
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRIVACY PRESERVING GENERATIVE FEATURE
TRANSFORMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Data-Centric AI (DCAI) aims to use AI to get better data for better AI. Feature
transformation, as one of the essential tasks of DCAI, can augment the data rep-
resentation and has garnered significant attention. Existing methods have demon-
strated state-of-the-art performance on advancing predictive tasks. However, these
methods can lead to serious privacy leakage. For example, sensitive features in
original data can be inferred by models trained on transformed data, exposing vul-
nerabilities in the privacy-preserving capabilities of these methods. To address this
issue, we introduce a privacy-preserving feature transformation framework that
transforms data representation while preserving privacy from a generative mod-
eling perspective. Specifically, our framework includes two phases: 1) privacy-
aware knowledge acquisition and 2) privacy-preserving feature space generation.
In the knowledge acquisition phase, we develop an information bottlenecks guided
reinforcement learning system to explore and collect privacy-aware feature sets as
a knowledge base in token sequence form. In the feature space generation phase,
we develop a generative model to encode the knowledge base into a privacy-aware
latent space, where the best latent representation is identified and decoded into the
optimal privacy-preserving feature space. We solve the optimization via projected
gradient ascent that maximizes predictive performance and minimizes privacy ex-
posure. Finally, we present extensive experiments on eight real-world datasets to
evaluate how our method can navigate both performance and privacy. The code is
available at https://anonymous.4open.science/r/anonymous-2B53/.

1 INTRODUCTION

Data-Centric AI (DCAI) aims to use AI to get better data, instead of model architectures, for better
AI and has garnered significant attention (Zha et al., 2023). One essential task within DCAI is feature
transformation, which involves altering or creating new features from existing data to better repre-
sent underlying patterns (Wang et al., 2022; 2024a). However, existing methods of feature trans-
formation can expose sensitive information and lead to serious privacy leakage. For example, our
preliminary analysis in Appendix E.1 uncovers that: sensitive attributes (e.g., demographic features),
although deleted intentionally by data owners, can still be inferred by other features, or from models
trained on transformed data. This example exposes vulnerabilities in privacy-preserving capabilities
in feature transformation. As data regulations become increasingly stringent, such as the General
Data Protection Regulation in Europe (Voigt & Von dem Bussche, 2017), there is a pressing need for
integrating privacy-preserving with feature transformation to safeguard sensitive information while
still augmenting data’s AI power. In this paper, we research the AI task of privacy-preserving feature
transformation, which refers to techniques that transform feature space from original data to advance
data’s AI readiness while preserving privacy.

Prior literature on feature transformation is two-fold: (1) Search in discrete space: such methods
regard feature transformation as a discrete space search problem and solutions are based on a smart
search of optimal combinations of feature crosses, for instance, exhaustive expansion then reduc-
tion (Katz et al., 2016), iterative-greedy (e.g., Autocross) (Dor & Reich, 2012), evolutionary al-
gorithms (e.g., Genetic Algorithm) (Zhu et al., 2022a). (2) Optimization in continuous space: such
methods represent a feature set as an embedding vector, then identify the optimal embedding point in
such embedding space, and finally reconstruct the optimal feature set as the target of feature transfor-
mation (Ying et al., 2023; Wang et al., 2024a). However, most of these methods focus on augmenting
data predictive power and lack privacy considerations. This limits the applicability of feature trans-
formation in privacy-sensitive areas, such as healthcare and education. Privacy-preserving feature
transformation is proposed to fill this gap.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

There are two major challenges in achieving our goal: 1) acquiring knowledge of and 2) learning
knowledge of privacy-preserving feature sets. Firstly, it is difficult to describe the generalizable
patterns of a privacy-preserving feature set. There is limited data that encode such knowledge.
Knowledge acquisition is to automatically build a knowledge base (i.e., training data) of diverse
feature sets with strong/weak privacy-preserving and predictive capabilities in a machine-learnable
form. Secondly, after building a knowledge base, we need a new machine learning paradigm to
optimize both predictive power and privacy preservation in feature transformation.

Our Perspective: navigating data privacy and augmentation in feature transformation via pro-
gressively tightening constraint-based optimization. LLMs model world knowledge as sequential
tokens and convert question answering into an optimizable generative task in a continuous embed-
ding space. This insight inspires us to treat a transformed feature set as a sequence of feature-feature
cross tokens (e.g., f1 + f2, f3/f4, ...), thereafter feature transformation can be seen as a generative
task that encodes historical feature transformation knowledge into a latent space, identifies the rep-
resentation of the best transformed feature set, and reconstructs the optimal transformed features.
This is a flexible and optimizable paradigm consisting of model architecture, objective function,
and gradient-based optimization. With such a paradigm, we can measure and integrate immeasur-
able privacy awareness and feature transformation as one through information bottleneck theory and
progressively tightening constraint-based optimization.

Summary of Proposed Method. Inspired by these insights, we develop a generic and principled
privacy-preserving generative feature transformation framework by blending the power of genera-
tive AI, privacy information bottleneck, and progressively tightening constraint-based optimization.
This framework includes two phases: (1) privacy-aware knowledge acquisition and (2) privacy-
preserving feature space generation. To achieve knowledge acquisition, we develop information
bottleneck (Tishby et al., 2000; Tishby & Zaslavsky, 2015) guided multi-agent reinforcement learn-
ing to explore and collect privacy-aware transformed feature sets. The reinforcement agents max-
imize the mutual information between transformed features and downstream tasks and minimize
the mutual information between transformed features and sensitive features. The explored feature
sets are seen as a knowledge base of patterns with various privacy and accuracy scores. To achieve
privacy-aware generative transformation, we regard a feature set as a sequence of tokens and map it
into a latent representation in a latent space via a sequential encoder. We devise two evaluators to re-
spectively estimate the downstream task performance and privacy exposure risk of the feature set, in
order to form optimization objectives and constraints. We identify the best representation of a feature
set via progressively tightening constraint-based gradient ascent and leverage a sequential decoder
to decode the optimal representation into the optimal feature set. Extensive experiments quantify the
effectiveness of our method and demonstrate the privacy awareness of the generated new features
in a fine-grained. For example, our proposed method is 7.48% higher than the strongest baseline in
terms of comprehensive metric on the Housing Boston dataset.

Our contributions are: 1) AI Task: We formulate a generic and important task: privacy-preserving
feature transformation that navigate privacy and performance in feature transformation in the con-
texts of data augmentation. 2) Framework: We develop an acquisition-generation framework for
learning to generate privacy-preserving feature spaces from a generative model perspective. 3) Com-
puting: We design interesting techniques to address computing issues. In the generation phase, we
integrate generative learning with progressively tightening constraint optimization to trade off pri-
vacy and performance. 4) Data: In the acquisition phase, we develop information bottleneck guided
reinforcement learning as automated knowledge acquisition to measure unmeasurable privacy and
acquire privacy-aware feature transformations as training data.

2 PROBLEM STATEMENT

Our research problem is to transform the original feature space into a new feature space that further
improve the performance of downstream tasks while avoiding the exposure of sensitive features in a
traceable and interpretable way. Formally, given the dataset D = {F, s, y}, where F is the original
feature set (i.e., feature space) consisting of a set of features f ; s is a sensitive feature involving
privacy, which used in the transformation, but not directly utilized for the prediction; and y is the
target label. We use Ape to refer to the downstream task model, Apr to refer to the model that
predicts sensitive features, and O to refer to the entire set of operators (e.g., ”square,” ”exp,” ”plus,”
”multiply,” etc.). Our task is to construct the new feature space F̂ and identify the ideal one F ∗ in
reconstruction. The optimization objective can be formulated as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

F ∗ =


argmax

F̂

(L(Ape(F̂); y))

argmin
F̂

(L(Apr(F̂); s)).
(1)

3 METHODOLOGY

Privacy-Aware Knowledge Acquisition
�� ⋯ ��
a ⋮ 1

b ⋮ 2

c ⋮ 3

�� ⋯ ��−� ��/��

�� ��

�� �� �� +��
Privacy-Aware

KnowledgeOriginal Data Privacy-Aware Feature Spaces

Privacy-Preserving Feature Space Generation

��/�� �� +�� ⋯

Encoder Latent Space

Constraint
Update

Decoder

Ideal Feature
Space

Figure 1: Framework Overview

3.1 FRAMEWORK OVERVIEW

In this paper, we propose the Privacy-preserving generative Feature Transformation (PFT). Figure
1 shows the framework of PFT including two main steps: 1) privacy-aware knowledge acquisition;
and 2) privacy-preserving feature space generation.

In the knowledge acquisition phase, we use multi-agent reinforcement learning to implement the
selection of candidate features and candidate operations for feature crossing. Information bottle-
neck is used to guide the decision-making process of agents. We minimize the mutual information
between the new feature space and downstream tasks while minimizing the mutual information be-
tween the new feature space and sensitive features. Collected privacy-aware feature sets account for
both privacy and performance, which then are serialized as a knowledge base.

In the feature space generation phase, we map the knowledge base into a privacy-aware latent space
by a sequence encoder. Two evaluators are used to estimate the performance on downstream tasks
and the risk of exposing sensitive information of a transformed feature set using the latent repre-
sentation. We use estimates of downstream task performance to provide gradient guidance, and
estimates of risk of privacy exposure to provide gradually tightening constraints. Finally, a sequence
decoder is used to decode the updated latent representation.

3.2 PRIVACY-AWARE KNOWLEDGE ACQUISITION

New
Feature �푛��

Iteratively Produce
Multiple New Features

푅���(⋅)

푅���(⋅)

New Feature Space �’ = �⋃�푛��

Feature
Space

Sensitive
Information

Label
Information

�(��; �) − ��(��; �)

Head
Agent

Operation
Agent

Tail Agent

Multi-Agent Privacy-Awared Decision-Making

Operation
Set �

+, − ,× ,
÷ , ,⋯

Feature Space �

�1, �2,⋯,�푛

Privacy-Aware Knowledge Acquisition

Feature
Space

Serialization
 �p

Privacy-Aware Feature Space
��

Feature Space Serialization �p

�1, �2,⋯,�1 +�2, �1,⋯

After
Iteration

ρ(⋅)

<SOS>�1<SEP>�2<SEP>
⋯�2�1 +<SEP>�1 ⋯<EOS>

Figure 2: Privacy-Aware Knowledge Acquisition (Phase 1)

3.2.1 MULTI-AGENT REINFORCEMENT LEARNING

Multiple interdependent Markov Decision Processes (MDPs) can effectively describe the construc-
tion of new features (Wang et al., 2022; Xiao et al., 2023). We aim to construct feature sets with
privacy-aware knowledge in this way to provide high-quality data for subsequent generative mod-
els. We decompose this process into three MDPs using a cascading structure of three reinforcement
learning agents., including two MDPs for picking features, and one MDP for picking operators.

State Representation Repf(·) & Repo(·): We first represent the features and operators to facilitate
model processing. For features, we employ a descriptive statistical technique Repf(·) to obtain
this state representation (Heaton, 2016). In detail, we first compute the feature set column-wise
descriptive statistics (i.e., count, standard deviation, minimum, maximum, first, second, and third
quantile). Then, we calculate the same descriptive statistics on the output of the previous statistics.
After that, we can obtain the descriptive matrix and flatten it as the state representation. For the
representation of the operator, we pre-determine the types of operations available and then use a
one-hot encoding Repo(·) to get a representation of the operator.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Reinforcement Learning Agents: We use the classic DQN structure to implement agents (Mnih
et al., 2015). We adopt the ith iteration as an example to describe the cooperation between agents.
First, the head feature agent selects feature fh as the header feature based on the (i−1)th iteration’s
feature space state representation Repf(Fi−1), then the operator agent selects operator oi based on
feature space and header feature Repf(Fi−1)||Repf(fh), where || indicates concatenation. Finally,
the tail feature agent selects tail feature ft as the tail feature based on feature space, header feature
and operator Repf(Fi−1)||Repf(fh)||Repo(oi). New features fi are obtained by calculating the
head and tail features according to the operator. The (i−1)th iteration’s feature space Fi−1 combines
with new features fi to be the new feature space Fi.
3.2.2 PRIVACY-AWARED DECISION-MAKING

Feedback-based policy learning is used to optimize each agent to find privacy-aware features. Ide-
ally, the privacy-aware features should improve performance on downstream tasks, and avoid ex-
posure to sensitive features. Consistent with previous literature (Wang et al., 2022; 2024a), we
consider all features as an entire feature space to avoid the negative impact (shown in the Appendix
E.1) of complex interdependencies between features, so that sensitive features can be used to pro-
duce valuable new features in the transformation process without further exposure. We design a
privacy-awared reward functionR(·) to guide agents’ decision-making according to the information
bottleneck principle (Tishby et al., 2000; Tishby & Zaslavsky, 2015). We design the reward func-
tion from two aspects: (1) maximize the mutual information between the new feature space and the
downstream task label, and (2) minimize the mutual information between the new feature space and
the sensitive feature.

R(Fi, y, s) = I(Fi; y)− αI(Fi; s), (2)
where I(·; ·) denotes mutual information, y denotes the groundtruth of the downstream task, s de-
notes the sensitive feature.

Maximize Mutual Information Lower Bound: By maximizing mutual information, we encourage
the construction of new feature spaces that can enhance downstream tasks.

I(Fi; y)
(a)
= H(Fi)−H(Fi|y)

(b)

≥ −H(Fi|y)
(c)

≥
∑

p(Fi) log (p(Fi|y)
(d)

≥ log (p(Fi|y)
(e)
= log (ϕ(D(Fi)))

(f)

≥ log (ϕ(D(Fi)))− log (ϕ(D(Fi−1))),

(3)

where H(·) refers to the information entropy, D(·) denote the model of downstream task, ϕ(·) is the
sigmoid activation. In the above derivation, (a) is the definition of mutual information; (b) is the non-
negative property of H(Fi); (c) is the definition of information entropy; (d) is that

∑
p(Fi) ≤ 1; (e)

ϕ(D(Fi)) is the variational approximation of p(Fi|y); (f) is becauseD(Fi−1) is a non-negative con-
stant, and through experiments, we found that using the increments in downstream task performance,
rather than the performance itself, provides clearer guidance to the model. Finally, we maximize the
incremental performance of the feature space generated by two iterations on the downstream task to
maximize the mutual information between the constructed feature space and the downstream task.

Minimize Mutual Information Upper Bound: Considering only the performance, there is a risk
of exposing sensitive information. Therefore, we minimize the mutual information between new
feature space and sensitive features to provide privacy-awared decision-making guidance for agents.
However, estimating the upper bound of mutual information is an intractable problem. Although
some studies leverage variational techniques to estimate the upper bound, they heavily rely on the
prior assumption (Alemi et al., 2016; Cheng et al., 2020). Therefore, refer to prior works (Ma et al.,
2020a; Yang et al., 2024), we introduce the Hilbert-Schmidt Independence Criterion (HSIC) (Gret-
ton et al., 2005b) as the approximation of the minimization of I(Fi; s).

HSIC serves as a statistical measure of dependency, which is formulated as the Hilbert-Schmidt
norm, assessing the cross-covariance operator between distributions within the Reproducing Kernel
Hilbert Space (RKHS). Given Fi and s , HSIC(Fi, s) is defined as follows:

HSIC(Fi; s) = ∥CFis∥
2
hs

= EFi,F ′
i ,s,s

′ [KFi(Fi, F
′
i)Ks(s, s

′)]

+ EFi,F ′
i
[KFi

(Fi, F
′
i)]− 2EFi,s[KFi

(Fi, F
′
i)][K

′
s(s, s

′)]

(4)

where CFis is the cross-covariance operator between the Reproducing Kernel Hilbert Spaces
(RKHSs) of Fi and s, ∥ · ∥2hs refers to the Hilbert-Schmidt norm, KFi and Ks are two kernel func-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

tions for variables Fi and s, F ′
i and s′ are two independent copies of Fi and s. Given the sampled

instances (Fij , sj)
n
j=1 from the batch training data, we estimated HSIC as:

ˆHSIC(Fi; s) = Tr(KFi
HKsH)(n− 1)−1, (5)

where KFi and Ks are used kernel matrices (Gretton et al., 2005a), with elements KFi
jj′

=

KFi
(Fij , Fij′) and Ksjj′ = Ks(sj , sj′), H = I − 1

n11
T is the centering matrix, and Tr(·) de-

notes the trace of matrix. In practice, we adopt the widely used radial basis function (RBF) (Vert
et al., 2004) as the kernel function:

KFi
(Fij , Fij′) = exp−

∥Fij − Fij′∥
2

2σ2
(6)

where σ is the parameter that controls the sharpness of RBF. In order not to rely on prior assumptions
and to calculate more efficiently, we minimize ˆHSIC(Fi; s) instead of minimizing I(Fi; s).

Finally, we use the reward function Equation (7) to guide agents to construct new feature spaces that
benefit downstream tasks while avoiding sensitive feature exposure:

R(Fi, y, s) = I(Fi; y)− α ˆHSIC(Fi; s). (7)

Feature Space Serialization: After collecting privacy-aware feature spaces, we represent these
privacy-aware feature spaces as a sequence ηp by the convert function ρ(·). In detail, we encode
all the features and all the operators in a unified token space. For the new feature generated by
the original feature, we use Reverse Polish Notation (Łukasiewicz, 1957) to represent its generation
path. Because of the uniqueness and extensibility of the Reverse Polish Notation, we can encode and
optimize more accurately and conveniently. Besides, three special tokens are introduced: ⟨SEP ⟩,
⟨SOS⟩, and ⟨EOS⟩, respectively, to mark the split between features, the beginning and end of a
feature space. For each feature space from the knowledge base, we perform data augmentation by
randomly shuffling the order of features. The detailed pseudo code of this conversion process and
an example of conversion are provided in Appendix A.

3.3 PRIVACY-PRESERVING FEATURE SPACE GENERATION

Gradient

Better Downstream Task Per formance

Better
Privacy

Performance
Evaluato �푝�(⋅)

Privacy
Evaluator �푝�(⋅)

Final Feature
Space �∗

Guide Constraint

Evaluators

Constrained Gradient Upadte

�p :<SOS>�2�1 + ⋯

Encoder ��(⋅)
Decoder��(⋅)

<SOS>�4�1 ÷ ⋯Latent
Representation

Updated Latent
Representation

Privacy-Preserving Feature Space Generation

arg max
�

ℒ(�푝�(�); �)

arg min
�

ℒ(�푝�(�); �)

Feature Space
Serializations From

Knowledge Base

Figure 3: Privacy-Preserving Feature Space Generation (Phase 2)

Supported by rich privacy-aware knowledge, we use generative models to achieve more stable and
robust feature space generation (Wang et al., 2024a). We use an autoencoder structure to map the
feature space in the knowledge base to the latent space and find better points in the latent space
guided by the performance of downstream tasks with progressively tightening privacy constraints.

3.3.1 SEQUENCE AUTOENCODER STRUCTURE

We use serialized feature spaces ηp = ρ(Fp) as privacy-aware knowledge for training encoder Γe(·)
and decoder Γd(·) to obtain a desired latent space. We adopt a single layer long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997) as encoder Γe(·) and we acquire the continuous latent
representation Ep of the feature space Fp, denoted by Ep = Γe(ρ(Fp)). We adopt a single layer
LSTM as decoder Γd(·). The decoder decodes latent representation into Reverse Polish Notation
η̂p in a sequence-to-sequence way (Sutskever et al., 2014). Given the latent representation Ep, to
make the generated sequence similar to the real one, we minimize the negative log-likelihood of the
distribution, defined as: Lrec = − logPΓd

(η̂p;Ep).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3.2 PERFORMANCE AND PRIVACY EVALUATORS

To generate the ideal feature space, we first organize the latent space for targeted optimization.
Two evaluators are employed to clarify the relationship between latent representations, downstream
task performance, and sensitive features. In particular, the performance evaluator Ψpe(·) models
the relationship between latent representations and downstream task performance, which is then
used to provide the optimization objective to update latent representations for better downstream
performance. The privacy evaluator Ψpr(·) models the relationship between latent representation
and privacy exposure risk, which is then used to provide constraints to keep sensitive features secure.

Performance Evaluator: We expect the latent representation to indicate the accuracy of the corre-
sponding feature space on the downstream task so that we can obtain a higher performance feature
space by purposefully adjusting the latent representation. We use a performance evaluator to es-
tablish this relationship, denoted as v̂ = Ψpe(Ep; y). We use a simple linear layer to implement
Ψpe(·). We train the parameters Ψpe of the estimator by minimizing the Mean Squared Error (MSE)
between the estimate and the true value min

Ψpe

Lpe = MSE(v|v̂).

Privacy Evaluator: Similarly, we can use the privacy evaluator Ψpr(·) to assess the extent to which
latent representations reveal sensitive features. According to Section 3.2.2, we leverage HSIC to
describe the relationship between feature space and privacy. The privacy estimators estimate the
HSIC of latent representations, given as ˜HSIC = Ψpr(Ep; s). We also use a simple linear layer to
implement Ψpr(·). We train the parameters Ψpr of estimator by minimizing the MSE between the
estimate and the true value min

Ψpr

Lpr = MSE(HSIC(Fp; s); ˜HSIC).

We use a multi-tasking architecture to train an autoencoder structure with two evaluators:
L = Lrec + Lpe + Lpr, (8)

3.3.3 CONSTRAINED GRADIENT UPDATE

After the encoder and two evaluators are jointly trained, each latent representation (1) can recon-
struct the feature space; (2) can reflect the performance of the corresponding feature space in the
downstream task; (3) can reflect the degree of exposure of sensitive features.

On this basis, we optimize the latent representation to further improve the accuracy of downstream
tasks while ensuring privacy. To alleviate the problem of difficulty in training and balancing caused
by dual objectives, we distinguish the roles of the two objectives. Performance is used as the opti-
mization goal, and privacy is used as a gradually tightened constraint. The initial constraint allows
the model to better inherit privacy-aware knowledge, and the gradually tightened constraint allows
the model to focus on performance while also strengthening privacy. Specifically, for the latent
representation Ep, under the constraints of the privacy evaluator Ψpr(Ep; s), we search toward the
gradient direction induced by the performance evaluator Ψpe(Ep; y):

Êp = Ep + η
∂Ψpr

∂Ep

s.t. Ψpr(Êp; s) ≤ Ψpr(Ê
min
p ; s),

(9)

we perform this search T times to get {Ê1
p , . . . , Ê

T
p } and Êmin

p is the result with the best privacy
evaluated in the previous search. With continuous iterations, Êmin

p will gradually become smaller,
and the model needs to meet increasingly tighter privacy constraints. In the implementation, we
use projected gradient ascent (Madry, 2017) to implement this constraint. We select multiple Ep as
seeds for the search and use beam search strategy (Sutskever, 2014) to determine the best result Ê∗

p .
The best updated latent representation is decoded by the decoder to the final feature space F ∗. The
implementation details can be found in Appendix C.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

4.1.1 DATA DESCRIPTION

We select 4 user-related real datasets (Housing Boston, German Credit, Uci Credit Card, Amazon
Employee), which contain sensitive features that can be pointed out. Besides, we select 4 additional

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

real datasets (Lymphography, Openml 618, Activity, AP Omentum Ovary) and randomly assign
a sensitive feature. These datasets cover different domains and scales, covering classification and
regression problems. Statistics and detailed descriptions are provided in Appendix B.

4.1.2 EVALUATION METRICS

For the performance of downstream tasks (DT), we evaluate classification with the F1 score (Powers,
2011) and regression with the 1-Relative Absolute Error (1-RAE) (Wang et al., 2022), aiming for
higher values. For privacy, we assess sensitive feature (SF) prediction in a manner consistent with
the downstream tasks, using 1-F1 for classification and RAE for regression, with higher values
indicating better privacy protection. Since both performance and privacy are equally important in
our task, we compute their arithmetic mean (Avg) for a comprehensive comparison.

4.1.3 BASELINE METHODS

We select three types of methods to compare with PFT , including the feature transformation meth-
ods: (1) ORG denotes use original dataset to predict. (2) RDG generates feature-operation-feature
transformation records at random ; (3) ERG first applies operations to each feature to expand the
feature space, then selects the crucial features. (4) AFAT (Horn et al., 2020) is an enhanced version
of ERG that uses multi-step feature selection to select informative ones. (5) NFS (Chen et al., 2019)
models the transformation sequence of each feature and uses RL to optimize the entire process. (6)
TTG (Khurana et al., 2018) formulates the transformation process as a graph, then implements an
RL-based search method to search. (7) GRFG (Wang et al., 2022) uses three collaborated reinforced
agents to conduct feature generation. (8) MOAT (Wang et al., 2024a) develops an embedding-
optimization-reconstruction framework to produce high-quality feature space. Privacy-preserving
methods that are available for our problem, include: Data Perturbation (DP) (Dwork et al., 2014)
add noise to the sensitive features to perturb them, and then participate in downstream tasks and
prediction of sensitive features. The addition of noise complies with the standard of differential
privacy (Dwork, 2006). And combination methods, including: (1) GRFG-DP uses GRFG for fea-
ture transformation and then uses the DP method to process sensitive features. (2) MOAT-DP uses
MOAT for feature transformation and then uses the DP method to process sensitive features. We
mainly use Random Forests (Breiman, 2001) as the model for downstream tasks. Because it is a
robust, stable, well-tested method, thus, we can reduce performance variation caused by the model.
We provide experimental results on other downstream task models in the Appendix E.3 and d more
experimental and hyperparameter settings in Appendix D

4.2 OVERALL COMPARISON

Table 1: Comparison results on user-related datasets. DT represents the prediction accuracy on downstream
tasks, and SF represents the prediction accuracy on sensitive features, and Avg represents the average accuracy.

Dataset Housing Boston German Credit Uci Credit Card Amazon Employee
Metric DT ↑ SF↑ Avg↑ DT↑ SF↑ Avg↑ DT↑ SF↑ Avg↑ DT↑ SF↑ Avg↑

ORI 0.4012 0.1630 0.2821 0.7012 0.4476 0.5744 0.7992 0.9665 0.8829 0.9275 0.0197 0.4736
RDG 0.4411 0.0472 0.2442 0.7262 0.1214 0.4238 0.9740 0.0755 0.5248 0.9310 0.0260 0.4785
ERG 0.4080 0.0234 0.2157 0.7442 0.0729 0.4086 0.8030 0.0776 0.4403 0.9352 0.0239 0.4796
AFAT 0.4099 0.0359 0.2229 0.7013 0.4392 0.5703 0.8056 0.9565 0.8810 0.9339 0.0381 0.4860
NFS 0.4251 0.1433 0.2842 0.7061 0.4780 0.5921 0.8054 0.9531 0.8793 0.9300 0.0459 0.4880
TTG 0.4140 0.1712 0.2926 0.7250 0.4499 0.5875 0.7989 0.9609 0.8799 0.9316 0.0366 0.4841

GRFG 0.4212 0.1109 0.2661 0.7187 0.4555 0.5871 0.8050 0.9611 0.8831 0.9309 0.0431 0.4870
MOAT 0.4648 0.0391 0.2520 0.7459 0.4432 0.5946 0.8087 0.9594 0.8840 0.9344 0.0451 0.4898

DP 0.4079 0.1803 0.2941 0.7080 0.4587 0.5834 0.7936 0.9682 0.8809 0.9249 0.0261 0.4755
GRFG-DP 0.4012 0.1322 0.2667 0.7005 0.4664 0.5835 0.7984 0.9670 0.8827 0.9323 0.0196 0.4760
MOAT-DP 0.4601 0.0691 0.2646 0.6905 0.4582 0.5743 0.8042 0.9637 0.8840 0.9348 0.0516 0.4932

Ours 0.4574 0.1747 0.3161 0.7579 0.4698 0.6139 0.8083 0.9745 0.8914 0.9310 0.0747 0.5029

As shown in Table 1 and 2, we compare our model with other baselines on multiple datasets. We
have the following observations:

(1) On all datasets, the average performance of PFT is the best. For example, PFT is 7.48% and
4.70% higher than the strongest baseline in terms of the average metric on datasets Housing Boston
and Lymphography, respectively. This demonstrates that our proposed method preserves privacy
while enhancing the performance of downstream tasks, which meets the requirement of integrating
privacy-preserving with feature transformation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparison results on non-user-related datasets.

Dataset Lymphography Openml 618 AP Omentum Ovary Activity
Metric DT ↑ SF ↑ Avg ↑ DT ↑ SF ↑ Avg ↑ DT ↑ SF ↑ Avg ↑ DT ↑ SF ↑ Avg ↑

ORI 0.7175 0.4445 0.5810 0.4120 0.0423 0.2272 0.6124 0.5061 0.5593 0.9503 0.0398 0.4951
RDG 0.6850 0.3110 0.4980 0.4700 0.0443 0.2572 0.6512 0.4492 0.5502 0.9555 0.0335 0.4945
ERG 0.6850 0.1910 0.4380 0.4621 0.0350 0.2486 0.6621 0.0456 0.3539 0.9543 0.0366 0.4955
AFAT 0.6527 0.0356 0.3442 0.4741 0.0365 0.2553 0.6124 0.5743 0.5934 0.9527 0.0391 0.4959
NFS 0.7180 0.5039 0.6110 0.4754 0.0420 0.2587 0.6294 0.6121 0.6208 0.9506 0.0657 0.5081
TTG 0.7180 0.5501 0.6341 0.4277 0.2060 0.3169 0.6345 0.6215 0.6280 0.9549 0.4361 0.6955

GRFG 0.8133 0.6323 0.7228 0.4688 0.2312 0.3500 0.6443 0.6236 0.6340 0.9516 0.4559 0.7038
MOAT 0.8185 0.5100 0.6642 0.4957 0.0419 0.2688 0.6713 0.6120 0.6416 0.9541 0.4515 0.7028

DP 0.7175 0.6289 0.6732 0.2206 0.0363 0.1285 0.6124 0.5439 0.5782 0.9488 0.4545 0.7017
GRFG-DP 0.8138 0.2561 0.5349 0.4388 0.2329 0.3359 0.6401 0.6146 0.6274 0.9518 0.4545 0.7032
MOAT-DP 0.8180 0.4990 0.6585 0.4157 0.0369 0.2263 0.6737 0.6148 0.6443 0.9522 0.4546 0.7034

Ours 0.7895 0.7595 0.7568 0.5182 0.2120 0.3651 0.6713 0.6286 0.6500 0.9524 0.4597 0.7060

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Correlation with Downstream Label (y)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n
wi

th
 S

en
sit

iv
e

Fe
at

ur
e

(z
)

y > z
y < z
y z

27.3%

65.5%

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with zDe

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with yDe

ns
ity

(a) GRFG on Housing Boston

0.00 0.05 0.10 0.15 0.20
Correlation with Downstream Label (y)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n
wi

th
 S

en
sit

iv
e

Fe
at

ur
e

(z
)

y > z
y < z
y z

14.3%

81.0%

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with zDe

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with yDe

ns
ity

(b) MOAT on Housing Boston

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with Downstream Label (y)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n
wi

th
 S

en
sit

iv
e

Fe
at

ur
e

(z
) y > z

y < z
y z

65.2%
34.8%

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with zDe

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with yDe

ns
ity

(c) Ours on Housing Boston

0.1 0.2 0.3 0.4 0.5
Correlation with Downstream Label (y)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n
wi

th
 S

en
sit

iv
e

Fe
at

ur
e

(z
)

y > z
y < z
y z

47.6%47.6%

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with zDe

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with yDe

ns
ity

(d) GRFG on Lymphography

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Correlation with Downstream Label (y)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n
wi

th
 S

en
sit

iv
e

Fe
at

ur
e

(z
)

y > z
y < z
y z

14.3%

80.0%

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with zDe

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with yDe

ns
ity

(e) MOAT on Lymphography

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Correlation with Downstream Label (y)

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n
wi

th
 S

en
sit

iv
e

Fe
at

ur
e

(z
) y > z

y < z
y z

69.4%
27.8%

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with zDe

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
Correlation with yDe

ns
ity

(f) Ours on Lymphography

Figure 4: Correlation of New Features with Label and Sensitive Feature. X-axis is the correlation between
the generated feature and the label y. Y-axis is the correlation between the generated feature and the sensitive
feature z. The lower area is the correlation between the generated feature and y is higher than the correlation
with z. The upper area is the opposite. The pie chart shows the proportion of points in different areas.

(2) We observed that a decline in downstream task performance is not a necessary condition for
improving privacy. For instance, on Housing Boston and Openml 618, PFT slightly outperforms
the best baseline by about 2% and 4%. We speculate that this may be because the baseline not yet
discovering the optimal feature space. While PFT may sacrifice some valuable features that could
expose privacy, it is still able to improve performance by leveraging other features as substitutes.

(3) Simply applying some classic privacy protection methods may not be effective. For instance,
directly adopting DP does not yield better privacy results on the German Credit dataset. Moreover,
simply combining feature transformation methods with privacy techniques also not be effective. For
instance, on the German Credit dataset, our method improves privacy protection by 2.5% and overall
performance by 6.9% compared to the combination of MOAT and DP. This highlights that privacy
protection in feature transformation is a complex issue worth deeper exploration. A straightforward
layering of different approaches may not be sufficient to fully address the requirements.

4.3 INVESTIGATION OF PFT

4.3.1 NEW FEATURE SPACE ANALYSIS

The ideal feature transformation can achieve good performance on downstream tasks while avoiding
the exposure of sensitive features. From the perspective of the single feature, we hope that each
feature has a strong connection with the downstream task label and little with the sensitive feature.
Therefore, we calculate the Pearson correlation coefficient (Cohen et al., 2009) between the feature
and the downstream task label y and the sensitive feature z. We take the absolute value of the
correlation coefficient and draw a scatter plot and a probability density plot. We divide the scatter

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

plot into three regions, including y < z, y ≈ z, and y > z. We color the three regions, count the
number of features in each region, and draw a pie chart. We hope that the features in the y > z
region are the most, which indicates that the model tends to construct features that are beneficial to
downstream tasks and do not expose privacy. As shown in Figure 4, compared with the two strongest
baselines, PFT is more likely to generate ideal features. For example, on the Lymphography dataset,
PFT generates 69.4% of ideal features, which is higher than 47.6% of GRFG and 14.3% of MOAT.
Besides, from the probability density plot, we can find that most of the features generated by our
method have a correlation close to 0 with z, and also have a strong correlation with y.

4.3.2 RELATIONSHIP BETWEEN HSIC AND SENSITIVE INFORMATION

0.7

0.8

0.9

1.0

1.1

Se
ns

iti
vi

ty

Sensitivity
HSIC

HSIC Correlation KL MSE
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ea

rm
an

 C
or

re
la

tio
n

0.00

0.05

0.10

0.15

0.20

HS
IC

(a) Housing Boston

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Se
ns

iti
vi

ty

Sensitivity
HSIC

HSICCorrelation KL MSE
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ea

rm
an

 C
or

re
la

tio
n

0.0150

0.0155

0.0160

0.0165

0.0170

0.0175

HS
IC

(b) Lymphography

Figure 5: Relationship Between HSIC and Sensitive Information

We incorporate HSIC into both knowledge acquisition and feature space generation. On the one
hand, prior research provided theoretical support for using HSIC as an approximation of the mutual
information lower bound (Ma et al., 2020b; Yang et al., 2024). On the other hand, we can avoid
the overhead of directly predicting sensitive features. In this section, we analyze the relationship
between HSIC and privacy. We generate feature spaces through knowledge acquisition, using task
performance as a reward, and examine both the prediction accuracy of sensitive features and the
HSIC between feature spaces and sensitive features. As illustrated in the line graph in Figure 5, the
trends of HSIC and the prediction accuracy overlap significantly, which shows that HSIC can reflect
exposure of sensitive features. The bar chart on the right provides a more intuitive visualization. We
calculate the Pearson correlation coefficient, KL divergence (Kullback & Leibler, 1951), and MSE
between feature spaces (after pooling) and sensitive features. We compare Spearman’s rank correla-
tion coefficient (Spearman, 1961), which measures their monotonic correlation, between these met-
rics and the prediction accuracy. As shown in the figure, HSIC exhibits the highest Spearman’s rank
correlation coefficient, indicating that it is consistent with the monotonicity of prediction accuracy.
This suggests that HSIC can serve as an effective guide and constraint for privacy considerations.

4.4 ABLATION EXPERIMENT AND SENSITIVITY ANALYSIS

Downstream Task Sensitive Feature0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Ours
-a
-b
-c
-d
-e

(a) Ablation on Housing
Boston

Downstream Task Sensitive Feature0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Ours
-a
-b
-c
-d
-e

(b) Ablation on
Lymphography

0.1 0.3 0.5 0.7 0.90.45

0.48

0.51

Ac
cu

ra
cy

Downstream Task
Sensitive Feature

0.14

0.17

0.20

Ac
cu

ra
cy

(c) Sensitivity Analysis on
Housing Boston

0.1 0.3 0.5 0.7 0.90.75

0.81

0.87

Ac
cu

ra
cy

Downstream Task
Sensitive Feature

0.680

0.725

0.770

Ac
cu

ra
cy

(d) Sensitivity Analysis on
Lymphography

Figure 6: Ablation Study and Sensitivity Analysis

To explore the effect of each component in PFT , we conducted ablation experiments. PFT-a means
that we directly use the knowledge acquisition for evaluation. PFT-b means that we randomly gen-
erate feature space as input of the generative model instead of acquiring knowledge. PFT-c means
that we only maximize the mutual information between the feature space and the downstream task
label in knowledge acquisition. PFT-d means we update the latent representation using the initial
privacy constraints without tightening. PFT-e means that we do not distinguish the roles of perfor-
mance and privacy and optimize both objectives simultaneously. As shown in Figure 6(a) and 6(b),
in our method, each module contributes to the final good performance. The two steps are tightly
coupled and synergistically improve the two objectives. In particular, PFT-e shows that our distinc-
tion between the roles of the objectives is reasonable. It is difficult to achieve such a composite goal

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

by optimizing both objectives simultaneously. In this case, the generative model even ignores the
knowledge provided by the paradigm feature space, further exposing sensitive features.

The hyperparameter α in the model is used to balance the relationship between maximizing the
mutual information with the downstream task label and minimizing the mutual information with the
sensitive features. We use α to observe the changes in different indicators of the model. In general,
as α increases, the knowledge collected is more inclined to protect privacy rather than improve
performance. This will lead to a decrease in downstream tasks and better privacy protection effects.
Besides, to further analyze PFT , we provide more experimental results (time and space complexity,
estimator performance, etc.) in Appendix E

5 RELATED WORK

5.1 FEATURE TRANSFORMATION

As one essential task within DCAI (Zha et al., 2023; Wang et al., 2024b;a), feature transformation
aims to enhance the feature space by generating new features in an explainable and traceable way,
thereby improving the performance of machine learning models. Existing methods primarily fo-
cus on boosting downstream task performance and can be broadly divided into two categories: (1)
Search in discrete spaces (Horn et al., 2020; Wang et al., 2022; Kanter & Veeramachaneni, 2015;
Khurana et al., 2016; 2018; Tran et al., 2016; Xiao et al., 2023; Lam et al., 2017; Zhu et al., 2022a;
Xiao et al., 2024): These methods treat feature transformation as a discrete space search problem
and solutions are based on smart search of optimal combinations of feature crosses. Some works ini-
tially add new features to expand the feature space and eventually select only the high-value features
to form the final feature set (Katz et al., 2016). Some works adopt an iterative-greedy strategy (Dor
& Reich, 2012). Effective features are iteratively generated, and significant ones are preserved un-
til the maximum number of iterations is reached. Some methods combine evolutionary algorithms
to explore effective feature spaces (Gong et al., 2024). (2) Optimization in continuous space (Zhu
et al., 2022b; Wang et al., 2024a; Ying et al., 2023; 2024): Such methods represent a feature set as
an embedding vector in a feature set embedding space, then identify the optimal embedding point
in such embedding space, and finally reconstruct the optimal feature set. However, these methods
focus on augmenting data predictive power and lack privacy considerations.

5.2 INFORMATION BOTTLENECK PRINCIPLE

The Information Bottleneck (IB) method is a principle from information theory used to find an op-
timal balance between compression and prediction (Tishby et al., 2000; Tishby & Zaslavsky, 2015).
This principle has been employed to enhance interpretability and disentangle representations (Bao,
2021; Jeon et al., 2021). However, calculating mutual information between high-dimensional vari-
ables is challenging. To address this, researchers have used neural networks to approximate and
estimate mutual information (Alemi et al., 2016; Belghazi et al., 2018; Cheng et al., 2020; Oord
et al., 2018). However, they relatively rely on the prior assumption and the quality of sampling
influences the accuracy of the estimation. Instead of directly optimizing, the Hilbert-Schmidt Inde-
pendence Criterion (HSIC) has been employed as an alternative to assess variable (Gretton et al.,
2005b). Given the challenges in estimating the upper bound of mutual information, we opt for HSIC
to approximate and minimize the mutual information between learned representations and sensitive
features (Ma et al., 2020a; Wang et al., 2021; Yang et al., 2024; Xie et al., 2024).

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a privacy-preserving feature transformation framework called PFT. Specif-
ically, we first use information bottlenecks to guide multi-agents to generate privacy-aware feature
sets. We then serialize them as a knowledge base to provide privacy-aware knowledge. Then we
map the knowledge in latent space through generative models. We set two evaluators to evaluate
the performance and privacy of representations in such latent space and then use them as objective
and constraint to find better representations for decoding. Through the proposed framework, we
achieve the dual goals of performance and privacy. We use sensitive features to transform features
to generate valuable new features without further exposing sensitive information. This has practical
significance for the application of data-driven AI systems in sensitive fields. Extensive experiments
verify the effectiveness of our model. However, there are still some limitations in our approach,
which we will further explore in future work. First, there are multiple ways to calculate HSIC
and its relationship with privacy needs further exploration. Additionally, while we hypothesize that
performance and privacy can improve simultaneously, more in-depth analysis is required.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

Feng Bao. Disentangled variational information bottleneck for multiview representation learning.
In Artificial Intelligence: First CAAI International Conference, CICAI 2021, Hangzhou, China,
June 5–6, 2021, Proceedings, Part II 1, pp. 91–102. Springer, 2021.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531–540. PMLR, 2018.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Xiangning Chen, Qingwei Lin, Chuan Luo, Xudong Li, Hongyu Zhang, Yong Xu, Yingnong Dang,
Kaixin Sui, Xu Zhang, Bo Qiao, et al. Neural feature search: A neural architecture for automated
feature engineering. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 71–80.
IEEE, 2019.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A
contrastive log-ratio upper bound of mutual information. In International conference on machine
learning, pp. 1779–1788. PMLR, 2020.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech processing,
pp. 1–4, 2009.

Corinna Cortes. Support-vector networks. Machine Learning, 1995.

Edsger Wybe Dijkstra. Algol 60 translation: An algol 60 translator for the x1 and making a translator
for algol 60. 1961.

Ofer Dor and Yoram Reich. Strengthening learning algorithms by feature discovery. Information
Sciences, 189:176–190, 2012.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1–12. Springer, 2006.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: optimal bounds
for privacy-preserving principal component analysis. In Proceedings of the forty-sixth annual
ACM symposium on Theory of computing, pp. 11–20, 2014.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Nanxu Gong, Chandan K Reddy, Wangyang Ying, and Yanjie Fu. Evolutionary large language
model for automated feature transformation. arXiv preprint arXiv:2405.16203, 2024.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Scholkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In International Conference on Algorithmic Learning The-
ory, 2005a. URL https://api.semanticscholar.org/CorpusID:2179911.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical de-
pendence with hilbert-schmidt norms. In International conference on algorithmic learning theory,
pp. 63–77. Springer, 2005b.

Jeff Heaton. An empirical analysis of feature engineering for predictive modeling. Southeast-
Con 2016, pp. 1–6, 2016. URL https://api.semanticscholar.org/CorpusID:
7802213.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–
1780, 1997. URL https://api.semanticscholar.org/CorpusID:1915014.

11

https://api.semanticscholar.org/CorpusID:2179911
https://api.semanticscholar.org/CorpusID:7802213
https://api.semanticscholar.org/CorpusID:7802213
https://api.semanticscholar.org/CorpusID:1915014

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Franziska Horn, Robert Pack, and Michael Rieger. The autofeat python library for automated fea-
ture engineering and selection. In Machine Learning and Knowledge Discovery in Databases:
International Workshops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part I, pp. 111–120. Springer, 2020.

Jeremy Howard. Kaggle dataset download. https://www.kaggle.com/datasets, 2022.
[EB/OL].

Insu Jeon, Wonkwang Lee, Myeongjang Pyeon, and Gunhee Kim. Ib-gan: Disentangled representa-
tion learning with information bottleneck generative adversarial networks. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 7926–7934, 2021.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1–10. IEEE, 2015.

Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic feature generation and
selection. In 2016 IEEE 16th international conference on data mining (ICDM), pp. 979–984.
IEEE, 2016.

Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthasrathy. Cognito: Auto-
mated feature engineering for supervised learning. In 2016 IEEE 16th international conference
on data mining workshops (ICDMW), pp. 1304–1307. IEEE, 2016.

Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for predictive mod-
eling using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Oznur Alkan.
One button machine for automating feature engineering in relational databases. arXiv preprint
arXiv:1706.00327, 2017.

Wan-Duo Kurt Ma, JP Lewis, and W Bastiaan Kleijn. The hsic bottleneck: Deep learning without
back-propagation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 5085–5092, 2020a.

Wan-Duo Kurt Ma, JP Lewis, and W Bastiaan Kleijn. The hsic bottleneck: Deep learning without
back-propagation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 5085–5092, 2020b.

Aleksander Madry. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski, Stig
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518:529–533, 2015. URL https://api.semanticscholar.org/
CorpusID:205242740.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

David M. W. Powers. Evaluation: From Precision, Recall and F-measure to ROC, Informedness,
Markedness and Correlation, volume 2. Journal of Machine Learning Technologies, 2011.

Public. Openml dataset download. https://www.openml.org, 2022a. [EB/OL].

Public. Uci dataset download. https://archive.ics.uci.edu/, 2022b. [EB/OL].

12

https://www.kaggle.com/datasets
https://api.semanticscholar.org/CorpusID:205242740
https://api.semanticscholar.org/CorpusID:205242740
https://www.openml.org
https://archive.ics.uci.edu/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

Charles Spearman. The proof and measurement of association between two things. 1961.

I Sutskever. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215,
2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
ArXiv, abs/1409.3215, 2014. URL https://api.semanticscholar.org/CorpusID:
7961699.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pp. 1–5. IEEE, 2015.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Binh Tran, Bing Xue, and Mengjie Zhang. Genetic programming for feature construction and se-
lection in classification on high-dimensional data. Memetic Computing, 8:3–15, 2016.

Philippe Vert, Koji Tsuda, Bernhard Scholkopf, John Shawe-Taylor, and Nello Cristianini. A primer
on kernel methods. 2004. URL https://api.semanticscholar.org/CorpusID:
122399518.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Dongjie Wang, Yanjie Fu, Kunpeng Liu, Xiaolin Li, and Yan Solihin. Group-wise reinforcement fea-
ture generation for optimal and explainable representation space reconstruction. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1826–1834,
2022.

Dongjie Wang, Meng Xiao, Min Wu, Yuanchun Zhou, Yanjie Fu, et al. Reinforcement-enhanced
autoregressive feature transformation: Gradient-steered search in continuous space for postfix
expressions. Advances in Neural Information Processing Systems, 36, 2024a.

Xinyuan Wang, Dongjie Wang, Wangyang Ying, Rui Xie, Haifeng Chen, and Yanjie Fu.
Knockoff-guided feature selection via a single pre-trained reinforced agent. arXiv preprint
arXiv:2403.04015, 2024b.

Zifeng Wang, Tong Jian, Aria Masoomi, Stratis Ioannidis, and Jennifer Dy. Revisiting hilbert-
schmidt information bottleneck for adversarial robustness. Advances in Neural Information Pro-
cessing Systems, 34:586–597, 2021.

Meng Xiao, Dongjie Wang, Min Wu, Ziyue Qiao, Pengfei Wang, Kunpeng Liu, Yuanchun Zhou,
and Yanjie Fu. Traceable automatic feature transformation via cascading actor-critic agents. In
Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), pp. 775–783.
SIAM, 2023.

Meng Xiao, Dongjie Wang, Min Wu, Kunpeng Liu, Hui Xiong, Yuanchun Zhou, and Yanjie Fu.
Traceable group-wise self-optimizing feature transformation learning: A dual optimization per-
spective. ACM Transactions on Knowledge Discovery from Data, 18(4):1–22, 2024.

Junsong Xie, Yonghui Yang, Zihan Wang, and Le Wu. Learning fair representations for recom-
mendation via information bottleneck principle. Proceedings of the Thirty-ThirdInternational
Joint Conference on Artificial Intelligence, 2024. URL https://api.semanticscholar.
org/CorpusID:271499246.

Yonghui Yang, Le Wu, Zihan Wang, Zhuangzhuang He, Richang Hong, and Meng Wang. Graph
bottlenecked social recommendation. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3853–3862, 2024.

13

https://api.semanticscholar.org/CorpusID:7961699
https://api.semanticscholar.org/CorpusID:7961699
https://api.semanticscholar.org/CorpusID:122399518
https://api.semanticscholar.org/CorpusID:122399518
https://api.semanticscholar.org/CorpusID:271499246
https://api.semanticscholar.org/CorpusID:271499246

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wangyang Ying, Dongjie Wang, Kunpeng Liu, Leilei Sun, and Yanjie Fu. Self-optimizing feature
generation via categorical hashing representation and hierarchical reinforcement crossing. In 2023
IEEE International Conference on Data Mining (ICDM), pp. 748–757. IEEE, 2023.

Wangyang Ying, Dongjie Wang, Xuanming Hu, Yuanchun Zhou, Charu C Aggarwal, and Yan-
jie Fu. Unsupervised generative feature transformation via graph contrastive pre-training and
multi-objective fine-tuning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3966–3976, 2024.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, and Xia Hu. Data-centric ai: Perspec-
tives and challenges. In Proceedings of the 2023 SIAM International Conference on Data Mining
(SDM), pp. 945–948. SIAM, 2023.

Guanghui Zhu, Shen Jiang, Xu Guo, Chunfeng Yuan, and Yihua Huang. Evolutionary automated
feature engineering. In Pacific Rim International Conference on Artificial Intelligence, pp. 574–
586. Springer, 2022a.

Guanghui Zhu, Zhuoer Xu, Chunfeng Yuan, and Yihua Huang. Difer: differentiable automated
feature engineering. In International Conference on Automated Machine Learning, pp. 17–1.
PMLR, 2022b.

Jan Łukasiewicz. Aristotle’s syllogistic from the standpoint of modern formal logic. 1957. URL
https://api.semanticscholar.org/CorpusID:170931835.

A FEATURE SPACE SERIALIZATION METHODS

In order to use the model to optimize the feature space, we first need to represent it. We treat the
feature space as a string. Since the Reverse Polish Notation has the advantages of uniqueness and
not relying on brackets for calculations, we first convert the feature space string into Reverse Polish
Notation, which makes it easier for the model to recognize and generate unambiguous strings while
reducing computational overhead. The conversion of Reverse Polish Notation can be described by
the Shunting Yard Algorithm (Dijkstra, 1961), which was designed by Edsger Dijkstra.

We follow the steps below to convert: We first initialize a list of original expressions of feature space
and two stacks, S1 and S2, respectively. For each element in the list, we scan it from left to right.
When getting a feature name token, we push it to S2. When receiving a left parenthesis, we push
it to S1. When obtaining any operations, we pop each element in S1 and push them into S2 until
the last component of S1 is the left bracket. Then we push this operation into S1. When getting
a right parenthesis, we pop every element from S1 and then push into S2 until we confront a left
bracket. Then we remove this left bracket from the top of S1. When the end of the input encounters,
we append every token from S2 into the final expression ηp. If this feature is not the last element
in the current feature space, we will append a ⟨SEP ⟩ token to indicate the end of this feature
expression. After we process every element in the features, we add ⟨SOS⟩ and ⟨EOS⟩ tokens
to the beginning and end of the expression of feature space to form the Reverse Polish Notation
transformation sequence. Each element in ηp is a feature name token, operation token, or three other
special tokens. We convert each transformation sequence through this algorithm and construct the
training set with them.

We give some examples to illustrate this conversion process. For example, if initial transformed
feature spaces as follows:

1 f0 ∗ f4, f3 + (f7 ∗ f1), f2%f6, f1/f9, (f5 − f8) ∗ f4
2 f1 − f3, f0%(f7 − f2), f4 ∗ f2, f5 + f6

3 f6/f9, (f0 ∗ f8)− f3, f2 + f5, f1%(f3 ∗ f2), f4 − f7

4 f2 ∗ f1, f3%(f8 − f5), f5/f4, f0 + (f7 − f3), f9 − f6, f1 ∗ f3
5 f4 − f2, f9 ∗ f3, f1/(f6 − f0), f7 + f5

Then Reverse Polish Notations are as follows:

14

https://api.semanticscholar.org/CorpusID:170931835

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

1 f0f4∗, f3f7f1 ∗+, f2f6%, f1f9/, f5f8 − f4∗
2 f1f3−, f0f7f2 −%, f4f2∗, f5f6+
3 f6f9/, f0f8 ∗ f3−, f2f5+, f1f3f2 ∗%, f4f7−
4 f2f1∗, f3f8f5 −%, f5f4/, f0f7f3 −+, f9f6−, f1f3∗
5 f4f2−, f9f3∗, f1f6f0 − /, f7f5+

The final sequences are as follows:

1 < SOS > f0 f4 ∗ < SEP > f3 f7 f1 ∗ + < SEP > f2 f6 % < SEP > f1 f9 /
< SEP > f5 f8 − f4 ∗ < EOS >

2 < SOS > f1 f3 − < SEP > f0 f7 f2 −% < SEP > f4 f2 ∗ < SEP > f5 f6 + < EOS >

3 < SOS > f6 f9 / < SEP > f0 f8 ∗ f3 − < SEP > f2 f5 + < SEP > f1 f3 f2 ∗ %
< SEP > f4 f7 − < EOS >

4 < SOS > f2 f1 ∗ < SEP > f3 f8 f5 − % < SEP > f5 f4 / < SEP > f0 f7 f3 − +
< SEP > f9 f6 − < SEP > f1 f3 ∗ < EOS >

5 < SOS > f4 f2 − < SEP > f9 f3 ∗ < SEP > f1 f6 f0 − / < SEP > f7 f5 + < EOS >

B DATASET DETAIL INFORMATION

Table 3: Sensitive features’ information

Dataset Senstive Task Type Senstive Feature Name Senstive Feature Description

German Credit Classification famges User’s marital status
Housing Boston Regression TAX Property tax rate
Uci Credit Card Classification EDUCATION The user’s education level

Amazon Employee Classification ROLE CODE Company role code (e.g. Manager)

We select 8 real datasets for experiments to demonstrate the effectiveness of our method. These
public datasets come from UCI (Public, 2022b), Kaggle (Howard, 2022), and OpenML (Public,
2022a), involving classification and regression problems. Four of the datasets are user-related, in-
cluding German Credit, Housing Boston, Uci Credit Card, and Amazon Employee. We selected
some of the information that users may not want to expose as sensitive features, as shown in Table
3. In addition, there are 4 datasets where sensitive features cannot be directly defined, including
lymphography, Openml 618, Activity, and AP-omentum-ovary. We selected their first feature as
the sensitive feature. Table 4 shows the statistics of the datasets. We randomly split each dataset
into two independent sets. The prior 80% is used to build the continuous embedding space and the
remaining 20% is employed to test transformation performance. We report the results of five-fold
cross-validation.

Table 4: Datasets Statistics. ’C’ for classification, and ’R’ for regression.

Dataset Source Type-y Type-z # Samples # Features
Housing Boston UCIrvine R R 506 13
German Credit UCIrvine C C 1001 24
Uci Credit Card UCIrvine C C 30000 25

Amazon Employee Kaggel C C 32769 9
Lymphography UCIrvine C C 148 18

Openml 618 OpenML R R 1000 50
AP Omentum Ovary OpenML C C 275 10936

Activity UCIrvine C R 10299 561

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C CONSTRAINED GRADIENT UPDATE

We optimize the latent representation towards better performance and privacy by updating the gra-
dients under progressively tighter constraints. We first use the trained privacy evaluator to eval-
uate the HSIC of the initial latent variables and sensitive features as the initial privacy constraint
Ψpr(Ê

min
p ; s). We use a performance estimator to guide the optimization of the latent representa-

tion Ep towards better performance. We use privacy constraints to ensure that the updated Êp has
better privacy under the evaluation of the privacy evaluator. We use projected gradient descent to
implement such constrained updates:

Êp = Ep + ηprojΨpr(Êp;s)≤Ψpr(Êmin
p ;s)

∂Ψpr

∂Ep
(10)

The specific implementation is shown in Algorithm 1.

Algorithm 1 Projected Gradient Descent Optimization with Dynamic Constraints

1: Initialize Ep and Emin
p

2: for each iteration t = 1, 2, . . . , T do
3: Compute gradient ∇Ψpr(Ep)
4: Update Ep ← Ep + η∇Ψpr(Ep)
5: if Ψpr(Ep; s) ≤ Ψpr(E

min
p ; s) then

6: Set Emin
p ← Ep

7: else
8: Initialize k = 0
9: while k < K and Ψpr(Ep; s) > Ψpr(E

min
p ; s) do

10: Compute gradient∇Ψpr(Ep)
11: Update Ep ← Ep + η∇Ψpr(Ep)
12: if Ψpr(Ep; s) ≤ Ψpr(E

min
p ; s) then

13: Set Emin
p ← Ep

14: Break
15: end if
16: k ← k + 1
17: end while
18: end if
19: end for

In addition, we first select m initial latent representations as seeds for constrained updating to obtain
m candidate representations [Ê1

p , . . . , Ê
m
p]. We adopt the beam search strategy to obtain better

representation candidates. Specifically, given an updated embedding Êp, at step-t, we maintain the
historical predictions with beam size b, denoted as {ηi<t}bi=1. For the i-th beam, the probability
distribution of the token identified by the well-trained decoder Γd at the t-th step is γ, which can be
calculated as follows:

P i
t (γ) = PΓd

(γ|Êp, η̂
i
<t) · PΓd

(η̂i<t|Êp), (11)

where the probability distribution P i
t (γ) is the continued multiplication of the probability distribu-

tion from the previous decoding sequence and the current decoding step. We collect the conditional
probability distribution of all tokens for each beam. After that, we append tokens with the top-
b probability values to the historical predictions of each beam to form a new set of predictions
{η̂i<t+1}bi=1. We iteratively conduct this decoding process until reaching the <EOS> token. We then
select the transformation sequence with the highest probability value as output. Thus, T enhanced
embeddings may produce T transformation sequences {η̂i}Ti=1. Each sequence is divided into dif-
ferent parts according to the <SEP> token, and we check the validity of each part, removing the
invalid ones. Here, the validity checks whether the mathematical compositions represented by the
Reverse Polish Notation can be successfully computed to produce a new feature. These valid form
the final Reverse Polish Notation sequence {η̂ip}Ti=1, which is used to generate the refined feature
space {F̂ i}Ti=1. Finally, we select the feature set with the highest downstream ML performance as
the optimal feature space F ∗.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Housing Boston Lymphography0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
ac

cu
ra

cy
 o

f
 se

ns
iti

ve
 fe

at
ur

es

0.78

0.37

(a) Dependencies within the
Feature Space

ORG GRFG MOAT0.0

0.2

0.4

0.6

Do
wn

st
re

am
 Ta

sk
Pe

rfo
rm

an
ce

w Sensitive Feature
w/o Sensitive Feature

(b) Dependencies across Feature
Space on Housing Boston

ORG GRFG MOAT0.00

0.25

0.50

0.75

1.00

Do
wn

st
re

am
 Ta

sk
Pe

rfo
rm

an
ce

w Sensitive Feature
w/o Sensitive Feature

(c) Dependencies across Feature
Space on Lymphography

Figure 7: Impact of Feature Dependencies

D EXPERIMENT ENVIRONMENT AND SETUP

All experiments were conducted on the Ubuntu 11.2 operating system, 13th Gen Intel(R) Core(TM)
i9-13900KF CPU, and 2 NVIDIA GeForce RTX 4090 GPUs, with the framework of Python 3.10.14
and PyTorch 2.3.1. We ran the privacy-awared feature space construction for 10 epochs. We
randomly shuffled each Reverse Polish Notation 12 times to increase data diversity and volume.
We adopted a single-layer LSTM as the encoder and decoder backbones and utilized 3-layer feed-
forward networks to implement the predictor. The hidden state sizes of the encoder, decoder and
predictor are 64, 64, and 200, respectively. The embedding size of each feature ID token and op-
eration token was set to 32. The autoencoder and estimator are trained for 2000 epochs. When
implementing the constraint updates, we allow the projected gradient descent step to be executed at
most 100 times. To facilitate the adjustment of weights, we used the following form when imple-
menting equation (7):

R(Fi, y, s) = (1− α)I(Fi; y)− α ˆHSIC(Fi; s). (12)

The value range of α is (0,1). We train our model with α = [0.1, 0.3, 0.5, 0.7, 0.9] and select the best
result to report. For the methods in the baseline, we train them according to the parameters given
by the authors in the original paper. When reporting accuracy on downstream tasks and sensitive
features, we use 5-fold cross-validation.

E SUPPLEMENTARY EXPERIMENTS

E.1 IMPACT OF FEATURE DEPENDENCIES

When considering privacy from a data perspective, simply deleting sensitive features can cause un-
controllable negative impacts due to the complex feature dependencies within and across feature
spaces. Dependencies within the feature space mean that it’s not enough to simply address the sen-
sitive features themselves. Other features may inadvertently expose sensitive information, requiring
a more comprehensive approach. Dependencies across feature space refer that sensitive features
often contribute to the construction of new features, creating associations within the transformed
feature space. Directly removing sensitive features may cause multiple valuable new features to be-
come unavailable, significantly reducing downstream tasks’ performance. The experimental results
in Figure 7 illustrate the necessity of utilizing sensitive features for feature transformation from the
perspective of the overall feature space . Figure 7(a) shows the use of other features to predict sensi-
tive features in the original dataset. The results show that sensitive information is at risk of indirect
exposure. In the Housing Boston dataset, the accuracy of using other features to predict sensitive
features is as high as 78%. This shows that when considering privacy from a data perspective, it is
not enough to only process sensitive features themselves. Figure 7(b) and Figure 7(c) Demonstrates
the impact of feature dependencies across space. We delete sensitive features in the original data set
and use two SOTA feature transformation methods for feature transformation. We report the final
downstream task accuracy when sensitive features are involved and the downstream task accuracy
when no sensitive features are involved. The results indicate that feature transformation may fur-
ther exacerbate the negative degradation caused by removing sensitive features. For example, in the
Lymphography dataset, deleting sensitive features in the original data will not cause performance

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Estimator Performance

Dataset Performance Evaluator Privacy Evaluator

Housing Boston 0.6898 0.8510
German Credit 0.6565 0.8281
Uci Credit Card 0.6313 0.7219

Amazon Employee 0.7085 0.6082
Lymphography 0.6619 0.6031

Openml 618 0.6578 0.6611
AP Omentum Ovary 0.5942 0.7153

Activity 0.5479 0.5515

Table 6: Robustness check with distinct ML models

DownStream
Method

Task
Lymphography Housing Boston

ORI GRFG MOAT Ours ORI GRFG MOAT Ours

RandomForest
Downstream Task 0.7175 0.8133 0.8185 0.7895 0.4012 0.4212 0.4648 0.4574
Sensitive Feature 0.4445 0.6323 0.5100 0.7294 0.1630 0.1109 0.0391 0.1747

Average 0.5810 0.7228 0.6642 0.7595 0.2821 0.2661 0.2520 0.3161

MLP
Downstream Task 0.7518 0.8265 0.7552 0.7842 0.4522 0.5153 0.5131 0.5016
Sensitive Feature 0.6756 0.3841 0.4256 0.6996 0.6756 0.6050 0.5000 0.7050

Average 0.7137 0.6053 0.5904 0.7419 0.5639 0.5602 0.5066 0.6033

SVM
Downstream Task 0.7461 0.8114 0.7518 0.7861 0.0226 0.3881 0.0296 0.0896
Sensitive Feature 0.6330 0.4970 0.6375 0.6623 0.9147 0.6825 0.8965 0.9136

Average 0.6896 0.6542 0.6947 0.7242 0.4686 0.5353 0.4631 0.5016

GradientBoosting
Downstream Task 0.7861 0.8488 0.7895 0.8285 0.4353 0.6042 0.4594 0.4552
Sensitive Feature 0.5715 0.0035 0.0723 0.5874 0.2100 0.0032 0.1724 0.1946

Average 0.6788 0.4262 0.4309 0.7080 0.3227 0.3037 0.3159 0.3249

degradation in downstream tasks, but if the sensitive features do not participate in feature trans-
formation, the performance degradation will be significant. This illustrates that simple deletion or
preprocessing of sensitive features may lead to suboptimal performance of downstream tasks. It is
necessary to involve it in the feature conversion process.

E.2 PERFORMANCE OF EVALUATORS

In our approach, there are two evaluators that use latent variables to evaluate downstream task per-
formance and sensitive information exposure risk, respectively. In this section, we show the perfor-
mance of these two evaluators during training. Considering that we only need to update the gradient
in the correct direction based on the relative size and tighten the privacy constraint, we use pairwise
accuracy as the measurement metric. The formula for pairwise accuracy is given by:

Pairwise Accuracy =
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1 ((yi > yj) ∧ (ŷi > ŷj) ∨ (yi < yj) ∧ (ŷi < ŷj)) (13)

where 1 is the indicator function, and
(
n
2

)
represents the number of sample pairs. As shown in Table

5, in our experiments, both evaluator tasks achieve usable accuracy.

E.3 ROBUSTNESS CHECK WITH DISTINCT ML MODELS

We replaced the downstream ML models with RandomForest, MLP (Rumelhart et al., 1986), Sup-
port Vector Machine (SVM) (Cortes, 1995), GradientBoosting (Friedman, 2001) to observe the vari-
ance of model performance, respectively. Table 6 shows the comparison results on Lymphography

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Time Cost

Dataset # Samples # Features
Privacy-Awared
Constructio(s)

Model
Training (s/epoch)

Latent Rep
Updated w/o PGD (s)

Latent Rep
Updated (s)

German Credit 1001 24 123 1.9 11.1 15.2
Housing Boston 506 13 101 2 9.7 12.6
Uci Credit Card 30000 25 39908 1.9 10.4 12

Amazon Employee 32769 9 50569 2 9.9 11.2
Lymphography 148 18 59 1.7 9.1 10.9

Openml 618 1000 50 2155 2.7 15.7 17.6
Activity 10299 561 58519 3.8 20.4 22.7

AP Omentum Ovary 275 10936 2458 2.3 15.2 16.7

and Housing Boston. We report our model and the two strongest baseline performances. We use the
same evaluation metrics as in Table 1. The results show that PFT performs optimally in terms of
both performance and privacy average metric when the downstream task models are different.

E.4 TIME COMPLEXITY

PFT achieves the dual goals of performance and privacy without introducing complex model struc-
tures and additional storage space, so its space complexity is similar to that of current feature trans-
formation models. In this section, we mainly show the time cost of our model. We show the time cost
of each link of our method on different datasets in Table 7. Privacy-Awared Constructio represents
the total time cost of our privacy-awared feature space construction. Model Training represents the
time required for each epoch in the training of the autoencoder. Latent Rep Updated w/o PGD rep-
resents that we remove the asymptotic constraints and only optimize towards better performance in
the regeneration phase. Latent Rep Updated represents the constrained latent representation update
used in our method.

As shown in the table, different datasets have large time differences in the privacy-awared feature
space construction. This time difference is mainly determined by the number of samples. Through
our further observation, the time overhead at this time is mainly caused by evaluating the new feature
space on the downstream task model. There is room for optimization at the implementation level.
In addition, during the model training process, the time cost on different datasets is similar. This
is because we represent the feature space in the latent space, and the representation length in the
latent space is fixed, which prevents the model training from experiencing a catastrophic increase
in training cost due to the increase in features. In addition, the introduction of constraints requires
additional time to perform projected gradient descent, but the additional time cost is 2s on average,
which is within an acceptable range.

19

	Introduction
	Problem Statement
	Methodology
	Framework Overview
	privacy-aware knowledge acquisition
	Multi-Agent Reinforcement Learning
	Privacy-Awared Decision-Making

	privacy-preserving feature space generation
	Sequence Autoencoder Structure
	Performance and Privacy Evaluators
	Constrained Gradient Update

	Experiment
	Experimental Setup
	Data Description
	Evaluation Metrics
	Baseline Methods

	Overall Comparison
	Investigation of PFT
	New feature space analysis
	relationship between HSIC and sensitive information

	Ablation Experiment and Sensitivity analysis

	Related Work
	Feature Transformation
	Information Bottleneck Principle

	conclusion and future work
	Feature Space Serialization Methods
	dataset detail information
	CONSTRAINED GRADIENT UPDATE
	Experiment environment and setup
	Supplementary experiments
	impact of feature dependencies
	Performance of Evaluators
	Robustness check with distinct ML models
	Time complexity

