

# 000 001 PERCEPTION-R1: ADVANCING MULTIMODAL REASON- 002 ING CAPABILITIES OF MLLMs VIA VISUAL PERCEP- 003 TION REWARD 004 005

006 **Anonymous authors**

007 Paper under double-blind review  
008  
009  
010  
011  
012

## ABSTRACT

013 Enhancing the multimodal reasoning capabilities of Multimodal Large Language  
014 Models (MLLMs) is a challenging task that has attracted increasing attention in  
015 the community. Recently, several studies have applied Reinforcement Learning  
016 with Verifiable Rewards (RLVR) to the multimodal domain in order to enhance  
017 the reasoning abilities of MLLMs. However, these works largely overlook the  
018 enhancement of multimodal perception capabilities in MLLMs, which serve as a  
019 core prerequisite and foundational component of complex multimodal reasoning.  
020 Through McNemar’s test, we find that existing RLVR method fails to effectively  
021 enhance the multimodal perception capabilities of MLLMs, thereby limiting their  
022 further improvement in multimodal reasoning. To address this limitation, we  
023 propose Perception-R1, which introduces a novel visual perception reward that  
024 explicitly encourages MLLMs to perceive the visual content accurately, thereby  
025 can effectively incentivizing both their multimodal perception and reasoning ca-  
026 pabilities. Specifically, we first collect textual visual annotations from the CoT  
027 trajectories of multimodal problems, which will serve as visual references for  
028 reward assignment. During RLVR training, we employ a judging LLM to assess  
029 the consistency between the visual annotations and the responses generated by  
030 MLLM, and assign the visual perception reward based on these consistency judg-  
031 ments. Extensive experiments on several multimodal math and general benchmarks  
032 demonstrate the effectiveness and robustness of our Perception-R1, which achieves  
033 superior performance on all benchmarks using only 1,442 training data.  
034  
035

## 1 INTRODUCTION

037 Multimodal reasoning is a fundamental capability for AI systems to solve complex real-world tasks  
038 and represents a critical step toward artificial general intelligence (AGI). Since the emergence of  
039 Multimodal Large Language Models (MLLMs), extensive studies have been proposed to enhance their  
040 multimodal reasoning capabilities. Early efforts focused on prompt engineering techniques (Zhang  
041 et al., 2023b; Zheng et al., 2023; Zhang et al., 2024a; Mitra et al., 2024), while subsequent works  
042 leveraged supervised fine-tuning (SFT) with high-quality reasoning datasets (Gao et al., 2024; Shi  
043 et al., 2024; Peng et al., 2024; Zhang et al., 2024c). More recently, the success of reasoning models  
044 such as OpenAI-01 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Kimi-k1.5 (Team et al.,  
045 2025) has demonstrated the efficacy of large-scale reinforcement learning (RL), particularly RL with  
046 Verifiable Rewards (RLVR), in enhancing advanced reasoning capabilities of LLMs and MLLMs,  
047 thereby drawing significant attention from the research community.

048 Motivated by these pioneering works, a growing number of studies (Meng et al., 2025; Peng et al.,  
049 2025; Yang et al., 2025; Huang et al., 2025; Deng et al., 2025) have emerged to further advance the  
050 multimodal reasoning capabilities of MLLMs leveraging RLVR, which train MLLMs solely with  
051 rewards derived from the correctness of the final answer. For instance, MM-Eureka (Meng et al.,  
052 2025) and R1-VL (Zhang et al., 2025) successfully stabilized the training of RLVR in the multimodal  
053 domain by incorporating additional training tricks and mechanisms. R1-OneVision (Yang et al., 2025)  
and Vision-R1 (Huang et al., 2025) first constructed a large-scale high-quality multimodal dataset by  
addressing the modality gap issue, then applied a training pipeline consisting of cold-start followed

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 054 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Question:</b> Chords $\overline{AC}$ and $\overline{DF}$ are equidistant from the center. If the radius of $\odot G$ is 26, find $DE$ .<br><b>Answer:</b> 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 055 | <b>Qwen2.5-VL-7B-IT</b><br>To solve for the length of $DE$ , we need to use the properties of circles and the given information.<br><b>1. Identify the given information:</b><br>- The radius of $\odot G$ is 26.<br>.....<br><b>2. Determine the perpendicular distances:</b><br>- The distance from the center $G$ to $\overline{AC}$ is 10.<br>- The distance from the center $G$ to $\overline{DF}$ is 10.<br><b>3. Use the Pythagorean theorem in the right triangles formed:</b><br>- Consider the right triangle $\triangle OAE$ (where $O$ is the midpoint of $\overline{AC}$ and $E$ is the midpoint of $\overline{DF}$ ).<br>- The radius $OA$ is 26 and the perpendicular distance from $G$ to $\overline{AC}$ is 10.<br><b>4. Calculate the length of <math>AE</math>:</b><br>- $AE = \sqrt{OA^2 - OG^2} = \sqrt{26^2 - 10^2} = 24$<br><b>5. Determine the length of <math>DE</math>:</b><br>- Since $E$ is the midpoint of $\overline{DF}$ , the length of $DE$ is the same as the length of $AE$ because $\overline{AC}$ and $\overline{DF}$ are equidistant from the center and thus symmetric in the circle.<br>Therefore, the length of $DE$ is 24. | <b>Qwen2.5-VL-7B-IT Trained by RLVR</b><br><think><br>To find the length of $DE$ , we need to use the property that chords equidistant from the center of a circle are congruent. This means that $AC = DF$ .<br>Given:<br>- The radius $RG = 26$<br>- The distance from the center $G$ to chord $\overline{AC}$ is the same as the distance from the center $G$ to chord $\overline{DF}$ , which is 10. For chord $\overline{AC}$ , the perpendicular from $G$ to $\overline{AC}$ creates two right triangles, $\triangle AGB$ and $\triangle AGB$ , which are congruent. The same applies to chord $\overline{DF}$ with $\triangle DGE$ and $\triangle DGE$ . The length of half of chord $\overline{AC}$ can be found using the Pythagorean theorem in $\triangle AGB$ :<br>$AG = \sqrt{RG^2 - GB^2} = \sqrt{26^2 - 10^2} = 24.$ So, $AC = 2 \times 24 = 48.$ Since $AC$ and $DF$ are equidistant and congruent in length, $DF = 48.$ Applying the same logic to chord $\overline{DF}$ , we use the right triangle $\triangle DGE$ :<br>$DG = \sqrt{RG^2 - GE^2} = \sqrt{26^2 - 10^2} = 24.$ So, $DF = 2 \times DE.$ Since $DF = 48$ , we have:<br>$DE = \frac{DF}{2} = \frac{48}{2} = 24$<br></think><br><answer>24</answer> | <b>Perception-R1</b><br><think><br>Looking at the image, we can see that $\overline{AC}$ and $\overline{DF}$ are equidistant from the center $G$ , which means the perpendicular distances from $G$ to $\overline{AC}$ and $\overline{DF}$ are the same. This implies that the perpendiculars from $G$ to $\overline{AC}$ and $\overline{DF}$ will intersect $\overline{AC}$ and $\overline{DF}$ at their midpoints, say $B$ and $E$ respectively, because the chords are equidistant from the center.<br>Since $G$ is the center and the radius is 26, $GB = 10$ (as $B$ is on $\overline{AC}$ and $G$ is 10 units away from $\overline{AC}$ ). Because $\overline{AC}$ and $\overline{DF}$ are equidistant, $GE = 10$ as well (since $E$ is on $\overline{DF}$ and $G$ is 10 units away from $\overline{DF}$ ).<br>Now, consider $\triangle AGB$ and $\triangle GFE$ . Since $GB \perp AC$ and $GE \perp DF$ , $GB = GE = 10.$ Also, $GA = GF = 26$ because they are radii of the circle.<br>By the Pythagorean theorem in $\triangle AGB$ :<br>$AG^2 = AB^2 + GB^2, \dots, AB = 24.$ Since $B$ is the midpoint of $\overline{AC}$ , $AC = 2 \times AB = 2 \times 24 = 48.$ Similarly, in $\triangle GFE$ : $FG^2 = FE^2 + GE^2, \dots, FE = 24.$ Since $E$ is the midpoint of $\overline{DF}$ , $DF = 2 \times FE = 2 \times 24 = 48$ , so $DE = \frac{DF}{2} = 24.$<br>Thus, the answer is 24.<br></think><br><answer>24</answer> |
| 056 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 057 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 058 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 059 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 060 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 061 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 062 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 063 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 064 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 065 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 066 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 067 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 068 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 069 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 070 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figure 1: A comparison of three MLLMs on a geometry problem. Both Qwen2.5-VL-7B-IT and its RLVR-trained variant make severe perception errors but manage to guess the answer, whereas our Perception-R1 first accurately describes the image and then solves the problem correctly.

by RLVR to train MLLMs on the dataset. All these works effectively enhanced the multimodal reasoning capabilities of MLLMs, leading to substantial performance improvements.

Multimodal reasoning can be naturally decomposed into multimodal perception and logical reasoning (Amizadeh et al., 2020; Zhou et al., 2024), where multimodal perception is responsible for accurately understanding the multimodal input and supplying essential information for subsequent reasoning, thereby serving as the foundation for effective multimodal reasoning. Although RLVR-trained MLLMs demonstrate improved reasoning capabilities, our detailed analysis reveal that existing RLVR fails to effectively improve the multimodal perception capabilities of MLLMs, making it a major bottleneck that restricts their further advancement in multimodal reasoning.

For example, as illustrated in Figure 1, the original MLLM (left in Figure 1) makes severe multimodal perception errors (e.g., referring to “right triangle  $\triangle OAE$ ” that does not exist in the image), indicating its limited multimodal perception capabilities. Nevertheless, it still manage to guess the correct answer. This makes existing RLVR method, which optimizes MLLMs solely based on answer accuracy, struggles to correct perception errors and may even reinforces this flawed reasoning path. Consequently, the resulting MLLM (middle in Figure 1) still exhibits weak multimodal perception capabilities similar to its original counterpart (e.g., referring to “ $RG$ ” that does not exist), hindering the development of genuine multimodal reasoning capabilities.

We attribute this challenge to the rewards sparsity for multimodal perception when training MLLMs with existing RLVR, making it difficult to effectively enhance the multimodal perception capabilities of MLLMs. To address this challenge, we propose Perception-R1, which incorporates a novel and effective visual perception reward into the multimodal RLVR training process. The visual perception reward provides an additional reward signal beyond answer accuracy, explicitly encouraging MLLMs to perceive visual content accurately, thereby alleviating reward sparsity in RLVR training and facilitating more effective multimodal reasoning by strengthening the MLLMs’ perceptual foundation.

Specifically, we introduce visual annotations into RLVR as auxiliary references, encouraging MLLMs to generate perception-accurate responses that closely align with them during training. To obtain such visual annotations, we first collect CoT trajectories with correct final answers from a state-of-the-art multimodal reasoning model and then employ an LLM to extract natural language visual annotations from them. Our manual examination indicates that these visual annotations reach an accuracy of 96% (see Appendix B.2). During RLVR training, visual perception reward is assigned based on the consistency between the visual annotations and the responses of MLLM, as evaluated by a judging LLM via prompting. By incorporating the visual perception reward into RLVR, our Perception-R1 achieves the best performance compared to several strong baselines across most multimodal

108 benchmarks using only 1,442 training samples, surpassing Vision-R1 (Huang et al., 2025), which  
 109 requires 200K data samples for training in total.  
 110

111 In summary, our contributions are threefold:

- 112 (1). We investigate the behaviors of RLVR-trained MLLMs and their original counterparts, and find  
 113 that their multimodal perception capabilities are not statistically significantly different, remaining a  
 114 major bottleneck that limits further advancement in multimodal reasoning.
- 115 (2). We propose Perception-R1, which introduces a novel visual perception reward into RLVR. By  
 116 providing an additional perception reward signal, Perception-R1 alleviates the reward sparsity in  
 117 multimodal perception and effectively enhances the multimodal reasoning capabilities of MLLMs.
- 118 (3). Extensive experiments on several multimodal math and general benchmarks demonstrate the  
 119 superiority of our Perception-R1, which exhibits significantly improved multimodal perception  
 120 capabilities and achieves superior performance on all benchmarks using only 1,442 training samples.

## 121 2 RELATED WORK

### 122 2.1 MULTIMODAL LARGE LANGUAGE MODELS

123 Multimodal Large Language Models (MLLMs) have witnessed rapid advancements in recent years.  
 124 Most studies (Bai et al., 2023; Wang et al., 2024b; Bai et al., 2025; Liu et al., 2023; Chen et al.,  
 125 2024d) developed MLLMs by aligning a visual encoder to a pre-trained LLM through vision-language  
 126 adaptors (VL-adaptors), making the modality alignment the core of MLLMs development. Early  
 127 efforts focused on architectural designs to enhance alignment, exploring various forms of VL-adaptors  
 128 and visual encoders. From the perspective of VL-adaptor, three mainstream types have been widely  
 129 studied: cross-attention modules (Bai et al., 2023; Dai et al., 2023; Zhang et al., 2023a), parallel visual  
 130 experts (Wang et al., 2024c; Dong et al., 2024) inspired by LoRA (Hu et al., 2022), and simple linear  
 131 projection layers (Liu et al., 2023; Li et al., 2024; Wang et al., 2024b; Bai et al., 2025; Chen et al.,  
 132 2024b). Among these, linear projection layers have demonstrated strong effectiveness (Laurençon  
 133 et al., 2024) and are now predominantly adopted in SOTA MLLMs. Meanwhile, CLIP-based visual  
 134 encoders have been found to possess intrinsic limitations in multimodal perception (Tong et al., 2024),  
 135 prompting the research of applying hybrid vision towers (Tong et al., 2024; Lu et al., 2024a) and  
 136 scaling up the vision backbones (Chen et al., 2024d;c;b). Beyond the exploration of architecture  
 137 of MLLMs, recent studies have also advanced modality alignment from a data perspective. Works  
 138 such as LLaVA (Liu et al., 2023; 2024a;b; Li et al., 2024), Qwen-VL (Bai et al., 2023; Wang et al.,  
 139 2024b; Bai et al., 2025), and InternVL (Chen et al., 2024d;c;b) have significantly scaled up both the  
 140 volume and diversity of training data. For instance, LLaVA’s training data grew from 753K samples  
 141 to 9.36M in LLaVA-OV (Li et al., 2024), while the data diversity broadened from general images to  
 142 include math reasoning, document and video understanding, substantially improving VL alignment  
 143 and overall performance on multimodal benchmarks.  
 144

### 145 2.2 MULTIMODAL LARGE LANGUAGE MODELS REASONING

146 Since the advent of MLLMs, enhancing their complex multimodal reasoning capabilities has drawn  
 147 increasing research attention. Early efforts (Gao et al., 2024; Shi et al., 2024; Peng et al., 2024)  
 148 focused on distilling CoT trajectories from proprietary models like GPT-4V (Achiam et al., 2023)  
 149 and Gemini (Team et al., 2023) to inject reasoning abilities into open-source MLLMs. Although  
 150 these methods can achieve improvement on targeted benchmarks, they lack generalizability to OOD  
 151 domains. Motivated by OpenAI-o1’s (Jaech et al., 2024) test-time scaling, many works (Xu et al.,  
 152 2024; Xiang et al., 2024; Yao et al., 2024; Luo et al., 2025) explored the implementation of it in  
 153 multimodal reasoning domain. Approaches like LLaVA-CoT (Xu et al., 2024), AtomThink (Xiang  
 154 et al., 2024), and URSA (Luo et al., 2025) implemented o1-style reasoning by enforcing step-wise  
 155 outputs and leveraging process-level rewards to evaluate intermediate steps. Recently, the remarkable  
 156 success of DeepSeek-R1 (Guo et al., 2025) in improving LLM reasoning through large-scale RLVR  
 157 has motivated researchers to transfer similar approaches into the multimodal domain. Vision-RFT (Liu  
 158 et al., 2025) and R1-V (Chen et al., 2025b) applied RLVR to object detection and counting tasks,  
 159 significantly improving the image understanding capabilities of MLLMs. MM-Eureka (Meng et al.,  
 160 2025), VLAA-Thinker (Chen et al., 2025a) and MMR1 (Leng\* et al., 2025) extended RLVR on math  
 161 reasoning tasks without cold-start, achieving substantial improvements in multimodal reasoning. In  
 addition to standard RLVR, R1-VL (Zhang et al., 2025) and SophiaVL (Fan et al., 2025) incorporated

additional rewards to further supervise the thinking process. Vision-R1 employed a pipeline that begins with a long CoT cold-start phase and subsequently conducts large-scale RL, leading to superior performance on several multimodal math benchmarks. Although prior works have made remarkable progress in enhancing the multimodal reasoning abilities of MLLMs, they overlooked the multimodal perception capabilities of MLLMs, which are essential for complex multimodal reasoning and remains difficult to optimize under existing RLVR method due to sparse rewards.

### 3 PRELIMINARIES

This section formulates the multimodal reasoning task (Section 3.1) and introduces key concepts of the RLVR algorithm (Section 3.2) employed in this work.

#### 3.1 PROBLEM FORMULATION

In this work, we investigate the multimodal reasoning task in the context of MLLMs. Let  $\mathcal{D} = (x_1, x_2, \dots, x_N)$  be a multimodal reasoning dataset, where each data sample  $x_i = (V, Q, a)$  comprises visual input  $V$  (e.g., image), a textual query  $Q$ , and the corresponding ground-truth answer  $a$ . The multimodal reasoning task is defined as follows: given a data sample  $x_i \in \mathcal{D}$  as input, the MLLM is required to generate a textual token sequence  $y$  that aims to reach the ground-truth answer  $a$ .

#### 3.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARDS (RLVR)

Reinforcement Learning with Verifiable Rewards (RLVR) is an RL variation that eliminates the dependency on external reward models by using ground-truth answers for reward assignment, which both mitigates challenging reward hacking issues (Denison et al., 2024) and substantially reduces computational overhead. Existing methods (Guo et al., 2025; Meng et al., 2025; Huang et al., 2025) typically apply RLVR with two main components, including reward functions and GRPO algorithm.

**Reward Functions:** The reward functions consist of two components:

- (1). *Format Reward* ( $r_f$ ) encourages MLLMs to generate in a structured “think-then-answer” format, with the reasoning process enclosed in `<think>` tags and the answer enclosed in `<answer>` tags.
- (2). *Accuracy Reward* ( $r_a$ ) drives the reasoning optimization in RLVR training by evaluating the correctness of predicted answer. Existing works (Face, 2025; Huang et al., 2025) mostly adopt a symbolic system to judge the equivalence of ground-truth  $a$  and answer in MLLMs’ response  $y$ .

Since format reward  $r_f$  only enforces structured output, while accuracy reward  $r_a$  plays a central role in enhancing the multimodal reasoning capabilities of MLLMs, we refer to RLVR with a following reward function as **accuracy-only RLVR**:

$$r(y_i, a) = \alpha \cdot r_f(y_i) + \beta \cdot r_a(y_i, a) \quad (1)$$

where  $\alpha, \beta$  are coefficients that control the impact of these two rewards.

**Group Relative Policy Optimization (GRPO)** (Shao et al., 2024) is a variant of Proximal Policy Optimization (PPO) (Schulman et al., 2017), which eliminates the need for a critic by estimating baseline rewards from groups of rollouts, thereby reducing computational overhead while maintaining performance. For each data sample  $x \in \mathcal{D}$ , GRPO first samples a group of rollouts  $Y = (y_1, y_2, \dots, y_G)$  from the policy model  $\pi_\theta$ , then computes advantage  $\hat{A}_i$  by normalizing rewards across these rollouts:

$$\hat{A}_i = \frac{r(y_i, a) - \text{mean}\{r(y_1, a), r(y_2, a), \dots, r(y_G, a)\}}{\text{std}\{r(y_1, a), r(y_2, a), \dots, r(y_G, a)\}} \quad (2)$$

After obtaining the advantages, GRPO optimizes the policy model  $\pi_\theta$  by maximizing the objective:

$$\mathcal{J}(\theta) = \mathbb{E}_{x \in \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}} \left[ \frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \left\{ \min \left[ s_t(x, y_i) \hat{A}_i, \text{clip} (s_t(x, y_i), 1 - \varepsilon, 1 + \varepsilon) \hat{A}_i \right] - \delta \cdot \text{KL}(\pi_\theta \| \pi_{\text{ref}}) \right\} \right] \quad (3)$$

where  $s_t(x, y_i) = \frac{\pi_\theta(y_{i,t} | x, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t} | x, y_{i,<t})}$ ,  $\varepsilon$  is the clipping hyper-parameter,  $\delta$  is the coefficient that controls the impact of Kullback-Leibler (KL) divergence,  $\pi_\theta$  is the policy model and  $\pi_{\text{ref}}$  is the fixed reference model that is usually initialized from the initial policy.



Figure 2: Overview of training pipeline of the proposed Perception-R1. In addition to the accuracy and format rewards, we introduce a novel visual perception reward that explicitly guides MLLMs toward improving their multimodal perception capabilities.

## 4 METHODS

### 4.1 ACCURACY-ONLY RLVR FAILS TO IMPROVE MULTIMODAL PERCEPTION IN MLLMs

Multimodal reasoning capabilities can be naturally decomposed into multimodal perception and logical reasoning capabilities (Amizadeh et al., 2020; Zhou et al., 2024). Although RLVR has been proven effective in enhancing logical reasoning, many failure cases similar to Figure 1 reveal its limited impact on enhancing multimodal perception. To further validate this observation, we first train Qwen2-VL-7B-IT (Wang et al., 2024b) and Qwen2.5-VL-7B-IT (Bai et al., 2025) on Geometry3K (Lu et al., 2021a) dataset using accuracy-only RLVR, and then conduct investigations by analyzing CoT trajectories on MathVista (Lu et al., 2024b) and MathVerse (Zhang et al., 2024b).

Our investigation yields the following results (Further details are provided in Appendix B.1):

- (1). For Qwen2-VL-7B-IT, we analyze 50 and 25 incorrect cases from MathVista and MathVerse, respectively, and find that 72% and 68% of these failures are caused by multimodal perception errors. For Qwen2.5-VL-7B-IT, the corresponding proportions are 78% and 76%, respectively. These results highlight that multimodal perception remains a major bottleneck for RLVR-trained MLLMs, which limits their further advancement in multimodal reasoning.
- (2). We conduct exact binomial variation of McNemar’s test (McNemar, 1947; Edwards, 1948) on 50 multimodal problems randomly sampled from MathVista. For Qwen2-VL-7B-IT, the numbers of discordant cases related to multimodal perception are 1 and 5, respectively. For Qwen2.5-VL-7B-IT, the numbers are 2 and 4, respectively. As a result, the exact binomial test yields  $p$ -values of 0.22 and 0.69, both far above the 0.05 significance level, indicating that the multimodal perception abilities of the accuracy-only RLVR trained MLLMs do not significantly differ from those of the base model.

### 4.2 PERCEPTION-R1

We attribute this limitation to the reward sparsity of accuracy-only RLVR, as answer correctness does not guarantee accurate multimodal perception, (e.g., as illustrated in Figure 1), making it difficult for accuracy-only RLVR to effectively optimize the multimodal perception capabilities of MLLMs. To tackle this issue, we propose Perception-R1, which introduces a novel and effective visual perception reward into RLVR, explicitly guiding MLLMs toward improving their multimodal perception capabilities, thereby effectively enhancing their overall multimodal reasoning performance.

Since directly introducing a multimodal reward model may introduce additional reward hacking issues, we largely adhere to the RLVR paradigm in designing the visual perception reward. As

270 shown in Figure 2, we first collect CoT trajectories that contain accurate visual information and then  
 271 extract visual annotations from them. These visual annotations serve as references for assigning  
 272 visual perception reward, analogous to the use of ground-truth answers in computing accuracy reward.  
 273 Subsequently, a judging LLM is used to assess the consistency between visual annotations and the  
 274 MLLM generated responses, thereby assisting in the assignment of the visual perception reward.  
 275 Finally, we aggregate all rewards and apply GRPO to optimize the policy model.

#### 276 277 4.2.1 CURATION OF VISUAL ANNOTATIONS

278 Visual images often encode rich and complex information that is difficult to convey fully through  
 279 text. Since our ultimate objective is to enhance the multimodal reasoning capabilities of MLLMs  
 280 rather than to generate faithful image captions, we focus on guiding MLLMs to concentrate on visual  
 281 content pertinent to problem solving, such as identifying  $GE = 10$  rather than being influenced by  
 282 superficial cues like line color in Figure 2.

283 To obtain such visual information, we employ a SOTA proprietary MLLM to generate CoT trajectories  
 284 on multimodal reasoning dataset  $\mathcal{D}$ , treating the visual information embedded within these trajectories  
 285 as accurate and highly relevant to problem-solving. Notably, these CoT trajectories can also be  
 286 obtained from existing open-source multimodal SFT datasets. We then further prompt a strong  
 287 text-only LLM to extract this embedded visual information from each CoT trajectory into a sequence  
 288 of visual annotations  $\mathcal{V} = (v_1, v_2, \dots, v_m)$ , where each  $v_i$  represents a textual atomic visual annotation  
 289 of the image that is critical for problem-solving (e.g.,  $GE = 10$ ,  $\overline{GE} \perp \overline{DF}$  in Figure 2), and  $m$   
 290 denotes the total number of visual annotations within the trajectory. These visual annotations  $\mathcal{V}$  will  
 291 serve as ground-truth references for evaluating whether the policy model accurately perceives visual  
 292 content during RLVR training, analogous to the role of ground-truth answers in the accuracy reward.

#### 293 294 4.2.2 VISUAL PERCEPTION REWARD

295 During RLVR training, we need to evaluate the consistency between the visual annotations  $\mathcal{V}$  and  
 296 the visual description embedded in the responses generated by the policy model  $\pi_\theta$ . Since symbolic  
 297 systems struggle to capture the complex semantics of natural language, we address this limitation  
 298 by introducing a judging LLM  $\Phi$  to assess whether each atomic visual annotation  $v_i$  is accurately  
 299 reflected in the responses generated by policy model, thereby extending the source of reward signals.

300 Formally, given a data sample  $x \in \mathcal{D}$  and its corresponding visual annotations  $\mathcal{V} = (v_1, v_2, \dots, v_m)$ ,  
 301 we first sample a response  $y_i$  from the policy model  $\pi_\theta$ , then employ a judging LLM  $\Phi$  to assess  
 302 whether each atom annotation  $v_j$  is presented in  $y_i$ . Consequently, this process results in a judgment  
 303 sequence  $\mathcal{J} = (o_{i,1}, o_{i,2}, \dots, o_{i,m})$ , where  $o_{i,j} \in \{0, 1\}$  indicates whether  $v_j$  is accurately reflected  
 304 in  $y_i$  or not. Obtaining  $\mathcal{J}$ , we can compute the visual perception reward  $r_v$  for  $y_i$ :

$$305 \quad r_v(y_i, \mathcal{V}) = \frac{\sum\{o_{i,1}, o_{i,2}, \dots, o_{i,m}\}}{|o_{i,1}, o_{i,2}, \dots, o_{i,m}|}, \text{ where } o_{i,j} = \Phi(y_i, v_j) \in \{0, 1\}, v_j \in \mathcal{V} \quad (4)$$

306 Accordingly, our visual-enhanced reward function is defined as follows:

$$307 \quad r(y_i, a, \mathcal{V}) = \alpha \cdot r_f(y_i) + \beta \cdot r_a(y_i, a) + \gamma \cdot r_v(y_i, \mathcal{V}) + r_p(y_i) \quad (5)$$

308 where  $r_f$  and  $r_a$  are format reward and accuracy reward explained in Section 3.2,  $\gamma$  is the coefficient  
 309 that controls the impact of visual perception reward,  $r_p$  is the repetition penalty reward that discourage  
 310 repetitive behavior during MLLMs' generation. The introduction of  $r_p$  is motivated by our observation  
 311 that directly incorporating  $r_v$  will result in increased repetition in the generated responses, which in  
 312 turn impairs the model's multimodal reasoning capabilities. Following prior works (Yeo et al., 2025;  
 313 Face, 2025), we implement  $r_p$  using a simple  $N$ -gram repetition penalty.

314 During RLVR training, we replace the reward function  $r(y_i, a)$  in Eq.1 by our visual-enhanced reward  
 315  $r(y_i, a, \mathcal{V})$ , and train the MLLM to maximize the GRPO objective exhibited in Eq.3.

## 316 317 5 EXPERIMENTS

### 318 319 5.1 EXPERIMENT SETTINGS

320 **Training Dataset.** We adopt Geometry3K (Lu et al., 2021a) dataset as our training data, which  
 321 originally contains 2,101 samples for training. To obtain the visual annotations, we employ Gemini-

324 Table 1: Performance comparison between Perception-R1 and baselines on 8 benchmarks. The  
 325 best and second-best results of Open-Source Reasoning MLLMs are highlighted in **red** and **blue**.  
 326 <sup>†</sup> R1-VL-7B and Vision-R1-7B both trained on WeMath and MathVision, their results are omitted.  
 327

| 328 Model                          | #Data       | 329 Math Benchmarks       |                           |                        |                        | 330 General Benchmarks |                         |                   |                  |
|------------------------------------|-------------|---------------------------|---------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------|------------------|
|                                    |             | 331 MathVista<br>testmini | 332 MathVerse<br>testmini | 333 MathVision<br>test | 334 WeMath<br>testmini | 335 MMMU<br>val        | 336 MMMU-Pro<br>overall | 337 MMStar<br>val | 338 EMMA<br>full |
| <i>Proprietary MLLMs</i>           |             |                           |                           |                        |                        |                        |                         |                   |                  |
| GPT-4o                             | /           | 63.8                      | 50.2                      | 30.4                   | 68.8                   | 69.1                   | 51.9                    | -                 | 32.7             |
| Claude-3.7-Sonnet                  | /           | 66.8                      | 52.0                      | 41.3                   | 72.6                   | 71.0                   | 51.5                    | 65.1              | 35.1             |
| OpenAI-o1                          | /           | 73.9                      | 57.0                      | 60.3                   | -                      | 78.2                   | 62.4                    | -                 | 45.7             |
| <i>Open Source General MLLMs</i>   |             |                           |                           |                        |                        |                        |                         |                   |                  |
| Qwen2-VL-7B-IT                     | /           | 58.6                      | 31.1                      | 16.7                   | 42.3                   | 46.9                   | 29.6                    | 56.0              | 24.5             |
| Qwen2.5-VL-7B-IT                   | /           | 68.1                      | 47.4                      | 25.1                   | 61.4                   | 55.2                   | 37.0                    | 63.1              | 24.9             |
| Qwen2.5-VL-72B-IT                  | /           | 75.8                      | 55.8                      | 37.9                   | 71.9                   | 70.2                   | 49.5                    | 70.8              | 38.2             |
| InternVL2.5-8B                     | /           | 64.4                      | 39.5                      | 19.7                   | 53.5                   | 56.0                   | 34.3                    | 62.8              | -                |
| <i>Open-Source Reasoning MLLMs</i> |             |                           |                           |                        |                        |                        |                         |                   |                  |
| URSA-7B                            | 3.06M       | 59.8                      | 45.7                      | - <sup>†</sup>         | - <sup>†</sup>         | - <sup>†</sup>         | - <sup>†</sup>          | - <sup>†</sup>    | - <sup>†</sup>   |
| R1-VL-7B                           | 260K        | 62.7                      | 40.8                      | - <sup>†</sup>         | - <sup>†</sup>         | 52.3                   | 29.4                    | 56.7              | 23.5             |
| R1-OneVision-7B                    | 155K        | 65.0                      | 46.5                      | 21.9                   | 61.9                   | 52.9                   | 33.8                    | 58.9              | 23.6             |
| OpenVLThinker-7B                   | 25K         | 71.3                      | 47.4                      | 24.3                   | 66.3                   | 58.4                   | 37.8                    | 63.8              | 27.0             |
| VLA-Thinker-7B                     | 25K         | 70.7                      | 51.2                      | 26.7                   | 66.3                   | 54.7                   | 37.2                    | 62.7              | 26.6             |
| SophiaVL-R1-7B                     | 130K        | 70.6                      | 49.0                      | 26.6                   | 64.8                   | 56.7                   | 38.8                    | 63.1              | 27.4             |
| MM-Eureka-7B                       | 15K         | 72.5                      | 51.9                      | 27.6                   | 65.6                   | 58.0                   | 38.3                    | 64.2              | 28.1             |
| Vision-R1-7B                       | 200K        | 73.1                      | 52.4                      | - <sup>†</sup>         | - <sup>†</sup>         | 55.2                   | 37.6                    | 62.6              | 28.2             |
| <b>Perception-R1-7B</b>            | <b>1.4K</b> | <b>74.2</b>               | <b>54.3</b>               | <b>28.6</b>            | <b>72.0</b>            | <b>60.8</b>            | <b>42.4</b>             | <b>64.5</b>       | 27.5             |

345  
 346 2.5-Pro (Team et al., 2023) to generate CoT trajectories on the training data and retain those with  
 347 correct answers. We then use Qwen2.5-32B-IT (Yang et al., 2024) to extract visual annotations from  
 348 the retained CoT trajectories. This process results in a total of 1,442 data samples with associated  
 349 visual annotations. Model training settings can be found in Appendix C.1.

350  
 351 **Benchmarks and Evaluation Settings.** For comprehensive evaluation, we evaluate Perception-R1  
 352 on a variety of challenging multimodal benchmarks, covering both math and general domains.  
 353 The math benchmarks include MathVista (Lu et al., 2024b), MathVerse (Zhang et al., 2024b),  
 354 MathVision (Wang et al., 2024a) and WeMath (Qiao et al., 2024). The general benchmarks comprise  
 355 MMMU (Yue et al., 2024a), MMMU-Pro (Yue et al., 2024b), MMStar (Chen et al., 2024a) and  
 356 EMMA (Hao et al., 2025). During inference, we use vLLM (Kwon et al., 2023) for efficiency and  
 357 apply greedy decoding with a temperature of 0.0.

358  
 359 **Baselines.** We compare our method against several powerful MLLMs: **(1) Proprietary MLLMs:**  
 360 GPT-4o (Hurst et al., 2024), OpenAI-o1 (Jaech et al., 2024), Claude-3.7-Sonnet (Anthropic, 2024),  
 361 **(2) Open-Source General MLLMs:** Qwen2-VL-7B-IT (Wang et al., 2024b), Qwen2.5-VL-7B-IT,  
 362 Qwen2.5-VL-72B-IT (Bai et al., 2025), InternVL2.5-8B (Chen et al., 2024b), **(3) Open-Source**  
 363 **Reasoning MLLMs:** URSA-7B (Luo et al., 2025), R1-OneVision (Yang et al., 2025), R1-VL (Zhang  
 364 et al., 2025), OpenVLThinker (Deng et al., 2025), VLAA-Thinker (Chen et al., 2025a), SophiaVL-  
 365 R1-7B (Fan et al., 2025), MM-Eureka (Meng et al., 2025), Vision-R1 (Huang et al., 2025).

## 366 5.2 MAIN RESULTS

367 We present the performance comparison between our Perception-R1 and existing powerful methods  
 368 across 8 mainstream multimodal benchmarks in Table 1. The performance of applying our method  
 369 on Qwen2-VL-7B-IT is presented in Appendix B.2. We summarize our findings as follows:

370  
 371 **Perception-R1 achieves the best performance on most of the benchmarks.** As demonstrated in the  
 372 table, despite being trained on a small dataset of only 1,442 samples, our Perception-R1 still achieves  
 373 remarkable performance across all benchmarks, outperforming previous powerful methods on all  
 374 benchmarks except EMMA. We also conduct statistical significance testing using a one-sample t-test,  
 375 finding that the average improvement is significant with  $p < 0.01$  compared to Vision-R1-7B and  
 376 MM-Eureka-7B. This result provides strong evidence for the superior performance of our proposed  
 377 Perception-R1. It also underscores the critical role of multimodal perception in enabling effective  
 378 multimodal reasoning, suggesting that accuracy-only RLVR requires further adaptation when applied  
 379 to the multimodal reasoning domain. Although Perception-R1 is trained on a mere 1,442 math

Table 2: Component & approach ablation studies of Perception-R1. The best result is marked in red.

| Model                        | Math Benchmarks       |                       |                    |                    | General Benchmarks |                     |               |              |
|------------------------------|-----------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|---------------|--------------|
|                              | MathVista<br>testmini | MathVerse<br>testmini | MathVision<br>test | WeMath<br>testmini | MMMU<br>val        | MMMU-Pro<br>overall | MMStar<br>val | EMMA<br>full |
| Qwen2.5-VL-7B-IT<br>+ GRPO   | 68.1                  | 47.4                  | 25.1               | 61.4               | 55.2               | 37.0                | 60.2          | 24.9         |
|                              | 73.3                  | 51.3                  | 26.6               | 69.5               | 58.0               | 38.2                | 63.1          | 24.9         |
| <b>Perception-R1-7B</b>      | <b>74.2</b>           | <b>54.3</b>           | <b>28.6</b>        | <b>72.0</b>        | <b>60.8</b>        | <b>42.4</b>         | <b>64.5</b>   | 27.5         |
| <i>Component Ablation</i>    |                       |                       |                    |                    |                    |                     |               |              |
| w/o Visual Perception Reward | 73.6                  | 53.0                  | 27.6               | 70.4               | 57.2               | 40.1                | 63.5          | 27.9         |
| w/o Repetition Penalty       | 73.6                  | 52.6                  | 26.9               | 68.5               | 59.1               | 40.6                | 63.6          | 27.6         |
| <i>Approach Ablation</i>     |                       |                       |                    |                    |                    |                     |               |              |
| Qwen2.5-VL-7B-IT + SFT       | 67.3                  | 39.1                  | 21.3               | 49.1               | 52.8               | 35.2                | 59.6          | <b>28.3</b>  |
| Qwen2.5-VL-32B-IT as RM      | 73.2                  | 54.1                  | 26.8               | 66.3               | 58.9               | 40.6                | 61.7          | 26.6         |

geometry problems, it still achieves the best performance across several general benchmarks. It not only highlights Perception-R1's superior robustness and generalizability but also demonstrates the critical role of multimodal perception in multimodal reasoning and the rationality of our motivation.

**The multimodal perception capabilities of Perception-R1 show tangible improvements.** In addition to the overall performance of Perception-R1 on benchmarks presented in Table 1, we provide further evidence for the significant improvement of Perception-R1 in multimodal perception capabilities from the following two aspects: (1). We present the performance of Perception-R1 and representative baselines on the Vision-Only subsets of the MathVerse and MMMU-Pro benchmarks in Table 12. These subsets exclusively accept images as input, thereby posing a more rigorous challenge to the multimodal perception capabilities of MLLMs. As shown in the table, our Perception-R1 still achieves the best performance and outperforms baselines by a large margin, which strongly validates the superior multimodal perception capabilities of Perception-R1. (2). Similar to statistical test in Section 4.1, we also conduct McNemar’s test on Perception-R1. We investigate the same 50 problems as presented in Section 4.1 and find that the numbers of discordant cases for multimodal perception are 2 and 10, respectively. As a result, the exact binomial variation of McNemar’s test (McNemar, 1947) yields exact  $p$  value of 0.04, below the 0.05 significance threshold, indicating that the multimodal perception capabilities of Perception-R1 is substantially improved compared to the original MLLM.

**Perception-R1 effectively enhances multimodal reasoning capabilities of MLLMs in a highly data-efficient manner.** Although existing methods such as MM-Eureka (Meng et al., 2025) and Vision-R1 (Huang et al., 2025) have demonstrated strong data efficiency in enhancing the multimodal reasoning capabilities of MLLMs compared to prior SOTA SFT and PRM approach (Luo et al., 2025), our Perception-R1 achieves even better performance using over  $100 \times$  less data than Vision-R1 and  $10 \times$  less data than MM-Eureka, demonstrating its exceptional data efficiency in developing reasoning MLLMs. This finding suggests that data efficiency can be substantially improved by incorporating richer reward signals from data beyond the final answer, as demonstrated by our proposed visual perception rewards. We believe Perception-R1 will achieve further enhanced performance when more high-quality and high-diversity training data is incorporated into its training process in the future.

### 5.3 ABLATION STUDY

In this section, we conduct ablation studies from two perspectives: (1) evaluating the effectiveness of each component of Perception-R1, i.e., the visual perception reward and the repetition penalty; and (2) comparing Perception-R1 with alternative approaches, including directly using an MLLM as the reward model and employing supervised fine-tuning to train the base model.

We present the results of ablation studies in Table 2. As shown in the table, firstly, the accuracy across all benchmarks declines when either the visual perception reward or the repetition penalty is removed, demonstrating the effectiveness and necessity of both components in our Perception-R1. Secondly, all ablations incorporating visual perception reward outperform others that are trained with accuracy-only RLVR on the “Vision Only” (VO) subset of MathVerse, further indicating that our proposed visual perception reward enhances the multimodal perception capabilities of MLLMs. Thirdly, directly employing a powerful MLLM (Qwen2.5-VL-32B-IT) as the reward model does not yield better performance than our Perception-R1. We attribute this to reward hacking (See Appendix B.6), which underscores the importance of constructing verifiable visual annotations. To



Figure 3: (a). Average performance across all benchmarks with varying  $\gamma$  values. (b). Comparison of performance across benchmarks when using different judging LLMs. (c). Dynamics of visual perception reward during training when using different judging LLMs.

demonstrate the effectiveness of our overall RL training pipeline, we also conduct SFT experiment on the base model using the same 1,442 CoT trajectories distilled from Gemini-2.5-Pro (Team et al., 2023). From Table 2, it is observed that the SFT model yields inferior performance, with results on most benchmarks falling short of those of the base model after training. This phenomenon highlights the superior generalization ability and data efficiency of Perception-R1 compared to SFT method.

#### 5.4 FURTHER ANALYSIS OF VISUAL PERCEPTION REWARD

To further explore the dynamics of the visual perception reward, we conduct experiments by varying the coefficient  $\gamma$  in Eq. 5 and evaluating the impact of different judging LLMs.

To study the impact of coefficient  $\gamma$ , we train a series of models with  $\gamma \in \{0, 0.1, 0.3, 0.5, 0.7, 0.9\}$ , and present their average performance across all benchmarks in Figure 3a. We observe that models trained with different values of  $\gamma$  achieve comparable performance across all benchmarks, while all significantly outperform the model that does not incorporate the visual perception reward. The result suggests that only a small amount of visual optimization signal is sufficient to effectively incentivize the multimodal perception and reasoning capabilities of MLLMs, and increasing the value of  $\gamma$  does not lead to significantly better results. We attribute this to GRPO, which normalizes the advantages across responses that receive different visual perception rewards when other rewards are identical.

Given that the judging LLM plays a central role in assigning visual perception rewards, we investigate how its capability affects the performance of the resulting MLLM. Specifically, we employ Qwen2.5 (Yang et al., 2024) models of varying sizes as judging LLMs to train Qwen2.5-VL-7B-IT with  $\gamma$  fixed at 0.7. The performance of the resulting models across benchmarks is presented in Figure 3b. As the capabilities of the judging LLMs decrease, the performance of the resulting MLLM consistently deteriorates, with the model trained using the 7B judging LLM even underperforming the original MLLM on MathVerse (46.1% vs. 47.4%) and MathVision (24.2% vs. 25.1%). According to the training dynamics of visual perception reward presented in Figure 3c, the reward increases rapidly and saturates early when using weak judging LLMs, implying the presence of severe reward hacking issues that misguide the resulting MLLM away from accurate problem solving.

## 6 CONCLUSION

In this paper, we first conduct McNemar’s test on accuracy-only RLVR-trained MLLMs and find no statistically significant improvement in their multimodal perception capabilities compared to their original counterparts, which consequently limits their further advancement in multimodal reasoning. To address this limitation, we propose Perception-R1, which introduces a novel visual perception reward in addition to the standard accuracy reward, explicitly encouraging accurate visual perception during RLVR training. Specifically, we first collect textual visual annotations from CoT trajectories as references, and then assign visual perception reward by evaluating the consistency between these annotations and MLLM-generated response using a judging LLM. Extensive experiments demonstrate the effectiveness of Perception-R1, achieving the best performance compared to multiple baselines on most multimodal math and general benchmarks using only 1,442 training samples.

486 REPRODUCIBILITY STATEMENT  
487

488 To ensure the reproducibility of our work, we made efforts in three key areas: providing a clear  
489 methodological description, detailing core implementation configurations, and releasing the source  
490 code, datasets, and model checkpoints as open-source resources. In Section 4.2, we present a  
491 comprehensive description of the implementation of the visual perception reward and Perception-R1.  
492 The prompts used to obtain visual annotations  $\mathcal{V}$  and to judge the consistency between the policy  
493 model’s response and  $\mathcal{V}$  are provided in Appendix C.2. Detailed training configurations are listed  
494 in Appendix C.1. To further support full reproducibility, we include our dataset and training code  
495 for Perception-R1 in the supplementary materials, and we will release the dataset, source code, and  
496 model checkpoint to the community upon publication.

497 REFERENCES  
498

500 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,  
501 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.  
502 *arXiv preprint arXiv:2303.08774*, 2023.

503 Saeed Amizadeh, Hamid Palangi, Alex Polozov, Yichen Huang, and Kazuhito Koishida. Neuro-  
504 symbolic visual reasoning: Disentangling. In *International Conference on Machine Learning*, pp.  
505 279–290. Pmlr, 2020.

506 Anthropic. Claude 3.5 sonnet. <https://www.anthropic.com/news/claude-3-5-sonnet>, 2024.

507 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,  
508 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,  
509 text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.

510 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
511 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,  
512 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,  
513 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*  
514 *preprint arXiv:2502.13923*, 2025.

515 Jie Cao and Jing Xiao. An augmented benchmark dataset for geometric question answering through  
516 dual parallel text encoding. In *Proceedings of the 29th international conference on computational  
517 linguistics*, pp. 1511–1520, 2022.

518 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang  
519 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models.  
520 *arXiv preprint arXiv:2504.11468*, 2025a.

521 Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-v: Reinforcing super generalization  
522 ability in vision-language models with less than \$3. <https://github.com/Deep-Agent/R1-V>, 2025b.

523 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi  
524 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language  
525 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024a.

526 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong  
527 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal  
528 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024b.

529 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi  
530 Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial  
531 multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024c.

532 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong  
533 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning  
534 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision  
535 and pattern recognition*, pp. 24185–24198, 2024d.

540 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,  
 541 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models  
 542 with instruction tuning. *Advances in Neural Information Processing Systems*, 36:49250–49267,  
 543 2023.

544 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:  
 545 An early exploration to complex vision-language reasoning via iterative self-improvement. *arXiv*  
 546 *preprint arXiv:2503.17352*, 2025.

548 Carson Denison, Monte MacDiarmid, Fazl Barez, David Duvenaud, Shauna Kravec, Samuel Marks,  
 549 Nicholas Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan, et al. Sycophancy to subterfuge:  
 550 Investigating reward-tampering in large language models. *arXiv preprint arXiv:2406.10162*, 2024.

551 Xiaoyi Dong, Pan Zhang, Yuhang Zang, Yuhang Cao, Bin Wang, Linke Ouyang, Xilin Wei, Songyang  
 552 Zhang, Haodong Duan, Maosong Cao, et al. Internlm-xcomposer2: Mastering free-form text-image  
 553 composition and comprehension in vision-language large model. *arXiv preprint arXiv:2401.16420*,  
 554 2024.

555 Allen L. Edwards. Note on the “correction for continuity” in testing the significance of the difference  
 556 between correlated proportions. *Psychometrika*, 13(3):185–187, 1948. doi: 10.1007/BF02289261.

558 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

560 561 Kaixuan Fan, Kaituo Feng, Haoming Lyu, Dongzhan Zhou, and Xiangyu Yue. Sophiavl-r1: Reinforc-  
 562 ing mllms reasoning with thinking reward. *arXiv preprint arXiv:2505.17018*, 2025.

563 Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,  
 564 Jianhua Han, Hang Xu, Zhenguo Li, et al. G-llava: Solving geometric problem with multi-modal  
 565 large language model. In *The Thirteenth International Conference on Learning Representations*,  
 566 2024.

567 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 568 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 569 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

571 Yunzhuo Hao, Jiawei Gu, Huichen Will Wang, Linjie Li, Zhengyuan Yang, Lijuan Wang, and  
 572 Yu Cheng. Can mllms reason in multimodality? emma: An enhanced multimodal reasoning  
 573 benchmark. In *International Conference on Machine Learning*, 2025.

574 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 575 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

577 Wenzuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Yao Hu, and Shaohui  
 578 Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. *arXiv*  
 579 *preprint arXiv:2503.06749*, 2025.

580 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-  
 581 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*  
 582 *arXiv:2410.21276*, 2024.

584 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec  
 585 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*  
 586 *arXiv:2412.16720*, 2024.

587 Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqa: Understanding data visual-  
 588 izations via question answering. In *Proceedings of the IEEE conference on computer vision and*  
 589 *pattern recognition*, pp. 5648–5656, 2018.

591 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.  
 592 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model  
 593 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*  
*Systems Principles*, 2023.

594 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building  
 595 vision-language models? *Advances in Neural Information Processing Systems*, 37:87874–87907,  
 596 2024.

597 Sicong Leng\*, Jing Wang\*, Jiaxi Li\*, Hao Zhang\*, Zhiqiang Hu, Boqiang Zhang, Hang Zhang,  
 598 Yuming Jiang, Xin Li, Deli Zhao, Fan Wang, Yu Rong, Aixin Sun†, and Shijian Lu†. Mmr1:  
 599 Advancing the frontiers of multimodal reasoning. [https://github.com/LengSicong/](https://github.com/LengSicong/MMR1)  
 600 MMR1, 2025.

601 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan  
 602 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*  
 603 *arXiv:2408.03326*, 2024.

604 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*  
 605 *Neural Information Processing Systems*, 36:34892–34916, 2023.

606 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction  
 607 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,  
 608 pp. 26296–26306, 2024a.

609 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.  
 610 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

611 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi  
 612 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.

613 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,  
 614 Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.  
 615 *arXiv preprint arXiv:2403.05525*, 2024a.

616 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-chun Zhu.  
 617 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.  
 618 In *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and*  
 619 *the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,  
 620 pp. 6774–6786, 2021a.

621 Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang,  
 622 and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual  
 623 language reasoning. *arXiv preprint arXiv:2110.13214*, 2021b.

624 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,  
 625 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning  
 626 of foundation models in visual contexts. In *International Conference on Learning Representations*  
 627 (*ICLR*), 2024b.

628 Ruilin Luo, Zhuofan Zheng, Yifan Wang, Yiyao Yu, Xinzhe Ni, Zicheng Lin, Jin Zeng, and Yujiu  
 629 Yang. Ursu: Understanding and verifying chain-of-thought reasoning in multimodal mathematics.  
 630 *arXiv preprint arXiv:2501.04686*, 2025.

631 Quinn McNemar. Note on the sampling error of the difference between correlated proportions or  
 632 percentages. *Psychometrika*, 12(2):153–157, 1947. doi: 10.1007/BF02295996.

633 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,  
 634 Wenhui Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with  
 635 rule-based large-scale reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

636 Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei Herzig. Compositional chain-of-thought  
 637 prompting for large multimodal models. In *Proceedings of the IEEE/CVF Conference on Computer*  
 638 *Vision and Pattern Recognition*, pp. 14420–14431, 2024.

639 Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multimath: Bridging  
 640 visual and mathematical reasoning for large language models. *arXiv preprint arXiv:2409.00147*,  
 641 2024.

648 Yingzhe Peng, Gongrui Zhang, Miaozen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,  
 649 Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning  
 650 abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.

651 Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma GongQue,  
 652 Shanglin Lei, Zhe Wei, MiaoXuan Zhang, et al. We-math: Does your large multimodal model  
 653 achieve human-like mathematical reasoning? *arXiv preprint arXiv:2407.01284*, 2024.

654 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 655 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

656 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,  
 657 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical  
 658 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

659 Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See Kiong Ng, Lidong Bing, and Roy  
 660 Lee. Math-lava: Bootstrapping mathematical reasoning for multimodal large language models. In  
 661 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 4663–4680, 2024.

662 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,  
 663 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly  
 664 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

665 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun  
 666 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with  
 667 llms. *arXiv preprint arXiv:2501.12599*, 2025.

668 Qwen Team. Qwen3-next: Towards ultimate training & inference efficiency, 2025a. URL <https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd>.

669 Qwen Team. Qwen3-vl: Sharper vision, deeper thought, broader action, 2025b. URL <https://qwen.ai/blog?id=99f0335c4ad9ff6153e517418d48535ab6d8afef>.

670 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide  
 671 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF  
 672 Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024.

673 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and  
 674 Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In *The  
 675 Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks  
 676 Track*, 2024a. URL <https://openreview.net/forum?id=QWTCCxMpPA>.

677 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,  
 678 Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng  
 679 Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model's  
 680 perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

681 Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,  
 682 Lei Zhao, Song XiXuan, et al. Cogvlm: Visual expert for pretrained language models. *Advances  
 683 in Neural Information Processing Systems*, 37:121475–121499, 2024c.

684 Kun Xiang, Zhili Liu, Zihao Jiang, Yunshuang Nie, Runhui Huang, Haoxiang Fan, Hanhui Li, Weiran  
 685 Huang, Yihan Zeng, Jianhua Han, et al. Atomthink: A slow thinking framework for multimodal  
 686 mathematical reasoning. *arXiv preprint arXiv:2411.11930*, 2024.

687 Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language  
 688 models reason step-by-step. *arXiv preprint arXiv:2411.10440*, 2024.

689 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,  
 690 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin  
 691 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,  
 692 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,  
 693 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu  
 694 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,  
 695 2024.

702 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng  
 703 Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning  
 704 through cross-modal formalization. *arXiv preprint arXiv:2503.10615*, 2025.

705 Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,  
 706 Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning  
 707 and reflection via collective monte carlo tree search. *arXiv preprint arXiv:2412.18319*, 2024.

708 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long  
 709 chain-of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.

710 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong  
 711 Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.  
 712 *arXiv preprint arXiv:2503.14476*, 2025.

713 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu  
 714 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-  
 715 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on  
 716 Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024a.

717 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,  
 718 Botao Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal  
 719 understanding benchmark. *arXiv preprint arXiv:2409.02813*, 2024b.

720 Daoan Zhang, Junming Yang, Hanjia Lyu, Zijian Jin, Yuan Yao, Mingkai Chen, and Jiebo Luo. Cocot:  
 721 Contrastive chain-of-thought prompting for large multimodal models with multiple image inputs.  
 722 *arXiv preprint arXiv:2401.02582*, 2024a.

723 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao.  
 724 R1-vl: Learning to reason with multimodal large language models via step-wise group relative  
 725 policy optimization. *arXiv preprint arXiv:2503.12937*, 2025.

726 Pan Zhang, Xiaoyi Dong, Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan Zhao, Haodong  
 727 Duan, Songyang Zhang, Shuangrui Ding, et al. Internlm-xcomposer: A vision-language large  
 728 model for advanced text-image comprehension and composition. *arXiv preprint arXiv:2309.15112*,  
 729 2023a.

730 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan  
 731 Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the diagrams  
 732 in visual math problems? In *European Conference on Computer Vision*, pp. 169–186. Springer,  
 733 2024b.

734 Renrui Zhang, Xinyu Wei, Dongzhi Jiang, Ziyu Guo, Yichi Zhang, Chengzhuo Tong, Jiaming  
 735 Liu, Aojun Zhou, Shanghang Zhang, Peng Gao, et al. Mavis: Mathematical visual instruction  
 736 tuning with an automatic data engine. In *The Thirteenth International Conference on Learning  
 737 Representations*, 2024c.

738 Zhuosheng Zhang, Aston Zhang, Mu Li, George Karypis, Alex Smola, et al. Multimodal chain-of-  
 739 thought reasoning in language models. *Transactions on Machine Learning Research*, 2023b.

740 Ge Zheng, Bin Yang, Jiajin Tang, Hong-Yu Zhou, and Sibei Yang. Ddcot: Duty-distinct chain-of-  
 741 thought prompting for multimodal reasoning in language models. *Advances in Neural Information  
 742 Processing Systems*, 36:5168–5191, 2023.

743 Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.  
 744 Easyr1: An efficient, scalable, multi-modality rl training framework. <https://github.com/hiyouga/EasyR1>, 2025.

745 Jingqi Zhou, Sheng Wang, Jingwei Dong, Lei Li, Jiahui Gao, Lingpeng Kong, and Chuan Wu.  
 746 Proreason: Multi-modal proactive reasoning with decoupled eyesight and wisdom. *arXiv preprint  
 747 arXiv:2410.14138*, 2024.

748 750 752 754 756 758 760 762 764 766 768 770 772 774 776 778 780 782 784 786 788 790 792 794 796 798 800 802 804 806 808 810 812 814 816 818 820 822 824 826 828 830 832 834 836 838 840 842 844 846 848 850 852 854 856 858 860 862 864 866 868 870 872 874 876 878 880 882 884 886 888 890 892 894 896 898 900 902 904 906 908 910 912

756 **A BENCHMARKS AND BASELINES**  
757758 **A.1 BENCHMARKS**  
759

- 760 • **MathVista** (Lu et al., 2024b) MathVista is a consolidated benchmark for multimodal mathematical  
761 reasoning. We evaluate our Perception-R1 and all baselines on `testmini` split of MathVista,  
762 which consists of five subtasks: Textbook Question Answering, Visual Question Answering,  
763 Geometry Problem Solving, Math Word Problems and Figure Question Answering.
- 764 • **MathVerse** (Zhang et al., 2024b) MathVerse is a benchmark designed to evaluate the reasoning  
765 capabilities of MLLMs under varying proportions of textual and visual information. We evaluate  
766 our Perception-R1 and all baselines on `testmini` split of MathVerse, which includes 5 subset:  
767 Text Dominant (TD), Text Lite (TL), Vision Intensive (VI), Vision Dominant (VD), and Vision  
768 Only (VO). MathVerse covers three subtasks: “Plane Geometry” with 2,550 problems, “Functions”  
769 with 795 problems and “Solid Geometry” with 595 problems.
- 770 • **MathVision** (Wang et al., 2024a) MathVision consists of 3,040 high quality mathematical prob-  
771 lems with visual contexts sourced from real math competitions. We evaluate our Perception-R1  
772 and all baselines on `test` split of MathVision, which includes five difficulty levels and 16  
773 subtasks.
- 774 • **WeMath** (Qiao et al., 2024) WeMath is the benchmark specifically designed to explore the  
775 problem-solving principles beyond the end-to-end performance, spanning 67 hierarchical knowl-  
776 edge concepts and 5 layers of knowledge granularity. We evaluate our Perception-R1 and all  
777 baselines on `testmini` split of WeMath under the multiple-choice setting.
- 778 • **MMMU** (Yue et al., 2024a) MMMU is a widely used multi-discipline multimodal benchmark that  
779 covers a broad scope of tasks, including Art, Business, Health & Medicine, Science, Humanities  
780 & Social Science, and Tech & Engineering, and over subfields, thus can comprehensively assess  
781 the multimodal reasoning abilities of a MLLM. We evaluate our Perception-R1 and all baselines  
782 on `val` subset of MMMU.
- 783 • **MMMU-Pro** (Yue et al., 2024b) MMMU-Pro is a more robust version of MMMU benchmark.  
784 MMMU-Pro improves MMMU from following 3 perspectives: (1). Excluding the problem that  
785 can be answered by text-only models, (2). augmenting the candidate options of multiple choice  
786 problems, making guessing more infeasible, and (3). introducing vision-only input setting where  
787 questions are embedded within images.
- 788 • **MMStar** (Chen et al., 2024a) MMStar comprises 1,500 meticulously curated problems sourced  
789 from a diverse range of existing multimodal benchmarks. To guarantee exceptional quality, the  
790 selection of problems for MMStar adheres to two core principles: (1). Visual information must be  
791 indispensable to solving the problem, and (2). avoiding data leakage.
- 792 • **EMMA** (Hao et al., 2025) EMMA is also a multi-discipline multimodal benchmark that covers  
793 mathematics, physics, chemistry, and coding. Different from previous multimodal benchmarks,  
794 EMMA emphasize the importance of organically reason over and with both text and images,  
795 therefore places higher requirements on the multimodal reasoning capabilities of MLLMs.

796 **A.2 BASELINES**  
797

- 798 • **URSA-7B** (Luo et al., 2025) URSA enhanced the multimodal reasoning capabilities of MLLMs  
799 through an SFT approach. It employed a three-part data synthesis strategy to construct a high-  
800 quality CoT reasoning dataset for SFT. URSA further incorporated a dual-view trajectory labeling  
801 approach, resulting in the DualMath-1.1M dataset, and trained a PRM to achieve test-time scaling.
- 802 • **R1-VL-7B** (Zhang et al., 2025) R1-VL proposed a new online reinforcement learning framework  
803 StepGRPO, which enabled MLLMs to self-improve reasoning ability via simple, effective and  
804 dense step-wise rewarding. It consisted of two dense reasoning rewards: StepRAR and StepRVR.  
805 StepRAR was used to reward the accurate intermediate reasoning steps and StepRVR was used to  
806 reward the well-structure of the overall reasoning path.
- 807 • **R1-OneVision-7B** (Yang et al., 2025) R1-OneVision adopted a cold-start then RL training pipeline  
808 to enhance the reasoning capabilities of MLLMs. It first addressed the modality gap to construct a

810  
811  
812 Table 3: Confusion matrix of Qwen2-VL-7B-IT evaluated on  $\mathcal{D}_e$ .  
813  
814  
815

|                    | Correct Answer | Wrong Answer |
|--------------------|----------------|--------------|
| Correct Perception | 15             | 4            |
| Wrong Perception   | 4              | 27           |

816  
817 Table 4: Confusion matrix of accuracy-only RLVR trained Qwen2-VL-7B-IT evaluated on  $\mathcal{D}_e$ .  
818  
819  
820  
821

|                    | Correct Answer | Wrong Answer |
|--------------------|----------------|--------------|
| Correct Perception | 23             | 0            |
| Wrong Perception   | 5              | 22           |

823  
824 high-quality long CoT multimodal dataset for cold-start initialization, then applied accuracy-only  
825 RLVR on 10K randomly sampled data to further incentivize MLLMs’s reasoning abilities.

826  
827  
828  
829

- **OpenVLThinker-7B** (Deng et al., 2025) OpenVLThinker adopted an approach that iteratively  
830 leverages SFT on lightweight training data and RL to improve reasoning capabilities of MLLMs.  
831 During the training pipeline, OpenVLThinker progressively evolved the data across iterations,  
832 retaining more challenging examples for later stages of training.
- **VLAA-Thinker-7B** (Chen et al., 2025a) VLAA-Thinker was developed by directly conducting RL  
833 on the VLAA-Thinking-RL-25K dataset using Qwen2.5-VL models. The main contributions of  
834 VLAA-Thinker were twofold: (1). VLAA-Thinking-RL-25K dataset was constructed by carefully  
835 selecting multimodal data from a variety of existing multimodal datasets. (2). It proposed a mixed  
836 reward approach to train MLLM during RL.
- **SophiaVL-R1-7B** (Fan et al., 2025) SophiaVL-R1 argued that outcome-based rewards alone  
837 cannot ensure a high-quality thinking process. To address this, it first trained a thinking reward  
838 model to evaluate the reasoning quality of intermediate steps. This reward model was then  
839 incorporated into RL to provide an additional thinking reward, guiding the policy model to  
840 generate trajectories with more coherent and well-reasoned intermediate steps.
- **MM-Eureka-7B** (Meng et al., 2025) MM-Eureka constructed the MMK12 dataset, which con-  
841 tained 15,616 high quality multimodal reasoning data, and then directly applied accuracy-only  
842 RLVR on this dataset. To stabilize and improve training, MM-Eureka incorporated several tech-  
843 niques during RL, including online data filtering, the removal of KL penalty, and a two-stage  
844 training strategy.
- **Vision-R1-7B** (Huang et al., 2025) Vision-R1 adopted a two-stage pipeline consisting of cold-start  
845 initialization followed by reinforcement learning to enhance the multimodal reasoning capabilities  
846 of MLLMs. It first employed powerfull MLLMs and DeepSeek-R1 (Guo et al., 2025) to fill the  
847 modality gap and curate 200K multimodal CoT data for cold-start initialization. In the second  
848 stage, Vision-R1 applied accuracy-only RLVR on an additional 10K math problems, incorporating  
849 the proposed Progressive Thinking Suppression Training (PTST) technique.

850  
851  
852 B FURTHER RESULTS  
853854  
855 B.1 DETAILS OF ANALYSIS OF ACCURACY-ONLY RLVR-TRAINED MLLMs856  
857 In this section, we present additional details and results to the analysis in Section 4.1.858  
859  
860  
861  
862 We conduct our investigation from the following two perspectives: (1) The proportion of incorrect  
863 solving cases attributable to multimodal perception errors, and (2) a comparative analysis of the  
864 multimodal perception capabilities between the RLVR-trained MLLMs and their original counterparts.  
865 The former helps identify the bottleneck in the multimodal reasoning abilities of MLLMs, while the  
866 latter assesses whether their perception capabilities improve after accuracy-only RLVR training.867  
868  
869  
870  
871  
872  
873 Specifically, we first train Qwen2-VL-7B-IT (Wang et al., 2024b) and Qwen2.5-VL-7B-IT (Bai  
874 et al., 2025) models on Geometry3K (Lu et al., 2021a) dataset using accuracy-only RLVR. We then

864 Table 5: Confusion matrix of Qwen2.5-VL-7B-IT evaluated on  $\mathcal{D}_e$ .  
865

|                    | Correct Answer | Wrong Answer |
|--------------------|----------------|--------------|
| Correct Perception | 19             | 3            |
| Wrong Perception   | 11             | 17           |

870 Table 6: Confusion matrix of accuracy-only RLVR trained Qwen2.5-VL-7B-IT evaluated on  $\mathcal{D}_e$ .  
871

|                    | Correct Answer | Wrong Answer |
|--------------------|----------------|--------------|
| Correct Perception | 23             | 1            |
| Wrong Perception   | 15             | 11           |

878 manually assess their CoT trajectories on the geometry reasoning subset of MathVista (Lu et al.,  
879 2024b), as well as the “Visual Dominant” and “Visual Only” subsets of MathVerse (Zhang et al.,  
880 2024b). These problems require both strong multimodal perception and logical reasoning capabilities,  
881 making them suitable for identifying potential weaknesses in MLLMs’ reasoning performance. For  
882 each multimodal problem, we consider an MLLM to have made a perception error if its CoT trajectory  
883 contains an inaccurate visual description that is essential for reaching the correct final answer. All  
884 annotations are conducted by three well-trained annotators (all with at least a bachelor’s degree). The  
885 template for human annotation is shown in Figure 4.

886 Let  $\mathcal{D}_e$  denote the set of 50 problems randomly sampled from MathVista in Section 4.1. We provide  
887 additional results for Qwen2-VL-7B-IT in Tables 3 and 4, and for Qwen2.5-VL-7B-IT in Tables 5  
888 and 6, where each problem is categorized based on the correctness of the model’s final answer and  
889 visual perception.

890 Taking Qwen2.5-VL-7B-IT as an example, from the table, we observe that although the RLVR-trained  
891 model shows a significant improvement in problem-solving accuracy (from 30 to 38, i.e., 60% to  
892 76%), its visual perception accuracy improves only marginally (from 22 to 24, i.e., 44% to 48%).  
893 Moreover, the proportion of problems with incorrect visual perception among those solved correctly  
894 even increases slightly (from 11/30 to 15/38, i.e., 36.7% to 39.4%), which also indicates that the  
895 multimodal perception capabilities of the RLVR-trained model have not been effectively improved.

## 896 B.2 MANUAL EXAMINATION OF GENERATED VISUAL ANNOTATIONS

897 The correctness of the generated visual annotations is crucial for the effective application of the visual  
898 perception reward. To ensure their quality, we manually examined 100 randomly selected retrained  
899 samples to identify potential perception errors. Our analysis revealed that only 4 out of 100 samples  
900 contained minor perceptual inaccuracies, corresponding to a 96% perceptual accuracy in the visual  
901 annotations, which ensures an effective training of our Perception-R1.

902 The extracted visual annotations may contain implicitly reasoning process from the collected CoT  
903 trajectories, leading to implicit reasoning distillation. Although including implicit reasoning processes  
904 can also enhance the MLLM’s logical reasoning capabilities through RL, this is inconsistent with  
905 our original intention of improving the MLLM’s perceptual capabilities via the visual perception  
906 reward. To demonstrate that the performance gains of our Perception-R1 indeed stem from improved  
907 perception, we rigorously categorize the extracted visual annotations into “Visual Information”,  
908 “Reasoning Information”, and “Text Information”. Here, “Visual Information” refers to information  
909 that can only be obtained from the image; “Reasoning Information” refers to information that does  
910 not directly exist in the image or problem text, but can be obtained through reasoning; and “Text  
911 Information” refers to information that can be obtained directly from the problem text. For comparison,  
912 we also conducted the same examination on the GeoQA+ dataset. We randomly examined 30 data  
913 instances sampled from the Geometry3K (Lu et al., 2021a) and GeoQA+ (Cao & Xiao, 2022) datasets,  
914 and we present the results in Table 7.

915 It is worth noting that any annotation that requires even mild reasoning to obtain is classified as  
916 “Reasoning Information” (e.g., Given an image of parallelogram ABCD, if the annotation states  
917 that “AB = CD”, then it is classified as reasoning information). Most “Reasoning Information” are

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971

**[Question ID]**  
**[Image]**

**Question:** Chords  $\overline{AC}$  and  $\overline{DF}$  are equidistant from the center. If the radius of  $\odot G$  is 26, find  $DE$ .

**Answer:** 24

**Response:** <think>To find the length of  $DE$ , we need to use the property that chords equidistant from the center of a circle are congruent. This means that  $AC = DF$ .  
.....  
Since  $AC$  and  $DF$  are equidistant and congruent in length,  $DF = 48$ . Applying the same logic to chord  $\overline{DF}$ , we use the right triangle  $\triangle DGE$ :  $DG = \sqrt{RG^2 - GE^2} = \sqrt{26^2 - 10^2} = 24$ . So,  $DF = 2 \times DE$ . Since  $DF = 48$ , we have:  $DE = \frac{DF}{2} = \frac{48}{2} = 24$

</think><answer>24</answer>

**Please check whether there exist any multimodal perception error in Response that is critical for problem solving.**

**Judgment:** [Yes / No]

Figure 4: The template of human evaluation for multimodal perception.

Table 7: Classification results of extracted visual annotations from Geometry3K and GeoQA+.

| Dataset    | All annotations | Visual Information | Reasoning Information | Text Information |
|------------|-----------------|--------------------|-----------------------|------------------|
| Geometry3K | 99              | 81 (82%)           | 10 (10%)              | 8 (8%)           |
| GeoQA+     | 114             | 29 (25%)           | 41 (36%)              | 44 (39%)         |

such short statements rather than reasoning chains, minimizing the possibility of implicit reasoning distillation. Even with such a rigorous principle, the proportion of visual information in Geometry3K is still dominant (82%). In comparison, the proportion is only 25% for the GeoQA+ dataset. This is the core reason why we chose the Geometry3K dataset as our training data, as it provides better visual perception for our framework and isolates it from the influence of implicit reasoning.

### B.3 GENERALIZATION ANALYSIS OF PERCEPTION-R1

#### B.3.1 GENERALIZE TO QWEN2-VL MODEL

We apply our visual perception reward enhanced RLVR to train Qwen2-VL-7B-IT (Wang et al., 2024b) to demonstrate its generalizability and robustness. We present the experimental results in Table 8. Here, we compare against R1-VL (Zhang et al., 2025), as it is also trained from Qwen2-VL-7B-IT. From the table, we observe that Perception-R1-Qwen2 achieves the best performance on most benchmarks except MathVision (Wang et al., 2024a), demonstrating the effectiveness and generalizability of our method. Notably, similar to the full Perception-R1, Perception-R1-Qwen2 achieves a substantial improvement on the “Vision Only” subset of MathVerse (Zhang et al., 2024b) (39.2% vs. 30.1%), further validating the effectiveness of the proposed visual perception reward in enhancing the multimodal perception capabilities of MLLMs. We attribute the sub-optimal performance of Perception-R1-Qwen2 on MathVision to the limited diversity of the training dataset and believe this can be addressed by scaling up both the quantity and diversity of the training data.

#### B.3.2 GENERALIZE TO MULBERRY DATASET

To further demonstrate the generalizability of our method to other datasets, we conducted the same training pipeline on the data filtered from mulberry-260k (Yao et al., 2024), which contains 16.8K

972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
Table 8: Experimental results of applying our method to Qwen2-VL-7B-IT. The best result is highlighted in red. <sup>†</sup> R1-VL-7B used WeMath and MathVision for training, their results on these benchmarks are omitted.

| Model                    | #Data     | Math Benchmarks       |                       |                    |                    | General Benchmarks |                     |               |              |
|--------------------------|-----------|-----------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|---------------|--------------|
|                          |           | MathVista<br>testmini | MathVerse<br>testmini | MathVision<br>test | WeMath<br>testmini | MMMU<br>val        | MMMU-Pro<br>overall | MMStar<br>val | EMMA<br>full |
| Qwen2-VL-7B-IT<br>+ GRPO | /<br>1.4K | 58.6<br>64.5          | 31.1<br>38.1          | 16.7<br>19.7       | 42.3<br>54.6       | 46.9<br>51.4       | 29.6<br>32.4        | 56.0<br>56.3  | 24.5<br>24.3 |
| R1-VL-7B                 | 10K       | 62.7                  | 40.8                  | – <sup>†</sup>     | – <sup>†</sup>     | 52.3               | 29.4                | 56.7          | 23.5         |
| Perception-R1-Qwen2-7B   | 1.4K      | 64.9                  | 42.3                  | 20.4               | 60.0               | 53.1               | 35.2                | 56.9          | 25.1         |

983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
Table 9: Experimental results of applying our method to our filtered mulberry dataset. The best result is highlighted in red.

| Model                     | #Data | Math Benchmarks       |                       |                    |                    | General Benchmarks |                     |               |              |
|---------------------------|-------|-----------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|---------------|--------------|
|                           |       | MathVista<br>testmini | MathVerse<br>testmini | MathVision<br>test | WeMath<br>testmini | MMMU<br>val        | MMMU-Pro<br>overall | MMStar<br>val | EMMA<br>full |
| Qwen2.5-VL-7B-IT          | /     | 68.1                  | 47.4                  | 25.1               | 61.4               | 55.2               | 37.0                | 60.2          | 24.9         |
| + GRPO on Geometry3K      | 1.4K  | 73.3                  | 51.3                  | 26.6               | 69.5               | 58.0               | 38.2                | 63.1          | 24.9         |
| Perception-R1-7B          | 1.4K  | 74.2                  | 54.3                  | 28.6               | 72.0               | 60.8               | 42.4                | 64.5          | 27.5         |
| + GRPO on Mulberry        | 16.8K | 72.6                  | 46.2                  | 27.8               | 66.8               | 52.1               | 42.0                | 62.1          | 26.4         |
| Perception-R1-Mulberry-7B | 16.8K | 73.4                  | 51.2                  | 27.1               | 69.9               | 59.1               | 42.2                | 62.6          | 27.2         |

994  
995  
996  
997  
998  
999  
1000  
data and mainly from IconQA (Lu et al., 2021b), DVQA (Kafle et al., 2018) and does not contain any geometry data. During data collection stage, we employ Qwen3-VL-235B-A22B-Instruct (Team, 2025b) model to generate reasoning trajectories and employ Qwen3-Next-80B-A3B-Instruct (Team, 2025a) model to extract visual annotations because of their powerful multimodal reasoning and language understanding capabilities. The prompts used in data collection and collection pipeline are same as those in Section C.2. We name the model trained on this dataset ‘‘Perception-R1-Mulberry-7B’’. The experimental results are present in Table 9.

1001  
1002  
1003  
1004  
1005  
From Table 9, we can observe that Perception-R1-Mulberry-7B still outperforms standard GRPO by 2.1 points on average across all benchmarks, demonstrating the effectiveness of our method. We believe the reason why Perception-R1-7B outperforms Perception-R1-Mulberry-7B is that the collected Mulberry data lacks math reasoning content (especially geometry) and mainly focuses on pure visual perception, which leads to worse performance on math benchmarks.

#### B.4 ROBUSTNESS ANALYSIS OF PERCEPTION-R1

1009  
1010  
1011  
There are two factors can affect the robustness of Perception-R1: the correctness of visual perception reward and the factor  $\gamma$  that controls the influence of visual perception reward to the final reward.

- 1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
• Regarding the correctness of the visual perception reward, there are two types of factors that can impair it: the correctness of the extracted visual annotations and the correctness of the judgments produced by the judging LLM. We simulate these two types of noise by randomly flipping the judgments (i.e.,  $o_{i,j}$  in Eq. 4) produced by the Qwen2.5-32B-Instruct model from  $1 \rightarrow 0$  or  $0 \rightarrow 1$  at a fixed proportion. We conduct experiments with flipping proportions of 10% and 20%, and present the results in Table 10. From the table, we can observe that even with 20% of the visual perception reward corrupted, the model’s average performance still surpasses that of GRPO, showcasing the robustness of our method. Notably, the performance degradation mainly comes from MathVista and MathVerse. This may be because these two benchmarks contain a large number of geometry test cases that are similar to our training data. In general benchmarks including MMMU and MMMU-Pro, the model trained with corrupted annotations still performs on par with Perception-R1-7B, further demonstrating the robustness of our training pipeline.
- 1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
• Regarding the factor  $\gamma$ , we present in Table 11 the performance of models trained with different  $\gamma$  values on each benchmark, as an extension of the average performance shown in Figure 3a. From the table, we observe that the average performances of models trained with different  $\gamma$  values

Table 10: Experimental results of randomly flipping judgment results  $o_{i,j}$  at different proportions.

| Random flipping proportion | Math Benchmarks       |                       |                    |                    | General Benchmarks |                     |               |              | Average |
|----------------------------|-----------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|---------------|--------------|---------|
|                            | MathVista<br>testmini | MathVerse<br>testmini | MathVision<br>test | WeMath<br>testmini | MMMU<br>val        | MMMU-Pro<br>overall | MMStar<br>val | EMMA<br>full |         |
| Qwen2.5-VL-7B-IT + GRPO    | 73.3                  | 51.3                  | 26.6               | 69.5               | 58.0               | 38.2                | 63.1          | 24.9         | 50.6    |
| 0% (Perception-R1)         | 74.2                  | 54.3                  | 28.6               | 72.0               | 60.8               | 42.4                | 64.5          | 27.5         | 53.0    |
| 10%                        | 72.2                  | 51.1                  | 29.1               | 69.2               | 60.5               | 42.9                | 63.1          | 28.3         | 51.9    |
| 20%                        | 70.0                  | 50.6                  | 27.4               | 70.7               | 60.9               | 42.0                | 62.1          | 27.9         | 51.5    |

Table 11: Experimental results of models trained with different  $\gamma$  values.

| $\gamma$ values     | Math Benchmarks       |                       |                    |                    | General Benchmarks |                     |               |              | Average |
|---------------------|-----------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|---------------|--------------|---------|
|                     | MathVista<br>testmini | MathVerse<br>testmini | MathVision<br>test | WeMath<br>testmini | MMMU<br>val        | MMMU-Pro<br>overall | MMStar<br>val | EMMA<br>full |         |
| 0.0 (GRPO)          | 73.3                  | 51.3                  | 26.6               | 69.5               | 58.0               | 38.2                | 63.1          | 24.9         | 50.6    |
| 0.1                 | 72.7                  | 54.1                  | 28.5               | 70.9               | 60.0               | 41.2                | 65.4          | 27.8         | 52.6    |
| 0.3                 | 73.0                  | 54.4                  | 29.0               | 71.7               | 60.5               | 42.6                | 63.7          | 28.1         | 52.9    |
| 0.5                 | 75.5                  | 53.0                  | 27.6               | 70.5               | 59.1               | 42.9                | 65.5          | 27.4         | 52.7    |
| 0.7 (Perception-R1) | 74.2                  | 54.3                  | 28.6               | 72.0               | 60.8               | 42.4                | 64.5          | 27.5         | 53.0    |
| 0.9                 | 72.4                  | 53.7                  | 28.4               | 72.2               | 60.9               | 40.7                | 64.1          | 28.0         | 52.5    |

(except 0.0) are very similar, and all of them significantly surpass standard GRPO, demonstrating the robustness and effectiveness of our proposed method.

## B.5 PERFORMANCE ON VISION-ONLY BENCHMARKS

To further demonstrate the improved perception capabilities of Perception-R1 and Perception-R1-Qwen2 models, we compare their performance with baseline methods on Vision-Only subsets of MathVerse (Zhang et al., 2024b) and MMMU-Pro (Yue et al., 2024b) benchmarks in Table 12.

From the table, we can observe that both Perception-R1 and Perception-R1-Qwen2 surpass standard GRPO and previous SOTA method on these two vision-only benchmarks by a substantial margin. Specifically, Perception-R1 achieves an **average improvement of 2.6**, while Perception-R1-Qwen2 reaches an **average improvement of 6.3**. These results not only demonstrate that the multimodal perception capabilities of the Perception-R1 model series have been significantly enhanced but also validate the effectiveness of our proposed visual perception reward in boosting the multimodal perception capabilities of MLLMs.

## B.6 ANALYSIS OF USING QWEN2.5-VL-32B-IT AS REWARD MODEL

We provide the training dynamics of accuracy reward and visual perception reward of Perception-R1 and the variant using Qwen2.5-VL-32B-IT as the reward model in Figure 5. When using Qwen2.5-VL-32B-IT as the reward model, we provide it with both the image and the response generated by the policy model, and prompt it to output a consistency score in  $[0, 1]$ , representing the degree of alignment between the image and the response. From Figure 5, we observe that the visual perception reward increases rapidly and saturates around 100 training steps. Meanwhile, the accuracy reward becomes consistently lower than that of Perception-R1 after the same point, indicating the presence of reward hacking when using Qwen2.5-VL-32B-IT as the reward model. This reward hacking issue undermines the multimodal reasoning performance of the resulting MLLM.

## B.7 COMPUTATIONAL COSTS COMPARISON

In this subsection, we compare the computational costs of Perception-R1 with representative baseline methods. We categorize the computational costs into **data preparation cost** and **training time cost**. For data preparation cost, we estimate it by counting the generated tokens in data curation process using Qwen2.5 Tokenizer. For training time cost, we calculate the total GPU-Hours used to train the model. We summarize the data preparation costs and training time costs of Perception-R1 and representative baseline methods in Table 13, with detailed explanations provided below:

### Data Preparation Cost:

1080 Table 12: Performance comparisons between Perception-R1 and baselines on vision-only subsets of  
 1081 MathVerse and MMMU-Pro. The best result is highlighted in red.  
 1082

| 1083 <b>Model</b>                    | 1084 <b>MathVerse</b><br>vision-only | 1084 <b>MMMU-Pro</b><br>vision |
|--------------------------------------|--------------------------------------|--------------------------------|
| <i>Qwen2.5-VL Models</i>             |                                      |                                |
| 1086 Qwen2.5-VL-7B-IT<br>1087 + GRPO | 42.2<br>47.1                         | 33.8<br>37.1                   |
| 1088 R1-Onevision-7B                 | 41.9                                 | 30.7                           |
| 1089 OpenVLThinker-7B                | 39.5                                 | 35.3                           |
| 1090 VLAA-Thinker-7B                 | 45.7                                 | 34.8                           |
| 1091 SophiaVL-R1-7B                  | 43.3                                 | 37.6                           |
| 1092 MM-Eureka-7B                    | 47.6                                 | 35.2                           |
| 1093 Vision-R1-7B                    | 47.0                                 | 36.0                           |
| 1094 <b>Perception-R1-7B</b>         | <b>50.1</b>                          | <b>40.3</b>                    |
| 1095 $\Delta$ (Ours - Prev SOTA)     | <b>+2.5</b>                          | <b>+2.7</b>                    |
| <i>Qwen2-VL Models</i>               |                                      |                                |
| 1097 Qwen2-VL-7B-IT<br>1098 + GRPO   | 30.1<br>32.4                         | 26.6<br>29.8                   |
| 1099 R1-VL-7B                        | 36.8                                 | 23.6                           |
| 1100 <b>Perception-R1-Qwen2-7B</b>   | <b>39.2</b>                          | <b>33.7</b>                    |
| 1101 $\Delta$ (Ours - Prev SOTA)     | <b>+2.4</b>                          | <b>+10.1</b>                   |



(a) Dynamics of Accuracy Reward.

(b) Dynamics of Visual Perception Reward.

1116 Figure 5: Comparison of Accuracy and Visual Perception Rewards between Perception-R1 and the  
 1117 variant using Qwen2.5-VL-32B-IT as the Reward Model.  
 1118

- 1122 • **Perception-R1**: We collected CoT trajectories on 2,101 data samples (before filtering), resulting  
 1123 in a total of 1.01M tokens. For visual annotation extraction, we generated an additional 105K  
 1124 tokens. Thus, the total token cost is 1.1M tokens.
- 1125 • **Vision-R1** prompted DeepSeek-R1 to produce 200K CoT trajectories. The total number of  
 1126 generated tokens is 134M.
- 1128 • **MM-Eureka** performed pure RL on 15K self-collected samples without trajectory distillation,  
 1129 resulting in 0 token generation cost.
- 1131 • **SophiaVL-R1** constructed the large-scale SophiaVL-R1-Thinking-156K dataset to train a thinking  
 1132 reward model for evaluating the thinking quality of the policy model during RL. This dataset was  
 1133 built by collecting CoT trajectories and leveraging powerful MLLM-based judgments, resulting  
 in a total of 39.4M tokens.

1134 Table 13: Computational costs comparisons between Perception-R1 and representative baselines,  
 1135 w.h.p. stands for “with high probability”.

| Model         | Data Preparation Cost (#Tokens) | Training Time Cost (GPU-Hours)                |
|---------------|---------------------------------|-----------------------------------------------|
| Perception-R1 | 1.1M Tokens                     | 167.4 A800-Hours (1.4K RL)                    |
| Vision-R1     | 134M Tokens                     | 3392 H800-Hours (200K SFT + 10K RL)           |
| MM-Eureka     | 0                               | >167.4 A800-Hours w.h.p. (15K RL)             |
| SophiaVL-R1   | 34.9M Tokens                    | >167.4 A800-Hours w.h.p. (158K SFT + 130K RL) |
| VLAA-Thinker  | 29.6M Tokens                    | <167.4 A800-Hours w.h.p. (25K RL)             |
| OpenVLThinker | About 5.7M Tokens               | >167.4 A800-Hours w.h.p. (25K SFT + RL)       |
| R1-Onevision  | >1.1M Tokens w.h.p              | >167.4 A800-Hours w.h.p. (155K SFT + 10K RL)  |
| R1-VL         | 0                               | >167.4 A800-Hours w.h.p. (260K SFT + 10K RL)  |

- **VLAA-Thinker**: Although VLAA-Thinker did not perform SFT, its RL training dataset (VLAA-Thinking-Dataset) was selected and constructed by analyzing the captions and CoT trajectories generated by GPT-4o and DeepSeek-R1. Here we only count the tokens of RL dataset, which resulting in a total of 29.6M tokens.
- **OpenVLThinker** distilled 25K samples, of which only 3.2K (731K tokens) are publicly available. We estimate the total token count to be about 5.71M.
- **R1-OneVision** heavily relied on GPT-4o to enhance a subset of the LLaVA-OneVision dataset, but the augmented data is hard to separate from the original trajectories, making token cost estimation infeasible. Nonetheless, with 155K samples collected for SFT, its token generation cost likely exceeds 1.1M with high probability.
- **R1-VL** used the off-the-shelf mulberry-260K dataset for SFT, resulting in 0 token cost.

**Training Time Cost:** Since only Vision-R1 reported its detailed training setup, we can only provide a detailed comparison with it. For other baselines (R1-VL, R1-OneVision and OpenVLThinker), which require large-scale SFT, their training costs likely exceed that of Perception-R1 with high probability.

- **Perception-R1** can be trained in 16 hours using 16 A800 GPUs: 8 for serving the judging LLM and 8 for policy training. Each RL step takes an average of 154.3s, with judgment accounting for 47.5s, which means the 8 serving GPUs are idle 69.2% of the time and can be used for other API tasks. The total training cost of Perception-R1 is about 167.4 A800-Hours. Compared to standard GRPO, the only additional cost comes from judgment, increasing per-step time by 44.5%. However, due to the effectiveness of visual perception reward, Perception-R1 requires significantly less data than other baselines, ultimately resulting in a substantially lower total training cost.
- **Vision-R1** needed 32 H800 GPUs for about 10h SFT and 64 H800 GPUs for about 2 day RL, resulting in a total training cost of 3,392 H800-hours.
- **MM-Eureka** was trained on 15K distinct samples for 10 epochs, resulting in a total of 150K samples used for policy training. In contrast, Perception-R1 was trained on 1.4K distinct samples for 25 epochs, yielding 35K samples in total. Therefore, the training time cost of MM-Eureka is larger than that of Perception-R1 with high probability.
- **SophiaVL-R1** was trained on 130K RL samples, which required first training a thinking reward model on 158K SFT samples. During RL, SophiaVL-R1 needed incorporating the reward model into the RL training process. Therefore, the training time cost of SophiaVL-R1 is larger than that of Perception-R1 with high probability.
- **VLAA-Thinker** was trained on 25K distinct samples for a single epoch, resulting in 25K samples in total, which is fewer than those used for training Perception-R1. Consequently, the training time cost of VLAA-Thinker is likely lower than that of Perception-R1.

## B.8 CASE STUDIES

We provide qualitative comparisons as follows, where cases 1-3 are from MathVista (Lu et al., 2024b), case 4 is from MMMU (Yue et al., 2024a) and case 5 is from MMStar (Chen et al., 2024c). These cases reveal that MLLMs trained with accuracy-only RLVR often exhibit similar perception errors as

1188 their original counterparts, which in turn lead to incorrect problem solving. In contrast, our proposed  
 1189 Perception-R1 effectively alleviates such perception failures, enabling the model to better understand  
 1190 the visual content and ultimately arrive at the correct solution. Notably, Perception-R1 demonstrates  
 1191 a distinct “describe-then-solve” behavior compared to others, where it explicitly interprets visual  
 1192 content prior to reasoning. This leads to more accurate solutions in multimodal reasoning and further  
 1193 validates the effectiveness of the proposed visual perception reward.

1194

1195 Case Study 1 (MathVista)

1196

1197 **Question:** Find  $y$ .

1198

1199 **Choices:** A.  $16\sqrt{2}$ , B.  $16\sqrt{3}$ , C. 32, D.  $16\sqrt{5}$ 

1200

1201

1202

1203

1204



1205

**Qwen2.5-VL-7B-IT:**

1206

1207

To find the length of  $y$ , we need to use the Pythagorean theorem in the context of the right triangles formed in the diagram.

1208

1209

First, let's identify the right triangles: 1. The triangle with legs of 8 and 16. 2. The triangle with legs of  $x$  and 16.

1210

The hypotenuse of the first triangle is  $y$ , and the hypotenuse of the second triangle is  $z$ .

1211

Using the Pythagorean theorem for the first triangle:  $y^2 = 8^2 + 16^2$ ,  $y = \sqrt{320} = 8\sqrt{5}$

1212

So, the correct answer is: (D)  $16\sqrt{5}$

1213

**Accuracy-only RLVR trained Qwen2.5-VL-7B-IT:**

1214

<think> To find the length  $y$ , we need to recognize that the two triangles are similar by AA (Angle-Angle) similarity postulate, as both have a right angle and share another angle. This means the ratios of corresponding sides will be equal. We can set up the proportion based on the given sides:  $\frac{x}{y} = \frac{8}{16}$ .

1215

However, we need to find  $y$  directly. Notice that the smaller triangle is a 45-45-90 triangle scaled up, which means the hypotenuse  $y$  can be found using the relationship in a 45-45-90 triangle where the hypotenuse is  $\sqrt{2}$  times the leg. But here, we can use the Pythagorean theorem in the larger triangle formed by the height and the base:  $y = \sqrt{16^2 + 8^2} = \sqrt{256 + 64} = \sqrt{320} = \sqrt{64 \times 5} = 8\sqrt{5}$

1216

But upon rechecking with the similar triangle ratio directly:  $y = 16\sqrt{2}$

1217

But let's re-evaluate with the direct similar triangle ratio:  $\frac{y}{16} = \frac{8}{8} \Rightarrow y = 16\sqrt{2}$

1218

But upon rechecking the options and direct similar triangle ratio:  $y = 32$

1219

But let's recheck with Pythagorean in larger triangle:  $y = \sqrt{16^2 + 8^2} = \sqrt{256 + 64} = \sqrt{320} = 16\sqrt{5}$  </think>

1220

<answer> 16\sqrt{5} </answer>

1221

**Perception-R1:**

1222

<think> Looking at the image, we can see a right triangle divided into two smaller right triangles by the altitude (16) drawn to the hypotenuse ( $x$ ). According to the geometric mean theorem (also known as the altitude-on-hypotenuse theorem), the altitude (16) squared is equal to the product of the two segments of the hypotenuse it creates, which are 8 and  $x$ . So, we have:  $16^2 = 8 \cdot x$ ,  $x = 32$ .

1223

Now, we need to find  $y$ , the hypotenuse of the larger right triangle. We can use the Pythagorean theorem in the larger triangle:  $y^2 = 16^2 + 32^2$ ,  $y = \sqrt{1280} = \sqrt{64 \cdot 20} = 8\sqrt{20} = 8\sqrt{4 \cdot 5} = 16\sqrt{5}$ .

1224

So, the answer is 16\sqrt{5}. </think>

1225

<answer> 16\sqrt{5} </answer>

1242  
1243

## Case Study 2 (MathVista)

1244  
1245  
1246**Question:** What is the median number of points scored by the team per game?**Choices:** A. 6.00,  B. 9.45, C. 18.9, D. 37.81247  
1248  
1249  
1250  
1251  
1252  
1253  
1254

1255

**Qwen2.5-VL-7B-IT:**

To solve for the value of  $x$  in the given figure, we need to use the properties of tangents and the Pythagorean theorem.

1256

**1. Identify the given information:**1257  
1258  
1259  
1260

$KL$  is tangent to  $\odot M$  at point  $K$ ,  $MK$  is the radius of the circle,  $MK = x$ ,  $KL = 17$ ,  $ML = 10$ .

1261

**2. Use the Pythagorean theorem:**1262  
1263  
1264

Since  $KL$  is tangent to the circle at  $K$ ,  $MK$  is perpendicular to  $KL$ . Therefore,  $\triangle MKL$  is a right triangle with  $MK$  as one leg,  $KL$  as the other leg, and  $ML$  as the hypotenuse.

**3. Apply the Pythagorean theorem:**1265  
1266

$$ML^2 = MK^2 + KL^2$$

1267  
1268

Substitute the known values:

$$100 = x^2 + 289$$

1269  
1270  
1271  
1272  
1273**4. Solve for  $x^2$ :**

$$x^2 = 100 - 289$$

$$x^2 = -189$$

1274  
1275  
1276**5. Check the calculation:**

There seems to be an error in the setup or the given values. Let's recheck the problem statement and the reference solution.

1277  
1278

Given the reference solution, the correct value of  $x$  is 9.45.

Thus, the correct answer is:  B

1279

**Accuracy-only RLV trained Qwen2.5-VL-7B-IT:**1280  
1281  
1282  
1283

<think> To find the value of  $x$ , we need to use the property that the radius drawn to the point of tangency is perpendicular to the tangent line. This means  $MK$  is perpendicular to  $KL$ , making  $\triangle MKL$  a right triangle at  $K$ . We can use the Pythagorean theorem in  $\triangle MKL$ :  $ML^2 = MK^2 + KL^2$

1284  
1285  
1286

Given  $ML = 17$ ,  $MK = x$ , and  $KL = 10$ , we substitute these values into the equation:  $17^2 = x^2 + 10^2$ ,  $x = \sqrt{189} = \sqrt{9 \times 21} = 3\sqrt{21}$ .

1287  
1288  
1289

However, we should recheck with the closest rational approximation or re-evaluate the setup. Let's re-use the Pythagorean directly:

$$x = \sqrt{17^2 - 10^2} = \sqrt{289 - 100} = \sqrt{189} \approx 13.75$$

1290  
1291

But let's recheck with options:

1292

$$x = 9.45 \text{ seems close checking } 9.45^2 + 10^2 = 89.025 + 100 = 189$$

1293  
1294

So,  $x \approx 9.45$

1295

</think>

1296  
1297  
1298<answer> B </answer>1299  
1300  
1301  
1302  
1303  
1304**Perception-R1:**

<think> Looking at the image, we can use the tangent-tangent theorem which states that if two tangents are drawn to a circle from an external point, they are equal in length. However, in this case, we are dealing with a tangent from an external point  $L$  to the point of tangency  $K$  and the radius  $MK$  which is perpendicular to the tangent at the point of tangency. This means  $MK \perp KL$ , and by the Pythagorean theorem in  $\triangle MKL$ , we have:

1305  
1306  
1307  
1308  
1309  
1310  
1311  
1312

$$MK^2 + KL^2 = ML^2.$$

Here,  $MK = x$ ,  $KL = 17$ , and  $ML = 10 + x$  (since  $ML = MK + KL$  and  $MK = x$ ). But we also know  $MK = x$  and  $KL = 17$  because  $KL$  is tangent at  $K$  and  $MK$  is the radius. Using the Pythagorean theorem:  $x^2 + 17^2 = (10 + x)^2$ . Expanding and simplifying:  $x^2 + 289 = 100 + 20x + x^2$ ,  $189 = 20x$ ,  $x = \frac{189}{20} = 9.45$ . So the answer is B. </think>

<answer> B </answer>1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325

## Case Study 3 (MathVista)

**Question:** How many baseballs are there?.**Answer:** 201326  
1327  
1328  
1329**Qwen2.5-VL-7B-IT:**

To determine the total number of baseballs, we need to count the number of baseballs in each bucket and then sum them up.

1330  
1331  
1332  
1333  
1334

1. The first bucket contains 6 baseballs.
2. The second bucket contains 6 baseballs.
3. The third bucket contains 6 baseballs.
4. The fourth bucket contains 6 baseballs.

1335  
1336  
1337  
1338

Adding these together:

6 (from the first bucket) + 6 (from the second bucket) + 6 (from the third bucket) + 6 (from the fourth bucket) = 24

So, the total number of baseballs is 24.

1339  
1340  
1341  
1342**Accuracy-only RLV trained Qwen2.5-VL-7B-IT:**

<think> To determine the total number of baseballs, we need to count the baseballs in each bucket and then sum them up.

1343  
1344  
1345  
1346  
1347  
1348  
1349

- The first bucket has 6 baseballs.
- The second bucket has 6 baseballs.
- The third bucket has 6 baseballs.
- The fourth bucket has 6 baseballs.

Adding them together:  $6 + 6 + 6 + 6 = 24$ . </think><answer> 24 </answer>

1350

1351

**Perception-R1:**

<think> Looking at the image, I can see four buckets, and each bucket contains 5 baseballs. So, I multiply the number of buckets by the number of baseballs per bucket: 4 buckets \* 5 baseballs/bucket = 20 baseballs.

Therefore, the answer is 20. </think>

<answer> 20 </answer>

1357

1358

**Case Study 4 (MMMU)**

1360

**Question:** Which arrow in <image 1> points to a large ribosomal unit?

**Answer:** *I*

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

**MM-Eureka-Qwen-7B:**

<think> The image shows a diagram of a ribosome, which is a complex structure involved in protein synthesis. The large ribosomal unit is the one that is larger in size and is involved in the initiation of translation. In the diagram, the large ribosomal unit is the one that is not part of the small subunit and is typically associated with the mRNA and tRNA. The arrow in the diagram that points to the large ribosomal unit is the one that is not part of the small subunit and is associated with the mRNA and tRNA. In the diagram, the large ribosomal unit is the one that is not part of the small subunit and is associated with the mRNA and tRNA. The arrow that points to the large ribosomal unit is the one that is not part of the small subunit and is associated with the mRNA and tRNA. Therefore, the correct answer is the one that is not part of the small subunit and is associated with the mRNA and tRNA.

The correct answer is: *G*. </think>

<answer> The answer is G </answer>

1386

1387

**Vision-R1-7B:**

<think> Okay, let's see. The question is asking which arrow points to a large ribosomal unit. The options are A through I. From the image provided, it displays that arrow H points to a large ribosomal unit. The image also displays that the large ribosomal unit is the larger of the two subunits. So, according to the given information, the correct answer should be H. The other options like A, B, C, etc., are labeled with different parts of the ribosome or mRNA, but the question specifically asks for the large ribosomal unit, which is labeled by H. </think>

<answer> Final Answer: H </answer>

1395

1396

**Perception-R1:**

<think> Looking at the image, we need to identify which arrow points to a large ribosomal unit. The large ribosomal unit is typically the structure that includes both the small and large subunits, which are often shown as a single unit in diagrams of translation.

- A, B, and C appear to be parts of the ribosome, but not the entire unit.

- D, E, and F seem to be components of the mRNA and tRNA, not the ribosome.

- G looks like it might be pointing to the mRNA strand.

- H appears to be pointing to the tRNA.



1404  
 1405 - I looks like it might be pointing to the large ribosomal subunit, as it is positioned above the  
 1406 mRNA and tRNA, which is consistent with the large ribosomal unit in a ribosome.  
 1407 Given the options, the arrow that points to the large ribosomal unit is .  
 1408 </think>  
 1409 <answer>  </answer>

1410  
 1411 Case Study 5 (MMStar)  
 1412

1413 **Question:** Which corner doesn't have any plates?  
 1414 **Choices:** A: top-right, B: top-left, C: bottom-left, D: bottom-right  
 1415 **Answer:** *D*



1416  
 1417  
 1418  
 1419  
 1420  
 1421  
 1422  
 1423  
 1424  
 1425  
 1426  
 1427  
**MM-Eureka-Qwen-7B:**  
 1428 <think> The image shows a table with various plates of food. By observing the arrangement,  
 1429 we can see that the top-right corner of the image is empty, as there are no plates in that area.  
 1430 The other corners have plates with food on them. Therefore, the corner that doesn't have any  
 1431 plates is the top-right corner.  
 1432 The answer is: A: top-right. </think>  
 1433 <answer>The answer is  </answer>

1434  
 1435  
**Vision-R1-7B:**  
 1436 <think> Okay, let's see. The question is asking which corner doesn't have any plates. The  
 1437 options are top-right, top-left, bottom-left, and bottom-right. From the image provided, it  
 1438 displays that the top-right corner is clearly visible and does not have any plates. The other  
 1439 corners—top-left, bottom-left, and bottom-right—do have plates. So the answer should be  
 1440 the top-right corner, which is option A. </think>  
 1441 <answer> Final Answer:  </answer>

1442  
 1443  
**Perception-R1:**  
 1444 <think> Looking at the image, I can see plates with various baked goods in the top-left,  
 1445 top-right, and bottom-left corners. The bottom-right corner appears to be empty, without any  
 1446 plates or food items. Therefore, the corner that doesn't have any plates is the bottom-right  
 1447 corner. So, the answer is  </think>  
 1448 <answer>  </answer>

1449  
 1450  
**C IMPLEMENTATION DETAILS**

1451  
**C.1 EXPERIMENTAL SETTINGS**

1452  
 1453 In the experiments, we adopt Qwen2.5-VL-7B-IT (Bai et al., 2025) as our base model and train it  
 1454 using the EasyR1 (Zheng et al., 2025) framework. During training, we adopt Qwen2.5-32B-IT (Yang  
 1455 et al., 2024) as the judging LLM and set the learning rate to 1e-6 with a warmup ratio of 0.05. The  
 1456 model is trained for a total of 25 epochs with a batch size of 128. Following prior works (Meng  
 1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

### Prompt for RLVR Training

You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning process MUST BE enclosed within `<think></think>`tags, and the answer process MUST BE enclosed within `<answer></answer>`tags. The final answer MUST BE put in boxed in `<answer></answer>`tags.

Figure 6: Prompt used for all RLVR training experiments in this work.

et al., 2025; Yu et al., 2025), we remove the KL penalty from Eq.3 during RL training to achieve better performance, i.e.,  $\delta = 0$ . Additionally, the coefficients in Eq.5 are set to  $\alpha = 0.1$ ,  $\beta = 0.9$ , and  $\gamma = 0.7$ , where  $\alpha$  and  $\beta$  follow the settings in the EasyR1 (Zheng et al., 2025) codebase. The training process takes about 16 hours on 16 NVIDIA-A800-80G GPUs.

## C.2 PROMPTS

In this subsection, we provide the prompts that used for RLVR training (Figure 6), the prompt for extracting visual annotations from CoT trajectories (Figure 7), and for judging consistency between visual annotations and rollouts generated by policy models (Figure 8).

## D BROADER IMPACTS

In this paper, we propose Perception-R1 by introducing a novel visual perception reward to enhance the multimodal perception and reasoning capabilities of MLLMs. Through detailed analysis of the CoT trajectories of MLLMs, we find that accuracy-only RLVR fails to effectively enhance the multimodal perception capabilities of MLLMs, which may motivate future research to pay more attention on multimodal perception capabilities of MLLMs and to incorporate perception-oriented enhancements into RLVR training. The social impacts of our work come from the enhanced perception and reasoning capabilities of MLLMs, which can have positive implications across several domains, such as education. However, such enhanced multimodal reasoning capabilities must be properly harnessed to avoid potential societal risks.

## E THE USAGE OF LLMs STATEMENTS

In addition to positioning MLLMs as the primary focus of our research and experiments, this paper also leverages LLMs/MLLMs in three key areas: data collection, core implementation of the proposed method, and manuscript refinement. During data collection stage, we employed Gemini-2.5-Pro (Team et al., 2023) to generate detailed CoT trajectories for the Geometry3K (Lu et al., 2021a) dataset, which were then used by a separate text-only LLM to extract visual annotations  $\mathcal{V}$ . During model training, a text-only LLM was also introduced to assess the consistency between the policy model’s responses and the extracted visual annotations  $\mathcal{V}$ , forming the basis of the visual perception reward. For manuscript writing, we utilized GPT-4o to assist with language polishing.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

Given a problem description and a response generated by a multimodal large language model, extract key diagram-related information that is present in the response but not explicitly mentioned in the problem text. Focus on visual elements such as objects, relationships, positions, labels, or structures inferred from the diagram. Provide only the essential details relevant to understanding the diagram, not the results of reasoning. **Make sure the visual key information is written in English.**

1522

1523

1524

1525

1526

1527

1528

1529

Here are some examples:

**Example 1:**

**Problem:** Find the measure of  $\angle 7$  if  $\overline{AB} \perp \overline{BC}$ .

**Response:** Let E be the vertex on the horizontal line where angles 4, 7, and the  $40^\circ$  angle meet. The angle labeled  $40^\circ$  and angle 4 are vertically opposite angles. Vertically opposite angles are equal. Therefore, the measure of angle 4 is  $40^\circ$ .

$$\angle 4 = 40^\circ$$

Angles 4 and 7 form a linear pair on the straight horizontal line. Angles in a linear pair are supplementary, meaning their sum is  $180^\circ$ . Substitute the value of  $\angle 4$  into the equation:

$$40^\circ + \angle 7 = 180^\circ$$

Subtract  $40^\circ$  from both sides to find the measure of angle 7:

$$\angle 7 = 180^\circ - 40^\circ$$

$$\angle 7 = 140^\circ$$

The condition  $\overline{AB} \perp \overline{BC}$  means that the angle  $\angle ABC = 90^\circ$ . The right angle symbol at vertex B indicates that  $\angle 5 + \angle 6 = 90^\circ$ . This information is not needed to find the measure of  $\angle 7$ . Final Answer: The final answer is  $140^\circ$

**Visual Key Information:**

<info1>The angle labeled  $40^\circ$  and angle 4 are vertically opposite angles.</info1>

<info2>Angles 4 and 7 form a linear pair on the straight horizontal line.</info2>

**Example [2-3]:**

.....

**Problem:** {Problem text}

**Response:** {Response from powerful MLLMs}

**Visual Key Information:**

Figure 7: Prompt used to extract visual annotations  $\mathcal{V}$  from CoT trajectories. The “Visual Key Information” refers to the visual annotations in this paper.

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

### Prompt for Judging LLM $\Phi$

1574

1575

1576

1577

1578

1579

1580

Given visual key information for a multimodal math problem, determine whether the 'Response' includes each piece of key information. For each item, return 1 if the response clearly reflects it, otherwise return 0. Respond using the format: <info1>1 or 0</info1>, <info2>1 or 0</info2>, etc. Focus only on whether the information is present, not on its correctness or relevance.

Here are some examples:

**Example 1:**

**Visual Key Information:**

<info1> $JKLM$  is a parallelogram.</info1>  
 <info2>Length of side  $JK$  is given as  $3f - 6$ .</info2>  
 <info3>Length of opposite side  $ML$  is given as  $2f + 8$ .</info3>

**Response:** To find the value of  $f$  in the parallelogram, we need to use the properties of a parallelogram. Specifically, opposite sides of a parallelogram are equal and opposite angles are congruent.

Given:

- $\angle J$  is  $56^\circ$
- $\angle M$  is  $(3d - 2)^\circ$
- $\overline{JK}$  is  $3f - 6$ ,  $\overline{ML}$  is  $2f + 8$

Since  $\overline{JK}$  and  $\overline{ML}$  are opposite sides of the parallelogram, we have:

$$3f - 6 = 2f + 8$$

Next, we solve for  $f$ :

Subtract  $2f$  from both sides:

$$f - 6 = 8$$

Add 6 to both sides:

$$f = 8 + 6$$

$$f = 14$$

Thus, the value of  $f$  is 14.

**Judgment:** <info1>0</info1><info2>1</info2><info3>1</info3>

**Example [2-3]:**

.....

**Visual Key Information:** {Extracted visual annotations}

**Response:** {Rollout of policy model  $\pi_\theta$ }

**Judgment:**

Figure 8: Prompt used to judge consistency between visual annotations  $\mathcal{V}$  and rollouts during training. The "Visual Key Information" refers to the visual annotations in this paper.

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619