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Abstract

Invariant Risk Minimization (IRM) is a recently proposed framework for out-
of-distribution (o.o.d) generalization. Most of the studies on IRM so far have
focused on theoretical results, toy problems, and simple models. In this work, we
investigate the applicability of IRM to bias mitigation—a special case of o.o.d
generalization—in increasingly naturalistic settings and deep models. Using natural
language inference (NLI) as a test case, we start with a setting where both the
dataset and the bias are synthetic, continue with a natural dataset and synthetic bias,
and end with a fully realistic setting with natural datasets and bias. Our results
show that in naturalistic settings, learning complex features in place of the bias
proves to be difficult, leading to a rather small improvement over empirical risk
minimization. Moreover, we find that in addition to being sensitive to random
seeds, the performance of IRM also depends on several critical factors, notably
dataset size, bias prevalence, and bias strength, thus limiting IRM’s advantage
in practical scenarios. Our results highlight key challenges in applying IRM to
real-world scenarios, calling for a more naturalistic characterization of the problem
setup for o.o.d generalization.

1 Introduction

Deep learning models show strong performance when tested on data from the same distribution
they were trained on, matching or even surpassing humans (Zhang et al., 2017; Brinker et al., 2019).
However, this performance often stems from relying on spurious correlations rather than human-like
reasoning, causing these models to “break” in real world scenarios (Geirhos et al., 2018; McCoy
et al., 2019). A recent method called Invariant Risk Minimization (IRM; Arjovsky et al. 2020) aims
to learn causal features whose correlation with the label is invariant across different distributions, thus
leading to better out-of-distribution (o.o.d) generalization. IRM splits the training data into different
subsets, or environments, across which varying spurious correlations cause distribution shifts. The
goal is to learn a representation that yields the same optimal classifier for all environments.

Although several studies (Choe et al., 2020; Ahuja et al., 2020a; Kamath et al., 2021) have investigated
IRM and its variants, the empirical results so far have mainly focused on synthetic settings and simpler
models (e.g., shallow multilayer-perceptrons, bag-of-words models). This motivates us to investigate
IRM in natural settings with complex models. We take natural language inference (NLI) as a test case,
where the model needs to predict if a hypothesis sentence is entailed by the premise sentence. While
theoretically requiring deep language understanding, many NLI datasets contain biases, or spurious
correlations between superficial features and labels (Gururangan et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018), such as word overlap correlating with the entailment label. Such heuristics allow
models to perform superficially well on the benchmark, but fail catastrophically when these heuristics
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no longer hold (Naik et al., 2018; Glockner et al., 2018; McCoy et al., 2019). Common debiasing
methods typically rely on explicit modeling of the biases (Belinkov et al., 2019a,b; Karimi Mahabadi
et al., 2020; He et al., 2019). In contrast, IRM offers interesting possibilities. It is model agnostic, not
built for a specific bias and, given appropriate environments, generalizes to distributions where the
spurious correlation varies.

In this work, we design a series of debiasing experiments, intended to bridge the gap between fully
synthetic and naturalistic scenarios. Table 1 shows examples of each setting. We begin with a toy
experiment where both the dataset and the bias are synthetic. Next, we add a level of complexity by
injecting synthetic bias to a real NLI dataset and use state-of-the-art pre-trained models. Last, we
investigate natural NLI datasets with known dataset biases. For the last setting, splitting environments
using categorical biased features as done in previous work is not applicable. Therefore, for real-world
scenarios where the bias is known but might be a high dimensional feature, we develop a simple
way to split data into different environments, described in “Environment generation” in Section 3.2.
In each of these settings, we train models with empirical risk minimization (ERM) and IRM and
evaluate them on o.o.d test sets. Our experiments yield the following results:

• In the toy setting, performance follows the theory: ERM performs well on the training set but
fails completely on the o.o.d test set, while IRM ignores the bias and thus performs slightly worse
on the training set, but perfectly on the o.o.d test set.

• On natural NLI datasets and deep models—with either synthetic bias or natural bias—IRM
outperforms ERM when evaluated on o.o.d test sets.

• However, in these more naturalistic settings, IRM is not able to completely discard the bias, while
ERM does not rely solely on the bias. Thus, in practice the advantage of IRM is small.

• When used with state-of-the-art models, IRM shows a large variance in performance across
random seeds.

To better characterize when IRM works better or worse than ERM, we highlight three criteria that
govern its success: the prevalence of the bias in the training set (how many examples are biased),
the strength of the bias (how strong is the correlation between a label and a biased feature), and the
training data size. While bias strength and data size were not empirically investigated in real-world
scenarios, bias prevalence was completely overlooked in previous work. We find that when all three
criteria are met (prevalent and strong bias, large training set), IRM tends to perform better than
ERM. When bias prevalence, strength, or training data size are limited, IRM is less stable and ERM
performs better.

To conclude, our investigation shows important challenges in assessing the performance of IRM
in plausible real-world scenarios, pointing to the need to employ a more naturalistic approach to
characterizing the settings in which IRM can perform well.

2 Related Work

IRM IRM was motivated by Peters et al. (2016), who connect invariance with causality by estab-
lishing a link between the cause of a target variable and the invariant predictor. As a proof-of-concept,
Arjovsky et al. experimented only with very simple settings, namely MNIST with varying back-
ground colors. Several studies further investigated IRM or proposed variants of IRM. Rosenfeld
et al. (2020) show that in the non-linear setting, there exists a nearly optimal classifier which uses
non-invariant features, thus the classifier found by IRM may not generalize to o.o.d. data. However,
their result assumes infinite samples and we instead focus on an empirical study in the finite sample
case. Kamath et al. (2021) point out the discrepancies between the original IRM formulation and
various instantiations of it. Since in non-toy examples such comparison is non-trivial, we focus on
IRMv1, the practical formulation suggested in the original paper. Both Ahuja et al. (2020a) and
Krueger et al. (2021) propose new objectives and show superior stability, and improvement over
IRM when adding covariate shift, respectively, on colored MNIST. Gulrajani and Lopez-Paz (2020)
devise a test suite to fairly compare algorithms for domain generalization, and show that with careful
tuning and model selection, ERM outperforms all other algorithms. Choe et al. (2020) show that
IRM outperforms ERM in a sentiment analysis task with synthetic bias, but restrict themselves to a
bag-of-words model.
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Table 1: Example NLI samples for all proposed settings. In the training set, biased features B are
correlated with the label y (same color). In the test set, the correlation does not hold (different colors).

Data Bias Training example Test example

Toy Experiment

Synthetic Synthetic
y: non-entailment y: entailment
B: has “c” B: has “c”
P : a H: bc P : a H: ac

Synthetic Bias Experiment

Natural Synthetic

y: contradiction y: entailment
B: has “<c>” B: has “<c>”
P : A man resting on a street. P : A car sinking in water.
H: <c> A man jogging on the street. H: <c> A car is flooding.

Natural Bias Experiment (overlap bias)

Natural Natural

y: entailment y: non-entailment
B: has word overlap B: has word overlap
P : It is most natural. P : Don’t be a cynic.
H: It is natural. H: Be a cynic.

Natural Bias Experiment (hypothesis bias)

Natural Natural

y: contradiction y: entailment
B: has negation B: has negation
P : Three bikers stop in town. P : A barefoot woman reads a book [...]
H: The bikers didn’t stop in the
town.

H: A woman isn’t wearing any shoes.

While different approaches were suggested, most are evaluated in simple settings. Although Gulrajani
and Lopez-Paz targeted more naturalistic scenarios, they focused only on image classification. In
addition to focusing on a language task, we show performance gains of IRM over ERM in naturalistic
settings with complex models, and perform an analysis of the factors that affect IRM’s performance.

Bias in NLI NLI is a widely studied task in natural language processing, concerned with identifying
the relation between a premise and a hypothesis. Recent studies (Gururangan et al., 2018; Poliak
et al., 2018; McCoy et al., 2019) reveal biases in NLI datasets such as SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018). Two widely observed biases are hypothesis bias and overlap bias.
Overlap bias is characterized by high word overlap between the premise and the hypothesis, shown to
be correlated with entailment. Hypothesis bias refers to patterns in the hypothesis correlated with a
specific label, allowing for correct prediction without considering the premise; a common example is
negation words correlated with the contradiction label (Table 1). Consequently, several challenge sets
(Naik et al., 2018; Glockner et al., 2018; McCoy et al., 2019) demonstrated performance degradation
when the bias no longer holds. We evaluate the ability of IRM to mitigate reliance on bias and thus
improve performance in such cases.

3 Method

3.1 Background on IRM

Our goal is to investigate the ability of IRM (Arjovsky et al., 2020) to debias NLI models and improve
their o.o.d generalization. IRM attempts to base its prediction on features whose correlation with
the target variable is invariant rather than environment-specific. This is translated to finding a data
representation such that the optimal classifier on top of it is the same across environments:

min
Φ:X→H
w:H→Y

∑
e∈Etr

Re(w ◦ Φ) s.t. w ∈ arg min
w′:H→Y

Re(w′ ◦ Φ) ∀e ∈ Etr. (1)
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where Etr is the set of the training environments, Re is the risk of environment e, w is the classifier
in the hypothesis spaceH, and Φ is the representation function. This optimization problem is relaxed
into a regularized objective function called IRMv1, and to which we simply refer as IRM:

min
Φ:X→Y

∑
e∈Etr

Re(Φ) + λ · ‖∇w|w=1.0
Re(w · Φ)‖2, (2)

where the hypothesis class is now limited to linear classifiers, and our goal is to find a representation
function Φ for which the classifier is optimal in all environments. The first term, referred to as the
ERM term, promotes low average error over all environments, while the second term, referred to as
the IRM term, promotes invariance across environments. The constraint from Eq. 1 is relaxed into a
Lagrangian form that penalizes the gradient norm of each environment. The regularizer weight λ
controls the trade-off between empirical risk and invariance.

3.2 Problem Setup and Experimental Details

Terminology and notation Let Dtr = {(xi, yi)}Ni=1 denote a training dataset of N premise–
hypothesis samples x = (P,H) with labels y ∈ {entailment, neutral, contradiction}, and an associ-
ated dataset bias. A bias is a correlation between some feature of a sample x = (P,H) and a label y,
that is not guaranteed to hold outside the dataset. We call such a feature a biased feature and denote it
as B(x). For instance, B(x) might be word overlap in the case of overlap bias or negation words
in the case of hypothesis bias. We call a sample xi with label yi bias aligned if p(y = yi | B(xi))
in the training set is high. Similarly, it is bias misaligned if p(y = yi | B(xi)) in the training set is
low. Finally, unbiased samples, as opposed to biased samples, are such for which the feature B(x) is
not correlated with any of the labels. Given an environment Etre (a subset of Dtr), we refer to the
conditional probability of a label given the biased feature, p(y = y′ | B(x)), as the bias strength in
the environment and denote it as pe. A related but different quantity is the ratio of biased samples out
of all samples in the environment, which we call the bias prevalence and denote as αe.

Environment generation The goal of IRM is to find a representation function Φ of the premise–
hypothesis pair, for which the classifier is optimal in all environments. In our case, we generate
environments by varying the bias strength, i.e., changing the conditional probability of the label given
the biased feature. In the toy and the synthetic bias experiments the bias is synthetically injected into
the samples, so generating environments is straightforward. For a bias feature B(x) and a label y′, to
create an environment e with p(y = y′ | B(x)) = pe, we associate the feature with the label with
probability pe. This fully controllable setting no longer holds when we proceed to the natural bias
case, where the bias cannot be decoupled from the samples.

In order to generate environments that represent a varying bias strength for some B(x) in the natural
bias experiments, we first need to quantify p(y = y′ | B(x)). We train a model fθ with B(x) as its
only input, referred to as a biased model. For instance, this might be a model with access only to the
hypothesis, in the case of hypothesis bias. The biased model outputs a probability distribution over
the labels fθ(B(x)) ∈ R|Y|, termed a score vector. The model prediction ŷi (the label receiving the
highest probability) and the score vector are used to assign the sample to one of three subsets—Dun,B
(unbiased), Dalign,B (bias aligned) or Dmisalign,B (bias misaligned)—as follows.

First, we categorize samples to unbiased and biased. A sample is considered unbiased if the total
variation distance of fθ(B) from the uniform distribution is lower than some threshold t1. Otherwise,
it is considered biased. Next, the subsets Dalign,B and Dmisalign,B are constructed from the biased
samples such that Dalign,B = {xi | ŷi = yi} and Dmisalign,B = {xi | ŷi 6= yi}. Lastly, to ensure
that the biased feature is highly indicative of the label, we filter the subsets Dalign,B , Dmisalign,B by
eliminating examples where the top two predictions are very close. Denote by ỹi the second highly
predicted label for the i-th example. The resulting sets are Dalign,B = {xi | ŷi = yi ∧ ŷi − ỹi > t2},
Dmisalign,B = {xi | ŷi 6= yi ∧ ŷi − ỹi > t2} for some threshold t2.

To generate an environment e with bias strength pe and bias prevalence αe, we sample (m,n, k)
examples from the subsets (Dalign,B ,Dmisalign,B ,Dun,B) such that pe = m

m+n and αe = m+n
m+n+k .2

This process will be used to generate environments with pre-defined bias strength in Section 4 and

2We first choose m and n as large as possible such that required strength holds and resulting environments
are of equal size. Then we add the k samples as required by the prevalence.
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pre-defined bias strength and prevalence in the natural bias experiments in Section 5. Models are
trained on environments Etr generated from Dtr and evaluated on test environments generated from
splits of an appropriate test set. First, Eid,B is a test environment with αe = 1.0 and pe similar to
what was set in the training environments. Thus, it represents a similar distribution to Etr w.r.t the
bias B, and considered in-distribution. Second, Eood,B is a test environment with αe = 1.0 and pe
reversed to what was set in the training environments (i.e., if pe was high in Etr, it will be low in
Eood,B). Appropriately, Eood,B represents a (often significantly) different distribution w.r.t the bias,
and considered o.o.d. Third, Eun,B is a test set with unbiased samples, i.e., αe = 0.0. For brevity, we
will omit B when it is clear from context.

Training details All the experiments feature two training environments, both of the same size, on
which the models are trained. In the case of ERM, where we do not have an additional regularization
term (λ = 0), this is equivalent to training on a mixture of data from the two environments. Table 6
in Appendix A describes the environment specification for each experiment in details. According to
the practical instantiation of IRM (Eq. 2), the classifier in all the experiments is a “dummy” classifier
(w = 1.0 or a vector of ones for multi-class classification), and the representation function Φ is the
model used in the experiment. For more experimental details refer to Appendix A. Our code and data
can be found at https://github.com/technion-cs-nlp/irm-for-nli.

4 Results

4.1 Toy Experiment

4.1.1 Setup

We design a XOR example as a simplified NLI task, and use it to simulate hypothesis bias. To
construct our synthetic dataset, we adapt the example from Belinkov et al. (2019b), where the
premise and hypothesis are each one character long taken from the set {a, b}. The premise entails
the hypothesis (y = 1) if their first character is the same. These samples are randomly partitioned
to two disjoint subsets, from which we build environments Etre (e ∈ {1, 2}) as follows: first add
noise to the label (by flipping it with probability ηe), then append ‘c’ and ‘d’ to the hypothesis of
non-entailment and entailment examples with high probability pe, respectively, such that the model
can take the shortcut to predict by the appended character. By setting p1 = 0.8, p2 = 0.9, we
construct two training environments with a strong yet varying correlation between the label and the
bias. This correlation is flipped at test time, by setting pe = 0.0 and ηe = 0.0. Note that noise
is needed when training to make the correlation of the label with the biased feature stronger than
its correlation with the causal feature (i.e. equality of the first character) (1 − ηe < pe), such that
ERM will rely on the biased feature. To summarize, we train both ERM and IRM on two training
environments Etr1 , Etr2 with α1 = α2 = 1.0, p1 = 0.8, and p2 = 0.9. The models are then evaluated
on a test environment Eood with α1 = α2 = 1.0 and pe = 0.0. We use the same model described in
Belinkov et al. (2019b)—a multi-layered perceptron (MLP) on character embeddings—trained with
cross-entropy loss. For a detailed description of the model and hyper-parameters, see Appendix B.

4.1.2 Results

Theoretically, relying on the hypothesis bias (the appended character) to predict entailment should
result in approximately p1+p2

2 = 85% accuracy on the combined training set (since the classes are
balanced), and 0% accuracy on the test set. Relying on the unbiased feature, on the other hand,
should result in approximately 1 − η = 75% accuracy on the training set, and 100% accuracy on
the test set. As Table 2 shows, our results confirm these expectations. ERM relies on the appended
character to predict the label, thus failing completely on the test set. IRM manages to identify the
environment-specific correlation and relies on the causal feature, achieving 100% test accuracy. An
analysis of the training dynamics of ERM and IRM (Appendix B) shows that IRM starts shifting the
weight from the biased feature to the causal feature when the constrained phase (high λ) begins.
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Table 2: Accuracy in the toy experiment.

Train Test
ERM 85.304± 0.4 0.0± 0.0
IRM 75.384±0.69 100.0± 0.0

Table 3: Accuracy in the synthetic bias experiment.

pe = 0.8 pe = 0.33 pe = 0.0

REF 89.97±0.34 89.33±0.28 88.93±0.55

ERM 93.49±0.28 85.16± 0.9 79.16±1.48
IRM 92.32± 0.3 87.22±0.45 83.5± 0.71

4.2 Synthetic Bias Experiment

4.2.1 Setup

In this section we add the complexity of a real world dataset (SNLI) and use a state-of-the-art model.
We are interested in how well IRM works with a high capacity model, previously shown to rely on
bias (McCoy et al., 2019; Poliak et al., 2018). This experiment is inspired by a similar experiment
suggested in He et al. (2019) and designed to simulate hypothesis bias. We use three bias tokens
(<c>, <e>, and <n>), correlated with the three labels in SNLI (contradiction, entailment, and neutral,
respectively). 3 We prepend the bias token corresponding to the gold label with probability pe, and
randomly sample one of the other two tokens otherwise. We use pre-trained BERT (base-uncased) as
our model, with most of the hyper-parameters as recommended in the original work (Devlin et al.,
2019). For further training details, see Appendix C.1.

We train our models on two training environments {Etre} (e ∈ {1, 2}) with α1 = α2 = 1.0, p1 = 0.7
and p2 = 0.9. We additionally include a REF model trained on the original SNLI training set with no
bias injected (i.e., Etre with αe = 0.0), thus considered an unbiased model (w.r.t the synthetic bias).
The training environments are of equal size and comprise together the entire SNLI training/validation
set. The models are evaluated on three environments generated from the SNLI test set—Eid with
pe = p1+p2

2 = 0.8, Eood with pe = 0.33 and Eood with pe = 0.0, where the latter comes down to a
bias misaligned set. All test environments are set with α = 1.0.

4.2.2 Results

The results in Table 3 show that IRM outperforms ERM on o.o.d test environments and degrades
on the in-distribution test environment, indicating that it successfully reduces reliance on the biased
feature. However, as the test environment moves further away from the training environments
(i.e., more bias misaligned samples or decreasing pe), both ERM and IRM display lower accuracy,
revealing that IRM is not able to completely ignore the bias when the test environments are sufficiently
different. As expected, the unbiased model (REF) performs similarly across all environments. This
performance can serve as both a lower bound for the in-distribution degradation and an upper bound
for the o.o.d improvement, and indeed we can see that both ERM and IRM performance are higher
than REF on pe = 0.8 and lower on pe = 0.33, 0.0.

Relying solely on the biased feature should have resulted in performance close to chance (33%) on
the pe = 0.33 environment, but both ERM and IRM perform significantly better. Comparing the
accuracy of an unbiased model (REF model) on test environment Eun,B (∼90%) with the expected
accuracy of a model relying strictly on the biased feature to predict (∼p1+p2

2 = 80%), suggests that
unbiased features are more correlated with the label than the biased feature, discouraging ERM from
heavily relying on the biased feature. Combined with IRM’s inability to completely discard the bias,
this leads to IRM showing rather small performance gains over ERM. Finally, in Appendix C.3 we
also show the results when injecting the entire test set with the same bias token. This experiment
reveals that ERM’s performance is more strongly degraded by the neutral bias token, suggesting that
biases in the data may be treated differently. In contrast, IRM’s performance is similar given any of
the three bias tokens.

3We have experimented with several sets of bias tokens and witnessed similar behavior. Further details in
Appendix C.2.
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Table 4: Accuracy on SNLI test environments for
hypothesis bias.

Unbiased Bias
aligned

Bias
misaligned

ERM 84.46
(±0.64)

97.4
(±0.26)

62.63
(±1.19)

IRM 82.64
(±1.33)

91.4
(±2.92)

65.12
(±2.28)

Table 5: F1 macro on MNLI dev mismatched
test environments for overlap bias.

Unbiased Bias
aligned

Bias
misaligned

ERM 85.23
(±0.69)

96.67
(±0.28)

62.66
(±1.95)

IRM 83.75
(±0.46)

95.44
(±1.1)

64.12
(±3.86)

4.3 Natural Bias Experiment

4.3.1 Setup

In this experiment our goal is to create environments that vary by known dataset bias. We target two
widely observed biases—hypothesis bias and overlap bias (Section 2)—on two large NLI datasets,
SNLI and MNLI. Following previous work (He et al., 2019; Karimi Mahabadi et al., 2020), we
use a BERT model with hypothesis as its only input as a biased model for hypothesis bias and a
shallow MLP on top of manually-designed features as a biased model for overlap bias (Appendix
D.2). Since the overlap feature is not discriminative between neutral and contradiction classes
(McCoy et al., 2019; Karimi Mahabadi et al., 2020), we combine neutral and contradiction into a
single non-entailment class. As this results in an unbalanced dataset, all models are trained with
loss weighted according to class size and we report macro F1 scores instead of accuracy. For further
training details, see Appendix D.1.

For both hypothesis and overlap bias we train our models on two training environments {Etre}
(e ∈ {1, 2}) with p1 = 0.7 and p2 = 0.9. Similarly to the approach in previous work (Arjovsky et al.,
2020; Krueger et al., 2021; Choe et al., 2020), we only control the bias strength of the environments.
The bias prevalence is not fixed, and the resulting average prevalence of the two environments is
similar to the bias prevalence found in the original dataset without any interventions. For hypothesis
bias we have α1+α2

2 = 0.82 and for overlap bias α1+α2

2 = 0.52. We evaluate our models on
in distribution and o.o.d test environments — Eid with αe = pe = 1.0 (bias aligned subset) and
Eood with αe = 1.0 and pe = 0.0 (bias misaligned subset). We also report results on Eun with
αe = 0.0, i.e., the unbiased subset. Size of training/validation data is ∼305k/ ∼5k and ∼245k/∼6k
for hypothesis and overlap bias, respectively.

4.3.2 Results

Hypothesis bias We report results for hypothesis bias on SNLI test environments in Table 4. The
performance gap between the environments is significant, indicating that models strongly rely on
biased features. Similarly to the observation in the synthetic bias case, IRM improves performance
on the bias misaligned subset and degrades on the bias aligned subset compared to ERM, proving to
be more robust. Although IRM displays some degradation on the unbiased subset, it is significantly
smaller than the one on the bias aligned subset. We also note that performance varies more on the
bias misaligned subset (larger std from different random seeds), which is consistent with results on
o.o.d evaluation (McCoy et al., 2020).
The relatively poor performance (of both IRM and ERM) on the bias misaligned subset may be
explained by an inherent difficulty of the samples in this subset. Indeed, we found that the inter-
annotator agreement in this subset is much lower compared to the other subsets (Appendix D.3). This
suggests that the causal features are noisier in the bias misaligned subset and that the upper bound on
performance is lower than the two other sets.

Overlap bias Table 5 shows the results for overlap bias on MNLI dev mismatched environments.4
Performance discrepancies are as expected, with highest performance on bias aligned subset and

4Since the MNLI test set labels are hidden, and are needed for splitting according to bias, we use the provided
dev matched set as a validation set, and test our models on the dev mismatched set.
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lowest on bias misaligned subset. IRM decreases this performance gap between the subsets: It
outperforms ERM on the bias misaligned subset, and slightly degrades on the other two. As before,
performance varies more on the bias misaligned subset, especially for IRM.
To further understand IRM’s improvement on the bias misaligned subset we analyzed the performance
per class in Appendix D.4. We found that IRM mitigates the bias for the non-entailment class (i.e.,
improves on no-overlap entailment examples) suggesting that IRM’s improvement on the bias
misaligned subset comes from mitigating the non-overlap bias; surprisingly, it slightly amplifies bias
for the entailment class (i.e., degrades on high overlap non-entailment examples). This suggests that
different biases in the data might be unevenly mitigated by IRM.

Evaluation on o.o.d benchmarks We evaluate our models trained in the overlap bias setting and
the hypothesis bias setting on HANS (McCoy et al., 2019) and RevisedPremises (RP; Kaushik et al.
(2019)) respectively, and report results in Appendix D.5. On RP test set, even though our models
are trained on smaller data size, we achieve comparable results to those reported by Kaushik et al.
(2019). On HANS, our results are not comparable to those presented in McCoy et al. (2019) for
several reasons—the size of the training data is smaller in our case (due to constraints on environment
generation), the bias is stronger by construction, and the labels are collapsed to 2 classes before
training. On both benchmarks IRM is not able to outperform ERM, and performs equivalently (on
RP) or worse (on HANS). We hypothesize that this is due to differences in biases between the o.o.d
subsets we construct and the challenge benchmarks. This shows that while IRM might improve on
biases targeted by the environments it was trained on, it is not able to extrapolate to different types of
biases.

5 Analysis

In this section, we empirically analyze three factors that influence IRM’s performance: bias prevalence,
strength, and training data size. In each case, we vary one factor while keeping the other two fixed.
Where possible, we use the default values from the main experiments in the previous section. However,
to achieve the required bias prevalence and strength in the natural bias setting, we had to reduce the
size of training and validation data significantly. As we shall see, the size of the training data is in
itself a factor affecting IRM’s performance, so this might influence the stability of the results. In
addition to the previously observed sensitivity of IRM to random seeds (Ahuja et al., 2020a), which
causes high variation (as shown in the previous section), we also witness another type of failure case
with the restricted environments generated for the natural bias analysis. Some of the runs for IRM
seem to converge to a null representation, displaying near-chance performance on both training and
validation. The ERM term (Eq. 2) should have prevented this scenario, however tuning λ to mitigate
this behavior is an open issue. We therefore report results for all 5 random seeds when necessary.

5.1 Bias Prevalence

To analyze the effect of bias prevalence on IRM, we vary the fraction of biased samples in the training
set, while fixing the bias strength (p1 = 0.7, p2 = 0.9) and the size of training/validation data
(∼134k/∼2.6k for hypothesis bias, ∼87k/∼2.3k for overlap bias, and ∼549k/∼9.8k, i.e., the entire
SNLI train/val set, for synthetic bias). We evaluate on Eood with α = 1.0 and pe = 0.0 (i.e., the bias
misaligned set) for all three settings. Figure 1 shows that as the bias prevalence increases, IRM’s
performance on o.o.d data improves. In the synthetic bias case, IRM surpasses ERM at high bias
prevalence. In the natural bias cases, IRM has several failed runs (very low accuracy), probably due
to the reduced training set size; however, those that succeeded, surpass ERM. A possible explanation
is that as more samples are either bias aligned or bias misaligned (i.e. contain a biased feature),
we get more signal in the IRM penalty term indicating the instability of the biased feature across
environments, making it easier for IRM to detect and discard it.

5.2 Bias Strength

Similarly to the previous experiment, when analyzing the effect of bias strength we keep the bias
prevalence fixed, (α1 = α2 = 1.0 for synthetic bias, α1 = α2 = 0.82 for hypothesis bias, and
α1 = α2 = 0.52 for overlap bias). Size of training/validation data is ∼152k/∼2.3k for hypothesis
bias, ∼145k/∼3.8k for overlap bias, and ∼549k/∼9.8k (the entire SNLI train/val set) for synthetic
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(a) synthetic bias. (b) Hypothesis bias. (c) Overlap bias.

Figure 1: Performance of ERM and IRM on Eood with pe = 0.0, αe = 1.0 (bias misaligned subset)
when varying bias prevalence (holding size of data and bias strength fixed). Test subsets are generated
from SNLI test for synthetic and hypothesis bias, and from MNLI dev mismatched for overlap bias.

bias. As before, we evaluate on Eood with αe = 1.0 and pe = 0.0 for synthetic bias, hypothesis bias,
and overlap bias. Figure 2a shows results for the synthetic bias setting, indicating that as bias strength
increases ERM degrades while IRM (roughly) maintains its performance. Figures 2b, 2c show results
for both natural biases. As bias becomes stronger, ERM degrades on o.o.d, while most of the IRM
runs significantly outperform ERM. Still, some of the IRM runs crash and perform poorly. We notice
that while IRM seems to improve with increased prevalence, it degrades as bias strength increases,
but just not as much as ERM. We hypothesize that while IRM is more robust to bias than ERM, it
is not able to completely discard it, even in synthetic settings (see Section 4.2.2) let alone natural,
more complex settings. Therefore, as bias is stronger it is picked up more by both methods and only
partially discarded by IRM.

(a) Synthetic bias. (b) Hypothesis bias. (c) Overlap bias.

Figure 2: Performance of ERM and IRM on Eood with pe = 0.0, αe = 1.0 (bias misaligned subset)
when varying bias strengths (holding size of data and bias prevalence fixed). Test subsets are generated
from SNLI test for synthetic and hypothesis bias, and from MNLI dev mismatched for overlap bias.

5.3 Data Size

To isolate the effect of data size on performance, we keep the bias prevalence and strength fixed and
equal to the experiments in Section 4.3 (α1 = α2 = 1.0, 0.82, 0.52 for synthetic bias, hypothesis
bias, and overlap bias, respectively, p1 = 0.7, p2 = 0.9 for all settings), and only change the size
of the environments. We evaluate on Eood with αe = 1.0 and pe = 0.0 for all three settings. For
synthetic bias, Figure 3a shows that IRM performs on par or better than ERM on o.o.d data for all
sizes, and loses stability as data size decreases. The gap between ERM’s and IRM’s performance
seems to decrease as data size increases, possibly due to the simplicity of the synthetic bias, and the
high correlation between true signal and label, discussed in Section 4.2.
For both natural biases, IRM is outperformed by ERM in small data regimes (Figures 3b and 3c).
For hypothesis bias, IRM outperforms ERM on o.o.d data on several settings, while for overlap bias
only in the largest regime is IRM able to outperform ERM. In Appendix D.2 we show that the biased
model used for overlap bias generates less confident predictions, compared to that of the hypothesis
bias. This might suggest that the overlap bias is less discriminative and negatively affects the quality
of environments. This is also reflected in the lower prevalence in the overlap bias setting (0.52)
compared to the hypothesis bias setting (0.82). Finally, the natural bias results fall in line with the
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observation by Ahuja et al. (2020b) that, for linear and polynomial models, IRM, contrary to ERM,
approaches the desired o.o.d solution in the finite sample regime as data size increases.

(a) Synthetic bias. (b) Hypothesis bias. (c) Overlap bias.

Figure 3: Performance of ERM and IRM on Eood test subset when varying size of data (while holding
bias prevalence and strength fixed). The X axis labels show (training data size, validation data size).

6 Conclusion

In this work, we presented an empirical study of IRM across increasingly naturalistic settings. We
observed that in all three proposed settings IRM successfully outperforms ERM on o.o.d data. We
then pointed out bias prevalence, strength, and data size as factors affecting IRM. We showed that
IRM loses its advantage over ERM when decreasing any of these factors. Aside from IRM’s known
sensitivity to random seeds, we also observe a different failure case of IRM in which the model
“collapses” to a null representation. As also mentioned in Arjovsky et al. (2020), such a degenerate
solution should theoretically be discarded by the ERM term in the objective function. However,
practically it is not yet clear how to properly change the regularization weight during training to avoid
this. This failure case can be detected and filtered without o.o.d data, by only looking at performance
on training and validation environments. However, for the sake of completeness we do not filter these
results and report them in the paper. To conclude, IRM and other recent methods taking a causal
approach to o.o.d generalization offer promising possibilities. Our results highlight the need for a
more naturalistic characterization of the settings under which these methods are expected to work
and an extensive empirical experimentation with complex datasets and state-of-the-art models.

Broader impact and ethical considerations

Our work investigates IRM in a debiasing framework with naturalistic scenarios and characterizes its
strengths and weaknesses. We hope that our results will encourage further research, both theoretical
and empirical, to characterize and improve IRM’s behavior in real-world settings. Such a line of
work could contribute to an increased robustness of deep learning models in the presence of biases.
While we focused on dataset biases in this study, the approach could also apply to mitigating social
biases like gender or racial bias. There are, however, potential harms. One might assume that a
debiased model may be used as is in a deployed system, without further safety measures. In practice,
debiasing on academic datasets might not lead to safe-to-use models in real applications and could
give a false impression of safety. Such a scenario somewhat corresponds to unconscious bias, which
has been shown to exist in healthcare, criminal justice, and education. Compared with explicit bias,
where measures promoting equality can be taken, unconscious bias goes undetected and therefore
untreated. For example, Hall et al. (2015) found implicit bias in health care providers against people
of colour, which negatively affected treatment decisions, treatment adherence, and patient health
outcomes. We believe that carefully analyzing when IRM works and when it fails is important for
guiding further research on debiasing natural language processing systems and machine learning
systems more broadly.
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