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Non-uniform Bid-scaling and Equilibria for Different Auctions:
An Empirical Study

Anonymous Author(s)
ABSTRACT
In recent years, the growing adoption of auto-bidding motivates the
study of auction design with value-maximizing auto-bidders. It is
known that under mild assumptions, uniform bid-scaling is an opti-
mal bidding strategy in truthful auctions, e.g., Vickrey–Clarke–Groves
auction (VCG), and the price of anarchy for VCG is 2. However, for
other auction formats like First-Price Auction (FPA) and General-
ized Second-Price auction (GSP), uniform bid-scaling may not be
an optimal bidding strategy, and bidders have incentives to deviate
to adopt strategies with non-uniform bid-scaling. Moreover, FPA
can achieve optimal welfare if restricted to uniform bid-scaling,
while its price of anarchy becomes 2 when non-uniform bid-scaling
strategies are allowed.

All these price of anarchy results have been focused on welfare
approximation in the worst case scenarios. To complement theo-
retical understandings, we empirically study how different auction
formats (FPA, GSP, VCG) with different levels of non-uniform bid-
scaling perform in an auto-bidding world with a synthetic dataset
for auctions. Our empirical findings include:

• For both uniform bid-scaling and non-uniform bid-scaling,
FPA is better than GSP and GSP is better than VCG in terms
of both welfare and profit;

• A higher level of non-uniform bid-scaling leads to lower
welfare performance in both FPA and GSP, while different
levels of non-uniform bid-scaling has no effect in VCG.

Our methodology of synthetic data generation may be of indepen-
dent interests.
ACM Reference Format:
Anonymous Author(s). 2024. Non-uniform Bid-scaling and Equilibria for
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1 INTRODUCTION
The online digital advertising market has seen tremendous growth
in recent years, with projection to reach $271.20 billion dollars in
United States in 2023 [33]. Along with the historical growth in
revenue, the market has also witnessed significant shifts in the
bidding behavior model of the advertisers, from manual bidding to
auto-bidding [3, 7]. Auto-bidding allows the advertisers to delegate
their bidding tasks to autobidding agents by specifying high-level
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bidding objectives and constraints. The autobidding agents bid on
behalf of the advertisers to procure online advertising opportunities.

Such a shift fundamentally changes how advertisers participate
and bid in auctions, driving the system towards a new equilibrium
with potentially very different performance in both revenue and
welfare. In the classic auction model of VCG auctions with man-
ual bidding (usually modeled as utility maximizers who maximize
their quasi-linear utility given by the difference between value
and payment), reporting values truthfully is a dominant strategy.
However, using values as bids is no longer an optimal strategy for
auto-bidding agents (typically modeled as value maximizers who
maximize their total value subject to a return-on-investment (ROI)
constraint [7]), and therefore the equilibrium outcome may not be
efficient. Such an observation motivates a recent line of research
on understanding the price of anarchy of different auction formats
under auto-bidding. Aggarwal et al. [3] shows that the price of
anarchy of any auctions that are truthful for quasi-linear utility
maximizers (such as VCG auctions) is 2. Interestingly, it turns out
that the price of anarchy for first-price auctions (FPA) is also 2 under
auto-bidding [18, 30] and the price of anarchy for the generalized
second-price (GSP) auctions has been investigated recently in [17].

However, these theoretical results make two assumptions that
are unlikely to hold in practice. First, price of anarchy measures
the welfare performance of the worst case equilibrium from the
worst case instance, while the welfare performance of equilibria
from real-world instances could be much better than the theoretical
number. Second, the bidding agents are assumed to bid optimally
in response to other bidders’ bidding strategies and their bidding
profile forms an equilibrium, despite of the fact that finding optimal
bidding and/or equilibrium could be computationally intractable.

Aggarwal et al. [3] demonstrates that uniform bid-scaling (i.e.,
always bid 𝜅𝑣 with a universal bid-scaling factor 𝜅 when the value
is 𝑣) is an optimal strategy for value maximizers in auctions that
are truthful for quasi-linear utility maximizers. Therefore, each
autobidding agent is only required to optimize one the bid-scaling
factor to find the best strategy. On the other hand, for auctions that
are not truthful for quasi-linear utility maximizers (such as FPA and
GSP), uniform bid-scaling can lead to a suboptimal bidding strategy,
while non-uniform bid-scaling (i.e., use different bid-scaling factors
in different auctions) may greatly improve the bidding performance.

1.1 Our Contributions
In this paper, we make two main contributions to the growing
literature on auction and bidding in the autobidding world:

1.1.1 An experimental framework for analyzing auction/bidding in
an autobidding world. In Section 3, we propose a framework of
generating synthetic ad auction data and simulating auctions and
bidding algorithms in an autobidding world.
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Our synthetic data generation captures key features of real-world
application to retain the heterogeneity of the problem. This is par-
ticularly important for empirical studies in the auto-bidding world,
as independence and symmetry may lead to almost no efficiency
loss in certain auction formats, which, however, are known to be in-
efficient according to prior theoretical and empirical results [4, 20].

In order to efficiently simulate non-uniform bid-scaling strate-
gies, we propose an efficient approximate algorithm to optimize the
non-uniform bid-scaling factors iteratively, whose time complexity
is linear in the degree of freedom of these strategies.

In addition to that, we also propose a hierarchical structure over
the ad auction instances so that we can compare non-uniform bid-
scaling strategies of different degrees of freedom.

1.1.2 Experimental results complementing existing theoretical work
on autobidding. With the data generation and simulation frame-
work, in Section 4, we analyze different auction formats: FPA, GSP,
VCG (with/without reserve prices). For each auction format, we
simulate the uniform bid-scaling strategy and three non-uniform
bid-scaling strategies with different degrees of freedom and achieve
reasonable convergence. The total scale of the experiment is about
4.5 trillions of simulation runs.

Compared with existing theoretical work, our empirical results
either (1) confirm the results empirically and show they are robust
when user costs are introduced or (2) give more insights and un-
derstanding for settings in which theoretical worse-case analyses
are not capable for comparisons among different auction formats.

1.2 Additional Related Work
Our work is closely related to the recently growing body of litera-
ture on auction and bidding design in the autobidding world. For
improving price of anarchy via mechanism design, Deng et al. [20]
present additive boosts based on advertisers’ values, Balseiro et al.
[4] leverage reserve prices derived from machine-learned predic-
tions, and Liaw et al. [30], Mehta [32] incorporate randomization
into the auction rules. On the bidding side, there is a series of work
for online bidding with budget constraints [5, 8–10, 24], with both
budget and ROI constraints [6, 25, 26, 31], and their variants in the
context of multi-channel bidding [16, 34].

2 PRELIMINARY
We let 𝑁 denote the set of advertisers and 𝑀 denote the set of
ad queries1 where ad slots will be sold through position auctions
[22, 35]. Each query 𝑗 ∈ 𝑀 has 𝑧 𝑗 slots. In this paper, we use 𝑖 to
index advertisers, 𝑗 to index queries, and 𝑘 to index slots; we also
use −𝑖 to indicate advertisers other than advertiser 𝑖 . Each slot 𝑘
in query 𝑗 is associated with a slot click-through rate 𝛽 𝑗,𝑘 ∈ [0, 1]
such that 𝛽 𝑗,𝑘 ≥ 𝛽 𝑗,𝑘+1 for all 1 ≤ 𝑘 < 𝑧 𝑗 . For query 𝑗 , advertiser 𝑖
has a valuation of 𝑣𝑖, 𝑗 for each click and the value that advertiser 𝑖
receives when winning slot 𝑘 in query 𝑗 is 𝛽 𝑗,𝑘 · 𝑣𝑖, 𝑗 .

Auction. The ad slots of all queries are sold by separately con-
ducting some auction mechanism A. An auction mechanism A
specifies an allocation rule and a payment rule that map a bidding

1An ad query refers to an event when an ad auction system receives a request to
determine a set of ads to present to a user. For example, when a user opens a web page
with ad display slots, an ad query is created.

profile 𝑏 𝑗 = (𝑏1, 𝑗 , . . . , 𝑏𝑁,𝑗 ) and a list of slot click-through rates 𝛽 𝑗
(of any length) to an allocation and a payment vector, respectively:

allocation : R𝑁+ ×[0, 1]∗ → [0, 1]𝑁 , payment : R𝑁+ ×[0, 1]∗ → R𝑁+ ,
where an allocation to each advertiser is either 𝛽 𝑗,𝑘 for whom gets
allocated the slot 𝑘 ∈ [𝑧 𝑗 ] or 0 for whom does not win the auction.
Note that a valid allocation must allocate each slot to at most 1
advertiser, and each slot 𝑘 can be allocated only if all higher slots
𝑘′ < 𝑘 are allocated. In other words, an allocation rule may allocate
a prefix of slots, or even none of the slots.

User cost. Showing ads to users may have implications on the
user experience [1, 11, 12, 19, 21]. Denote cost𝑖, 𝑗 the normalized
cost of showing advertiser 𝑖’s ad in auction 𝑗 , where the realized
cost will be scaled by the actual allocation, i.e., cost𝑖, 𝑗 · allocation𝑖, 𝑗 .

Value Maximizers. We model each advertiser 𝑖 as a value maxi-
mizer with an ROI constraint [7] who aims to maximize the total
value subject to a constraint that the ratio between the total value
and the total payment should not be below a given threshold 𝜏𝑖 .
Formally, given other bidders’ bidding strategy 𝒃−𝑖 each advertiser 𝑖
optimizes their bidding strategy to maximize the following program

max𝒃𝑖 ∈B𝑖
∑

𝑗∈𝑀 𝑣𝑖, 𝑗 · allocation𝑖, 𝑗
subject to

∑
𝑗∈𝑀 𝑣𝑖, 𝑗 · allocation𝑖, 𝑗 ≥ 𝜏𝑖 ·

∑
𝑗∈𝑀 payment𝑖, 𝑗 , (1)

where B𝑖 is a set of feasible bidding strategies, allocation𝑖, 𝑗 =

allocation𝑖 (𝑏 𝑗 , 𝛽 𝑗 ) is the allocation of advertiser 𝑖 in query 𝑗 , and
similar for payment𝑖, 𝑗 . Denote the total value and payment as
value𝑖 = 1

𝜏𝑖

∑
𝑗∈𝑀 𝑣𝑖, 𝑗 ·allocation𝑖, 𝑗 and spend𝑖 =

∑
𝑗∈𝑀 payment𝑖, 𝑗 ,

we rewrite the program (1) as:

max𝒃𝑖 ∈B𝑖 value𝑖
subject to value𝑖 ≥ spend𝑖 . (2)

Welfare and Profit. We measure the performance in terms of
welfare and profit. With cost𝑖 =

∑
𝑗∈𝑀 cost𝑖, 𝑗 · allocation𝑖, 𝑗 , define

welfare =
∑
𝑖∈𝑁 value𝑖 − cost𝑖 ,

profit =
∑
𝑖∈𝑁 spend𝑖 − cost𝑖 .

Uniform Bid-scaling. A uniform bid-scaling strategy can be de-
scribed by a bid multiplier 𝜅𝑖 ∈ R+ for advertiser 𝑖: 𝑏𝑖, 𝑗 = 𝜅𝑖 · 𝑣𝑖, 𝑗/𝜏𝑖 .

Non-uniform Bid-scaling. In general, any bidding strategy that
is not a uniform bid-scaling strategy is a non-uniform bid-scaling.
Hence, advertiser 𝑖 can choose different bid multipliers for each
query 𝑗 , i.e., 𝜅𝑖, 𝑗 ∈ R+. However, implementing such general non-
uniform bid-scaling strategies rely on the unrealistic complete
knowledge of other advertisers on each query, thus intractable for
both simulation and practical applications. In this paper, we define
partitions to the queries, and for each partition 𝑑 , a non-uniform
bid-scaling strategy chooses one bid multiplier 𝜅𝑖,𝑑 ∈ R+.

In addition, we are interested in how the simulation results vary
with the granularity of the partition. Hence we introduce a multi-
layer partition of the query set: Suppose there is a 𝐿-layer laminar
set family S defined on top of the query set𝑀 . There are 𝑞ℓ sets for
layer ℓ ∈ [0, 1, · · · , 𝐿] and 𝑆ℓ,𝑑 ⊆ 𝑀 denotes the 𝑑-th set in layer ℓ .

Definition 2.1. S is an 𝐿-layer laminar family if S satisfies the
following properties:
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Figure 1: An example of a 2-layer laminar set family. For each
node, its children sets form a partition of it. Sets in the same
layer have no intersection.

• 𝑞0 = 1;
• For all layer ℓ ,

⋃𝑞ℓ
𝑑=1 𝑆ℓ,𝑑 = 𝑀 ;

• For all layer ℓ and all 1 ≤ 𝑎 < 𝑏 ≤ 𝑞ℓ , 𝑆ℓ,𝑎 ∩ 𝑆ℓ,𝑏 = ∅;
• For all ℓ1 < ℓ2, 1 ≤ 𝑎 ≤ 𝑞ℓ1 , and 1 ≤ 𝑏 ≤ 𝑞ℓ2 , either

𝑆ℓ2,𝑏 ⊆ 𝑆ℓ1,𝑎 or 𝑆ℓ1,𝑎 ∩ 𝑆ℓ2,𝑏 = ∅.

Intuitively, in an 𝐿-layer laminar set family S, each layer ℓ con-
stitutes a partition of𝑀 and a deeper layer (i.e., a layer with a larger
layer id ℓ) gives a finer partition of𝑀 . See Figure 1 for an example.

We are now ready to define feasible non-uniform bid-scaling
strategies based on a given 𝐿-layer laminar set family S.

Definition 2.2. For a 𝐿-layer laminar set family S, the feasible
set of ℓ-level non-uniform bid-scaling strategies for advertiser 𝑖 is

BS,ℓ
𝑖

=
{
𝒃𝑖 ∈ R𝑀+ | ∀𝑗 ∈ 𝑆ℓ,𝑑 , 𝑏𝑖, 𝑗 = 𝜅𝑖,𝑑 · 𝑣𝑖, 𝑗/𝜏𝑖

}
.

Note that the set of feasible 0-level non-uniform bid-scaling
strategies corresponds to the uniform bid-scaling strategy with a
universal bid-scaling factor 𝜅𝑖 for advertiser 𝑖 .

3 SIMULATION SETUP
In this section, we describe the setup of the simulation system,
including how the auction data is generated, how auctions are
implemented, and how the bidding algorithm works.

3.1 Data generation procedure
One goal of the data generation design is to mimic the data struc-
ture of practical ad auctions, while not involving any real-world
empirical knowledge. One key motivation behind this approach is
that one can elicit the properties of the problem rooted in its data
structure while being robust to the details of the distributions.

We illustrate a model that captures the basic elements in a multi-
slot ad auction. In particular, Example 3.1 introduces the typical
steps of one auction. We note that some of the terminologies in this
example may not simply correspond to the notions we defined in
Section 2, and we will explain in details in Section 3.1.1 how the
terminologies in this example are mapped to our model.

Example 3.1 (Life cycle of one auction). An ad auction starts when
a user makes a request to the platform, which can be a concrete
query with a specific goal (keyword-based ad auction) or a general
ask to fill in ad slots of a web-page (keyword-less ad auction). If
the platform considers this request has enough commercial value,
then the platform will starts to collect advertisers to participate in
an auction to determine which ads to present to the user.

Candidate retrieval. Based on the characteristics of the request,
the platform needs to retrieve a subset of candidate advertisers

that have a decent match with the request. This step can reduce
the latency of the later auction stage by limiting the number of
candidates and also ensure that only relevant ads are involved.

Signal preparations. For the retrieved candidate ads, the platform
and the bidding system compute various signals using their ML
models, respectively. Example signals include the predicted click-
through-rate, predicted conversion rate, etc.

Bidding. The auto-bidding system then needs to determine a
cost-per-click bid for each ad candidate using this service. For the
commonly used target CPA auto-bidding model, the simplest bid-
ding formula will combine the predicted conversion rate (pCVR),
the advertiser-set target CPA (tCPA), and the bid multiplier (𝜅) for
the auto-bidding algorithm to meet the target overtime.

bid = 𝜅 · pCVR · tCPA.

Auction. Upon receiving the bids from the candidate, the auction
needs to select the winner(s) based on the combination of the bids,
predicted click-through-rates (pCTR), and user costs (cost). The ad
candidates are then ranked by the following score in the decreasing
order, and only the first 𝑧 ad(s) get allocated accordingly.

score = pCTR · bid − cost.
Only the ad gets clicked will be charged, where the per-click price
may depend on the slot click-through-rate 𝛽𝑘 . The probability of
being clicked when shown in slot 𝑘 is 𝛽𝑘 · pCTR. The actual price
dependency on 𝛽𝑘 differs by the auction mechanism being used.

3.1.1 Terminology Mapping. From the example above, we can sum-
marize the key information needed to run an auction as Table 1,
where we also show how each of them corresponds to the notations
in our theoretical model. In particular, the bid multiplier 𝜅 , the slot
click-through-rate 𝛽𝑘 , and the user cost cost are the same as those
in our model, tCPA corresponds to the inverse of the ROI target 𝜏 .

The bid in this example corresponds to the per-click bid, while 𝑏
in our model corresponds to the per-impression bid, i.e., 𝑏 = pCTR ·
bid. This is caused by the separation between the bidding algorithm
and the auction, where the bidding algorithm only observes pCVR
and the auction only observes pCTR. We note that this separation
makes no difference in terms of the mathematical model of the
problem. While in practice, since the prediction signal pCTR will
not be 100% accurate, the expected payment will depend on the real
click-through-rate rather than the prediction pCTR. However, in
this work, we focus on the simulation system where the prediction
is exactly accurate. Hence we will not treat them separately.

For the same reason, pCTR and pCVR together correspond to the
advertiser value 𝑣 , i.e., 𝑣 = pCTR · pCVR. Finally, the ad candidate
set from retrieval and the score for ranking the candidates are
intermediate terms that only exist inside the auction, and hence no
corresponding notation in our theoretical model.

Thus, to construct an auction instance, we will need to generate:
• The ad candidate set;
• 𝑣 = pCVR · pCTR for each ad candidate;
• cost for each ad candidate;
• 𝛽𝑘 for each ad slot (except that 𝛽1 = 1).

Across all the auction instances, we still need to generate:
• 1/𝜏 = tCPA for each advertiser.
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Information Source Notation
Ad candidate set Candidate retrieval N/A

𝜅 bidding system control loop 𝜅

pCVR Bidding system prediction 𝑣/pCTR
tCPA Advertiser set value 1/𝜏
bid 𝜅 · pCVR · tCPA 𝑏/pCTR

pCTR Auction system prediction 𝑣/pCVR
cost Auction system prediction cost
𝛽𝑘 Auction system prediction 𝛽𝑘

score score = pCTR · bid − cost N/A
Table 1: Key information in an auction and notations.

The bid-scaling multiplier 𝜅 will be computed by the bidding algo-
rithm, which we will discuss in details in Section 3.3.

3.1.2 Feature Vector Generation. One key challenge of generating
the synthetic data for auction simulation is to avoid symmetry
among bidders. Otherwise, if the system converge to a symmet-
ric equilibrium where everyone has roughly the same bid-scaling
factors, then all auctions will result in efficient allocations, which,
however, can be fundamentally different from practice as real world
does not guarantee symmetry.

In practice, the asymmetry comes from the heterogeneity of the
features of queries and bidders, and the relationship between the
query feature and bidder feature jointly result in different signal
predictions, such as pCTR, pCVR, etc.

In our framework, we randomly draw query features and bidder
features from multidimensional Gaussian distributions:

fquery ∼ N(𝜇query, Σquery), fbidder ∼ N(𝜇bidder, Σbidder).

Given fquery and fbidder, we generate pCTR and pCVR as:

pCTR · pCVR = 𝑣 = exp(⟨fquery, fbidder⟩ + 𝜖),

where ⟨·, ·⟩ stands for the inner product of two vectors and 𝜖 is
a per query Gaussian noise. Hence pCTR · pCVR follows a log-
normal distribution, which is consistent with the widely adopted
assumption in the literature [29].

Here, we note that directly generating pCTR · pCVR makes no
difference with separately generating pCTR and pCVR in terms of
simulation, because no matter in the formulation of score (which
determines allocation) or in the final expected payment calculation,
pCTR and pCVR always show up together in the form of their
product. This differs from practice in the expected payment, which
depends on the real click-through-rate rather than pCTR.

Hierarchical Structure of Queries. To facilitate the simulation of
non-uniform bid-scaling algorithms, we need to model the structure
of queries, which in practice may follow different topics and cate-
gories and form implicit clusters. Queries within the same cluster
share more similarities hence attracting a similar set of bidders.

We implement the hierarchical structure of queries by following
the structure of a given 𝐿-layer laminar family (e.g., Figure 1). The
query feature generation is done for a given𝑚-dimensional Gauss-
ian distributionN(𝜇, Σ) by repeating the following steps from ℓ = 1
to 𝐿 for all 𝑑 , where (𝜇0,1, Σ0,1) = (𝜇, Σ):

(1) For each set 𝑆ℓ,𝑑 ⊆ 𝑆ℓ−1,𝑑 ′ in layer ℓ , draw a sample f ∼
N(𝜇ℓ−1,𝑑 ′ , Σℓ−1,𝑑 ′ ).

(2) Let fℓ,𝑑 = fℓ−1,𝑑 ′ ⊕ (f1, . . . , f𝑚ℓ
), where ⊕ stands for the

vector concatenation operator and f0,1 is an empty vector.
(3) Compute the marginal distribution of N(𝜇, Σ) conditioned

on fℓ,𝑑 , i.e., the distribution of remaining (𝑚 − dim(fℓ,𝑑 ))
dimensions, asN(𝜇ℓ,𝑑 , Σℓ,𝑑 ), where dim(fℓ,𝑑 ) =𝑚1 + · · · +
𝑚ℓ is the dimension of fℓ,𝑑 .
Specifically, let 𝜇 = 𝜇1⊕ 𝜇2 with 𝜇1 being the first dim(fℓ,𝑑 )-
dimension and 𝜇2 being the rest. Decompose Σ as follows

Σ =

[
Σ11 Σ12
Σ21 Σ22

]
,

where Σ11 is the top-left sub-matrix of size fℓ,𝑑 × fℓ,𝑑 , and
Σ12, Σ21, Σ22 being the corresponding sub-matrices. Then
𝜇ℓ,𝑑 and Σℓ,𝑑 are computed as:

𝜇ℓ,𝑑 = 𝜇2 + Σ21Σ
−1
11 (f

ℓ,𝑑 − 𝜇1), Σℓ,𝑑 = Σ22 + Σ21Σ
−1
11 Σ12 .

With the hierarchical structure defined above, for each query,
we first select a set 𝑆𝐿,𝑑 in layer 𝐿 at random, and draw fquery as:

fquery = f𝐿,𝑑 ⊕ f, where f ∼ N(𝜇𝐿,𝑑 , Σ𝐿,𝑑 ) .

Note that for queries sharing the same ancestor set 𝑆ℓ,𝑑 , the first
(𝑚1 + · · · +𝑚ℓ ) dimensions of their feature vectors are the same,
i.e., fℓ,𝑑 . Therefore, the query features we generated naturally form
a hierarchy of clusters.

3.1.3 Candidate Retrieval. Given the query and candidate fea-
tures, we simulate the candidate retrieval process by selecting the
Nretrieval candidates with the top correlation score ⟨fquery, fbidder⟩
for each query. We also set a minimum threshold for the candidates
on the correlation score, so the total number of retrieved candidates
can be less than Nretrieval for some of the queries.

3.1.4 Remaining Elements. Besides the above, we also randomly
generate other exogenous elements mentioned in Table 1, namely,
tCPA, cost, and 𝛽𝑘 . For tCPA, we draw once for each candidate
from a Pareto distribution, which is inspired by the observation
that things like individual income, city population, firm size, etc
often follow a power law distribution with 𝛼 ∈ (2, 3) [2, 14, 23]. We
note that the Pareto distribution in this case is a simplified version
by setting the slowly varying function to constant in the continuous
power law distribution model.

𝑝tCPA (𝑥) = 𝛼−1
𝑥min

(
𝑥

𝑥min

)−𝛼
,

where 𝛼 and 𝑥min are the parameters of the distribution.
For cost, we independently draw for each pair of query and candi-

date from a log-normal distribution: cost ∼ Lognormal(𝜇cost, 𝜎2
cost).

For 𝛽𝑘 , we independently draw their decay factors 𝛽𝑘+1/𝛽𝑘 from
a uniform distribution, i.e., 𝛽𝑘+1/𝛽𝑘 ∼ Uniform[low, high].

3.1.5 Distribution Parameter Generation. To avoid having conclu-
sions sensitive to distribution parameters, we randomly draw the
parameters of all the distributions mentioned above for each run
and average out the results over multiple runs.

Here, we highlight the generation of the covariance matrix of
multidimensional Gaussian distributions for generating features.
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• Randomly generate a diagonal matrix 𝐷 , where the ele-
ments on its diagonal are i.i.d. from a uniform distribution.

• Randomly generate a noise matrix 𝑁 (the same size of 𝐷),
where each element is drawn independently from a nor-
mal distribution N(𝜇noise, 𝜎2

noise). Then scale 𝑁 such that
∥𝑁 T𝑁 ∥ equals the desired noise level and set Σ = 𝐷 +𝑁 T𝑁 .

3.2 Auction Formats
We consider three commonly studied auction formats:

• FPA: First-Price Auction [15, 28];
• GSP: Generalized Second-Price auction [22, 35];
• VCG: Vickrey–Clarke–Groves auction [13, 27, 36].

In particular, we are also interested in their variants by intro-
ducing reserves, as Balseiro et al. [4] suggests that adding value-
correlated reserve prices to these auctions can improve the worst
case approximation bounds in the auto-bidding world.

We then describe the implementation details of all three auction
formats with reserve. Note that the vanilla version without reserve
is simply a special case with all reserves being 0.

3.2.1 Allocation Rules. In the setting of position auctions, the allo-
cation rules for FPA, GSP, and VCG (with reserve) are exactly the
same. Intuitively, three steps (formally, see Algorithm 1):

(1) All advertisers with bids lower than the corresponding re-
serves will be first excluded;

(2) Then the remaining advertisers are ranked by their score
in the descending order;

(3) The first 𝑧 𝑗 advertisers (if the number of remaining adver-
tisers is smaller than 𝑧 𝑗 , then they are all winners) win the
auction and get allocated the slots respectively, according
to the order by their score.

Algorithm 1: The common allocation rule for FPA, GSP,
and VCG with reserves
Data: Bids 𝒃 = {𝑏𝑖 }, reserves {reserve𝑖 }, scores {score𝑖 },

slot click-through-rates 𝛽 = {𝛽𝑘 }, number of slots 𝑧.
Result: Allocated slot 𝑘𝑖 for advertiser 𝑖 , and {allocation𝑖 }.

1 for 𝑖 in {1, . . . , 𝑁 } do
2 if 𝑏𝑖 ≥ reserve𝑖 and score𝑖 ≥ 0 then
3 Winners.append(𝑖);
4 end
5 end
6 SortWinners in the descending order of their score;
7 if Winners.length() > 𝑧 then
8 Winners←Winners.topK(𝑧);
9 end

10 𝑘 ← 1;
11 for 𝑖 in Winners do
12 𝑘𝑖 ← 𝑘 ; allocation𝑖 ← 𝛽𝑘 ; 𝑘 ← 𝑘 + 1;
13 end
14 for 𝑖 in {1, . . . , 𝑁 } \Winners do
15 𝑘𝑖 ← ∅; allocation𝑖 ← 0;
16 end
17 return {𝑘𝑖 }, {allocation𝑖 };

3.2.2 Payment Rules. The payment rules are different for FPA, GSP,
and VCG (with reserve). We describe them one by one.

FPA payment. allocation multiplies bid, i.e.,

payment𝑖 = 𝑏𝑖 · allocation𝑖 ;

GSP payment. allocation multiplies the minimum bid to beat the
max of reserve and the score of the advertiser 𝑖′ in the next slot
(i.e., 𝑘𝑖′ = 𝑘𝑖 + 1), or 0 if no such an advertiser, i.e.,

payment𝑖 = allocation𝑖 ·max{reserve𝑖 , score𝑖′ + cost𝑖 };

VCG payment. Depends on allocation, reserve, cost, and the
scores and allocations for all advertisers in lower slots (includ-
ing the ones who passed their reserves but did not get any slot).
Formally, see Algorithm 2. We note that the VCG payment imple-
mentation will be wrong if the max with reserve𝑖 in line 4 and 7
are removed while only taking a max with reserve𝑖 right before
returning the payment.

Algorithm 2: VCG-with-reserve payment for advertiser 𝑖
Data: allocation𝑖 , reserve𝑖 , cost𝑖 , the ordered list of

advertisers in lower slots RunnerUpList (including
advertisers passed reserves but not won), and their
scores {score𝑦} and allocations {allocation𝑦}

Result: payment𝑖 .
1 alloc← allocation𝑖 ;
2 payment𝑖 ← 0;
3 for 𝑦 in RunnerUpList do
4 payment𝑖 ← payment𝑖 + (alloc − allocation𝑦) ·

max{reserve𝑖 , score𝑦 + cost𝑖 };
5 alloc← allocation𝑦 ;
6 end
7 payment𝑖 ← payment𝑖 + alloc ·max{reserve𝑖 , cost𝑖 };
8 return payment𝑖 ;

3.3 Bidding
In our experiments, we implement uniform and non-uniform bid-
scaling algorithms. To reach an equilibrium, we simulate 25 rounds
of updates for the bidding algorithms to converge.

3.3.1 Uniform bid-scaling. For the uniform bid-scaling, we adopt
a simple yet effective update strategy by Deng et al. [20]:

log𝜅𝑡+1 = (1 − 𝜂𝑡 ) · log𝜅𝑡 + 𝜂𝑡 · log value𝑡
spend𝑡

,

where 𝑡 is the index of iteration. The formula above is effectively a
gradient descent update to log𝜅 with learning rate 𝜂𝑡 . The station-
ary point is reached if and only if value𝑡 = spend𝑡 .

3.3.2 Non-uniform bid-scaling. The non-uniform bid-scaling al-
gorithm has to be more sophisticated as one has to explore differ-
ent combinations of bid-scaling factors on the given partitions of
queries. A naive algorithm needs to search exponentially many (in
partition size) combinations to find the best one. Here we formulate
the problem for a fixed bidder as the following program and pro-
pose an efficient approximate solution to it. Note that we omitted
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the subscript 𝑖 to simplify the notation.

max
∑
𝑑

∑
𝑗∈S𝑑 allocation𝑗 (𝜅𝑑 ) · 𝑣 𝑗

s.t.
∑
𝑑

∑
𝑗∈S𝑑 allocation𝑗 (𝜅𝑑 ) · 𝑣 𝑗 ≥ 𝜏 ·∑𝑑

∑
𝑗∈S𝑑 payment𝑗 (𝜅𝑑 )

In particular, allocation𝑗 (·) is the bidder’s allocation of auction 𝑗 as
a function of the bid-scaling factors 𝜅𝑑 for each partition 𝑑 , where
its dependency on the signals, auction format, and competitors are
hidden for notation simplicity. Similar for payment𝑖 (·). With {𝜅𝑑 }
being the variables, we apply the substitutions

value𝑑 (𝜅𝑑 ) = 1
𝜏

∑
𝑗∈S𝑑 allocation𝑗 (𝜅𝑑 ) · 𝑣 𝑗

spend𝑑 (𝜅𝑑 ) =
∑

𝑗∈S𝑑 payment𝑗 (𝜅𝑑 )

to rewrite the program as

max
∑
𝑑 value𝑑 (𝜅𝑑 )

subject to
∑
𝑑 value𝑑 (𝜅𝑑 ) ≥

∑
𝑑 spend𝑑 (𝜅𝑑 ) .

This is in fact a Knapsack problem, where value𝑑 (𝜅𝑑 ) is the “quan-
tity” of the 𝑑-th good and spend𝑑 (𝜅𝑑 ) − value𝑑 (𝜅𝑑 ) is the corre-
sponding “weight” (non-linear in “quantity”). The goal is to maxi-
mize the total “quantity” of selected goods with “capacity” being
0.

Our approximate algorithm (Algorithm 3) has three steps:
(1) Discretize the two functions value𝑑 (𝜅𝑑 ) and spend𝑑 (𝜅𝑑 )

over a finite set of 𝜅𝑑 ∈ K𝑑 ;
(2) For each partition 𝑑 , compute the lower convex hull of the

set of points {(value𝑑 (𝜅𝑑 ), spend𝑑 (𝜅𝑑 )) |𝜅𝑑 ∈ K𝑑 };
(3) Sort the vertices on the lower convex hulls of each 𝑑 by

their sub-gradient in ascending order and increase the cor-
responding 𝜅𝑑 unless the ROI constraint will get violated.

3.4 Parameters and scales of experiments
All of our experimental results come from 100 independent runs. For
each run, we generate the distributions as described in Section 3.1.5
and then generated 𝑁 = 100 advertisers and𝑀 = 1000000 queries.
Each of these queries retrieves up to 15 most relevant advertisers
to participate in the auction, where each auction has 𝑘 = 4 slots.
Within each run, we simulate 25 rounds of updates for the bidding
algorithms to converge. Therefore the total number of auctions sim-
ulated for each auction format using a uniform bid-scaling strategy
is at the order of 2.5 billions. The number of auction simulations
with a non-uniform bid-scaling strategy will be much large, because
to build the discritization {𝑃𝑦

𝑑
} = {(value𝑑 (𝜅

𝑦

𝑑
), spend𝑑 (𝜅

𝑦

𝑑
))} as

input for Algorithm 3, we will need to simulate once for every
pair of advertiser and bid-scaling factor discritization. So the order
of auction simulations for each auction format with non-uniform
bid-scaling strategy blows up to roughly 250 billions. In the experi-
ment, we simulate 3 levels of non-uniform bid-scaling. Summing
up across the auction formats we considered, the total number of
auction simulation done is at the order of 4.5 trillions.

4 EXPERIMENTAL RESULTS
In this section, we present our experimental results on different
auction formats and different non-uniform bid-scaling levels. Addi-
tional results about different auction formats with reserves can be
found in Appendix A.

Algorithm 3: Non-uniform Bid-scaling Algorithm
Data: Points consist of value𝑑 and spend𝑑 on the

discretized bid-scaling factors set {𝜅𝑦
𝑑
}:

{𝑃𝑦
𝑑
} = {(value𝑑 (𝜅

𝑦

𝑑
), spend𝑑 (𝜅

𝑦

𝑑
))}

Result: One selected point 𝑃∗
𝑑
for each 𝑑 corresponding to

the selected bid-scaling factors
/* Pre-process the points for each partition,

only keep the ones on the corresponding lower
convex hull, and sort in ascending order. */

1 for each partition 𝑑 do
2 {𝑃𝑦

𝑑
} ← LowerConvexHull({𝑃1

𝑑
, . . . , 𝑃

K𝑑
𝑑
});

3 Sort {𝑃𝑦
𝑑
} in the ascending order of its first coordinate;

4 𝐹𝑑 ← 𝑃1
𝑑
/* Initialize the frontier. */

5 end
/* Greedily push forward the frontier {𝐹𝑑 } on

each slice along their convex hulls as long
as the ROI constraint is not violated. */

6 𝑄 ← PriorityQueueByAscendingRightGradient({𝐹𝑑 })
/* The right gradient of 𝐹𝑑 is the slope
between 𝐹𝑑 and the next vertex to its right
on the convex hull. */

7 while 𝐹 ← ∑
𝑑 𝐹𝑑 is below the 45◦ line do

/* The ROI constraint is not violated yet,

update the best-so-far solution. */

8 {𝑃∗
𝑑
} ← {𝐹𝑑 };

9 𝑦 ← PartitionIndexOf (𝑄.top());
10 𝑄.pop(𝐹𝑦);
11 if 𝐹𝑦 is not the last vertex on its convex hull then
12 𝐹𝑦 ← NextVertexOnConvexHull(𝐹𝑦);
13 𝑄.push(𝐹𝑦);
14 end
15 end
16 return {𝑃∗

𝑑
};

4.1 Uniform bid-scaling in different auction
formats

We start by discussing our empirical results of uniform bid-scaling
for different auction formats VCG, GSP, and FPA.

Theoretically, under uniform bid-scaling, Aggarwal et al. [3]
shows that VCG has PoA of 2 for welfare without cost and Deng
et al. [20] shows that FPA gives the optimal welfare and profit. As
shown in Table 2 which uses the widely adopted GSP auctions as
the benchmark, we observe that FPA > GSP > VCG for both welfare
and profit. Our empirical results are consistent with the theoretical
finding in the sense that FPA has better welfare and profit. For the
comparison between VCG and GSP, theoretical PoA results would
not be able to predict the comparison between them in an average
case. Our empirical result fills this blank and shows that GSP has
better welfare and profit than VCG.

The main argument in Deng et al. [20] to show that FPA gives
optimal welfare and profit under uniform bid-scaling is that ad-
vertisers bid exactly their value multiplied by bid multiplier 1 in
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Mechanism Profit Welfare Bid Mul

GSP +0.00%
(benchmark)

+0.00%
(benchmark)

2.63
[2.31, 2.95]

FPA +4.67%
[+3.78%, +5.56%]

+4.60%
[+3.73%, +5.48%]

1.00
[1.00, 1.00]

VCG -2.65%
[-3.10%, -2.20%]

-2.59%
[-3.04%, -2.15%]

3.66
[3.14, 4.18]

Table 2: Metric comparison among uniform bid-scalings.

such setting. However, in other auction formats like VCG and GSP,
bid multipliers could be larger than 1. When two advertisers with
different bid multipliers compete in the same auction, even without
cost, their score rankings (i.e. 𝜅1 ·𝑣1/𝜏1 vs 𝜅2 ·𝑣2/𝜏2) can be different
from their value ranking (i.e. 𝑣1/𝜏1 vs 𝑣2/𝜏2) and this could result
in welfare efficiency loss. Intuitively, larger non-uniformity of bid
multipliers across advertisers will make the welfare worse.

We check out this intuition empirically and use the average bid
multipliers as a proxy for monitoring the non-uniformity of bid
multipliers. As shown in the last column of Table 2, we observe that
the average bid multiplier in FPA is 1 and the average bid multiplier
in GSP is lower than the average bid multiplier in VCG. This is
consistent with the intuition.

4.2 Non-uniform bid-scaling in different
auction formats

In this subsection, we compare different auction formats under
(highest-level) non-uniform bid-scaling. As shown in Table 3 which
uses GSP as the benchmark, we again observe FPA > GSP > VCG
for both welfare and profit.

Mechanism Profit Welfare Bid Mul
GSP

non-uniform
+0.00%

(benchmark)
+0.00%

(benchmark)
2.62

[2.31, 2.93]
FPA

non-uniform
+2.81%

[+1.92%, +3.69%]
+3.90%

[+3.02%, +4.77%]
1.00

[1.00, 1.00]
VCG

non-uniform
-3.14%

[-3.60%, -2.67%]
-2.26%

[-2.66%, -1.85%]
3.66

[3.14, 4.18]
Table 3: Metric comparison among non-uniform bid-scalings.

In contrast, for PoA of welfare, Aggarwal et al. [3] shows that
VCG has PoA of 2 and Liaw et al. [30] shows that no auction formats
can get PoA better than 2. These two theoretical results jointly
demonstrate that VCG has the optimal PoA. Our empirical results
give concrete examples to show that the worst-case optimality of
VCG does not be simply generalized to average cases.

4.3 Uniform vs non-uniform bid-scaling
Although changing from uniform bid-scaling to non-uniform bid-
scaling does not change the ranking of welfare and profit between
different auction formats, this change does have different impacts on
different auction formats. In this subsection, we compare different
non-uniform bid-scaling levels within each auction format.

For FPA, from Table 4, we see clearly that switching to non-
uniform bid-scaling hurts welfare and profit. Again, this is consis-
tent with the theoretical result in Deng et al. [20] that FPA combined
with uniform bid-scaling gives the optimal welfare and profit.

Mechanism Profit Welfare Bid Mul
FPA

uniform
+0.00%

(benchmark)
+0.00%

(benchmark)
1.00

[1.00, 1.00]
FPA
level 1

-0.25%
[-0.28%, -0.22%]

-0.22%
[-0.25%, -0.20%]

1.00
[1.00, 1.00]

FPA
level 2

-0.75%
[-0.80%, -0.70%]

-0.55%
[-0.59%, -0.50%]

1.00
[1.00, 1.00]

FPA
level 3

-1.28%
[-1.35%, -1.21%]

-1.02%
[-1.08%, -0.96%]

1.00
[1.00, 1.00]

Table 4: Metric comparison among FPA under different non-
uniform bid-scalings.

On the other hand, for VCG, as shown in Table 5, switching to
different levels of non-uniform bid-scaling has no effects on welfare
and profit. This is consistent with the theoretical results in [3]
showing the optimality of uniform bid-scaling in truthful auction.

Mechanism Profit Welfare Bid Mul
VCG

uniform
+0.00%

(benchmark)
+0.00%

(benchmark)
3.66

[3.14, 4.18]
VCG
level 1

-0.00%
[-0.00%, +0.00%]

+0.00%
[-0.00%, +0.00%]

3.66
[3.14, 4.18]

VCG
level 2

-0.00%
[-0.00%, +0.00%]

-0.00%
[-0.00%, +0.00%]

3.66
[3.14, 4.18]

VCG
level 3

-0.00%
[-0.00%, +0.00%]

-0.00%
[-0.00%, +0.00%]

3.66
[3.14, 4.18]

Table 5: Metric comparison among VCG under different non-
uniform bid-scalings.

For GSP, the story is more complicated. From Table 6, we observe
that increasing non-uniform bid-scaling level in GSP increases
profit but decreases welfare. Welfare and profit going in different
directions (or changing by different amount which happened in
other tables) is a sign of not converging to a point in which all
advertisers meet their target constraints. This could happen in
either the benchmark (GSP with uniform bid-scaling) or GSP with
non-uniform bid-scaling. We will discuss more in Section 4.4 about
convergence. Overall, increasing non-uniform bid-scaling level in
GSP does not dramatically change the allocation to make profit and
welfare both increase or decrease, but it does make the convergence
going more biased towards increasing profit.

Interestingly, in these three tables, if we look at the last columns,
the average bid multipliers do not change much for different levels
of non-uniform bid-scaling. In order to measure the divergence of
the bid multipliers across partitions, we introduce a metric called
the strength of non-uniform bid-scaling for each bidder:

strength = avg( | log𝜅𝑑 − log𝜅 |),

where 𝜅 is the average bid-scaling factor of that advertiser. The
overall strength is the weighted average of the per-bidder strength.
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Mechanism Profit Welfare Bid Mul
GSP

uniform
+0.00%

(benchmark)
+0.00%

(benchmark)
2.63

[2.31, 2.95]
GSP
level 1

-0.02%
[-0.04%, -0.01%]

-0.05%
[-0.06%, -0.03%]

2.63
[2.31, 2.95]

GSP
level 2

+0.02%
[-0.02%, +0.06%]

-0.18%
[-0.21%, -0.15%]

2.62
[2.31, 2.93]

GSP
level 3

+0.51%
[+0.43%, +0.59%]

-0.35%
[-0.40%, -0.29%]

2.62
[2.31, 2.93]

Table 6: Metric comparison among GSP under different non-
uniform bid-scalings.

Figure 2: The strength of non-uniform bid-scaling by the
level of non-uniform bid-scaling.

Note that when a bidder uses uniform bid-scaling, its strength is
0. For each auction format, a higher overall strength would imply
that more bidders are actively adopting non-uniform bid-scaling.
Figure 2 shows how the strengths of different auction formats evolve
as the corresponding level of non-uniform bid-scaling increases. As
expected, we see that the strength of FPA increases faster than GSP,
while the strength of VCG is always 0 (i.e., uniform bid-scaling).

The trend matches our intuition. The newly introduced strength
metric uncovers the divergence of the bid multipliers even though
the mean values seem unchanged.

4.4 Convergence
In this section, we show empirically how well our auto-bidding
algorithms converge to meet the target ROI constraints. This is
an important sanity check, since without good convergence, the
empirical results could be very badly biased andwould not represent
what would happen in an equilibrium.

To capture the slackness of the target ROI constraints of all bid-
ders in aggregation, we introduce a metric RelativeMargin, which
is essentially the sum of the gap between value and spend for each
bidder normalized by the total revenue:

RelativeMargin =

∑
𝑖 |value𝑖−spend𝑖 |∑

𝑖 spend𝑖
.

In particular, RelativeMargin = 0 implies perfectly achieving ROI
targets for all bidders.

In Figure 3 and Figure 4, we plot RelativeMargin and average
ROI of different iterations of bidding algorithms. Notice that after

Figure 3: Relative margin converges to 0 over time.

Figure 4: ROI converges to 1 over time.

5 to 10 iterations, RelativeMargin drops to a pretty low level and
ROI is almost 1, indicating reasonable convergence.

5 CONCLUSIONS
To summarize, in this paper, we conduct an empirical study on dif-
ferent auction formats under uniform bid-scaling and non-uniform
bid-scaling in an auto-bidding world.

Our main empirical findings are (1) FPA > GSP > VCG in terms of
welfare and profit under both uniform bid-scaling and non-uniform
bid-scaling, and (2) higher levels of non-uniform bid-scaling has
negative impact in FPA but no effect in VCG. Our empirical results
complement the theoretical findings from prior work which mainly
focus on worst-case type analyses, price of anarchy. We also note
that our framework for synthetic auction data generation and run-
ning auctions and bidding algorithms in the auto-bidding setup
could be of independent interests for future empirical research.

For future work, one direction is to extend our empirical frame-
work to the multi-channel setting studied in [16], in which adver-
tisers procure ad impressions simultaneously on multiple channels
and each channel may adopt its own autobidding algorithm, which
may implement uniform and/or non-uniform bid-scaling strategies.
The multi-channel setting is well-motivated from several practical
scenarios but it adds another layer of complexity as the advertisers
could potentially set different targets across channels. It would be
interesting to see how our empirical observations carry over to the
multi-channel setting.
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A EXPERIMENTAL RESULTS FOR DIFFERENT
AUCTION FORMATS WITH RESERVES

Prior work [4] shows that theoretically VCG with reserves using
signals related to values has welfare approximation improves all the
way to 1 when signals used in reserves approximate values better
and better. [4] also has an empirical section comparing (normal)
VCG to VCG with such reserves, under uniform bid-scaling and
with no cost. Deng et al. [18] extend [4]’s theoretical results to show
a similar result for FPA under non-uniform bid-scaling.

We extend their empirical study to different auction formats,
non-uniform bid-scaling, and with costs. In the following three
tables (Table 8, 9, 10), we compare reserves versus no reserves, and
uniform bid-scaling versus non-uniform bid-scaling in FPA, VCG
and GSP separately. The non-uniform bid-scaling analyzed in this
section uses the highest non-uniform level in Section 4.2.

For FPA, we observe that our current level of reserves has almost
no impact, under both uniform bid-scaling and non-uniform bid-
scaling.

For VCG and GSP, we observe that the reserve prices increase
both profit and welfare in both uniform and non-uniform bid-
scaling. Compared to uniform bid-scaling algorithms, the reserve
prices provide higher boost to profit and lower boost to welfare in
non-uniform bid-scaling.

For the strength of non-uniform bid scaling and the convergence,
see Figure 5.

Mechanism Profit Welfare Bid Mul
GSP reserve
non-uniform

+0.00%
(benchmark)

+0.00%
(benchmark)

2.49
[2.23, 2.74]

FPA reserve
non-uniform

+1.77%
[+1.03%, +2.51%]

+3.42%
[+2.67%, +4.16%]

1.00
[1.00, 1.00]

VCG reserve
non-uniform

-2.46%
[-2.85%, -2.07%]

-2.06%
[-2.43%, -1.69%]

3.76
[2.86, 4.65]

Table 7: Metric comparison among non-uniform bid-scalings.

Mechanism Profit Welfare Bid Mul
FPA

uniform
+0.00%

(benchmark)
+0.00%

(benchmark)
1.00

[1.00, 1.00]
FPA

non-uniform
-1.28%

[-1.35%, -1.21%]
-1.02%

[-1.08%, -0.96%]
1.00

[1.00, 1.00]
FPA reserve
uniform

+0.00%
[-0.00%, +0.00%]

+0.00%
[-0.00%, +0.00%]

1.00
[1.00, 1.00]

FPA reserve
non-uniform

-1.32%
[-1.39%, -1.24%]

-1.06%
[-1.12%, -1.00%]

1.00
[1.00, 1.00]

Table 8: Metric comparison among FPA mechanisms under
different reserve and non-uniform bid-scaling settings.

Mechanism Profit Welfare Bid Mul
VCG

uniform
+0.00%

(benchmark)
+0.00%

(benchmark)
3.66

[3.14, 4.18]
VCG

non-uniform
-0.00%

[-0.00%, +0.00%]
-0.00%

[-0.00%, +0.00%]
3.66

[3.14, 4.18]
VCG reserve
uniform

+0.83%
[+0.65%, +1.01%]

+0.84%
[+0.66%, +1.02%]

3.26
[2.92, 3.61]

VCG reserve
non-uniform

+1.68%
[+1.44%, +1.92%]

+0.61%
[+0.46%, +0.77%]

3.76
[2.86, 4.65]

Table 9: Metric comparison among VCG mechanisms under
different reserve and non-uniform bid-scaling settings.

Mechanism Profit Welfare Bid Mul
GSP

uniform
+0.00%

(benchmark)
+0.00%

(benchmark)
2.63

[2.31, 2.95]
GSP

non-uniform
+0.51%

[+0.43%, +0.59%]
-0.35%

[-0.40%, -0.29%]
2.62

[2.31, 2.93]
GSP reserve
uniform

+0.51%
[+0.38%, +0.64%]

+0.51%
[+0.37%, +0.64%]

2.43
[2.21, 2.65]

GSP reserve
non-uniform

+1.48%
[+1.29%, +1.67%]

+0.06%
[-0.05%, +0.17%]

2.49
[2.23, 2.74]

Table 10: Metric comparison among GSP mechanisms under
different reserve and non-uniform bid-scaling settings.
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Figure 5: The strength of non-uniform bid-scaling by level, as well as relative margin and ROI convergence for auction formats
with reserves.
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