
Exploring and Improving Drafts in Blockwise Parallel Decoding

Taehyeon Kim 1 Ananda Theertha Suresh 2 Kishore Papineni 2 Michael Riley 2 Sanjiv Kumar 2

Adrian Benton 2

Abstract
Blockwise parallel decoding (BPD) was proposed
in Stern et al. (2018) as a method to improve the
inference speed of language models by simulta-
neously predicting multiple future tokens, termed
block drafts, which are subsequently verified by
the autoregressive model. Block drafts are gener-
ated by multiple independent prediction heads of
blockwise parallel language models. This paper
contributes to the understanding and improvement
of block drafts in two ways. First, we analyze the
token distributions produced by multiple predic-
tion heads. Secondly, we leverage this analysis
to develop algorithms to improve BPD inference
speed by refining the block drafts using n-gram
and neural language models. Experiments demon-
strate that refined block drafts yield a +5-21%
increase in block efficiency (i.e., the number of
accepted tokens from the block draft) across di-
verse datasets.

1. Introduction
The landscape of natural language processing has been pro-
foundly reshaped by recent advances in autoregressive lan-
guage models (Brown et al., 2020; Wei et al., 2022; Radford
et al., 2019; Raffel et al., 2020; Team et al., 2023). However,
a significant obstacle to their wider application is high infer-
ence latency, particularly for extremely deep models with
hundreds of billions of parameters (Hoffmann et al., 2022;
Rae et al., 2021; Chowdhery et al., 2022). This latency,
intrinsic to decoding with autoregressive language models
(LMs), imposes considerable computational burdens and
limits real-time deployment.

In response to these latency challenges, the field has seen
a shift towards decoding methods aimed at reducing the
inference latency in large language models (LLM). One

1KAIST, work done while at Google Research as a student
researcher. 2Google Research, New York. Correspondence to:
Adrian Benton <adbenton@google.com>.

Work presented at the ES-FoMo Workshop at ICML 2024. Vienna,
Austria. Copyright 2024 by the author(s).

promising development is the concept of blockwise parallel
decoding (BPD) (Stern et al., 2018; Monea et al., 2023; Cai
et al., 2024). Unlike autoregressive decoding, which gener-
ates one token at a time, blockwise parallel LMs are outfitted
with a set of prediction heads, which propose and verify a
draft, a block of subsequent tokens, in parallel. While BPD
offers one solution to accelerated text generation, it also
poses a challenge in ensuring that the proposed drafts are
fluent and natural.

BPD inference speed depends on both the time it takes
to produce a block draft and the draft’s agreement with
the base LM’s output (Figure 1a). Unlike standard autore-
gressive LMs that generate tokens sequentially—ensuring
consistency with all preceding tokens (e.g., ‘Messi’ fol-
lowing ‘Lionel’)—BPD employs a parallel strategy. Here,
blockwise parallel LMs simultaneously predict multiple
token drafts (e.g., ‘Lionel’ and ‘Ronaldo’), each indepen-
dently. The primary challenge in BPD is ensuring that these
concurrently generated tokens maintain consistency. Ef-
fective block drafters should prioritize sequences such as
‘Lionel Messi’ over incongruous combinations like ‘Lionel
Ronaldo’, which a reasonable LM is unlikely decode. The
focus of this research is improving the quality of block drafts
without altering the underlying model parameters.

2. Our contributions
This paper first investigates properties made by the predic-
tion heads of blockwise parallel LMs across several tasks;
given these observations, we propose rescoring algorithms
to produce higher quality block drafts.

2.1. Observations on block drafts

Consecutive repetitions All heads within a block make
predictions independently in a blockwise parallel LM. Un-
surprisingly, we observe that this leads to block drafts
with significant token repetition across heads. Consecu-
tive repetition is pervasive across tasks, ranging from 20%
to 75% of all neighboring draft tokens, depending on the
task (Section 4).

Oracle top-k block efficiency In the standard BPD algo-
rithm (Algorithm 1), the most likely token at each indepen-

1

Exploring and Improving Drafts in Blockwise Parallel Decoding

Q: Who is the best soccer player in the world? \n A:

𝑦!

Autoregressive
Language Model

𝑦! 𝑦"

Blockwise Parallel
Language Model

𝑦! "𝑦" "𝑦#

Prompt

Block draft

0.62 Lionel
0.31 Christiano
.....

0.92 Messi
0.07 Richie
…..

0.62 Lionel
0.31 Christiano
…

0.42 Ronaldo
0.23 Messi
…

Logits

📑

📑 📑 📑 📑 📑 📑

(a) Example of block drafts

1. Lionel
2. Christiano
3. Michael

1. Ronaldo
2. Messi
3. Riche

1. is
2. Messi
3. ,

1. Messi
2. the
3. who

1. best
2. the
3. who

Top-k
Lattice
(k=3)

1. best
2. the
3. who

1. best
2. the
3. who

1th head 2nd head 3rd head 4th head 5th head 6th head 7th head

Neural Rescoring P-Best N-gram Rescoring

Lionel Messi is the the best who
1. Lionel Messi is the best best the
2. Lionel Ronaldo is the best who the
3. Lionel Messi is the best who the

GlobalLocal
N-gram LMs with p-best draftsSmall Neural LMs

Block Draft

p - best refined block draftsRefined block draft

(b) Output of our proposed algorithms

Figure 1. (a) Illustration of the following two tokens decoded by autoregressive greedy decoding vs. two tokens drafted by BPD. (b)
Outputs from our proposed algorithms, where the top-k token-level predictions are refined using local neural and global n-gram rescoring,
which selects the p most globally probable sequences for batch verification.

dent head is selected as the draft. This approach is prone to
two issues: (1) the draft will likely be ungrammatical with
artifacts such as word repetition and (2) the model might
not be confident about the prediction at some of the heads.
We use block efficiency, the average number of draft tokens
accepted during decoding, to measure the quality of a given
drafter (Leviathan et al., 2023; Sun et al., 2023b). We ask if
the block efficiency can be improved by considering the top-
k most likely tokens at each head. To measure the potential
benefit of considering top-k tokens, we measure the block
efficiency of the oracle path through this top-k lattice, ora-
cle top-k block efficiency, and show that there is significant
headroom for improvement across tasks (Section 4).

2.2. New algorithms

Based on these observations, we propose two algorithms
to leverage the top-k predictions at each head and improve
BPD latency (Figure 1b).

Local rescoring via neural LMs Given the top-k predic-
tions at each head, we refine the block draft by using a
small neural, autoregressive LM to greedily rescore these
local predictions (Subsection 5.1). While the block predic-
tion scores are produced independent of each other, neural
rescoring should favor sequences that are fluent, encourag-
ing coherence between the predictions at each head.

Global rescoring via n-gram LMs with multiple drafts
If the blockwise parallel LM has h heads and we consider
the top-k tokens from each head, then there are kh candidate
drafts of length h that can be formed. We propose to use an
n-gram model to efficiently rescore all paths, via dynamic
programming, and generate the p most probable rescored
paths as a batch of draft candidates. These p drafts can then
be verified in parallel (Subsection 5.2).

There are two critical distinctions between the proposed
algorithms. While neural rescoring models are potentially
more expressive and can leverage unbounded context, n-

BPD
(Baseline)

16-Best 0-gram
BPD

4-gram
BPD

Neural-61M
BPD

16-Best 4-gram
BPD

Methods

94

100

106

112

118

124

130

Re
la

tiv
e

to
St

an
da

rd
 B

PD
 (%

)

Block Efficiency
KV Cache I/O per token (%)

FLOPS per token (%)

Figure 2. Relative performance of our methods to standard BPD
with a 1.5B parameter blockwise parallel LM on NewsRoom
dataset (Grusky et al., 2018). Details are described in Appendix L.

gram LMs can be used to efficiently find the globally most
likely rescored drafts from the entire set of kh possible
draft candidates. Figure 2 shows that our proposed methods
enhance block efficiency, increasing it by +21.30% relative.
This same method also optimizes resource usage, reducing
key-value (KV) cache I/O by -2.54% and increasing FLOPs
per token by +4.04% (Figure 2; Appendix L).

3. Preliminaries
This section introduces notation and concepts, including
algorithms for standard autoregressive decoding and BPD.

Autoregressive decoding Let Mθ be an autoregressive
LM parameterized by θ. The objective is to generate an
output sequence y≤T = (y1, . . . , yT) conditioned on an
input sequence x̄. zt =Mθ(yt|x̄, y<t) is a vector of logits,
zt ∈ R|V|, where V is the vocabulary over tokens. These
logits define a conditional probability distribution at each
time step pθ(yt+1|x̄, y≤t) = ezt∑

ezt , which by the chain rule

yields pθ(y≤T |x̄) =
∏T
t=1 pθ(yt|x̄, y<t).

Blockwise parallel decoding LetMh
θ be a blockwise par-

allel LM with block size h. This model employs h distinct
feedforward neural (FFN) layer with a single hidden layer,

2

Exploring and Improving Drafts in Blockwise Parallel Decoding

Algorithm 1 Blockwise parallel decoding (BPD)

input : Blockwise parallel LM Mh
θ , initial prompt se-

quence x̄ and target sequence length T .
1: Initialize t← 1
2: while t < T do
3: /* Stage 1: Predict */
4: z1t,1, . . . , z

h
t,h ←Mh

θ (yt+1, . . . , yt+h|x̄, y≤t)
5: yt+1, ŷt+2, ..., ŷt+h ← arg max(z1t,1, z

2
t,2, ..., z

h
t,h)

6: /* Stage 2: Verify */
7: for j ← 2, . . . , h in parallel do
8: z1t,j , · · · ←Mh

θ (yt+j , . . . |x̄, y≤t+1, ŷt+2, · · · , ŷt+j−1)
9: end for

10: /* Stage 3: Accept */
11: n← max{n : ŷt+j = arg max z1t,j , 2 ≤ j ≤ n}
12: t← t+ n
13: end while

atop the target LM’s final hidden layer. The output of each
FFN is followed by a softmax layer over the vocabulary to
predict each of the h subsequent tokens in the block. In
our experiments, the parameters of the FFNs are learned
jointly with the base LM during training, and the weights
of all softmax layers are tied to the input embedding table.
Algorithm 1 describes the BPD greedy decoding procedure:

1. Predict Mh
θ is used to generate a draft of h token

predictions yt+1, ŷt+2 · · · , ŷt+h, conditioned on the
prompt, x̄, and existing generated text, y≤t. yt+1 is
identical to the target LM greedy decode.

2. Verify At this stage, the target LM greedily
generates next-token logits {z1t,2, · · · , z1t,h} condi-
tioned on the existing prefix and block draft
{x̄, y≤t+1, ŷt+2, · · · , ŷt+h}. Verification amounts to
checking which block draft tokens match the autore-
gressive greedy decode from the target LM. Verifica-
tion of all positions can be performed in parallel if the
target LM is a decoder-only transformer.

3. Accept Finally, the length of the longest contiguous
prefix of draft tokens that match the target LM greedy
decode is identified: n. The decoded sequence is ex-
tended by n + 1 tokens and we iterate.1 Note that in
general, not all h tokens are accepted, and many of the
draft tokens in each block are discarded. Since the ad-
ditional time required to generate a block of tokens is
fast relative to the time it takes for the forward pass of
the target LM, a modest gain in accepted prefix length
justifies the cost of draft generation.

1The decoded sequence is extended by n + 1 tokens since
during verification we generate the token from the target LM,
argmax zt,n+1

1, at the first position where the draft differs from
the target LM greedy decode.

Table 1. Consecutive token repetition in block drafts before and
after C4-trained 2-gram rescoring of the top-16 lattice. “% Consec”
is the percentage of consecutive identical draft tokens out of all
pairs of consecutive tokens. “Max run” is the average maximum
repeated subsequence length in tokens.

Task Dataset % Consec Max run

Vanilla 2-gram Vanilla 2-gram

LM LAMBADA 20.0 10.7 2.2 1.8

QA SQuAD V1 75.5 67.6 6.6 6.1

S-SUM CNN/Daily 46.4 21.9 3.8 2.5
SAMSUM 29.9 20.0 3.1 2.5

L-SUM
MultiNews 33.6 14.7 3.1 2.1

XSUM 24.0 9.4 2.6 1.7
NewsRoom 47.2 32.1 4.1 3.3

4. Exploration of BPD drafts
Consecutive repetitions We observe that vanilla block
drafts are prone to significant token repetition. This is due
to the fact that each head’s prediction is independent of the
others, and is a limitation shared with non-autoregressive
generation in general (Gu et al., 2017). Table 1 shows the
proportion of consecutive tokens in block drafts that are
identical to each other, along with the average length of the
longest run per block draft.

We compare these statistics before and after rescoring with
a 2-gram LM: a trivial rescorer, but one that can encourage
local consistency between consecutive draft tokens. Runs of
repeated tokens are unnatural, and unlikely to be generated
by a strong base language model. Rescoring the top-k block
draft lattice with a 2-gram LM reduces the percentage of
consecutive repeated tokens from between 9.9% to 24.5%,
depending on the task.

Oracle efficiency The concept of oracle block efficiency
in BPD serves as a theoretical benchmark, illustrating the
headroom available from improving the quality of the block
draft. To compute oracle block efficiency, we consider
the top-k most probable tokens at each head, and form a
“sausage” lattice from these.

Generating drafts via oracle is not practical, but rather a
reference point. Analyzing the gap between actual BPD
performance and the oracle upper bound (Figure 3) helps
us to understand the limitations of the original block drafts
and potential areas for improvement. Additionally, explor-
ing oracle efficiency as a function of k in the top-k lattice,
demonstrates how “close” the block draft was to producing
a stronger draft.

5. Lattice rescoring for improved block
efficiency

Each of these algorithms is a modification of the block
drafted in Stage 1 in Algorithm 1. Instead of using the most

3

Exploring and Improving Drafts in Blockwise Parallel Decoding

1 2 4 8 16 32 64
k

0

10

20

30

40

50

Re
la

tiv
e

Im
pr

ov
em

en
t (

%
) Oracle (9 Heads)

Oracle (6 Heads)
Oracle (3 Heads)

(a) CNN/Daily

1 2 4 8 16 32 64
k

0

20

40

60

80

100

Re
la

tiv
e

Im
pr

ov
em

en
t (

%
) Oracle (9 Heads)

Oracle (6 Heads)
Oracle (3 Heads)

(b) SAMSUM

1 2 4 8 16 32 64
k

0

20

40

60

80

Re
la

tiv
e

Im
pr

ov
em

en
t (

%
) Oracle (9 Heads)

Oracle (6 Heads)
Oracle (3 Heads)

(c) XSUM

Figure 3. Oracle block efficiency over the top-k lattice as a function k. Each plot (a-c) represents a different task, demonstrating the
relative improvement in block efficiency of the oracle draft with respect to the vanilla block draft.

1 2 4 8 16
Top p Sequences

1.74

1.78

1.82

Bl
oc

k
Ef

fic
ie

nc
y

0-gram
1-gram
2-gram
3-gram
4-gram

(a) CNN/Daily

1 2 4 8 16
Top p Sequences

1.25

1.35

1.45
Bl

oc
k

Ef
fic

ie
nc

y
0-gram
1-gram
2-gram
3-gram
4-gram

(b) SAMSUM

1 2 4 8 16
Top p Sequences

1.15

1.20

1.25

Bl
oc

k
Ef

fic
ie

nc
y

0-gram
1-gram
2-gram
3-gram
4-gram

(c) XSUM

Figure 4. Block efficiency of p-best n-gram BPD methods as a function of the number of top p sequences verified in parallel. The block
efficiency of the methods is evaluated with the the same number of paths extracted from the top-16 lattice.

Table 2. Block efficiency of our methods over the top-16 lattice. ‘16-best 0-gram BPD’ indicates performance of 16-best verification over
the original lattice without n-gram rescoring. Relative percent improvement over BPD (Baseline) is indicated in parentheses. Green
circles () indicate improvement over the Baseline, while red circles () denote no improvement.

Task Dataset Baseline Local rescoring Global rescoring Oracle (k=16)BPD neural-61M BPD 4-gram BPD 16-best 0-gram BPD 16-best 4-gram BPD

LM LAMBADA 3.12 3.08 (-1.28%) 3.05 (-2.24%) 3.23 (+3.53%) 3.29 (+5.45%) 3.67

QA SQuAD V1 2.08 2.10 (+0.96%) 2.07 (-0.48%) 2.18 (+4.85%) 2.22 (+6.87%) 2.45

S-SUM CNN/Daily 1.74 1.73 (-0.57%) 1.73 (-0.57%) 1.82 (+4.66%) 1.83 (+5.41%) 2.26
SAMSUM 1.27 1.39 (+9.45%) 1.29 (+1.57%) 1.37 (+7.87%) 1.45 (+14.17%) 1.95

L-SUM
MultiNews 1.10 1.25 (+13.64%) 1.12 (+1.82%) 1.13 (+2.73%) 1.22 (+10.91%) 1.43

XSUM 1.13 1.23 (+8.85%) 1.16 (+2.65%) 1.18 (+4.42%) 1.26 (+11.50%) 1.55
NewsRoom 1.08 1.29 (+19.44%) 1.18 (+9.26%) 1.11 (+2.78%) 1.31 (+21.30%) 1.50

likely token at each head as the prediction, we construct
the top-k sausage lattice of likely drafts from each head,
where the set of top-k tokens is denoted as Si for head i.
This approach allows any token within Si to be chosen for
position i, yielding a total possible combinations of kh.

In this lattice, any path from the start to final state represents
a viable draft. we propose two algorithms to select a small
number of h-length drafts from this lattice, which are then
verified. The first algorithm uses neural autoregressive trans-
formers (Subsection 5.1) for rescoring, while the second
uses n-gram language models (Subsection 5.2).

5.1. Local rescoring via neural models

A simple approach uses a small neural rescorer, interpolating
between the logits of the rescorer LM and vanilla block

logits with an interpolation weight. The rescored prediction
is given by: zjt,j [Sj]← zjt,j [Sj] + α · rt+j [Sj]

zjt,j represents the logit of the block draft at head j, and
rt+j is the corresponding logit predicted by the small neu-
ral rescoring model, which is conditioned on the sequence
y≤t, · · · , ŷt+2, · · · , ŷt+j−1. The parameter α is the weight
placed on the rescorer’s prediction. We experiment with
decoder-only transformers with 32-94 million parameters
(Subsection D.2). We use greedy rescoring in our experi-
ments.

5.2. Global n-gram rescoring

We also evaluate the quality of drafts generated by rescoring
with an n-gram LM. Recall that blockwise parallel LMs
can be used to compute a lattice representing kh possible

4

Exploring and Improving Drafts in Blockwise Parallel Decoding

sequences. We rescore all of these sequences with an n-
gram model, select the top p sequences and pass them to
the verification stage. When p = 1, we refer to this as
n-gram BPD and when p > 1, p-best n-gram BPD.

While global rescoring typically yields better results com-
pared to local rescoring, explicitly rescoring kh sequences
with a neural LM and selecting the most likely sequence
would take time O(kh), which is computationally pro-
hibitive. Hence, we take advantage of n-gram models, which
are unique in that we can efficiently select the most likely se-
quence in time poly(k, h) using dynamic programming. We
use the OpenFST library (Allauzen et al., 2007) to represent
each n-gram model as a weighted finite state automaton and
apply finite state composition with the top-k lattice followed
by extraction of the p most likely draft sequences. Training
details for the n-gram models are given in Appendix D.3.

5.3. Empirical evaluation

Block efficiency Table 2 and Figure 4 demonstrate the im-
pact of lattice rescoring on block efficiency across various
language modeling, extractive question answering, and sum-
marization tasks. Autoregressive neural, n-gram LM, and
p-best n-gram BPD rescoring all demonstrate improvements
in block efficiency, although gains are task-dependent.

For tasks with high initial BPD block efficiency (LAM-
BADA, CNN/Daily), both of the rescoring methods show
little to no improvement, suggesting that vanilla BPD al-
ready produces high quality drafts. However, when block ef-
ficiency is initially low, we find that lattice rescoring leads to
block efficiency gains, with greedy neural rescoring achiev-
ing the best performance in some cases. This suggests
that rescoring most helps refine predictions when the initial
drafts are particularly poor.

6. Conclusion
This paper presents a comprehensive analysis of BPD, high-
lighting its predictive dynamics and proposing methods to
refine the generation of block drafts. Our study offers in-
sights into BPD’s behavior, particularly the tendency for
drafts to contain consecutive repetitions and its heads to ex-
hibit varying confidence levels in predictions. We introduce
a novel measure, oracle top-k block efficiency, to explore
potential improvements in block efficiency. Two algorithms
are proposed: local rescoring with small neural models, and
global rescoring of multiple drafts with n-gram LMs. These
algorithms leverage the strengths of both blockwise parallel
LMs and small rescoring models to streamline the decoding
process, pushing the boundaries of efficient text generation
with BPD.

References
Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri,

M. Openfst: A general and efficient weighted finite-state
transducer library: (extended abstract of an invited talk).
In Implementation and Application of Automata: 12th
International Conference, CIAA 2007, Praque, Czech
Republic, July 16-18, 2007, Revised Selected Papers 12,
pp. 11–23. Springer, 2007.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Chi, E. A., Salazar, J., and Kirchhoff, K. Align-refine:
Non-autoregressive speech recognition via iterative re-
alignment. arXiv preprint arXiv:2010.14233, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Elbayad, M., Gu, J., Grave, E., and Auli, M. Depth-adaptive
transformer. arXiv preprint arXiv:1910.10073, 2019.

Fabbri, A. R., Li, I., She, T., Li, S., and Radev, D. R.
Multi-news: A large-scale multi-document summariza-
tion dataset and abstractive hierarchical model. arXiv
preprint arXiv:1906.01749, 2019.

5

http://github.com/google/jax

Exploring and Improving Drafts in Blockwise Parallel Decoding

Gliwa, B., Mochol, I., Biesek, M., and Wawer, A. Samsum
corpus: A human-annotated dialogue dataset for abstrac-
tive summarization. arXiv preprint arXiv:1911.12237,
2019.

Grusky, M., Naaman, M., and Artzi, Y. Newsroom:
A dataset of 1.3 million summaries with diverse ex-
tractive strategies. In Walker, M., Ji, H., and Stent,
A. (eds.), Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 708–719, New Orleans,
Louisiana, June 2018. Association for Computational
Linguistics. doi: 10.18653/v1/N18-1065. URL https:
//aclanthology.org/N18-1065.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R.
Non-autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281, 2017.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., et al. An empirical analysis
of compute-optimal large language model training. Ad-
vances in Neural Information Processing Systems, 35:
30016–30030, 2022.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th annual inter-
national symposium on computer architecture, pp. 1–12,
2017.

Katz, S. Estimation of probabilities from sparse data for the
language model component of a speech recognizer. IEEE
transactions on acoustics, speech, and signal processing,
35(3):400–401, 1987.

Kim, S., Mangalam, K., Moon, S., Malik, J., Mahoney,
M. W., Gholami, A., and Keutzer, K. Speculative decod-
ing with big little decoder. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Kim, T., Kim, J., Lee, G., and Yun, S.-Y. Instructive
decoding: Instruction-tuned large language models are
self-refiner from noisy instructions. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=LebzzClHYw.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, X. L., Holtzman, A., Fried, D., Liang, P., Eisner, J.,
Hashimoto, T., Zettlemoyer, L., and Lewis, M. Con-
trastive decoding: Open-ended text generation as opti-
mization. arXiv preprint arXiv:2210.15097, 2022.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. arXiv preprint
arXiv:2305.11627, 2023.

Monea, G., Joulin, A., and Grave, E. Pass: Parallel specula-
tive sampling. arXiv preprint arXiv:2311.13581, 2023.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me the
details, just the summary! topic-aware convolutional neu-
ral networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N.,
Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., and
Fernández, R. The lambada dataset: Word prediction
requiring a broad discourse context. arXiv preprint
arXiv:1606.06031, 2016.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann,
J., Song, F., Aslanides, J., Henderson, S., Ring, R.,
Young, S., et al. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research,
21(1):5485–5551, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

6

https://aclanthology.org/N18-1065
https://aclanthology.org/N18-1065
https://openreview.net/forum?id=LebzzClHYw
https://openreview.net/forum?id=LebzzClHYw

Exploring and Improving Drafts in Blockwise Parallel Decoding

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. Advances in Neural Information
Processing Systems, 35:17456–17472, 2022.

Spector, B. and Re, C. Accelerating llm inference
with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

Stolcke, A. Entropy-based pruning of backoff language
models. arXiv preprint cs/0006025, 2000.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
arXiv preprint arXiv:2306.11695, 2023a.

Sun, Z., Suresh, A. T., Ro, J. H., Beirami, A., Jain, H.,
and Yu, F. Spectr: Fast speculative decoding via optimal
transport. arXiv preprint arXiv:2310.15141, 2023b.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. Zeroquant: Efficient and affordable post-
training quantization for large-scale transformers. Ad-
vances in Neural Information Processing Systems, 35:
27168–27183, 2022.

Zhu, C., Ping, W., Xiao, C., Shoeybi, M., Goldstein, T.,
Anandkumar, A., and Catanzaro, B. Long-short trans-
former: Efficient transformers for language and vision.
Advances in neural information processing systems, 34:
17723–17736, 2021.

7

Exploring and Improving Drafts in Blockwise Parallel Decoding

Appendices
A. Broader impact
Our research in advancing blockwise parallel decoding (BPD) for language models (LMs) paves the way for substantial
improvements in language processing. This section outlines the broader implications of our work, focusing on key areas
such as efficiency, scalability, and systematic impact.

• Inference efficiency: We’ve achieved further acceleration in inference with minimal increases in CPU overhead and
memory bandwidth utilization. In particular, we show that our methods significantly boost the inference efficiency
compared to the standard autoregressive inference.

• Scalability: The introduction for selecting top p sequences from top k predictions demonstrates notable scalability,
hinting at accelerated inference with growing model sizes. This scalability is further explored through diverse
experiments involving various n-gram and neural LM architectures.

• Systematic impact: The advancement of BPD promises identical performance to traditional autoregressive methods,
but with significantly improved efficiency in decoding times, which can be helpful in latency-critical applications.

B. Limitation & future work
B.1. Limitation

Extending beyond greedy decoding In this work, we focus on refining block drafts for greedy decoding, the decoding
scheme considered in the original BPD paper (Stern et al., 2018). Extending this methodology to non-greedy sampling
strategies is an area for future work. Leviathan et al. (Leviathan et al., 2023) illuminates the feasibility of incorporating
speculative decoding strategies to expedite non-greedy sampling processes. Their approach underscores the universality of
the verification process across diverse model architectures, contingent on the availability of draft token-level predictions and
probabilities — a requirement met by (rescored) block candidates.

Scaling up to larger models We show that lattice rescoring can improve the block efficiency for a 1.5 billion parameter
blockwise parallel LM. It remains an open question as to whether one would observe similar improvements in block
efficiency with larger LMs.

Memory overhead during parallel verification A notable challenge in our framework is the memory overhead encoun-
tered during parallel verification. The simultaneous processing of multiple token predictions, particularly for larger models
and draft batches when coupled with lattice rescoring, can intensify memory demands. That said, this can be mitigated by
the application of tree attention during verification (Spector & Re, 2023).

Naive drafting heads and training recipes The implementation of drafting heads within our BPD framework, while
foundational, leaves room for advanced development. This aspect is particularly crucial for refining the model’s accuracy
and efficiency. Future iterations could benefit from more sophisticated training methods, enhancing these heads’ ability to
navigate complex linguistic contexts and improving overall predictive performance.

B.2. Future work

The evolution of the BPD framework will be pivotal in addressing its current constraints and broadening its utility. Key
areas for future research include:

• The intrinsic compatibility of our lattice rescoring method with alternative sampling strategies presents a fertile ground
for future inquiries. This delineation not only enriches the discourse within efficient language model inference but also
sets a trajectory for subsequent empirical endeavors.

• Scaling the blockwise parallel LM for compatibility with larger-scale LLMs, ensuring it remains effective and efficient
as language models evolve.

8

Exploring and Improving Drafts in Blockwise Parallel Decoding

Figure 5. An example of a top-5 sausage lattice generated on a NewsRoom example. Edge weights correspond to (rescored) logits. Edges
at each time step are ordered in descending weight and green, bolded edges correspond to candidates matching the greedy decode over the
next nine tokens: ”... desktop computers with new Intel Corp processors that it ...”. The initial node in this graph is state 0 and the final
node is 9.

• Advancing training methodologies for drafting heads, to bolster their predictive accuracy and contribution to the BPD
process, thereby optimizing the framework for more complex language modeling tasks.

• Using the sequential entropy ordering of heads (Figure 6b) as a possible halting condition during block draft head
training, or to inform how a rescoring LM should be interpolated with the block lattice weights.

C. Related work
C.1. Efficient transformer inference

Works on improving transformer efficiency encompass both optimization of an existing set of model weights, or a fundamen-
tal change to the model architecture. Examples of the former include techniques such as quantization (Xiao et al., 2023; Yao
et al., 2022; Dettmers et al., 2022) and model pruning (Sun et al., 2023a; Ma et al., 2023). In parallel, neural architecture
search has played a crucial role in identifying network structures that balance performance with efficiency (Kitaev et al.,
2020; Zhu et al., 2021). Relatedly, Elbayad et al. (Elbayad et al., 2019) propose early-exiting at intermediate layers for faster
inference, while Schuster et al. (Schuster et al., 2022) explore confidence thresholding for balancing speed and accuracy.
These methods offer insights into optimizing decoding under resource constraints.

One important line of work has focused on modifying the decoding method in LMs. The adoption of non-autoregressive
(parallel) decoding strategies (Stern et al., 2018; Gu et al., 2017) marks a pivotal shift in this domain, addressing inference
latency by simultaneously generating multiple tokens. Subsequent innovations have sought to refine this approach by
incorporating additional context (Chi et al., 2020), iterative refinement (Kim et al., 2023), and tree-based attention mechanism
(Cai et al., 2024). However, these refinements often require complex training or additional inference data.

C.2. Efficient and effective decoding

There are several recent works that improve the speed of LLM decoding, including pioneering works like BPD and
speculative decoding. Speculative decoding leverages a smaller ‘draft’ model to anticipate the outputs of a larger target
model, improving average decode latency without loss in generation quality (Leviathan et al., 2023; Chen et al., 2023; Kim
et al., 2023). The draft model is typically trained on the same corpus as the LLM, thus autoregressively generates similar
drafts as the target model with reduced latency. Speculative decoding is most successful when a long sequence of speculated
tokens are accepted by the target LM during verification, avoiding multiple serial calls to the target LM to generate the same
sequence.

On the surface, contrastive decoding algorithms share some similarities with our proposed draft rescoring approach, insofar
as a weaker model is used to modify the predictions of the target LM (Li et al., 2022; Kim et al., 2024). However, in this
work, we refine block drafts solely to improve latency. Like speculative decoding, our proposals have no effect on the quality
of the target LM’s generated text.

D. Experimental setup
In this paper, we use ≈ 1.5 billion (B) parameter decoder-only transformer LMs with up to 9 blockwise heads.2 The 1.5B
model and all other LMs were pretrained using the C4 English mixture (Raffel et al., 2019) with the causal next token

2This study is based on the original BPD framework, with a modification: we use decoder-only models instead of the T5 encoder-
decoder architecture. Other setups are consistent with the approach in (Stern et al., 2018).

9

Exploring and Improving Drafts in Blockwise Parallel Decoding

Table 3. Per-task test performance of each finetuned model and
block efficiency over language modeling (LM), extractive ques-
tion answering (QA), and both long and short summarization
(L-Sum & S-Sum).

Task Dataset Performance Block
Efficiency

LM LAMBADA (Paperno et al., 2016) 7.88 3.12

QA SQuAD V1 (Rajpurkar et al., 2016) 57.60 2.08

S-SUM CNN/Daily (Hermann et al., 2015) 39.85 1.74
SAMSUM (Gliwa et al., 2019) 37.66 1.27

L-SUM
MultiNews (Fabbri et al., 2019) 23.08 1.10
XSUM (Narayan et al., 2018) 52.15 1.13
NewsRoom (Grusky et al., 2018) 39.85 1.08

Table 4. Outputs from BPD frameworks. Black indicates standard
decoded output, blue indicates accepted draft tokens, and brown is
the prompt.
LAMBADA

it’s nothing more than a faceless, formless brown blob to me, but I take his word for the
resemblance to our genetic makeup. ... {Skip}...

SQuAD V1

Question: Who was announced as the LEM contractor in November 1962? context:
Wiesner kept up the pressure, even making the disagreement public ... {Skip}...
Answer: Grumman

XSUM

Summarize: ... {Skip}...
Millions of small businesses will benefit from a reduction of business rate from the
Budget Osborne, Chancellor George Osborne has announced.

prediction objective tokenized with the GPT3 subword vocabulary (Brown et al., 2020). For the 1.5B blockwise parallel
LMs, all heads were trained jointly to predict the following h tokens at each iteration. During pretraining, we use batches of
2048 subword sequences, each 512 tokens in length, amounting to ≈ 200B input tokens in total on TPUv3/TPUv4 (Jouppi
et al., 2017) with Jax (Bradbury et al., 2018).

We evaluate the potential latency improvement of block drafts by block efficiency (Leviathan et al., 2023; Sun et al., 2023b).
In this context, block efficiency represents the theoretical speedup compared to standard greedy decoding. It is defined as
the average number of tokens decoded per serial call to the blockwise parallel LMs. The formula for block efficiency is
given by B := Total number of decoded tokens

Total number of serial calls toMh
θ

.

In this definition, the total number of decoded tokens is the sum of the number of accepted tokens across decoding steps, not
necessarily all h predicted tokens in each block. Only the tokens that pass the ‘Verify’ stage and align with the base model’s
predictions are accepted and integrated into the final sequence. This ensures that generated text is identical to the target LM,
while achieving speedup. The total number of serial calls toMh

θ is the number of times the model processes a block of
tokens. A block efficiency of 1 means that one is achieving no speedup relative to standard decoding.

In addition to a standard language modeling dataset, LAMBADA (Paperno et al., 2016), we conduct experiments across
several classes of downstream tasks. In the realm of text summarization, we evaluate models on the XSUM (Narayan et al.,
2018), MultiNews (Fabbri et al., 2019), SAMSum (Gliwa et al., 2019), NewsRoom (Grusky et al., 2018) and CNN/DailyMail
(Hermann et al., 2015) datasets. Each of these datasets is characterized by distinct summary lengths and styles. For extractive
QA, the SQuAD V1 dataset (Rajpurkar et al., 2016) serves as our testbed. For each task aside from language modeling, we
finetune the blockwise parallel LM for that task.3 Table 34 shows that block efficiency varies dramatically across tasks and
as a function of the number of block draft heads. We use all 9 block draft heads for subsequent experiments as this acts as an
upper bound on possible block efficiency.

Table 4 sketches how BPD acts on three examples from each class of tasks.

• LM: BPD excels at generating common multi-word expressions in a single step. For example, (no) ‘thing more than’,
and (take) ‘his word for the’ are each drafted and accepted in a single step.

• QA: BPD also attains high block efficiency in extractive QA, where it correctly drafts multi-token entities copied from
the input sequence. In SQuAD V1, it accurately completes the answer ‘Grumman’ from ‘Gru’ by adding ‘mman’,
highlighting its ability to process multiple tokens at once and quickly extend answers.

• SUM: BPD’s effectiveness in SUM tasks varies by dataset. For formulaic summaries like CNN/DailyMail, it performs
well, reflecting its alignment with LM and QA tasks. However, in narrative-driven datasets like SAMSum and XSUM,
where concise summaries are required, the block efficiency of BPD is little better than standard decoding.

As an example of rescoring methods, Figure 5 gives an example of a top-5 BPD sausage lattice. Observe that any path from
the state 0 to state 9 is a path possible by the algorithm.

3Details are given in Subsection D.2.
4The performance metric for LM is perplexity, for QA is exact match, and for the remaining summarization tasks, the metric is

ROUGE-L.

10

Exploring and Improving Drafts in Blockwise Parallel Decoding

D.1. Training objective for blockwise parallel LMs

We minimized the following loss function to train blockwise parallel LMs:

LBPD =

H∑
h=1

λhLh

where H is the number of heads, λh is a non-negative scalar that weights the loss from head h, and Lh denotes the loss for
each individual head:

Lh = −
∑

x1...i,yi+h

log p(yi+h|x1...i)

where x1...i is the token sequence up to position i, yi+h is the ground truth token at position i+ h, and p(yi+h|x1...i) is the
probability of observing token yi+h given the sequence x1...i under the blockwise parallel LM. We trained all models in this
work with λh = 1. We leave tuning these hyperparameters, improving the block efficiency and quality of the blockwise
parallel LM, as future work.

D.2. Neural Model Details

Table 5. Architecture hyperparameters for each of the transformer-based neural language models.

Type Model # Layers Embedding Dim Hidden Dim

Blockwise Parallel Decoder 1.5B 18 1,536 12,288

Autoregressive Decoder
32M 2 384 1,536
61M 12 384 1,536
94M 6 768 3,072

Each neural rescoring LM is a decoder-only transformer with learned absolute positional embeddings and twelve self-
attention heads at each layer. The key architecture hyperparameters are given in Table 5. Aside from scale, the only
difference between the blockwise parallel LM and neural rescoring models is the addition of the feedforward neural networks
and eight additional block prediction heads. Note that the number of parameters for each of these models also includes the
embedding table.

Each model was pretrained on the English C4 corpus for 200K iterations with a batch size of 220 ≈ 1M tokens per batch.
Dropout was not applied. For the blockwise parallel LM, all heads were trained jointly. The pretraining for the blockwise
parallel LMs took about 47 hours on 128 TPUv3 units.

For downstream tasks, models were finetuned for a maximum 100K iterations with a batch size of two examples with
maximum sequence length of 2048. Maximum learning rate was fixed to 10−4 for all runs, with a cosine learning rate
schedule. Checkpoints were selected based on heldout set model performance. Interpolation weight for all rescoring models
was tuned for block efficiency on 100 randomly selected examples from the evaluation set for each task, and performance
was reported on the remainder of the evaluation set. Figure 2 describes the decoding process of local neural rescoring.

D.3. n-gram Details

All n-gram LMs in this work are Katz backoff n-gram LMs (Katz, 1987) fit on the train split of the GPT3 subword-tokenized
English C4 corpus with n-gram order ∈ {2, 4}. We apply entropy pruning (Stolcke, 2000) to reduce model size to a
maximum of 100 million n-grams per model, and ensure that each trigram is observed at least twice and each 4-gram is
observed at least four times. Preprocessing of the text is identical to that used to train neural LMs.

D.4. Datasets

• LAMBADA (LAnguage Modeling Broadened to Account for Discourse Aspects): A collection of narrative pas-
sages designed to test the understanding of long-range dependencies in language models, where the task involves

11

Exploring and Improving Drafts in Blockwise Parallel Decoding

0 1 2 3 4 5
Entropy

0.0

0.2

0.4

0.6

0.8
De

ns
ity

Entropy distribution for each head
1st head
2nd head
3rd head
4th head
5th head
6th head
7th head
8th head
9th head

(a) Entropy distributions across block draft heads

1 2 3 4 5 6 7 8 9
hmax

1.0

1.5

2.0

2.5

3.0

Bl
oc

k
Ef

fic
ie

nc
y

LAMBADA

SQuaD V1

CNN/Daily

SAMSUM
MultiNews XUM NewsRoom

Linear Regression
R=0.77

(b) Correlation between block efficiency and hmax

Figure 6. (a) Entropy distributions across block draft heads on LAMBADA. The density plots illustrate the entropy distribution for each
head in the model. (b) Correlation between block efficiency and hmax, the head until which the average entropy in a task increases
monotonically.

predicting the last word of a passage based on the full context (Paperno et al., 2016).

• SQuAD V1 (Stanford Question Answering Dataset): A reading comprehension dataset that features questions based
on Wikipedia articles, with answers located within the text (Rajpurkar et al., 2016).

• CNN/DailyMail: This dataset includes news articles paired with human-written summaries, mainly used to evaluate
the summarization capabilities of language models, particularly in abstractive summarization (Hermann et al., 2015).

• SAMSum (Semi-Automatic Machine Summarization): Focuses on abstractive summarization using news articles
and machine-generated summaries, testing models’ abilities to refine and improve existing summaries (Gliwa et al.,
2019).

• MultiNews: Comprises news articles from diverse sources for abstractive summarization tasks, evaluating models on
handling different writing styles and topics (Fabbri et al., 2019).

• XSUM: Contains scientific documents and summaries, challenging language models to process complex scientific
information and language (Narayan et al., 2018).

• NewsRoom: A dataset of news articles aimed at assessing the factual accuracy and information extraction capabilities
of models in generating summaries (Grusky et al., 2018).

All datasets were tokenized using the 50,257 GPT3 subword vocabulary (Brown et al., 2020).

Templates We used the following prompts during model finetuning and inference.

• SQuAD: ”question: [question] context: [context]”

• CNN/DailyMail: ”summarize: [text]”

• SAMSum: ”Here is a dialogue: [text]\nWrite a short summary!”

• MultiNews: ”Write a summary based on this article: [text]”

• XSUM: ”Summarize: [text]”

• NewsRoom: ”Please write a short summary for the following article: [title] [text]”

12

Exploring and Improving Drafts in Blockwise Parallel Decoding

Algorithm 2 Local rescoring via neural models

input : Blockwise parallel LMMh
θ , top-k indices selection function TOP-k(·), rescoring modelMθr , interpolation weight

α > 0.
1: z1t+1, . . . , z

h
t+h ←Mh

θ (yt+1, . . . , yt+h|x̄, y≤t)
2: S1, . . . , Sh ← TOP-k(z1t+1, . . . , z

h
t+h)

3: /* Lattice Rescoring (Subsection 5.1)*/
4: for j ← 2, . . . , h in parallel do
5: rt+j ←Mθr (yt+j |x, y<t+j)
6: zjt,j [Sj]← zjt,j [Sj] + α · rt+j [Sj]
7: end for

1 2 4 8 16 32 64
k

0

10

20

30

40

Re
la

tiv
e

Im
pr

ov
em

en
t (

%
) Oracle (9 Heads)

Oracle (6 Heads)
Oracle (3 Heads)

(a) LAMBADA

1 2 4 8 16 32 64
k

0

5

10

15

20
Re

la
tiv

e
Im

pr
ov

em
en

t (
%

) Oracle (9 Heads)
Oracle (6 Heads)
Oracle (3 Heads)

(b) SQuAD V1

1 2 4 8 16 32 64
k

0

15

30

45

60

Re
la

tiv
e

Im
pr

ov
em

en
t (

%
) Oracle (9 Heads)

Oracle (6 Heads)
Oracle (3 Heads)

(c) MultiNews

Figure 7. Oracle block efficiency over the top-k lattice as a function k. Each plot (a-c) represents a different task, demonstrating the
relative improvement in block efficiency of the oracle draft with respect to the vanilla block draft.

E. Confidence across multiple heads
Intuitively, predicting the identity of the ith future token becomes harder as i increases. To better understand this phenomenon,
we measure the confidence of the predictions by the entropy of the probability distribution. In Figure 6a, we plot the
normalized histogram of entropy of each head on the LAMBADA task. From the normalized histogram, it is clear that the
entropy increases as we move from first head to the last head, which agrees with our intuition that hardness of predictions
increases as i increases.

However, we observed that the entropy of heads does not increase monotonically for all tasks. Let H[i] be the average
entropy of head i on a particular corpus, and let hmax = max

k
{k : ∀i < k,H[i] ≤ H[i + 1]}, be the index of the largest

head such that the average entropy of each head increases monotonically to that point. We observed a strong correlation
between hmax and block efficiency (Figure 6b). Heads with lower entropy (indicating more confident predictions) intuitively
contribute more to efficiency. Nonetheless, simply maximizing the number of low-entropy heads is not optimal, but rather
incorporating progressively higher entropy heads, up to a certain point, can benefit decoding efficiency. A linear regression
confirms this with an R-value of 0.77. This analysis suggests that BPD head entropy could be used as a proxy for block
efficiency, and thus inference latency.

F. Repairing repetitions
In Section 4, we note that vanilla block drafts are prone to token-level repetition and that rescoring with a simple language
model reduces the incidence of this. Although rescoring reduces repetition overall in drafts, is this driving improvements in
block efficiency? To answer this, we compared the drafts generated by greedy rescoring with the 61M parameter neural
rescorer against vanilla drafts. Time step instances were considered wins/ties/losses based on the accepted prefix length of
the rescored draft vs. vanilla draft. Table 6 displays the win frequency across tasks along with the percentage of wins/losses
attributed to introducing/eliminating repetition.

Note that in the tasks where rescoring improves block efficiency the most, NewsRoom and MultiNews, a high percentage of
those repaired instances are driven by fixing erroneously repeated tokens. In fact, for MultiNews, 66.23% of block drafts are
improved through repetition repair. We also evaluated the performance of rescoring with in-domain trained rescoring LMs,
but found that they tended to perform no better than C4-trained LMs (Appendix H).

13

Exploring and Improving Drafts in Blockwise Parallel Decoding

1 2 4 8 16
Top p Sequences

3.1

3.2

3.3

Bl
oc

k
Ef

fic
ie

nc
y

0-gram
1-gram
2-gram
3-gram
4-gram

(a) LAMBADA

1 2 4 8 16
Top p Sequences

2.10

2.15

2.20

Bl
oc

k
Ef

fic
ie

nc
y

0-gram
1-gram
2-gram
3-gram
4-gram

(b) SQuAD V1

1 2 4 8 16
Top p Sequences

1.10

1.15

1.20

Bl
oc

k
Ef

fic
ie

nc
y

0-gram
1-gram
2-gram
3-gram
4-gram

(c) MultiNews

Figure 8. Block efficiency of p-best n-gram BPD methods as a function of the number of top p sequences verified in parallel. The block
efficiency of the methods is evaluated with the the same number of paths extracted from the top-16 lattice.

Table 6. Wins, ties, and losses of 61M parameter neural-rescored drafts and vanilla drafts. “% Repair” corresponds to instances where the
rescored draft eliminates repetition and “% Regress” corresponds to instances where the rescored draft introduces repetition.

Dataset Ties
Win Loss

Total % Repair % Regress Total % Repair % Regress

LAMBADA 631.5K 5804 27.95 0.05 9466 2.01 0.06
SQuAD V1 104.4K 1624 12.68 8.13 6325 2.53 12.28
CNN/Daily 965.0K 5928 23.20 0.67 17863 3.19 0.48
SAMSum 12.1K 2462 17.91 23.56 867 18.57 16.72
MultiNews 1.45M 294856 44.41 7.45 50209 22.21 5.37

XSUM 262.0K 36010 29.87 0.77 6826 4.19 10.99
NewsRoom 251.3K 79710 66.23 0.60 6492 2.85 7.39

G. Further experimental evaluation
Figure 7 provides additional oracle block efficiency over various tasks. Moreover, Figure 8 further supports the impact of
lattice rescoring on block efficiency across various tasks.

H. Rescoring with in-domain language models

Table 7. Block efficiency from rescoring with in-domain trained rescoring models for 2-gram and 61M parameter neural rescorer.

Dataset 2-gram neural-61M

C4 In-domain C4 In-domain

SQuAD V1 2.09 2.04 2.10 2.06
CNN/Daily 1.73 1.73 1.73 1.72
SAMSUM 1.31 1.22 1.39 1.24
MultiNews 1.13 1.14 1.25 1.16
XSUM 1.17 1.18 1.23 1.14
NewsRoom 1.20 1.22 1.29 1.11

We found that in-domain rescorers performed no better than rescorers only trained on C4. We suspect this is due to a lack
of sufficient finetuning data and that the main benefit of rescoring comes from discouraging unnatural artifacts such as
repetition from the original BPD draft. Table 7 shows block efficiency after rescoring using in-domain models for all tasks
besides language modeling.

Neural rescorers were finetuned from C4-pretrained checkpoints. n-gram models were trained from scratch, and unseen
vocabulary was added as unigram arcs with trivial weight (negative log probability of 1000.0). This was done to ensure that
all paths through the lattice were assigned non-zero probability by the n-gram model. In previous experiments, we also
tried interpolating the in-domain n-gram model with a unigram model trained on C4, and observed similar performance as
simply adding unseen unigrams.

14

Exploring and Improving Drafts in Blockwise Parallel Decoding

I. Interpolation weights tuned per task
We tuned the interpolation weight, α for the 94M parameter neural and 4-gram LM rescorers, and then used this
weight to rescore with all other models of that same class. 100 examples from each task’s heldout set were set
aside for tuning, to maximize block efficiency. The remainder of examples were used for evaluation. We swept over
α ∈ {0.1, 0.5, 0.75, 0.9, 1.0, 1.1, 1.5, 2.0, 5.0, 10.0}.

Note that for tasks where lattice rescoring was unhelpful, the interpolation weight, α is tuned to place much higher weight
on the block draft logits (Table 8). This is a signal that the rescorer does not provide additional information over the original
block heads.

Table 8. Tuned interpolation weight per task for neural and n-gram rescoring.
Dataset Neural n-gram

LAMBADA 0.1 0.1
SQuAD V1 1.0 0.75
SAMSum 5.0 1.5
CNN/Daily 0.1 0.1
MultiNews 5.0 2.0
XSUM 1.5 1.1
NewsRoom 5.0 2.0

J. Local rescoring impact on block efficiency
Table 9 reveals the impact of different rescoring methods on the block efficiency of the block lattice, offering valuable
insights into their effectiveness across diverse tasks and models, supporting the investigations in Figure 2.

• Limited improvement for high baselines: For tasks with already high initial block efficiency (LAMBADA,
CNN/DailyMail), rescoring offers minimal or even negative changes in block efficiency compared to the baseline BPD
system. This suggests that for well-calibrated models with hierarchical confidence ordering, the standard BPD already
achieves significant speed improvements, leaving limited room for further gains through rescoring.

• Efficacy for poor baselines: In tasks with less calibrated predictions (SQuAD V1, XSUM, NewsRoom), rescoring
using both n-gram and neural language models demonstrably improves block efficiency. Notably, neural rescoring
with larger models (61M and 94M parameters) achieves the highest efficiency gains in these tasks, reaching up to
19.44% improvement in NewsRoom. These results highlight the potential of rescoring to refine predictions and enhance
efficiency for models exhibiting calibration issues.

• Task-specific effectiveness: The level of improvement from rescoring varies across different summarization tasks
(MultiNews, XSUM, NewsRoom). While all show positive responses, NewsRoom exhibits the most significant gains,
suggesting that the effectiveness of rescoring can be task-dependent.

• Comparison with oracle efficiency: The ‘Oracle’ columns present the upper bound achievable if only the most likely
token at each step is chosen with perfect hindsight (k=2 and k=16). While significant gaps remain between current
results and the oracle, the observed improvements from rescoring demonstrate progress towards closing this efficiency
gap.

Overall, these findings suggest that local rescoring methods can be a valuable tool for enhancing BPD efficiency, particularly
for models with less calibrated predictions. Further exploration of advanced rescoring strategies, especially in conjunction
with larger neural language models, holds promise for achieving even closer-to-oracle efficiency levels.

K. Ablation on the number of heads in the blockwise parallel LM
Table 10 summarizes the block efficiency for different head configurations across various language tasks with the same
settings discussed in Figure 3.

15

Exploring and Improving Drafts in Blockwise Parallel Decoding

Table 9. Block efficiency after rescoring of the block lattice. Green circles () indicate improvement over the Baseline (BPD), with the
percentage changes in block efficiency shown in brackets relative to the Baseline. Red circles () denote no improvement.

Task Dataset Baseline Global rescoring Local rescoring Oracle (k=2) Oracle (k=16)BPD 2-gram BPD 3-gram BPD 4-gram BPD neural-32M BPD neural-61M BPD neural-94M BPD

LM LAMBADA 3.12 3.06 (-1.92%) 3.05 (-2.24%) 3.05 (-2.24%) 3.08 (-1.28%) 3.10 (-0.64%) 3.05 (-2.24%) 3.22 3.67

QA SQuAD V1 2.08 2.09 (+0.48%) 2.08 (0.00%) 2.07 (-0.48%) 2.10 (+0.96%) 2.10 (+0.96%) 2.07 (-0.48%) 2.16 2.45

S-SUM CNN/Daily 1.74 1.73 (-0.57%) 1.73 (-0.57%) 1.73 (-0.57%) 1.73 (-0.57%) 1.73 (-0.57%) 1.73 (-0.57%) 1.84 2.26
SAMSum 1.27 1.31 (+3.15%) 1.31 (+3.15%) 1.29 (+1.57%) 1.33 (+4.72%) 1.39 (+9.45%) 1.21 (-4.72%) 1.23 1.95

L-SUM
MultiNews 1.10 1.13 (+2.73%) 1.13 (+2.73%) 1.12 (+1.82%) 1.25 (+13.64%) 1.25 (+13.64%) 1.20 (+9.09%) 1.13 1.43

XSUM 1.13 1.17 (+3.54%) 1.17 (+3.54%) 1.16 (+2.65%) 1.18 (+4.42%) 1.23 (+8.85%) 1.17 (+3.54%) 1.17 1.55
NewsRoom 1.08 1.20 (+11.11%) 1.18 (+9.26%) 1.18 (+9.26%) 1.29 (+19.44%) 1.29 (+19.44%) 1.17 (+8.33%) 1.15 1.50

• General trend: Both performance and block efficiency tend to increase with the number of heads, up to a point. This
suggests that using more heads allows the model to capture richer contextual information and make more accurate
predictions.

• Efficiency trade-off: While increasing heads generally improves block efficiency, it also increases the memory for
verification stages. Therefore, the optimal number of heads depends on the balance between desired block efficiency
and available resources.

Table 10. Test performance per task. Test performance of each finetuned model and block efficiency are shown as a function of heads
(h ∈ 3, 6, 9). Tasks inclue Language Modeling (LM), extractive Question Answering (QA), and both Long and Short Summarization
(L-Sum & S-Sum). The metric for LM is perplexity, for QA is exact match, and for all the remaining (summarization) tasks, the metric is
ROUGE-L.

Task Dataset Performance # of Heads (h)
3 6 9

LM LAMBADA 7.88 1.79 2.84 3.12

QA SQuAD V1 57.60 1.53 2.03 2.08

S-SUM CNN/Daily 39.85 1.60 1.71 1.74
SAMSUM 37.66 1.18 1.25 1.27

L-SUM
MultiNews 23.08 1.08 1.08 1.10
XSUM 52.15 1.11 1.12 1.13
NewsRoom 39.85 1.07 1.08 1.08

L. Efficiency of rescoring block drafts
To enhance our understanding of block rescoring within the realm of contemporary deep learning hardware environments,
we present an in-depth examination focused on TPU/GPU utilization and the overhead incurred by n-gram rescoring. This
analysis is divided into two parts: (1) an analysis of block rescoring through the lens of TPU/GPU utilization, and (2)
empirical benchmarks of n-gram lattice rescoring. The major takeaways are as follows.

Memory bandwidth (HBM⇔ SRAM) A critical factor in the performance of deep learning applications is the efficient
management of memory bandwidth between High Bandwidth Memory (HBM) and Static Random Access Memory (SRAM)
(Dao et al., 2022). Increasing the block efficiency via the block lattice rescoring reduces the average per token parameter
and key-value cache I/O that needs to be communicated from HBM to SRAM.

Overhead in n-gram rescoring n-gram rescoring is actually quite efficient. For the size of lattices we consider in this
work, moving the lattice from HBM to DRAM, performing n-best n-gram rescoring, and moving the n-best paths back to
HBM requires no more than 2 ms per lattice.

L.1. Hardware utilization

We compare our approach against traditional Autoregressive LMs across several metrics (Table 11):

16

Exploring and Improving Drafts in Blockwise Parallel Decoding

Table 11. Comparative analysis of per decoded token efficiency metrics across block rescoring methods and the standard autoregressive
LM (batch size=1). This table shows the average block efficiency, parameter I/O, key-value (KV) cache I/O at varying sequence lengths,
and FLOPS—evaluated on a per-token basis under the condition of batch size 1.

Component Autoregressive Base BPD 4-gram BPD Neural-61M BPD 16-best 0-gram BPD 16-best 4-gram BPD

Avg. Block Efficiency 1.000 1.646 1.657 1.724 1.717 1.797
Parameter I/O (GB) 3.000 1.823 1.811 1.811 1.747 1.669
KV Cache I/O (GB) - Seq len 128 0.113 0.074 0.073 0.076 0.140 0.134
KV Cache I/O (GB) - Seq len 512 0.453 0.280 0.278 0.290 0.338 0.323
KV Cache I/O (GB) - Seq len 1024 0.906 0.555 0.552 0.574 0.602 0.575
KV Cache I/O (GB) - Seq len 2048 1.812 1.106 1.098 1.144 1.129 1.079
FLOPS (T) 0.931 0.57 0.567 0.635 0.621 0.593

Memory bandwidth and compute efficiency The block rescoring variants achieve significant reductions in Parameter
I/O and KV Cache I/O compared to autoregressive decoding, suggesting BPD methods’ ability to reducing inference times
by mitigating the primary latency bottleneck—memory bandwidth. Advances in TPU/GPU architecture ensure that an
increase in FLOPS per token has a minimal effect on latency, confirming our strategy’s capacity to navigate the complexities
of memory bandwidth efficiently.

Comparative latency impact A consistent decrease in memory bandwidth utilization across blockwise parallel LMs,
including those leveraging LM rescoring and parallel processing strategies, illustrates our approach’s contribution to
accelerating inference speed. This underscores the practicality and applicability of our enhancements in promoting more
efficient language model inference within state-of-the-art computational frameworks.

L.2. Overhead of n-gram rescoring

While the majority of computational efforts in block rescoring are dedicated to TPU/GPU utilization, the implementation
of n-gram rescoring introduces additional overheads. These are primarily attributed to CPU computations and the data
transfer between the CPU and HBM. This section provides a comprehensive examination of these overheads, drawing on
benchmarks from rescoring experiments with a 4-gram C4 LM.

Benchmarks for 4-gram C4 LM rescoring We conducted benchmarks on rescoring lattices with a 4-gram C4 LM of
≈100M n-grams. The average latency observed across 10 runs for different numbers of the shortest paths is summarized in
the Table 12:

Table 12. Average latency for N-best rescoring an 8-time step lattice with 16 arcs per time step. N, the number of shortest paths, is varied
from 1 to 16.

Shortest Paths N-best Rescoring Latency (ms)

1 1.630
2 1.751
4 1.878
8 1.871

16 1.983

Notably, rescoring with a large 4-gram LM averages less than 2 milliseconds for extracting up to 16 globally-best paths,
despite the lattice containing approximately 4.29 billion possible paths. In our initial experiments, increasing the size of the
n-gram LM had little effect on n-best rescoring latency, indicating that enhancements leading to higher block efficiency will
incur little additional latency, provided the LM fits within DRAM.

Latency is predominantly influenced by lattice size, particularly the number of top-k tokens per time step and the number of
time steps, as depicted in Table 13:

The benchmarks highlight the fact that the additional overhead introduced by n-gram rescoring, though present, should not
significantly impact overall latency.

17

Exploring and Improving Drafts in Blockwise Parallel Decoding

Table 13. 1-best rescoring latency by the 4-gram C4 LM for varying lattice sizes.

Number of time steps Top-k per time step 1-best rescoring latency (ms)

4 2 1.038
4 4 1.050
4 8 1.130
4 16 1.237

8 2 1.061
8 4 1.144
8 8 1.234
8 16 1.630

16 2 1.102
16 4 1.206
16 8 1.558
16 16 2.174

18

