
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CC-TIME: CROSS-MODEL AND CROSS-MODALITY
TIME SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

With the success of pre-trained language models (PLMs) in various application
fields beyond natural language processing, language models have raised emerg-
ing attention in the field of time series forecasting (TSF) and have shown great
prospects. However, current PLM-based TSF methods still fail to achieve satis-
factory prediction accuracy matching the strong sequential modeling power of
language models. To address this issue, we propose Cross-Model and Cross-
Modality Learning with PLMs for time series forecasting (CC-Time). We ex-
plore the potential of PLMs for time series forecasting from two aspects: 1) what
time series features could be modeled by PLMs, and 2) whether relying solely on
PLMs is sufficient for building time series models. In the first aspect, CC-Time
incorporates cross-modality learning to model temporal dependency and chan-
nel correlations in the language model from both time series sequences and their
corresponding text descriptions. In the second aspect, CC-Time further proposes
the cross-model fusion block to adaptively integrate knowledge from the PLMs
and time series model to form a more comprehensive modeling of time series
patterns. Extensive experiments on nine real-world datasets demonstrate that CC-
Time achieves state-of-the-art prediction accuracy in both full-data training and
few-shot learning situations.

Resources: https://anonymous.4open.science/r/CC-Time-7E86.

1 INTRODUCTION

With the rapid growth of the Internet of Things, vast amounts of time series data are being generated,
driving increasing interest in time series forecasting (TSF) Kaastra & Boyd (1996); Faloutsos et al.
(2018). Current TSF methods primarily design specific modules to exploit the inherent knowledge
of the time series data, and achieve good prediction accuracy Liu et al. (2024c); Nie et al. (2023),
which we call time-series-specific models in this paper.

Recently, pre-trained language models (PLMs) have demonstrated remarkable success across diverse
fields Wang et al. (2024); Wu et al. (2024), prompting exploration in TSF Zhou et al. (2023); Jin et al.
(2024a). Some approaches attempt to leverage the representation capacity and sequential modeling
capability of PLMs to capture time series patterns for TSF, which we call PLM-based models Liu
et al. (2024d). Although these methods show good prospects, they have not yet achieved satisfactory
prediction accuracy, leaving an under-explored problem of how to effectively activate the potential
of PLMs for TSF. Motivated by this, we raise and explore two important questions:

What time series characteristics could be modeled by pre-trained LMs? Real-world multivariate
time series exhibit two critical characteristics: (1) temporal dependencies across time steps and (2)
correlations with different channels. Capturing these features is essential for modeling the under-
lying data structure and improving prediction performance. However, existing PLM-based meth-
ods mainly focus on modeling temporal dependency and typically adopt a channel-independent
approach, overlooking the potential of leveraging text modality knowledge stored in PLMs to model
channel correlations Zhou et al. (2023); Liu et al. (2024d). Meanwhile, time-series-specific meth-
ods are restricted to a single time-series modality, and they are more susceptible to numerical noise
Cheng et al. (2023) and lack the capacity to model correlations from other perspectives, such as
the semantic perspective. Consequently, effectively modeling temporal dependency and channel
correlations with multi-modality knowledge is necessary.

1

https://anonymous.4open.science/r/CC-Time-7E86

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Is relying solely on pre-trained LMs sufficient for building time series models? Recent studies indi-
cate that PLM-based models and time-series-specific models focus on different aspects of modeling
time series patternsJin et al. (2024a;b), and we also observe this phenomenon in the cross-model
analysis of Section 4.4. Time-series-specific models excel at capturing basic patterns, such as trend
and seasonality patterns Jin et al. (2024b), and language models possess strong semantic under-
standing capability and multi-domain knowledge, which provide additional analytical perspectives
for forecasting Jin et al. (2024a); Liu et al. (2024d). Therefore, integrating these two types of models
provides a more comprehensive understanding of time series patterns. However, a straightforward
fusion, such as feature concatenation or knowledge distillation Phuong & Lampert (2019); Kim &
Rush (2016), does not bridge the gap between semantic information and numerical representations.
Furthermore, due to the heterogeneity of time-series-specific models and PLMs, the correspondence
between knowledge from both models is unclear. Therefore, a novel fusion method to adaptively
integrate knowledge from both models is necessary.

To address these challenges, we propose Cross-Model and Cross-Modality Modeling, namely CC-
Time, to explore the potential of PLMs for TSF. CC-Time is a dual-branch framework that contains
a PLM branch and a time series branch, together with their cross-model fusion.

For the first aspect: In the PLM branch, we propose cross-modality modeling with PLMs to capture
temporal dependency and channel correlations, aiming at fully utilizing multi-modality knowledge
in modeling complex time series patterns. In addition to capturing temporal dependency through
patching with PLMs, we innovatively explore the potential of PLMs to model complex channel cor-
relations by leveraging their stored knowledge. To enhance this process, we incorporate time series
data with corresponding channel text descriptions as bimodal inputs, enabling PLMs to access both
numerical patterns and semantic information for more complex and robust channel correlations. Im-
portantly, these descriptions can be automatically acquired without requiring any additional human
effort. For the second aspect: To better leverage the strength of both PLMs and time-series-specific
models in capturing time series patterns, we propose a Cross-model Fusion Block (CMF Block) to
adaptively integrate knowledge from the PLM branch and the time series branch of CC-Time. At
each layer of CC-Time, the CMF Block leverages the current attention, memory attention, and gated
fusion mechanism to adaptively fuse different-level features derived from the current layer and pre-
vious layers of the PLM branch. This fusion process makes the model capture complex features
that encapsulate the semantic information and the intricate time series correlations. Subsequently,
the CMF Block further integrates these features with features extracted from the time series branch.
Overall, this adaptive cross-model fusion empowers CC-Time with a more comprehensive under-
standing of time series. Specifically, our contributions are as follows:

• We propose cross-modality modeling with PLMs to capture temporal dependency and
channel correlations based on time series and corresponding text descriptions, which can be
automatically acquired without requiring additional human effort, effectively mining and
activating PLM knowledge related to time series.

• We further propose a cross-model fusion block to adaptively integrate knowledge from
PLMs and time-series-specific models, empowering the model with a more comprehensive
understanding of time series.

• Extensive experiments on nine datasets have demonstrated that CC-Time achieves state-of-
the-art prediction accuracy in both full-data and few-shot situations.

2 RELATED WORK

Channel Correlation Modeling Channel correlation modeling has been proven to be essential
for time series forecasting. Some existing methods adopt a channel-independent strategy Nie et al.
(2023); Lin et al. (2024); Xu et al. (2024); Liu et al. (2024e), where the same weights are shared
across all channels. Numerous studies employ Graph Neural Network (GNN) to capture the channel
correlations Liu et al. (2022); Yi et al. (2023); Shang et al. (2021). MTGNN Wu et al. (2020) ex-
tends the application of GNN from spatio-temporal prediction to multivariate time series forecasting
and proposes a method for computing an adaptive cross-channel graph. In addition to GNN-based
methods, transformer-based models have made various attempts to capture correlations between
channels Zhang & Yan (2023); Liu et al. (2024c); Yang et al. (2024); Wang et al. (2023). Cross-
former Zhang & Yan (2023) proposed a two-stage attention layer to capture the cross-time and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

……

Time

V
al

ue

Description of Channels

C1:
Channel Semantic Description，
Channel Statistic Information…
C2:

Cn:
……

Time series

Patch
Embedding

Cross-Modality
Embedding

]
PLM

Channel Layer
PLM

Temporal Layer

x N

……

Time

V
al

ue

Time series

 concat

Output Projection

��

��

��

��

��

��

� � � Fusion Layer
x N

Current
Attention

w.r.t. Eq (4)

Memory
Attention

w.r.t. Eq (3)

Gated Fusion

Patch Embedding

Value

Key Query

Output Projection

MatMul

Multi-head Attention

Add&Norm

Feed-forward

Add&Norm

SoftMax

x N

MatMul

Q K V

Cross-Model Fusion

PLM Branch Time Ser ies Branch

Correlation
Extractor

(� − �)� � Fusion Layer

(� + �)� � Fusion Layer

Temporal
Attention Map

�퐜퐡�� �퐭��

�퐜퐫���

�����

�����−�
�퐭��

��퐥��

Figure 1: The framework of the proposed Cross-Model and Cross-Modality Modeling (CC-Time)
consists of three components: the PLM Branch, Cross-Model Fusion, and the Time Series Branch.

cross-channel dependency efficiently. However, these models primarily design specific modules and
only rely on time series modality to model correlations, which limits their capacity to fully capture
complex channel correlations. CC-Time incorporates channel text descriptions and leverages lan-
guage models to model channel correlations from a semantic perspective, empowering CC-Time’s
completeness of modeling correlations.

Pre-trained LMs for Time Series Forecasting Pre-trained language models (PLMs) make
progress in various fields beyond natural language processing. Recently, numerous studies have uti-
lized powerful sequence modeling and representation capabilities of PLMs to model complex time
series patterns, showcasing their potential in forecasting Zhang et al. (2024); Jiang et al. (2024); Hu
et al. (2025). These studies primarily involve direct usage Gruver et al. (2023); Xue & Salim (2024),
parameter-efficient fine-tuning Zhou et al. (2023); Chang et al. (2023); Tan et al. (2024), prompting
Liu et al. (2024d;b); Cao et al. (2024); Pan et al. (2024), and modal alignment Jin et al. (2024a);
Sun et al. (2024); Liu et al. (2024a; 2025c;b;a). For example, GPT4TS Zhou et al. (2023) fine-tunes
the limited parameters of PLMs, demonstrating competitive performance by transferring knowledge
from large-scale pre-training text data. UniTime Liu et al. (2024b) designs domain instructions to
align time series and text modality. Time-LLM Jin et al. (2024a) reprograms time series into text
to align the representation of PLMs. However, existing PLM-based methods primarily use PLMs
as simple feature extractors and have not fully exploited their potential for modeling time series
patterns. CC-Time proposes cross-model fusion to combine the strengths of both language models
and time-series-specific models, adaptively integrating their knowledge to achieve a more holistic
understanding of time series.

3 METHODOLOGY

3.1 OVERALL ARCHITECTURE

To better exploit the potential of pre-trained language models (PLMs) for TSF and comprehensively
model time series patterns, we propose cross-model and cross-modality modeling (CC-Time). As
illustrated in Figure 1, it comprises three components: the PLM branch, the time series branch, and
the cross-model fusion. In the PLM branch, we propose cross-modality modeling to fully utilize
multi-modal knowledge in modeling temporal dependency and channel correlations. For temporal
modeling, time series features are extracted by embedding time series patches and inputting them
into the PLM temporal layer. For channel modeling, considering that directly modeling channel cor-
relations solely from time series can easily be affected by numerical noise, we incorporate both chan-
nel text descriptions and time series as multi-modal inputs. By modeling channel correlations from
the semantic space by the PLM channel layer, we obtain robust and complex correlation features.
However, relying solely on PLMs is insufficient to fully model time series patterns. To address this,
we further integrate the strengths of PLMs and time-series-specific models through a novel cross-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

model fusion module. This module performs a two-step fusion: (1) adaptively fusing hierarchical
features among layers within the PLM branch, and (2) performing cross-model fusion between the
PLM and the time series branch. Through this novel fusion process, CC-Time effectively combines
knowledge from both branches, enhancing its capability for time series understanding.

3.2 CROSS-MODALITY MODELING WITH PLMS

In the PLM branch, we propose cross-modality modeling with PLMs to fully utilize multi-modality
knowledge. Unlike existing PLM-based methods, we not only adopt a patching strategy to model
temporal dependencies Zhou et al. (2023), but also, for the first time, exploit PLMs to capture com-
plex channel correlations from a semantic perspective. Specifically, as shown in the PLM branch
of Figure 1, we construct a cross-modality embedding by integrating channel text descriptions with
time series, providing semantic context for channel modeling. Based on the embedding, we design
the PLM Channel Layer that models sample-specific channel correlations from a semantic perspec-
tive. Together with the global correlations captured by the Correlation Extractor from the entire
training data, they jointly form comprehensive channel representations. Finally, the channel repre-
sentations are fused with temporal representations extracted by the PLM Temporal Layer, yielding
the final output representation at each PLM layer.

Cross-Modality Embedding The time series modality introduces a perspective of building chan-
nel correlations based on the dynamic time series features. However, only focusing on this single
modality limits the completeness of correlation modeling, as it does not well utilize language mod-
els’ abilities to model complex semantic features. Motivated by this, we innovatively generate and
utilize text descriptions of each channel for correlation modeling, which brings a new perspective
on the semantic meanings of channels and naturally utilizes PLMs’ powerful language processing
and understanding capabilities.

Our proposed cross-modality embedding uses two modalities as the inputs: time series Xtime ∈
RC×T and text descriptions Xtext ∈ RC×L, where C represents the number of channels, and T
and L represent the lengths of the time series and their text descriptions. For the input time series
Xtime ∈ RC×T , channel embedding is used to describe the overall temporal properties of each
channel, with a linear mapping along the temporal dimension yielding Echan ∈ RC×Dl , where Dl

represents the dimension of the embedded features. The corresponding text descriptions for each
channel consist of two parts: channel semantic description and channel statistical information. The
former provides a detailed semantic explanation for each channel, such as physical interpretations
and causal relationships, and the latter offers relevant quantitative statistical details about these chan-
nels, such as the mean, variance. These descriptions about channels can be automatically acquired
without requiring any additional human effort. The details about the channel text descriptions con-
struction process are provided in Appendix A. To effectively integrate the embedding of the two
modalities, we use linear mapping to compress the text embedding, aligning it with the dimension
of channels. Then we add the text embedding and time series channels embedding to get the cross-
modality embedding Ecross ∈ RC×Dl .

T
ex

t
E

m
be

dd
in

g
C

ha
nn

el

E
m

be
dd

in
g

…

…

… …

Correlation Extractor

Correlation
Map

Update

A
dd

&
N

or
m

Fe
ed

-F
or

w
ar

d

A
dd

&
N

or
m��

��

��

So
ftm

ax

�

PLM Channel Layer

…

Cross-Modality Embedding

Linear

Etext

Mg
Echan

Ef E

Figure 2: Cross-modality correlation modeling with PLMs.

Correlation modeling with PLMs
As illustrated in Figure 2, based on
the cross-modality embedding as the
input, the PLM channel layer lever-
ages the PLMs’ knowledge to model
sample-specific channel correlations
from a semantic perspective. In par-
allel, we introduce a correlation ex-
tractor to capture global correlations
across the entire training data. These
two modules complement each other,
enabling more comprehensive and ro-
bust modeling of channel correla-
tions. Given that channel correlations
dynamically change over time, rely-
ing solely on the current time series sample and corresponding text descriptions to capture sample-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

specific correlations is not enough. To address this, the correlation extractor is designed to pre-
serve global channel features across the entire training data while learning latent global correlations.
Specifically, as shown in Figure 2, we initialize a learnable correlation extractor E ∈ RC×Dr to
preserve global channel features, where Dr denotes the dimension of feature space. We use a linear
projection to map the cross-modality embedding Ecross into the feature space of the correlation ex-
tractor E as current channel features Ef . Subsequently, by utilizing the current channel features with
the correlation extractor, a global correlation map Mg ∈ RC×C is adaptively learned. The process
is as follows:

Mi,j
g =

exp(Ef [i] ∗ET [j])∑C
j=1 exp(Ef [i] ∗ET [j])

, (1)

where Mi,j
g represents the weight of correlation between the i-th channel and the j-th channel. To

make the correlations extracted from the extractor more global and generalizable, we use the current
time series sample to update the correlation extractor. Specifically, we perform matrix multiplication
between the global correlation map Mg and the extractor E to get new channel features, followed
by weighted integration with the existing channel features to produce the updated extractor E′.

To leverage pre-trained knowledge in the PLM, we reuse its layers to model correlations among
channels, denoted as PLM channel layers. As illustrated in Figure 2, the cross-modality embed-
ding Ecross is the input of the PLM Channel Layer, we perform linear transformations to obtain the
query, key, and value in attention operations, denoted as Qchan, Kchan, and Vchan ∈ RDl×Dl . Then
the current attention map Mc ∈ RC×C is computed from the query and key, which serves as the
correlation map of the current time series. To capture complex channel correlations and mitigate
the focus on only the current time series, we perform a weighted fusion operation on the current
correlation map and the global correlation map from the correlation extractor to obtain the final cor-
relation map. Then we perform matrix multiplication with Vchan to obtain the output representation
Attnchan ∈ RC×Dl of the attention process:

Mc =Softmax(QchanK
T
chan/

√
Dl), Attnchan = (ϵMg + (1− ϵ)Mc)Vchan (2)

where ϵ is the parameter to balance the global correlation and the current local correlation. After
attention operation, a feed-forward network is used to process the representation of each channel to
obtain the final output Zchan ∈ RC×Dl of the PLM channel layer.

Temporal modeling with PLMs For temporal modeling, considering the sequential modeling ca-
pability of PLMs, we simultaneously leverage the pre-trained LM layers to capture complex tempo-
ral patterns, denoted as PLM temporal layers. Specifically, we adopt a patching strategy with PLMs
Zhou et al. (2023), where the time series Xtime ∈ RC×T is divided into Np patches based on a patch
size S. These patches are then passed through patch embedding to obtain Epatch ∈ RC×Np×Dl ,
which is subsequently fed into the PLM temporal layer to model temporal dependencies, resulting
in the final output Ztem ∈ RC×Np×Dl .

To integrate language models’ knowledge from both temporal and correlation modeling, we perform
concatenation fusion on the temporal features Ztem and the correlation features Zchan to get the
complex features Zplm ∈ RC×Nm×Dl , where Nm denotes the number of concatenated patches.

3.3 CROSS-MODEL FUSION

Considering the advantage of PLMs and time-series-specific models, specific models focus on mod-
eling patterns from numerical representations, while PLMs demonstrate strong generalization and
complex-patterns-modeling capabilities, which provide additional perspectives for forecasting. Mo-
tivated by this, we propose the cross-model fusion to adaptively integrate knowledge from the two
types of models, thus fully leveraging their respective strengths. Our proposed fusion module per-
forms a two-step fusion: 1) adaptively fusing hierarchical features among layers from the PLMs
to enhance the richness of the PLM representations, and 2) cross-model fusion between the PLM
branch and the time series branch to construct a comprehensive understanding of time series.

Time series Branch modeling We use the time series as the input to model time series patterns.
Similar to the patch embedding in the PLM branch, the time series Xtime ∈ RC×T is divided into
Np patches and then processed by patch embedding to get E′

patch ∈ RC×Np×Dt , where Dt is the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

feature dimension of the time series model. As depicted in Figure 1, the time series branch is based
on a transformer structure. For the ith layer, the transformer layer extracts the temporal dynamics
between patches and obtains the output Zi

ts ∈ RC×Np×Dt of the layer as time series features.

Cross-model fusion Block Due to the heterogeneity of time series models and language models,
the correspondence between knowledge from these two types of models is unclear. Direct layer-to-
layer integration of features captured by these models could lead to feature mismatch. Therefore, we
first adaptively fuse the PLM features derived from the current layer and the previous layers to get
comprehensive complex features. Specifically, for the adaptive fusion process at the ith layer, the
Cross-model Fusion Block (CMF block) takes the mixed features from the i− 1th layer, denoted
as Zi−1

mix ∈ RC×Nm×Dl , and the features Zi
plm ∈ RC×Nm×Dl of current layer. To better integrate

these features, we propose two types of attention mechanisms, called memory attention and current
attention. Memory attention uses the features Zi

plm from the current layer as a query to selectively
focus on the accumulated features from the previous layer, yielding Attnmix ∈ RC×Nm×Dl .

Qplm = Zi
plmWQc

,Kmix = Zi−1
mixWKm ,Vmix = Zi−1

mixWVm ,

Attnmix = Softmax(QplmK
T
mix/

√
Dl)Vmix.

(3)

In contrast, current attention uses the output complex features Zi−1
mix from the previous layer as

a query to dynamically focus on the features from the current layer, resulting in Attnplm ∈
RC×Nm×Dl .

Qmix = Zi−1
mixWQm ,Kplm = Zi

plmWKc ,Vplm = Zi
plmWVc ,

Attnplm = Softmax(QmixK
T
plm/

√
Dl)Vplm.

(4)

Then we leverage gated fusion to adaptively fuse Attnplm and Attnmix to get the mixed features
Zi

mix for ith layer:
Zi

mix = βAttnmix + (1− β)Attnplm, (5)
where β is a learnable parameter, controlling the fusion of current features and accumulated features.

Based on the mixed cross-layer features Zi
mix from the PLM branch and the features Zi−1

ts from the
time series branch, we further perform cross-model fusion between these two models. Specially, we
perform learnable linear transformations on Zi

mix to get the key and value, denoted as Kcross and
Vcross ∈ RC×Nm×Dt , and use Zi−1

l to obtain query Qcross ∈ RC×Np×Dt . Then we compute the
cross attention to get the fused features Attncross ∈ RC×Np×Dt corresponding to the time series:

Attncorss = Softmax(QcrossK
T
cross/

√
Dt)Vcross. (6)

Finally, the features Attncross and the features Zi
ts from the time series branch are added to obtain

the cross-model features Zi
cross ∈ RC×Np×Dt for ith layer.

3.4 TRAIN AND INFERENCE

During the model training phase, to enhance training effectiveness and maintain the advantages of
pre-trained language models, we freeze most of the parameters in the PLM branch and only fine-tune
the positional encoding and layer normalization. All parameters in the cross-model fusion Block and
time series branch are fine-tuned. For the training loss function, we calculate the loss between the
outputs of the PLM branch and time series branch, Ŷplm and Ŷts, and the ground truth Y, the total
loss is as follows:

Ltotal = λ|Ŷplm −Y|+ (1− λ)|Ŷts −Y|, (7)
where λ is the hyperparameter. In the inference stage, only the output from the time series branch
Ŷts is used as the model prediction in the inference stage.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets To evaluate the prediction accuracy of CC-Time, we select nine real-world time series
benchmarks from various domains, including energy, weather, nature, and traffic. These datasets
include ETT (ETTh1, ETTh2, ETTm1, ETTm2), Weather, Electricity, Traffic, ZafNoo, and CzeLan.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Baselines We select eight state-of-the-art models for time series forecasting as baselines, includ-
ing PLM-based models: S2IP-LLM Pan et al. (2024), FSCAHu et al. (2025), Time-LLM Jin et al.
(2024a), UniTime Liu et al. (2024b), and GPT4TS Zhou et al. (2023), and time-series-specific mod-
els: iTransformer Liu et al. (2024c), Crossformer Zhang & Yan (2023), PatchTST Nie et al. (2023).

Settings For a fair comparison, we set the input length T to 96 and the output length F to 96, 192,
336, and 720 for all baseline models and CC-Time. At the same time, all models do not use the
drop last strategy Qiu et al. (2024). Refer to GPT4TS Zhou et al. (2023), we set GPT2 as the default
architecture for the PLM branch of CC-Time and all pre-trained LM-based baselines. Meanwhile,
in the PLM Layers of CC-Time, we only fine-tune the positional encoding and layer normalization
to reduce learnable parameters.

4.2 MAIN RESULTS

Full-data Forecasting As illustrated in Table 1, CC-Time achieves state-of-the-art prediction ac-
curacy, demonstrating the effectiveness of the model. Specifically, neither the PLM-based methods
nor the time-series-specific methods consistently achieve the second-best accuracy, indicating that
relying solely on PLMs or specific models is suboptimal. Therefore, an effective cross-model mod-
eling approach proves to be promising. Compared to time-series-specific models, CC-Time out-
performs the best model by 7.8% and 8.1% in MSE and MAE metrics. Compared to PLM-based
models, CC-Time outperforms the best baseline by 7.9% and 8.9% in MSE and MAE metrics.
PLM-based methods perform well on smaller datasets like ETTh1 and ETTh2, indicating that these
models exhibit strong generalization capabilities and are well-suited for scenarios with limited or
sparse data. For datasets with strong channel correlations, such as Electricity and Traffic, CC-Time
consistently outperforms correlation modeling methods like iTransformer and Crossformer. We also
compare CC-Time with recent time series foundation models in the Appendix D.

Model CC-Time FSCA S2IP-LLM Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.375 0.377 0.398 0.406 0.396 0.395 0.410 0.409 0.385 0.399 0.389 0.397 0.387 0.400 0.407 0.409 0.513 0.495

ETTm2 0.274 0.314 0.281 0.324 0.282 0.327 0.296 0.340 0.293 0.334 0.285 0.331 0.280 0.326 0.288 0.332 0.757 0.610

ETTh1 0.424 0.424 0.430 0.437 0.447 0.439 0.446 0.443 0.442 0.447 0.447 0.436 0.468 0.454 0.454 0.447 0.529 0.522

ETTh2 0.363 0.389 0.374 0.402 0.384 0.408 0.389 0.408 0.377 0.402 0.381 0.408 0.386 0.406 0.383 0.406 0.942 0.683

Weather 0.240 0.260 0.255 0.274 0.261 0.281 0.274 0.290 0.253 0.276 0.264 0.284 0.258 0.280 0.257 0.277 0.258 0.315

Electricity 0.174 0.257 0.187 0.237 0.198 0.283 0.223 0.309 0.215 0.304 0.205 0.290 0.204 0.290 0.178 0.269 0.244 0.344

Traffic 0.427 0.262 0.466 0.300 0.486 0.315 0.541 0.358 0.480 0.308 0.488 0.317 0.481 0.304 0.428 0.282 0.549 0.304

ZafNoo 0.545 0.434 0.589 0.473 0.577 0.470 0.591 0.481 0.581 0.478 0.594 0.477 0.576 0.466 0.577 0.471 0.550 0.449

CzeLan 0.240 0.261 0.273 0.299 0.262 0.290 0.272 0.303 0.275 0.306 0.273 0.295 0.268 0.298 0.274 0.302 0.914 0.585

Table 1: Time series forecasting results with the input length T = 96 and the prediction length
F = {96, 192, 336, 720}. Bold: the best and underline: the second best. Complete results are in
Table 10, and comparisons with time series foundation models are provided in Appendix D.

Few-shot Forecasting We conduct few-shot forecasting using 10% of the training data on the
ETT and Weather datasets to assess the few-shot learning capabilities of PLMs. As shown in
Table 2, our proposed CC-Time achieves state-of-the-art prediction accuracy. Overall, CC-Time
and PLM-based methods significantly outperform time-series-specific methods like PatchTST and
iTransformer. This indicates that PLM-based methods have strong generalization capabilities, mak-
ing them well-suited for scenarios with limited or sparse time series data, highlighting the potential
of PLMs for time series forecasting.

4.3 ABLATION STUDIES

Cross-model Fusion We conduct substitution experiments using four methods: feature summa-
tion, feature concatenation, attention fusion, and knowledge distillation with five different random
seeds. We also conduct ablation experiments on each specific module of the cross-model fusion in
Appendix E. To further evaluate the fusion effect, we also compare their performance against using
only the PLM branch. As shown in Figure 3 (a), compared to these existing fusion methods, our pro-
posed fusion method achieves significant results, demonstrating the effectiveness of our cross-model

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method CC-Time FSCA S2IP-LLM Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.406 0.399 0.422 0.416 0.429 0.421 0.424 0.413 0.424 0.419 0.415 0.408 0.421 0.416 0.450 0.431 0.635 0.590

ETTm2 0.291 0.335 0.308 0.346 0.310 0.347 0.306 0.347 0.303 0.346 0.300 0.345 0.300 0.347 0.305 0.349 1.226 0.805

ETTh1 0.459 0.448 0.477 0.457 0.484 0.461 0.479 0.462 0.482 0.459 0.470 0.457 0.479 0.458 0.660 0.551 0.834 0.689

ETTh2 0.412 0.416 0.416 0.423 0.443 0.443 0.410 0.420 0.425 0.431 0.419 0.425 0.423 0.424 0.435 0.439 1.225 0.845

Weather 0.259 0.275 0.268 0.289 0.265 0.288 0.273 0.290 0.270 0.289 0.270 0.288 0.271 0.285 0.272 0.290 0.593 0.592

Table 2: 10% few shot forecasting results with the input length T = 96 and the prediction length F =
{96, 192, 336, 720}. Bold: the best and underline: the second best. Full results are in Table 11.

fusion. The attention fusion method performs second best, indicating that it partially integrates the
corresponding knowledge. However, it lacks an adaptive process, leading to incomplete knowledge
utilization from these two models.

Cross-modality Modeling We perform ablation studies on the text description, correlation ex-
tractor, and cross-modality correlation learning with five random seeds. Figure 3 (b) shows the dis-
tinct impact of each module. Removing cross-modality correlation learning significantly decreased
prediction accuracy, particularly on the CzeLan dataset, indicating that cross-modality learning ef-
fectively and comprehensively models complex channel correlations. The text description provides
semantic information to PLMs, aiding them in understanding complex channel correlations from dif-
ferent perspectives, thereby improving prediction accuracy. The correlation extractor learns global
correlations from the dataset and complements the sample-specific correlations extracted by the
PLM channel layer, leading to more comprehensive modeling of correlations.

0.36

0.37

0.38

0.39

0.40

M
SE

0.20

0.22

0.24

0.26

0.28

0.30

M
SE

ETTm1 CzeLan

CC-Time Sum Concat Distillation Attention PLM
0.36

0.37

0.38

0.39

M
SE

0.22

0.24

0.26

0.28

M
SE

ETTm1 CzeLan

CC-Time w/o Text w/o Register w/o Cross-modality
(a) Cross model fusion (b) Cross modality modeling

Figure 3: Ablation about cross-model fusion and cross-modality modeling with five different random
seeds, with observed variations bounded within ±0.0015.

4.4 MODEL ANALYSIS

Due to the limitation of space, we conduct the channel text quality analysis, time series branch
analysis, sensitivity analysis, efficiency analysis, and varying the input length in Appendix F.3, F.4,
F.2, F.5, and F.6.

Replacement of PLM Architecture We replace GPT-2 with several more advanced pre-trained
language models, including Flan-T5-250M Chung et al. (2024), LLaMA-7B Touvron et al. (2023),
and LLaMA-13B. As shown in Table 3, different PLM architectures exhibit varying impacts on
prediction performance. Overall, adopting stronger PLMs leads to improved forecasting accuracy
in CC-Time, demonstrating its ability to leverage the knowledge of PLMs. Interestingly, we ob-
serve that the performance improvement from LLaMA-7B to LLaMA-13B is relatively marginal.
This suggests that CC-Time may not heavily rely on the additional capabilities of larger models
(e.g., reasoning), but instead primarily benefits from their semantic understanding and representa-
tion learning. Further experiments about the effectiveness of PLMs are in Appendix F.1.

Cross-modality Correlation Modeling Analysis To evaluate the effectiveness of correlation
modeling, we select two baselines: iTransformer and GPT4TS, to compare with CC-Time. In-
spired by the experiment demonstrations of the channel correlations in iTransformer, we calculate
the Pearson Correlation Coefficients, a commonly used metric for approximately assessing correla-
tions, between the predicted series and the future series for each model and normalize these results to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Models GPT2 Flan-T5-250m Llama-7B Llama-13B

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.424 0.424 0.435 0.442 0.420 0.418 0.419 0.418

ETTh2 0.363 0.389 0.368 0.396 0.356 0.380 0.355 0.381

Table 3: Performance of CC-Time with different modality knowledge of PLMs.

analyze correlation modeling. We provide a case visualization in Figure 4. Compared to GPT4TS, a
channel-independent method, iTransformer and CC-Time effectively model correlations. Compared
to iTransformer, the channel correlations predicted by CC-Time are closer to the correlations from
the future series, indicating that the correlation modeling of CC-Time is more effective and compre-
hensive. These observations also further illustrate the potential of PLMs for correlation modeling.

GPT4TS iTransformer CC-Time Future Correlation

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Figure 4: Visualization of channel correlations for different time series forecasting models.

Cross-model Analysis We analyze the modeling approaches of CC-Time, PLM-based meth-
ods, and time-series-specific methods. We use a standard metric: the centered kernel alignment
(CKA) Kornblith et al. (2019) to assess the similarity between features and original data. A
higher CKA indicates greater similarity, suggesting that the model learns simpler features, while
a lower CKA suggests the model learns more complex features. As shown in Figure 5, time-
series-specific methods exhibit high CKA values, while PLM-based methods exhibit low CKA
values. This suggests that the features learned by the two types of methods differ significantly.

CKA Similarity

M
SE

0.75 0.9

0.44

0.45
GPT4TS

TimeLLM

Crossformer

iTransformer

CC-Time(ours)

PatchTST

CKA Similarity

M
SE

0.75 0.9

0.55

0.58

GPT4TS
TimeLLM

Crossformer

iTransformer

CC-Time(ours)

PatchTST

(a) ZafNoo Dataset (b) ETTh1 Dataset

S2IP-LLM

S2IP-LLM

Figure 5: Cross-model analysis. Higher CKA values indi-
cate that the model captures simpler features.

The CKA similarity value of CC-
Time is intermediate between the two
categories of methods, and it achieves
the lowest MSE, indicating that the
model effectively captures the ap-
propriate complex features through
a cross-model modeling approach.
Furthermore, CC-Time achieves the
best prediction accuracy on two dif-
ferent types of datasets, demonstrat-
ing that this cross-model modeling
approach can better adapt to diverse
time series.

5 CONCLUSION

In this paper, we propose Cross-Model and Cross-Modality time series forecasting, namely CC-
Time, to comprehensively model time series patterns. To leverage the capability of LLM for mod-
eling complex patterns, CC-Time incorporates cross-modality modeling to capture temporal depen-
dency and channel correlations in the LLMs from both time series sequences and their corresponding
channel text descriptions. Furthermore, CC-Time proposes the cross-model fusion block to adap-
tively integrate knowledge from the LLMs and time-series-specific models to form a more compre-
hensive modeling of time series patterns. These innovative designs empower CC-Time to achieve
state-of-the-art prediction accuracy in both full-data training and few-shot learning situations. At
the same time, CC-Time exhibits better efficiency compared with most LLM-based methods. We
provide our code at https://anonymous.4open.science/r/CC-Time-7E86.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work is conducted on publicly available benchmark datasets, without involving any additional
personal information. No human subjects are involved in this research.

REPRODUCIBILITY STATEMENT

The performance of CC-Time and the datasets used in our work are real, and all experimental
results can be reproduced. We have released the code of CC-Time in an anonymous repository:
https://anonymous.4open.science/r/CC-Time-7E86.

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Ali Caner Türkmen, Xiyuan Zhang, Pedro Mercado, Huibin
Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda-Arango, Shubham
Kapoor, Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola,
Andrew Gordon Wilson, Michael Bohlke-Schneider, and Bernie Wang. Chronos: Learning the
language of time series. TMLR, 2024, 2024.

Defu Cao, Furong Jia, Sercan Ö. Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
TEMPO: prompt-based generative pre-trained transformer for time series forecasting. In ICLR,
2024.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. LLM4TS: two-stage fine-tuning for time-series
forecasting with pre-trained llms. CoRR, abs/2308.08469, 2023.

Yunyao Cheng, Peng Chen, Chenjuan Guo, Kai Zhao, Qingsong Wen, Bin Yang, and Christian S.
Jensen. Weakly guided adaptation for robust time series forecasting. Proc. VLDB Endow., 17(4):
766–779, 2023.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned lan-
guage models. JMLR, 2024.

Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam Nguyen, Wesley M.
Gifford, Chandra Reddy, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained
models for enhanced zero/few-shot forecasting of multivariate time series. In NeurIPS, 2024.

Christos Faloutsos, Jan Gasthaus, Tim Januschowski, and Yuyang Wang. Forecasting big time
series: Old and new. Proc. VLDB Endow., 11(12):2102–2105, 2018.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters. In NeurIPS, 2023.

Yuxiao Hu, Qian Li, Dongxiao Zhang, Jinyue Yan, and Yuntian Chen. Context-alignment: Activat-
ing and enhancing llm capabilities in time series. arXiv preprint arXiv:2501.03747, 2025.

Yushan Jiang, Zijie Pan, Xikun Zhang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and
Dongjin Song. Empowering time series analysis with large language models: A survey. In IJCAI,
pp. 8095–8103, 2024.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models. In ICLR, 2024a.

Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui
Pan, and Qingsong Wen. Position: What can large language models tell us about time series
analysis. In ICML, 2024b.

Iebeling Kaastra and Milton S. Boyd. Designing a neural network for forecasting financial and
economic time series. Neurocomputing, 10(3):215–236, 1996.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. CoRR, abs/1606.07947,
2016.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton. Similarity of neural
network representations revisited. In ICML, volume 97, pp. 3519–3529, 2019.

Shengsheng Lin, Weiwei Lin, Xinyi Hu, Wentai Wu, Ruichao Mo, and Haocheng Zhong. Cyclenet:
Enhancing time series forecasting through modeling periodic patterns. In NeurIPS, 2024.

Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, and
Rui Zhao. TimeCMA: Towards llm-empowered multivariate time series forecasting via cross-
modality alignment. In AAAI, pp. 18780–18788, 2025a.

Chenxi Liu, Shaowen Zhou, Hao Miao, Qianxiong Xu, Cheng Long, Ziyue Li, and Rui Zhao. Ef-
ficient multivariate time series forecasting via calibrated language models with privileged knowl-
edge distillation. arXiv preprint arXiv:2505.02138, 2025b.

Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao
Xia. CALF: aligning llms for time series forecasting via cross-modal fine-tuning. In AAAI, pp.
18915–18923, 2025c.

Qingxiang Liu, Xu Liu, Chenghao Liu, Qingsong Wen, and Yuxuan Liang. Time-ffm: Towards
lm-empowered federated foundation model for time series forecasting. In NeurIPS, 2024a.

Xu Liu, Junfeng Hu, Yuan Li, Shizhe Diao, Yuxuan Liang, Bryan Hooi, and Roger Zimmermann.
Unitime: A language-empowered unified model for cross-domain time series forecasting. In
WWW, pp. 4095–4106, 2024b.

Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, and Wei
Chen. Multivariate time-series forecasting with temporal polynomial graph neural networks. In
NeurIPS, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In ICLR, 2024c.

Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Autore-
gressive time series forecasters via large language models. CoRR, abs/2402.02370, 2024d.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Generative pre-trained transformers are large time series models. In ICML, 2024e.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In ICLR, 2023.

Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song.
S2IP-LLM: semantic space informed prompt learning with LLM for time series forecasting. In
ICML, 2024.

Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In ICML,
volume 97, pp. 5142–5151, 2019.

Rafael Poyatos, Vı́ctor Granda, Vı́ctor Flo, Mark A Adams, Balázs Adorján, David Aguadé, Mar-
cos PM Aidar, Scott Allen, M Susana Alvarado-Barrientos, Kristina J Anderson-Teixeira, et al.
Global transpiration data from sap flow measurements: the sapfluxnet database. Earth System
Science Data Discussions, 2020:1–57, 2020.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoy-
ing Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. TFB: towards comprehensive and
fair benchmarking of time series forecasting methods. Proc. VLDB Endow., 17(9):2363–2377,
2024.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. In ICLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. Test: Text prototype aligned embedding to
activate llm’s ability for time series. In ICLR, 2024.

Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, and Tom Hartvigsen. Are language
models actually useful for time series forecasting? In NeurIPS, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: open and
efficient foundation language models. arxiv. arXiv preprint arXiv:2302.13971, 2023.

Artur Trindade. Electricityloaddiagrams20112014, uci machine learning repository. DOI:
https://doi. org/10.24432/C58C86, 2015.

Haoxin Wang, Yipeng Mo, Nan Yin, Honghe Dai, Bixiong Li, Songhai Fan, and Site Mo. Dance
of channel and sequence: An efficient attention-based approach for multivariate time series fore-
casting. CoRR, abs/2312.06220, 2023.

Shen Wang, Tianlong Xu, Hang Li, Chaoli Zhang, Joleen Liang, Jiliang Tang, Philip S. Yu,
and Qingsong Wen. Large language models for education: A survey and outlook. CoRR,
abs/2403.18105, 2024.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In ICML, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans-
formers with auto-correlation for long-term series forecasting. In NeurIPS, pp. 22419–22430,
2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In ICLR, 2023.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
for recommendation. WWW, 27(5):60, 2024.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Con-
necting the dots: Multivariate time series forecasting with graph neural networks. In SIGKDD,
pp. 753–763, 2020.

Zhijian Xu, Ailing Zeng, and Qiang Xu. FITS: modeling time series with 10k parameters. In ICLR,
2024.

Hao Xue and Flora D. Salim. Promptcast: A new prompt-based learning paradigm for time series
forecasting. TKDE, 36(11):6851–6864, 2024.

Yingnan Yang, Qingling Zhu, and Jianyong Chen. Vcformer: Variable correlation transformer with
inherent lagged correlation for multivariate time series forecasting. In IJCAI, pp. 5335–5343,
2024.

Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph
perspective. In NeurIPS, 2023.

Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K. Gupta, and Jingbo Shang. Large language models
for time series: A survey. In IJCAI, pp. 8335–8343, 2024.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In ICLR, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, pp.
11106–11115, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In ICML, volume 162, pp.
27268–27286, 2022.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general time
series analysis by pretrained LM. In NeurIPS, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CHANNEL DESCRIPTIONS

As shown in Figure 6, for generating semantic descriptions, we construct prompts for each channel:
This is <dataset name>from <domain>, including <channel name1>, <channel name2>, ...,
please describe these channels and their correlations. We just need to input the dataset name,
domain name, and the specific channel names into the predefined prompt. Then, by entering it
into a large language model like ChatGPT, the semantic descriptions of channels are generated. For
example, in the Weather dataset Wu et al. (2021), the description of the temperature channel (denoted
as ”T (degC)” in the dataset) is generated from LLMs as follows: Temperature is a key parameter
that describes climate conditions. It is closely related to humidity. As the temperature rises, the
air can hold more moisture, affecting humidity. CC-Time can leverage this semantic information
to understand the correlation between temperature and humidity in the real world, which helps in
better modeling patterns.

For statistic information, we calculate the maximum value, minimum value, mean, variance, and
other statistics for each time series channel. Then, the semantic description and statistical informa-
tion for each channel are concatenated to form the complete text description of each channel. These
text descriptions Xtext are input into a pre-trained text tokenizer to obtain text embedding results
Etext ∈ RC×L×Dl .

Semantic Description:

Statistic Information:

LLMs

Prompt

This is <dataset name> from
<domain>, including <channel
name1>, ..., please describe
these variables and correlations.

The statistics of channel name1:
minimum: <min_val>
maximum: <max_val>
mean: <mean_val>
variance: <variance_var>

The statistics of channel name N:

<channel name1> is ...

Example:
T(degC) is a key parameter that
describes climate conditions. It is
closely related to humidity. As the
temperature rises, the air can hold
more moisture...

channel name 1

channel name N
Calculate

Concatenation

Example:
This is weather dataset from
meteorology, including
T(degC), ..., please describe
these variables.

Figure 6: The construction process of channel text descriptions Xtext.

B DATASETS

ETT (Electric Transformer Temperature) Zhou et al. (2021) collected from two different electric
transformers, spans from July 2016 to July 2018, and includes 7 channels. ETT is divided into
four subsets: ETTh1 and ETTh2, recorded hourly, and ETTm1 and ETTm2, recorded every 15
minutes. (2) Weather Wu et al. (2021) includes 21 different meteorological indicators that provide
comprehensive data on weather conditions. These indicators, such as temperature, barometric pres-
sure, humidity and others, offer a broad perspective on the atmospheric environment. (3) Electricity
Trindade (2015) contains the electricity consumption of 321 customers from July 2016 to July 2019,
recorded hourly. (4) Traffic Wu et al. (2021) contains road occupancy rates measured by 862 sensors
on freeways in the San Francisco Bay Area from 2015 to 2016, recorded hourly. (5) ZafNoo Poyatos
et al. (2020) is from the Sapflux data project including sap flow measurements and environmental

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

variables. (6) CzeLan Poyatos et al. (2020) is from the Sapflux data project including sap flow mea-
surements and environmental variables. We split each evaluation dataset into train-validation-test
sets and detailed descriptions of evaluation datasets are shown in Table 4. According to the chan-
nel description generation method proposed in section 3.2, the corresponding text for datasets is
generated without requiring any additional human effort.

Dataset Domain Frequency Lengths Channels Split

ETTh1 Electricity 1 hour 14400 7 6:2:2
ETTh2 Electricity 1 hour 14400 7 6:2:2
ETTm1 Electricity 15 mins 57600 7 6:2:2
ETTm2 Electricity 15 mins 57600 7 6:2:2

Electricity Electricity 1 hour 26304 321 7:1:2
Weather Environment 10 mins 52696 21 7:1:2
Traffic Transport 1 hour 17544 862 7:1:2
ZafNoo Nature 30 mins 19225 11 7:1:2
CzeLan Nature 30 mins 19934 11 7:1:2

Table 4: Detailed dataset descriptions.

C BASELINES

• S2IP-LLM Pan et al. (2024) aligns the semantic space of pre-trained PLMs with time se-
ries embedding space and enhances the representation of time series using semantic space
informed prompting to improve forecasting performance.

• FSCA Hu et al. (2025) builds the consistent context through structural alignment, logical
alignment, and dual-scale GNNs, enabling PLMs to better understand time series.

• Time-LLM Jin et al. (2024a) aligns the time series features into the language feature space
through reprogramming techniques, then concatenates them with the text prompt before
inputting them into a pre-trained large language model for feature extraction.

• UniTime Liu et al. (2024b) designs domain instructions as prompts and uses the language
model architecture for multi-source time series pre-training to extract broad knowledge.

• GPT4TS Zhou et al. (2023) uses the pre-trained GPT2 as the backbone and adapts it to the
time series space for feature extraction by fine-tuning the positional encoding and normal-
ization layers.

• iTransformer Liu et al. (2024c) treats the entire set of variables as tokens and uses the
Transformer architecture to model the correlations between the entire set of channels.

• Crossformer Zhang & Yan (2023) proposes a two-stage attention mechanism (cross-time
attention and cross-dimension attention) to model the dynamics of time and the correlations
between channels.

• PatchTST Nie et al. (2023) employs a patching strategy to preserve local information and
uses the Transformer architecture to capture the correlation between different patches for
temporal modeling. It also applies a channel-independent strategy on the channel dimen-
sion.

• FEDformer Zhou et al. (2022) proposes a frequency-enhanced decomposed Transformer
architecture to model temporal dynamics from the perspective of frequency.

• TimesNet Wu et al. (2023) transforms one-dimensional time series into a two-dimensional
structure using Fourier transforms, enabling the modeling of 2D temporal variations to
capture multi-periodicity time series patterns.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D COMPARED WITH TIME SERIES FOUNDATION MODELS

To further validate the prediction performance of CC-Time, we conduct comparative experiments
with several state-of-the-art time series foundation models, including Chronos Ansari et al. (2024),
MORIAI Woo et al. (2024), Timer Liu et al. (2024e), and TTMs Ekambaram et al. (2024). The
evaluation is performed on ETT and Weather datasets, with input lengths of {96, 336, 512} and
output lengths spanning {96, 192, 336, 720}. The final results are selected based on the optimal
performance across the three input lengths. As shown in Table 5, CC-Time achieves state-of-the-art
prediction performance in most forecasting scenarios, outperforming the four baseline models. This
demonstrates that CC-Time not only exhibits strong generalization capabilities but also effectively
leverages knowledge from pre-trained language models, leading to significant improvements in time
series forecasting accuracy.

Models CC-Time Chronos MORIAI Timer TTMs

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.357 0.389 0.388 0.387 0.394 0.399 0.413 0.424 0.361 0.392

192 0.397 0.415 0.440 0.416 0.430 0.422 0.487 0.459 0.393 0.415

336 0.415 0.429 0.477 0.434 0.450 0.437 0.501 0.471 0.411 0.429

720 0.436 0.453 0.474 0.446 0.457 0.458 0.538 0.505 0.426 0.450

ETTh2

96 0.265 0.328 0.292 0.328 0.285 0.329 0.324 0.366 0.270 0.330

192 0.342 0.376 0.362 0.371 0.352 0.374 0.409 0.410 0.362 0.384

336 0.359 0.395 0.400 0.404 0.384 0.403 0.419 0.428 0.367 0.400

720 0.382 0.421 0.412 0.420 0.419 0.432 0.451 0.456 0.384 0.425

ETTm1

96 0.276 0.327 0.339 0.340 0.464 0.404 0.335 0.359 0.285 0.336

192 0.323 0.354 0.392 0.372 0.488 0.422 0.424 0.406 0.326 0.363

336 0.354 0.374 0.440 0.398 0.520 0.442 0.450 0.428 0.357 0.380

720 0.412 0.407 0.530 0.442 0.598 0.482 0.514 0.465 0.413 0.413

ETTm2

96 0.159 0.242 0.181 0.248 0.224 0.283 0.185 0.264 0.165 0.248

192 0.216 0.283 0.253 0.296 0.308 0.335 0.257 0.311 0.225 0.295

336 0.272 0.320 0.318 0.337 0.369 0.374 0.313 0.351 0.275 0.328

720 0.354 0.375 0.417 0.396 0.460 0.430 0.402 0.408 0.367 0.385

Weather

96 0.144 0.181 0.183 0.216 0.206 0.220 0.172 0.218 0.149 0.198

192 0.188 0.224 0.227 0.258 0.278 0.269 0.235 0.261 0.190 0.234

336 0.238 0.267 0.286 0.297 0.335 0.312 0.296 0.305 0.248 0.279

720 0.314 0.318 0.368 0.348 0.413 0.368 0.380 0.356 0.318 0.329

Table 5: Full forecasting with input lengths {96, 336, 512} and prediction lengths
{96, 192, 336, 720}. The results are the best prediction across three input lengths.

E ABLATION ABOUT CROSS-MODEL FUSION

We conduct ablation experiments on each specific module within the cross-model fusion block, in-
cluding current attention, memory attention, and gating fusion. As shown in Figure 7, compared
to using only the PLM branch and CC-Time, we find that each module contributes uniquely to the
overall performance. Among them, removing current attention has the most significant effect, in-
dicating that the fusion of features from two types of models at the corresponding layers is crucial.
Meanwhile, the memory attention ablation experiment shows that, in addition to fusion at the cor-
responding layers, by incorporating features from previous layers of the PLM branch, the effective
fusion of the two models can be further enhanced, achieving better prediction accuracy.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.22

0.24

0.26

0.28

M
SE

0.37

0.38

0.39

M
SE

CC-Time w/o Current w/o Memory w/o Gating PLM

ETTm1 CzeLan

Figure 7: Each module ablation of cross-model fusion on the ETTm1 and CzeLan datasets. w/o
current, w/o memory, and w/o gating represent removing current attention, memory attention, and
gating fusion, respectively. PLM represents only the use of the PLM branch.

F MODEL ANALYSIS

F.1 EFFECTIVENESS OF PRE-TRAINED LANGUAGE MODELS

To evaluate the effectiveness of pre-trained language models (PLMs), we conduct two types of ex-
periments. In the first experiment, we consider three aspects: the number of PLM layers, parameter
initialization, and whether to freeze PLM parameters. Specifically, CC-Time(3) and CC-Time(12)
denote using 3 and 12 GPT layers, respectively, while the default CC-Time uses 6 layers. ”Ran-
dom init” refers to replacing pre-trained language model parameters with random initialization. ”No
freeze” represents that all PLM parameters are fine-tuned without freezing. As shown in Table 6,
using too few or too many PLM layers decreases prediction accuracy. Too few layers may lead to
insufficient extraction of complex features from PLMs, while too many layers can result in overly
abstract features. Additionally, random parameter initialization significantly decreases accuracy,
highlighting the importance of PLM knowledge in CC-Time for time series forecasting. Further-
more, not freezing PLM can cause catastrophic forgetting and overfitting, leading to poor prediction
accuracy.

Models CC-Time CC-Time(3) CC-Time(12) Random init No freeze

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.424 0.424 0.438 0.429 0.437 0.431 0.445 0.438 0.452 0.447

ETTh2 0.364 0.389 0.372 0.393 0.369 0.392 0.376 0.403 0.382 0.408

Table 6: Large language model analysis experiment.

In the second experiment, refer to Tan et al. (2024), we further validate the effectiveness of PLMs
in CC-Time. Specifically, we focus on three aspects: removing the entire PLM layers of CC-Time
(W/O PLM), replacing the PLM layers with a single layer of untrained Attention (LLM2Attn), and
replacing the PLM layers with a single layer of untrained Transformer (LLM2Trsf). As shown in
Table 7, CC-Time effectively utilizes LLM knowledge to model time series. When comparing W/O
PLM with CC-Time, the results indicate that relying solely on basic time series modules like Patch-
ing and ReVIN is insufficient, and that effectively exploring the potential of PLM knowledge for
time series forecasting is crucial. When comparing LLM2Attn and LLM2Trf with CC-Time, the
results indicate that relying on single-layer attention or transformer for feature extraction is inad-
equate, and that fully leveraging the strengths of PLMs and time-series-specific models to capture
time series features comprehensively is essential.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Models CC-Time W/O LLM LLM2Attn LLM2Trsf

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.424 0.424 0.458 0.450 0.446 0.440 0.452 0.442

ETTh2 0.363 0.389 0.385 0.406 0.388 0.409 0.378 0.401

Table 7: Performance of CC-Time with removing or replacing PLM layers.

F.2 PARAMETER SENSITIVITY ANALYSIS

We conduct hyper-parameter sensitivity analysis of two key parameters in CC-Time on the ETTm1
dataset with five different random seeds: the loss weight λ, and the correlation weight ϵ. Both the
input length and prediction length are set to 96. As illustrated in Figure 8 (a), CC-Time achieves
better prediction accuracy when λ is set to 0.6. This suggests that the loss weight for the time series
branch should be set relatively higher than that for the PLM Branch, as updating the time series
branch also influences the corresponding PLM layers through cross-model fusion. Furthermore,
Figure 8 (b) shows that CC-Time performs best when ϵ is set to 0.4, indicating that while balancing
current and global correlation, it is beneficial to assign slightly more weight to focus on the current
correlation. Overall, CC-Time exhibits relatively stable prediction accuracy with different values of
the two hyperparameters.

0.300

0.305

0.310

0.315

0.320

0.325

0.2 0.4 0.6 0.8

M
SE

0.305

0.310

0.315

0.320

0.325

0.2 0.4 0.6 0.8

M
SE

(a) The loss weight � (b) The correlation weight �

Figure 8: The effect of parameter λ and parameter ϵ. The results represent the mean across five
independent runs with different random seeds, with observed variations bounded within ±0.001 for
λ and ±0.0015 for ϵ.

F.3 TEXT QUALITY ANALYSIS

To verify whether the PLM Branch in CC-Time truly understands the semantics of the channel text
descriptions and is robust to text quality. We design three types of interventions: removing the
channel text descriptions, replacing them with randomly generated text, and injecting noise into the
constructed channel text descriptions. As shown in the Figure 9, injecting noise into the text leads to
only a slight drop in prediction accuracy, indicating that CC-Time is robust to minor degradation in
text quality. In contrast, replacing the channel descriptions with random text results in a significant
performance drop—even worse than using no text at all—demonstrating that PLM Branch of the
CC-Time understands and utilizes the semantic information in the channel descriptions to enhance
the modeling of channel semantic correlations.

F.4 TIME SERIES BRANCH REPLACEMENT ANALYSIS

To evaluate whether the PLM Branch and Cross-Model Fusion in CC-Time enhance other time series
models, we replace its original time-series branch with two state-of-the-art time series models: HD-
Mixer and PatchMixer. As shown in Table 8, the experimental results show consistent improvements
across three different datasets. This demonstrates that the proposed PLM Branch and Cross-Model

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0.36

0.37

0.38

0.39

M
SE

0.22

0.24

0.26

0.28

M
SE

ETTm1 CzeLan

CC-Time Add Noise Random Text w/o Text

Figure 9: Channel text descriptions analysis on the ETTm1 and CzeLan datasets. w/o text represents
removing channel text descriptions, Add Noise represents injecting noise into the constructed text
descriptions, and Random Text represents randomly generating text descriptions.

Fusion effectively leverage the knowledge encoded in pre-trained language models and integrate it
with time-series branches to comprehensively model temporal patterns, thereby improving forecast-
ing performance. Moreover, the results highlight the strong generalizability of our method.

Models HDMixer +CC-Time PatchMixer +CC-Time

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.345 0.373 0.320 0.340 0.322 0.353 0.312 0.335
192 0.380 0.391 0.364 0.370 0.363 0.380 0.358 0.367
336 0.400 0.409 0.390 0.388 0.398 0.404 0.391 0.389
720 0.466 0.443 0.450 0.432 0.455 0.439 0.448 0.427
avg 0.397 0.404 0.381 0.382 0.384 0.394 0.377 0.379

CzeLan

96 0.203 0.256 0.190 0.237 0.204 0.251 0.189 0.232
192 0.232 0.270 0.222 0.251 0.235 0.272 0.218 0.248
336 0.255 0.296 0.249 0.273 0.267 0.294 0.253 0.276
720 0.307 0.330 0.289 0.311 0.309 0.329 0.289 0.310
avg 0.249 0.288 0.237 0.268 0.253 0.286 0.238 0.267

Weather

96 0.171 0.221 0.155 0.189 0.172 0.215 0.157 0.192
192 0.223 0.263 0.208 0.242 0.219 0.252 0.202 0.235
336 0.276 0.302 0.264 0.286 0.271 0.295 0.258 0.281
720 0.345 0.347 0.340 0.334 0.349 0.344 0.342 0.336
avg 0.253 0.283 0.241 0.263 0.252 0.276 0.239 0.261

Table 8: Time Series Branch Analysis. ”+CC-Time” represents replacing the time series branch of
CC-Time with other time series models.

F.5 EFFICIENCY ANALYSIS

We conduct an efficiency comparison experiment between CC-Time and the baselines on the ETTh1
dataset, with both input and output lengths set to 96. We analyze the results from two aspects: train-
ing time per epoch and the number of trainable parameters. As illustrated in Figure 10, compared to
PLM-based methods, such as Time-LLM and UniTime, CC-Time not only achieves superior predic-
tion accuracy but also demonstrates significant advantages in training time and trainable parameters.
In comparison to time-series-specific models, while iTransformer and PatchTST show better ef-
ficiency than CC-Time, their prediction accuracy is notably lower. Furthermore, in the few-shot
forecasting scenario, where the training data is limited, the increase in CC-Time’s cost compared
to iTransformer and PatchTST is minor. Compared to Crossformer and FEDformer, CC-Time also
exhibits advantages in efficiency. Overall, CC-Time effectively balances efficiency and prediction
performance, and we believe that it is worthwhile to use PLMs to enhance prediction in CC-Time.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

19.82

132.47

75.62

13.84
4.69

13.24
3.4

32.9

15.47

0

20

40

60

80

100

120

140

T
ra

in
 T

im
e(

s/
ep

oc
h)

Models

4.47

52.8

81.9

2.65 3.25
11.51

1.85

16.3

2.36
0

20

40

60

80

100

T
ra

in
ab

le
 P

ar
am

s(
M

)

Models

CC-Time Time-LLM UniTime GPT4TS iTransformer Crossformer PatchTST FEDformer TimesNet

(a) Train Time (b) Trainable Parameters

Figure 10: The efficiency analysis of CC-Time.

F.5.1 INFERENCE EFFICIENCY

To better evaluate the inference efficiency of CC-Time, we compare it with several PLM-based
models (Time-LLM, UniTime, and GPT4TS) as well as time series foundation models (MOIRAI,
Chronos, and Timer). We adopt two evaluation metrics: maximum GPU memory usage and average
inference time per batch. As shown in Table 9, CC-Time consistently demonstrates fast inference
speed and low GPU memory consumption compared to both LLM-based models and time series
foundation models.

CC-Time Time-LLM UniTime GPT4TS MOIRAI Large Chronos Large Timer

GPU(MB) 1261 8192 1878 1095 2009 10269 1435

Inference(s) 0.019 0.201 0.039 0.006 0.100 34.330 0.080

Table 9: The inference analysis of CC-Time and other baselines on the ETTh1 dataset with batch
size of 1. We report the Max GPU Memory and Average Inference Time per batch.

F.6 VARYING THE INPUT LENGTH

For time series forecasting, the input length determines the amount of historical information the
model receives. To better assess the prediction accuracy of CC-Time, we select the top-performing
models listed in Table 1 and conduct experiments using varying input lengths, specifically T =
{48, 96, 192, 336, 512}. As illustrated in Figure 11, CC-Time consistently achieves state-of-the-art
prediction accuracy across all input lengths. Notably, as the input length increases, the prediction
metrics—MSE and MAE—demonstrate a clear downward trend. This reduction highlights CC-
Time’s ability to effectively model and leverage longer sequences, further showcasing its strength in
capturing complex temporal dependencies.

G FULL RESULTS

The full results about full forecasting and few-shot forecasting are provided in Tables 10 and 11.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In CC-Time, we employ a pre-trained language model (GPT2) as the encoder in the PLM branch to
extract features, thereby enhancing the model’s capacity for time series understanding. It is worth
emphasizing that LLMs were not involved in any part of the paper writing process

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Full forecasting results with the input length T = 96 and the prediction length F =
{96, 192, 336, 720}.

Models CC-Time FSCA S2IP-LLM Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer FEDformer TimesNet

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.309 0.333 0.336 0.371 0.334 0.363 0.359 0.381 0.322 0.363 0.329 0.364 0.329 0.367 0.334 0.368 0.404 0.426 0.379 0.419 0.338 0.375

192 0.354 0.363 0.376 0.391 0.377 0.382 0.383 0.393 0.366 0.387 0.368 0.382 0.367 0.385 0.377 0.391 0.450 0.451 0.426 0.441 0.374 0.387

336 0.386 0.387 0.411 0.414 0.404 0.400 0.416 0.414 0.398 0.407 0.400 0.403 0.399 0.410 0.426 0.420 0.532 0.515 0.445 0.459 0.410 0.411

720 0.451 0.426 0.470 0.449 0.469 0.437 0.483 0.449 0.454 0.440 0.460 0.439 0.454 0.439 0.491 0.459 0.666 0.589 0.543 0.490 0.478 0.450

Avg 0.375 0.377 0.398 0.406 0.396 0.395 0.410 0.409 0.385 0.399 0.389 0.397 0.387 0.400 0.407 0.409 0.513 0.495 0.448 0.452 0.400 0.405

ETTm2

96 0.171 0.248 0.181 0.261 0.177 0.261 0.193 0.280 0.183 0.266 0.178 0.263 0.175 0.259 0.180 0.264 0.287 0.366 0.203 0.287 0.187 0.267

192 0.237 0.292 0.243 0.302 0.244 0.301 0.257 0.318 0.251 0.310 0.245 0.306 0.241 0.302 0.250 0.309 0.414 0.492 0.269 0.328 0.249 0.309

336 0.296 0.330 0.303 0.339 0.306 0.343 0.317 0.353 0.319 0.351 0.309 0.347 0.305 0.343 0.311 0.348 0.597 0.542 0.325 0.366 0.321 0.351

720 0.395 0.389 0.398 0.396 0.404 0.403 0.419 0.411 0.420 0.410 0.409 0.408 0.402 0.400 0.412 0.407 1.730 1.042 0.421 0.415 0.408 0.403

Avg 0.274 0.314 0.281 0.324 0.282 0.327 0.296 0.340 0.293 0.334 0.285 0.331 0.280 0.326 0.288 0.332 0.757 0.610 0.304 0.349 0.291 0.332

ETTh1

96 0.374 0.391 0.368 0.396 0.393 0.403 0.398 0.410 0.397 0.418 0.376 0.397 0.414 0.419 0.386 0.405 0.423 0.448 0.376 0.419 0.384 0.402

192 0.414 0.417 0.425 0.426 0.443 0.429 0.442 0.435 0.434 0.439 0.438 0.426 0.460 0.445 0.441 0.436 0.471 0.474 0.420 0.448 0.436 0.429

336 0.450 0.437 0.454 0.448 0.472 0.447 0.474 0.454 0.468 0.457 0.479 0.446 0.501 0.466 0.487 0.458 0.570 0.546 0.459 0.465 0.491 0.469

720 0.449 0.454 0.476 0.480 0.480 0.478 0.471 0.472 0.469 0.477 0.495 0.476 0.500 0.488 0.503 0.491 0.653 0.621 0.506 0.507 0.521 0.500

Avg 0.421 0.424 0.430 0.437 0.447 0.439 0.446 0.443 0.442 0.447 0.447 0.436 0.468 0.454 0.454 0.447 0.529 0.522 0.440 0.460 0.458 0.450

ETTh2

96 0.282 0.330 0.294 0.346 0.309 0.364 0.295 0.346 0.296 0.345 0.295 0.348 0.302 0.348 0.297 0.349 0.745 0.584 0.358 0.397 0.340 0.374

192 0.350 0.376 0.362 0.390 0.380 0.396 0.386 0.399 0.374 0.394 0.386 0.404 0.388 0.400 0.380 0.400 0.877 0.656 0.429 0.439 0.402 0.414

336 0.405 0.419 0.383 0.408 0.422 0.432 0.447 0.443 0.415 0.427 0.421 0.435 0.426 0.433 0.428 0.432 1.043 0.731 0.496 0.487 0.452 0.452

720 0.413 0.433 0.458 0.466 0.425 0.442 0.428 0.444 0.425 0.444 0.422 0.445 0.431 0.446 0.427 0.445 1.104 0.763 0.463 0.474 0.462 0.468

Avg 0.362 0.389 0.374 0.402 0.384 0.408 0.389 0.408 0.377 0.402 0.381 0.408 0.386 0.406 0.383 0.406 0.942 0.683 0.437 0.449 0.414 0.427

Weather

96 0.157 0.192 0.176 0.216 0.181 0.220 0.195 0.233 0.171 0.214 0.182 0.223 0.177 0.218 0.174 0.214 0.158 0.230 0.217 0.296 0.172 0.220

192 0.205 0.236 0.211 0.243 0.227 0.258 0.240 0.269 0.217 0.254 0.231 0.263 0.225 0.259 0.221 0.254 0.206 0.277 0.276 0.336 0.219 0.261

336 0.261 0.280 0.278 0.296 0.280 0.298 0.293 0.306 0.274 0.293 0.283 0.300 0.278 0.297 0.278 0.296 0.272 0.335 0.339 0.380 0.280 0.306

720 0.339 0.332 0.355 0.344 0.358 0.348 0.368 0.354 0.351 0.343 0.360 0.350 0.354 0.348 0.358 0.347 0.398 0.418 0.403 0.428 0.365 0.359

Avg 0.240 0.260 0.255 0.274 0.261 0.281 0.274 0.290 0.253 0.276 0.264 0.284 0.258 0.280 0.257 0.277 0.258 0.315 0.309 0.360 0.259 0.287

Electricity

96 0.147 0.233 0.160 0.248 0.175 0.258 0.204 0.293 0.196 0.287 0.185 0.272 0.181 0.270 0.148 0.240 0.219 0.314 0.193 0.30-8 0.168 0.272

192 0.165 0.247 0.172 0.260 0.182 0.270 0.207 0.295 0.199 0.291 0.189 0.276 0.188 0.274 0.162 0.253 0.231 0.322 0.201 0.315 0.184 0.289

336 0.176 0.262 0.195 0.280 0.192 0.282 0.219 0.308 0.214 0.305 0.204 0.291 0.204 0.293 0.178 0.269 0.246 0.337 0.214 0.329 0.198 0.300

720 0.209 0.289 0.221 0.306 0.245 0.322 0.263 0.341 0.254 0.335 0.245 0.324 0.246 0.324 0.225 0.317 0.280 0.363 0.246 0.355 0.220 0.320

Avg 0.174 0.257 0.187 0.273 0.198 0.283 0.223 0.309 0.215 0.304 0.205 0.290 0.204 0.290 0.178 0.269 0.244 0.344 0.214 0.327 0.192 0.295

Traffic

96 0.400 0.243 0.455 0.287 0.466 0.300 0.536 0.359 0.458 0.301 0.468 0.307 0.462 0.295 0.395 0.268 0.522 0.290 0.587 0.366 0.593 0.321

192 0.415 0.255 0.460 0.295 0.478 0.313 0.532 0.354 0.468 0.306 0.476 0.311 0.466 0.296 0.417 0.276 0.530 0.293 0.604 0.373 0.617 0.336

336 0.432 0.264 0.472 0.306 0.489 0.320 0.530 0.349 0.485 0.310 0.488 0.317 0.482 0.304 0.433 0.283 0.558 0.305 0.621 0.383 0.629 0.336

720 0.463 0.283 0.480 0.315 0.512 0.328 0.569 0.371 0.510 0.315 0.521 0.333 0.514 0.322 0.467 0.302 0.589 0.328 0.626 0.382 0.640 0.350

Avg 0.427 0.262 0.466 0.300 0.486 0.315 0.541 0.358 0.480 0.308 0.488 0.317 0.481 0.304 0.428 0.282 0.549 0.304 0.610 0.376 0.619 0.335

ZafNoo

96 0.463 0.384 0.479 0.415 0.468 0.409 0.486 0.428 0.476 0.427 0.478 0.416 0.470 0.409 0.483 0.426 0.472 0.399 0.486 0.443 0.480 0.425

192 0.524 0.422 0.558 0.458 0.557 0.461 0.561 0.467 0.554 0.468 0.561 0.462 0.545 0.450 0.548 0.457 0.520 0.432 0.569 0.485 0.554 0.465

336 0.561 0.445 0.613 0.489 0.595 0.482 0.605 0.486 0.597 0.489 0.616 0.491 0.599 0.481 0.605 0.483 0.568 0.467 0.634 0.514 0.591 0.486

720 0.634 0.481 0.707 0.532 0.691 0.531 0.713 0.541 0.698 0.527 0.721 0.542 0.692 0.525 0.670 0.518 0.642 0.498 0.795 0.607 0.722 0.540

Avg 0.545 0.434 0.589 0.473 0.577 0.470 0.591 0.481 0.581 0.478 0.594 0.477 0.576 0.466 0.577 0.471 0.550 0.449 0.621 0.512 0.586 0.479

CzeLan

96 0.188 0.223 0.212 0.252 0.206 0.250 0.215 0.259 0.223 0.268 0.216 0.257 0.214 0.260 0.219 0.264 0.612 0.472 0.272 0.343 0.228 0.286

192 0.220 0.245 0.251 0.282 0.238 0.275 0.255 0.293 0.245 0.290 0.247 0.276 0.243 0.279 0.250 0.285 0.776 0.540 0.307 0.363 0.255 0.301

336 0.252 0.271 0.285 0.308 0.271 0.297 0.279 0.310 0.282 0.312 0.283 0.301 0.276 0.305 0.281 0.308 0.926 0.599 0.340 0.387 0.277 0.319

720 0.301 0.307 0.347 0.356 0.335 0.339 0.339 0.350 0.348 0.352 0.348 0.346 0.341 0.349 0.347 0.354 1.344 0.730 0.402 0.424 0.315 0.346

Avg 0.240 0.261 0.273 0.299 0.262 0.290 0.272 0.303 0.275 0.306 0.273 0.295 0.268 0.298 0.274 0.302 0.914 0.585 0.330 0.379 0.268 0.313

Table 11: 10% few shot forecasting results with the input length T = 96 and the prediction length F
= {96, 192, 336, 720 }.

Models CC-Time S2IP-LLM FSCA Time-LLM UniTime GPT4TS PatchTST iTransformer Crossformer FEDformer TimesNet

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1

96 0.338 0.358 0.358 0.381 0.371 0.391 0.366 0.379 0.366 0.386 0.350 0.373 0.354 0.378 0.379 0.392 0.476 0.486 0.435 0.483 0.475 0.444

192 0.382 0.383 0.402 0.404 0.400 0.400 0.404 0.400 0.405 0.406 0.396 0.393 0.396 0.399 0.423 0.414 0.581 0.563 0.479 0.511 0.586 0.484

336 0.415 0.408 0.440 0.428 0.438 0.429 0.434 0.416 0.437 0.427 0.429 0.418 0.429 0.421 0.464 0.440 0.708 0.646 0.562 0.551 0.517 0.467

720 0.490 0.449 0.489 0.454 0.509 0.465 0.492 0.457 0.489 0.456 0.484 0.449 0.506 0.469 0.537 0.481 0.777 0.666 0.701 0.630 0.582 0.512

Avg 0.406 0.399 0.422 0.416 0.429 0.421 0.424 0.413 0.424 0.419 0.415 0.408 0.421 0.416 0.450 0.431 0.635 0.590 0.544 0.544 0.540 0.476

ETTm2

96 0.183 0.266 0.192 0.272 0.194 0.273 0.198 0.286 0.202 0.287 0.191 0.279 0.193 0.281 0.194 0.280 0.672 0.582 0.234 0.322 0.202 0.285

192 0.255 0.315 0.259 0.318 0.262 0.320 0.262 0.322 0.265 0.324 0.260 0.323 0.260 0.325 0.261 0.321 1.225 0.819 0.310 0.374 0.299 0.354

336 0.315 0.351 0.325 0.36 0.328 0.360 0.328 0.361 0.322 0.358 0.325 0.363 0.325 0.364 0.325 0.367 1.135 0.788 0.383 0.424 0.336 0.371

720 0.414 0.411 0.457 0.435 0.455 0.434 0.436 0.420 0.421 0.414 0.425 0.418 0.423 0.421 0.440 0.428 1.873 1.032 0.558 0.529 0.482 0.455

Avg 0.291 0.335 0.308 0.346 0.310 0.347 0.306 0.347 0.303 0.346 0.300 0.345 0.300 0.347 0.305 0.349 1.226 0.805 0.371 0.412 0.329 0.366

ETTh1

96 0.390 0.403 0.415 0.418 0.420 0.422 0.404 0.418 0.423 0.424 0.399 0.415 0.398 0.407 0.514 0.481 0.555 0.554 0.519 0.522 0.606 0.533

192 0.448 0.443 0.459 0.439 0.469 0.450 0.458 0.446 0.467 0.448 0.454 0.441 0.463 0.447 0.603 0.524 0.601 0.581 0.600 0.562 0.743 0.588

336 0.479 0.452 0.504 0.469 0.510 0.465 0.496 0.465 0.503 0.461 0.502 0.469 0.515 0.470 0.683 0.562 0.880 0.707 0.670 0.574 0.918 0.643

720 0.522 0.495 0.53 0.505 0.536 0.508 0.560 0.520 0.535 0.504 0.526 0.504 0.541 0.508 0.842 0.638 1.303 0.916 0.609 0.544 0.873 0.638

Avg 0.459 0.448 0.477 0.457 0.484 0.461 0.479 0.462 0.482 0.459 0.470 0.457 0.479 0.458 0.660 0.551 0.834 0.689 0.600 0.551 0.785 0.600

ETTh2

96 0.290 0.337 0.305 0.35 0.355 0.389 0.302 0.348 0.323 0.363 0.304 0.351 0.304 0.348 0.334 0.375 1.236 0.809 0.384 0.428 0.389 0.419

192 0.389 0.397 0.408 0.412 0.425 0.427 0.391 0.400 0.407 0.413 0.404 0.411 0.414 0.410 0.429 0.430 1.102 0.798 0.462 0.470 0.496 0.471

336 0.478 0.455 0.478 0.462 0.480 0.465 0.470 0.462 0.481 0.470 0.465 0.457 0.470 0.456 0.479 0.466 1.243 0.863 0.466 0.481 0.526 0.495

720 0.492 0.477 0.476 0.47 0.510 0.489 0.478 0.472 0.490 0.481 0.504 0.481 0.505 0.485 0.500 0.485 1.320 0.910 0.456 0.481 0.510 0.491

Avg 0.412 0.416 0.416 0.423 0.443 0.443 0.410 0.420 0.425 0.431 0.419 0.425 0.423 0.424 0.435 0.439 1.225 0.845 0.442 0.465 0.480 0.469

Weather

96 0.175 0.210 0.184 0.229 0.181 0.227 0.195 0.233 0.193 0.233 0.192 0.230 0.185 0.225 0.191 0.230 0.425 0.493 0.334 0.401 0.198 0.246

192 0.224 0.254 0.232 0.265 0.230 0.267 0.241 0.270 0.237 0.268 0.238 0.267 0.235 0.263 0.238 0.269 0.635 0.620 0.389 0.430 0.243 0.279

336 0.282 0.295 0.292 0.314 0.285 0.305 0.290 0.304 0.289 0.304 0.290 0.303 0.296 0.303 0.293 0.307 0.540 0.570 0.444 0.463 0.295 0.313

720 0.356 0.343 0.365 0.351 0.364 0.353 0.364 0.353 0.362 0.351 0.363 0.352 0.368 0.351 0.369 0.356 0.775 0.688 0.559 0.531 0.363 0.360

Avg 0.259 0.275 0.268 0.289 0.265 0.288 0.273 0.290 0.270 0.289 0.270 0.288 0.271 0.285 0.272 0.290 0.593 0.592 0.432 0.456 0.274 0.299

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.35

0.40

0.45

0.50

0.55

48 96 192 336 512

M
S

E

CC-Time GPT4TS Itransformer PatchTST

0.37

0.39

0.41

0.43

0.45

0.47

48 96 192 336 512

M
A

E

0.23

0.25

0.27

0.29

0.31

48 96 192 336 512

M
S

E

0.27

0.28

0.29

0.30

0.31

0.32

48 96 192 336 512

M
A

E

ETTm1 ETTm1

Weather Weather

Figure 11: Results with different input lengths for the ETTm1 and Weather datasets. We set the
input length T = {48, 96, 192, 336, 512}, the prediction length F = 336.

22

	Introduction
	Related Work
	Methodology
	Overall architecture
	Cross-Modality Modeling with PLMs
	Cross-Model Fusion
	Train and Inference

	Experiment
	Experimental Setup
	Main Results
	Ablation studies
	Model Analysis

	Conclusion
	Channel Descriptions
	Datasets
	Baselines
	Compared with Time Series Foundation Models
	Ablation about Cross-model Fusion
	Model Analysis
	Effectiveness of Pre-trained Language Models
	Parameter Sensitivity Analysis
	Text Quality Analysis
	Time Series Branch Replacement Analysis
	Efficiency Analysis
	Inference efficiency

	Varying the Input Length

	Full Results
	The Use of Large Language Models (LLMs)

