0.488 0.317 0.481 0.304 0.428 0.282 0.549 0.304 0.610 0.376 0.619 0.335

ZafNoo

96 0.463 0.384 0.479 0.415 0.468 0.409 0.486 0.428 0.476 0.427 0.478 0.416 0.470 0.409 0.483 0.426 0.472 0.399 0.486 0.443 0.480 0.425

192 0.524 0.422 0.558 0.458 0.557 0.461 0.561 0.467 0.554 0.468 0.561 0.462 0.545 0.450 0.548 0.457 0.520 0.432 0.569 0.485 0.554 0.465

336 0.561 0.445 0.613 0.489 0.595 0.482 0.605 0.486 0.597 0.489 0.616 0.491 0.599 0.481 0.605 0.483 0.568 0.467 0.634 0.514 0.591 0.486

720 0.634 0.481 0.707 0.532 0.691 0.531 0.713 0.541 0.698 0.527 0.721 0.542 0.692 0.525 0.670 0.518 0.642 0.498 0.795 0.607 0.722 0.540

Avg 0.545 0.434 0.589 0.473 0.577 0.470 0.591 0.481 0.581 0.478 0.594 0.477 0.576 0.466 0.577 0.471 0.550 0.449 0.621 0.512 0.586 0.479

CzeLan

96 0.188 0.223 0.212 0.252 0.206 0.250 0.215 0.259 0.223 0.268 0.216 0.257 0.214 0.260 0.219 0.264 0.612 0.472 0.272 0.343 0.228 0.286

192 0.220 0.245 0.251 0.282 0.238 0.275 0.255 0.293 0.245 0.290 0.247 0.276 0.243 0.279 0.250 0.285 0.776 0.540 0.307 0.363 0.255 0.301

336 0.252 0.271 0.285 0.308 0.271 0.297 0.279 0.310 0.282 0.312 0.283 0.301 0.276 0.305 0.281 0.308 0.926 0.599 0.340 0.387 0.277 0.319

720 0.301 0.307 0.347 0.356 0.335 0.339 0.339 0.350 0.348 0.352 0.348 0.346 0.341 0.349 0.347 0.354 1.344 0.730 0.402 0.424 0.315 0.346

Avg 0.240 0.261 0.273 0.299 0.262 0.290 0.272 0.303 0.275 0.306 0.273 0.295 0.268 0.298 0.274 0.302 0.914 0.585 0.330 0.379 0.268 0.313

Table 11: 10% few shot forecasting results with the input length T = 96 and the prediction length F
= {96, 192, 336, 720 }.

Models CC-Time S2IP-LLM FSCA Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer FEDformer TimesNet

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.338 0.358 0.358 0.381 0.371 0.391 0.366 0.379 0.366 0.386 0.350 0.373 0.354 0.378 0.379 0.392 0.476 0.486 0.435 0.483 0.475 0.444

192 0.382 0.383 0.402 0.404 0.400 0.400 0.404 0.400 0.405 0.406 0.396 0.393 0.396 0.399 0.423 0.414 0.581 0.563 0.479 0.511 0.586 0.484

336 0.415 0.408 0.440 0.428 0.438 0.429 0.434 0.416 0.437 0.427 0.429 0.418 0.429 0.421 0.464 0.440 0.708 0.646 0.562 0.551 0.517 0.467

720 0.490 0.449 0.489 0.454 0.509 0.465 0.492 0.457 0.489 0.456 0.484 0.449 0.506 0.469 0.537 0.481 0.777 0.666 0.701 0.630 0.582 0.512

Avg 0.406 0.399 0.422 0.416 0.429 0.421 0.424 0.413 0.424 0.419 0.415 0.408 0.421 0.416 0.450 0.431 0.635 0.590 0.544 0.544 0.540 0.476

ETTm2

96 0.183 0.266 0.192 0.272 0.194 0.273 0.198 0.286 0.202 0.287 0.191 0.279 0.193 0.281 0.194 0.280 0.672 0.582 0.234 0.322 0.202 0.285

192 0.255 0.315 0.259 0.318 0.262 0.320 0.262 0.322 0.265 0.324 0.260 0.323 0.260 0.325 0.261 0.321 1.225 0.819 0.310 0.374 0.299 0.354

336 0.315 0.351 0.325 0.36 0.328 0.360 0.328 0.361 0.322 0.358 0.325 0.363 0.325 0.364 0.325 0.367 1.135 0.788 0.383 0.424 0.336 0.371

720 0.414 0.411 0.457 0.435 0.455 0.434 0.436 0.420 0.421 0.414 0.425 0.418 0.423 0.421 0.440 0.428 1.873 1.032 0.558 0.529 0.482 0.455

Avg 0.291 0.335 0.308 0.346 0.310 0.347 0.306 0.347 0.303 0.346 0.300 0.345 0.300 0.347 0.305 0.349 1.226 0.805 0.371 0.412 0.329 0.366

ETTh1

96 0.390 0.403 0.415 0.418 0.420 0.422 0.404 0.418 0.423 0.424 0.399 0.415 0.398 0.407 0.514 0.481 0.555 0.554 0.519 0.522 0.606 0.533

192 0.448 0.443 0.459 0.439 0.469 0.450 0.458 0.446 0.467 0.448 0.454 0.441 0.463 0.447 0.603 0.524 0.601 0.581 0.600 0.562 0.743 0.588

336 0.479 0.452 0.504 0.469 0.510 0.465 0.496 0.465 0.503 0.461 0.502 0.469 0.515 0.470 0.683 0.562 0.880 0.707 0.670 0.574 0.918 0.643

720 0.522 0.495 0.53 0.505 0.536 0.508 0.560 0.520 0.535 0.504 0.526 0.504 0.541 0.508 0.842 0.638 1.303 0.916 0.609 0.544 0.873 0.638

Avg 0.459 0.448 0.477 0.457 0.484 0.461 0.479 0.462 0.482 0.459 0.470 0.457 0.479 0.458 0.660 0.551 0.834 0.689 0.600 0.551 0.785 0.600

ETTh2

96 0.290 0.337 0.305 0.35 0.355 0.389 0.302 0.348 0.323 0.363 0.304 0.351 0.304 0.348 0.334 0.375 1.236 0.809 0.384 0.428 0.389 0.419

192 0.389 0.397 0.408 0.412 0.425 0.427 0.391 0.400 0.407 0.413 0.404 0.411 0.414 0.410 0.429 0.430 1.102 0.798 0.462 0.470 0.496 0.471

336 0.478 0.455 0.478 0.462 0.480 0.465 0.470 0.462 0.481 0.470 0.465 0.457 0.470 0.456 0.479 0.466 1.243 0.863 0.466 0.481 0.526 0.495

720 0.492 0.477 0.476 0.47 0.510 0.489 0.478 0.472 0.490 0.481 0.504 0.481 0.505 0.485 0.500 0.485 1.320 0.910 0.456 0.481 0.510 0.491

Avg 0.412 0.416 0.416 0.423 0.443 0.443 0.410 0.420 0.425 0.431 0.419 0.425 0.423 0.424 0.435 0.439 1.225 0.845 0.442 0.465 0.480 0.469

Weather

96 0.175 0.210 0.184 0.229 0.181 0.227 0.195 0.233 0.193 0.233 0.192 0.230 0.185 0.225 0.191 0.230 0.425 0.493 0.334 0.401 0.198 0.246

192 0.224 0.254 0.232 0.265 0.230 0.267 0.241 0.270 0.237 0.268 0.238 0.267 0.235 0.263 0.238 0.269 0.635 0.620 0.389 0.430 0.243 0.279

336 0.282 0.295 0.292 0.314 0.285 0.305 0.290 0.304 0.289 0.304 0.290 0.303 0.296 0.303 0.293 0.307 0.540 0.570 0.444 0.463 0.295 0.313

720 0.356 0.343 0.365 0.351 0.364 0.353 0.364 0.353 0.362 0.351 0.363 0.352 0.368 0.351 0.369 0.356 0.775 0.688 0.559 0.531 0.363 0.360

Avg 0.259 0.275 0.268 0.289 0.265 0.288 0.273 0.290 0.270 0.289 0.270 0.288 0.271 0.285 0.272 0.290 0.593 0.592 0.432 0.456 0.274 0.299
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Figure 11: Results with different input lengths for the ETTm1 and Weather datasets. We set the
input length T = {48, 96, 192, 336, 512}, the prediction length F = 336.
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