Describe, Explain, Plan and Select:
Interactive Planning with Large Language Models
Enables Open-World Multi-Task Agents

Zihao Wang' 2, Shaofei Cai''2, Guanzhou Chen®, Anji Liu*, Xiaojian Ma?, Yitao Liang!->*
Team CraftJarvis
Mnstitute for Artificial Intelligence, Peking University
2School of Intelligence Science and Technology, Peking University
3School of Computer Science, Beijing University of Posts and Telecommunications
4Computer Science Department, University of California, Los Angeles
®Beijing Institute for General Artificial Intelligence (BIGAI)
{zhwang, caishaofei}@stu.pku.edu.cn, rayment@bupt.edu.cn
liuvanji@cs.ucla.edu,xiaojian.ma@ucla.edu,yitaol@pku.edu.cn

Abstract

We investigate the challenge of task planning for multi-task embodied agents in
open-world environments.> Two main difficulties are identified: 1) executing
plans in an open-world environment (e.g., Minecraft) necessitates accurate and
multi-step reasoning due to the long-term nature of tasks, and 2) as vanilla planners
do not consider how easy the current agent can achieve a given sub-task when
ordering parallel sub-goals within a complicated plan, the resulting plan could be
inefficient or even infeasible. To this end, we propose “Describe, Explain, Plan
and Select” (DEPS), an interactive planning approach based on Large Language
Models (LLMs). DEPS facilitates better error correction on initial LLM-generated
plan by integrating description of the plan execution process and providing self-
explanation of feedback when encountering failures during the extended planning
phases. Furthermore, it includes a goal selector, which is a trainable module that
ranks parallel candidate sub-goals based on the estimated steps of completion,
consequently refining the initial plan. Our experiments mark the milestone of the
first zero-shot multi-task agent that can robustly accomplish 70+ Minecraft tasks
and nearly double the overall performances. Further testing reveals our method’s
general effectiveness in popularly adopted non-open-ended domains as well (i.e.,
ALFWorld and tabletop manipulation). The ablation and exploratory studies detail
how our design beats the counterparts and provide a promising update on the
ObtainDiamond grand challenge with our approach. The code is released at
https://github.com/CraftJarvis/MC-Planner.

1 Introduction

Developing multi-task agents that can accomplish a vast and diverse suite of tasks in complex domains
has been viewed as one of the key milestones towards generally capable artificial intelligence [36, 1,
5, 10, 25]. To enable such capabilities, earlier works have suggested employing a hierarchical goal
execution architecture [2, 4], where a planner generates action plans that would then be executed by
low-level goal-conditioned controllers. This architecture has been delivering promising progress in

*Corresponding Author.
We borrow the term “open world” from the game community. It highlights that the agent can navigate inside
a diverse environment and accomplish open-ended tasks freely.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/CraftJarvis/MC-Planner

Planning success plummet in open worlds due to new challenges Challenge #2: State-dependent Task Feasibility
4

4 Minecraft

e ——

Planner w/ Learned Controller

ALFuorld DPlanner w/ Oracle Contralle

— .
Tabletop Environment
o
—

Mampulatlon in Tabletop environment

N\ Mine diamond in Minecraft environment Y,

Figure 1: Planning success rates plummet in open worlds due to new challenges.

many robotics domains, including table-top and mobile manipulation [46, 4], 2D shape drawing [20]
and table rearrangement [1 7]. However, whether such success can be transferred to a more open-ended
world with unlimited exploration areas and internet-scale knowledge remains open [14, 10, 13, 12, 19].

To understand the gap, we run Inner Monologue[17], a general and competitive hierarchical goal
execution model on a typical open-world domain Minecraft [18, 14, 10] and two classical robotic en-
vironments ALFWorld [41] and Tabletop environments [40, 4]. The algorithm uses a Large Language
Model (LLM) based planner that contains domain-specific knowledge for all three environments. In
all environments, we use either an Oracle goal-conditioned controller or a learned one. Results are
shown in the bar plot in Figure 1. First, even when the Oracle controller is used, the success rate of
executing Minecraft tasks is much less than that of the other environments. Next, the task failure rate
becomes even higher in Minecraft when the learned controller is substituted. Both failures originate
from unique challenges brought by open-world environments, which we identify in the following.

First, compared to canonical environments (e.g., Atari [29] and robotic control suite [40]), open
worlds have highly abundant object types with complex dependency and relation. As a result, ground-
truth plans typically involve a long sequence of sub-goals with strict dependencies. As Figure 1
challenge #1 suggests, it requires at least 13 sub-goals executed in proper order to obtain a diamond
in Minecraft, while in Tabletop a task is typically no more than a few consecutive sub-goals.

Another challenge brought by the complicated tasks in an open-ended world is the feasibility of the
produced plans. Consider the example shown in Figure 1 (challenge #2). To craft a bed in Minecraft,
the fastest way is by either slaughtering a sheep to obtain wool, which can be used to craft beds, or
collecting beds from a village. However, since no sheep or village is reachable by the agent within 3
minutes of gameplay, to craft a bed efficiently, the agent should choose to slaughter a spider and use
materials (e.g., string) it drops to craft wool, and then a bed. That is, when dealing with a task that
can be completed by executing multiple possible sequences of sub-goals, the planner should be able
to select the best route based on the current state of the agent. However, the complex and diverse
state distribution of open-world environments makes state awareness hard to achieve.

To tackle these problems, we propose “Describe, Explain, Plan and Select” (DEPS), an interactive
planning approach based on Large Language Models (LLMs) to alleviate the aforementioned issues.
The key to tackling the first challenge is to effectively adjust the generated plan upon failure.
Specifically, whenever the controller fails to complete a sub-goal, a descriptor will summarize the
current situation as text and send it back to the LLM-based planner. We then prompt the LLM
as an explainer to locate the errors in the previous plan. Finally, a planner will refine the plan
using information from the descriptor and explainer. To improve the feasibility of generated plans
conditioned on the current state, which is the second identified challenge, we use a learned goal-
selector to choose the most accessible sub-task based on the proximity to each candidate sub-goal.

Our experiments are conducted on 71 tasks in open-ended Minecraft without any demonstration.
Given the goal-conditioned controller for atom sub-tasks (i.e., mine log and mine stone), our zero-

Instruction Task instruction: Obtain a diamond @ in Minecraft survival mode step-by-step?
4
1 ’ Initial Plan Py: @@ 2>S@ > Updated Plan P,:
Re-)Planner Explainer 4 16 1 o
(Re-) Xp > /> AP TIA O 3‘—>7a->e->egf—>7a—>(,];
LLM* explain LLM* 8 1 3 31 1 s 1
plan P, description d, Candidate goals: @ @& Selected Goal
‘ I Selected Goal gy: &8 X 4 9 @x3 .
The agent locates in the birch forest, no other choices
. which only has birch wood.
Selector Descriptor
HPM VLM
- & Description d,: I succeed on goal 1
| 4 . N\ fail on smelting 3 %= from 3 ‘ s on‘.
goal g, feedback Si Agent My inventory now has 3 iron ore, ...
11 Description d, : I succeed on goal 1-5. 1 Explanation: Because smelting &= needs
Cot.ltl.'o er . fail on goal 6, mining 3 @ with 2 . to use §and @, which I do not have.
Goal-conditioned Policy Now my inventory has 5 planks, ... So I need to craft @ first.
Task Finished !
obs T 1 action - ‘
b Explanation: Because mining ‘ needs to Finished Plan Pr: > v
oos use at least 2, which I do not have.
: > b —>@-> 8> >
Environment So I need to craft P first. ‘1 ? ’ 3 1ﬁ (]a

‘ Mine oak wood 83 Mine birch wood‘ Craft acacia planks ‘ Craft crafting table /Craft stick ‘ Mine iron ore.Mine coal‘ Craft furnace '@ Mine diamond

‘Mine acacia wood ‘ Craft oak planks [§g Craft birch planks ﬂ Craft wood pickaxe) Craft stone pickaxe ‘ Mine cobblestonefz= Smelt iron ingot 711 Craft iron pickaxe

Figure 2: Overview of our proposed interactive planner architecture.

shot® LLM-based planner can finish all tasks within a limited horizon (3000-12000 steps for different
tasks). We find DEPS outperforms all language planner baselines by nearly doubling the overall
success rate, with the same initial state and goal-conditioned controller. Our ablation and exploratory
studies then explain how our approach beats the counterparts and becomes the first planning-based
agent that accomplishes the challenging Obt ainDiamond task. DEPS does not require any planning
training for the environment. Additionally, DEPS achieves between on-par and more than 50% relative
improvement over existing or concurrent LLM-based planning methods on non-open-ended robotics
domains such as ALFWorld [41] and Tabletop environments [40].

2 Background

We aim to develop an agent capable of solving long-horizon goal-reaching tasks using image
observations and language goals. To accomplish this, we propose a combined approach involving
goal-conditioned policies (termed controllers) and a planner. The goal-conditioned policies are
trained to complete sub-goals, while the planner decomposes long-horizon tasks into a series of
K short-horizon sub-goals, g1, ..., gk, to be executed by the controller. At each time step ¢, the
goal-conditioned policy 7(a¢ | s¢, gx) generates an action a; based on the current state s; and the
specified sub-goal gy.

Planning with Large Language Models Previous works have shown that LLMs such as Instruct-
GPT [32] and Codex [8] can be used as zero-shot planners to generate sub-goal sequences for various
tasks in embodied environments [16, 42]. Formally, given the task description 7" as prompt p, LLM
acts as a planner to decode 7" into K sub-goals, g1, ..., gk, which are then executed one by one by
the low-level controller 7(a; | s¢, gx) to accomplish the task.

However, the above pipeline suffers from both challenges identified in Section 1. Regarding the first
challenge, the probability of generating a flawless plan directly from the task description decreases
significantly as the required number of sub-goals increases. Moreover, even when the LLM generates
a correct plan, it is very likely that the plan is highly inefficient given the agent’s current state
(challenge #2). Prior works mostly focus on solving the first challenge by providing environmental
feedback to the LLM through affordance functions [4], success detector [20] or scene descriptor [17].
However, although these approaches work well on many non-open-ended domains, they still suffer
from high failure rates in open-world environments.

3Similar to [5, 16], “zero-shot” here means no gradient updates are performed. However we provide some
related demonstrations as prompts during inference time.

3

3 Towards Reliable Planning in Embodied Open-World Environments

In this section, we first give an overview of our proposed interactive planning framework “Descibe,
Explain, Plan, and Select” (DEPS) for solving complex and long-horizon tasks in open-world
environments (Sec. 3.1). Next, in Section 3.2, we elaborate how DEPS iteratively refines its plan
to combat the first identified challenge. Section 3.3 introduces the selector module that is used to
identify efficient plans in response to the second identified challenge.

3.1 DEPS Overview

As demonstrated in Figure 2, our agent (DEPS) consists of an event-triggered Descriptor, a Large
Language Model (LLM) as Explainer and Planner, a goal Selector based on horizon prediction and
a goal-conditioned controller. In the following, we use Minecraft as a running example to better
elaborate our agent. Note that DEPS can be directly applied to other (non-)open-ended tasks.

We take a large language model (LLM) as a zero-shot planner of the agent to complete tasks. Given
a goal command (e.g., ObtainDiamond) as task 7', the LLM-based planner decomposes this
high-level task into a sequence of sub-goals {g1,..., gk}, as the initial plan Py. The goals are
instructions in natural language, such as mine oak wood @ (in Minecraft), find two cups (in
ALFWorld), put block A on top of block B (in Tabletop Manipulation).

As described in Section 2, a controller is then invoked to execute the provided sub-goals sequentially
through a goal-conditioned policy 7(a | s, g). However, the initial plan provided by the planner often
contains errors, which results in execution failures of the controller. For example, the goal e can
not be finished only with a wooden pickaxe # as shown in Figure 2. When failure pops up, the
descriptor will summarize the current state s; and execution outcome of the most recent goal into text
dy and send it to the LLM. The LLM will first try to locate the errors in the previous plan P;_; by
self-explanation, e.g., the goal @ need to be executed with a stone pickaxe . Then it will re-plan
the current task 7" and generate a revised plan P; according to the explanation. In this process, the
LLM is also treated as an explainer in addition to the planner role. The Descriptor, Explainer, and
Planner will be detailed in Section 3.2.
Description : d; = fpgsc(si—1),
Explanation : e; = fgx(d¢),
Prompt : p; = CONCAT (p;_1,dy, e),
Plan: P, = fum(p:),
Goal : gt ~ fS(Pta Stfl)a
Action : Qg ~ 71'(045 | Stfhgt)

ey

As shown in Equation (1), DEPS will iteratively update the plan P; until the task is finished, where
fpEsc is the descriptor model, fiy denotes the language model as explainer and planner, fs is the
selector model, 7 is goal-conditioned policies from the controller.

To filter out inefficient plans, the selector is trained to predict the number of time steps remaining to
achieve every goal gj, in a set of parallel goals given the current state s,. When the generated plan
contains alternative routes, the selector uses this information to choose a suitable goal as the current
goal ¢;. For example, the horizon predicted by the selector of goal acacia tree ‘ is less than

goal oak tree ﬁ in Savanna biome, which leads to chop acacia tree as current goal g;.

3.2 Describe, Explain and Plan with LLM Generates Executable Plans

Current LLM-based planners usually query the LLM once at the beginning of every episode and use
the output plan throughout the episode [16, 42]. However, as demonstrated by Figure 1, such one-shot
planning methods often fail on long-horizon tasks that require many sub-goals. This is caused by two
major issues. First, since the correct plan for long-horizon tasks needs to respect various complex
preconditions, it is extremely hard for the LLM to generate a flawless plan directly from the task
instructions, resulting in failure when simply following the initial plan. Additionally, due to the
unpredictable transition dynamics, some incidents may happen during the execution and make the
initial plan non-executable. To remedy these problems, existing methods introduce feedback (e.g.,

Prompt 1 Planner prompt template, Python-like code

def craft_wooden_axe (initial_inventory={}):

step 1: mine 3 logs

mine (obj = {"log":3}, tool = None)

step 2: craft 12 planks from 3 logs

craft (obj = {"planks":12}, materials = {"log":3}, tool = None)

step 3: craft 4 sticks from 2 planks

craft (obj = {"stick":4}, materials = {"planks":2}, tool = None)

step 4: craft 1 crafting_table from 4 planks

craft (obj = {"crafting_table":1}, materials = {"planks":4}, tool = None)

step 5: craft 1 wooden_axe from 3 planks and 2 sticks on crafting table

craft (obj = {"wooden_axe":1}, {"planks": 3, "stick": 2}, tool = "crafting_table")

return "wooden_axe"

from success detector or scene descriptor) to reflect on the results of previous executions [17, 20, 4].
However, merely informing the LLM whether a sub-goal is completed is often insufficient to correct
the planning error.

To remedy this, we propose “describe, explain and plan”, a new interactive planning method to
generate more executable and explainable plans. We start with rewriting the prompt into an interactive
dialogue format as in ChatGPT [32] so that subsequent feedback can be passed to the LLM effectively.
The produced plan is also augmented with the preconditions and effects of each goal. The structured
prompt improves the readability and interpretability of the plan and facilitates error-locating when
the execution fails later, as demonstrated in Prompt 1.

The descriptor will then collect the feedback generated by the agent during the execution of the
task. The feedback can be practically obtained either by a person (human feedback [4]), or by a
pre-trained vision-language model CLIP [35]. While the previous type of feedback needs intensive
human involvement, the latter from the pre-trained model needs to be fine-tuned for the specific
domain, which decreases the automation and generalization of the agent. On the contrary, Minecraft
returns the ‘info’ and other high-level observations (such as biome, GPS, and compass), we can easily
translate the unstructured information into structured language. Therefore we take the symbolic
information available in the game and translate it into feedback description d; in this work. To avoid
carrying unrelated information in the prompt, we further distill plan-related messages (e.g., inventory
information, biome) as final event-level description d; as demonstrated in Figure 2.

Notably, we also treat the LLM as an explainer to explain why the previous plans P;_; failed.
Specifically, by analyzing the current state from description d; and precondition of current goal g,
the explainer can identify the reason why the current goal cannot be executed successfully. As shown
in Figure 2, the reason may be the current goal requires the use of an iron pickaxe, but the tool is
not prepared in advance, or the current goal requires the use of 3 planks, but the currently available
planks are not enough. To implement this, we provide few-shot demonstrations to the LLM as in
chain-of-thoughts prompting [45], as shown in Prompt 1. Finally, the LLM goes back to its role as a
planner and re-plans the task with the explicit explanation of existing bugs in the previous plan P,_1,
ultimately generating an updated plan P; according to the explanation.

3.3 Horizon-Predictive Selector Yields Efficient Plans

Due to the abundance of objects and the compositional nature of their functionalities, there often exist
multiple feasible plans to complete a task, i.e., there are usually multiple paths for the completion of a
particular goal. However, despite the feasibility of all such plans, most of them are highly inefficient
to execute in the current episode. For example, as shown in Figure 2, obtaining a wood can be done
by chopping oak trees é, birch trees £, or acacia trees ‘ But only oak trees are available in the
plains biome. So the planner needs to choose oak trees since it is more efficient, as the agent does
not need to travel to another biome.

On the other hand, there is no strict sequential requirement for some goals in the plan P, i.e.,
9i, g; ~ P, enjoy the same precondition, which means g; and g, can be executed in any order. As
shown in Figure 1, the choice of different paths (sequences) may affect the execution efficiency of
the plan P; as one goal might be closer to the agent. Always choosing the closer goal to execute first
could yield more efficient plans and improve the final success rate under a limited episode length.
Moreover, the dynamic nature of open-world environments further amplifies the impact of efficient

Goal: Meat*3 Goal: Log*2 Goal: Coal*1 AND Iron_Ore*1 Goal: Survive in Night.
Candidate Skill: Kill Sheep Candidate Skill: Chop Oak Candidate Skill: Mine Coal AND Candidate Skill: Sleep in bed
OR Cow OR Pig OR Birch OR Acacia Tree Iron_Ore OR Dig down.

Selection: Kill Sheep Selection: Chop Acacia Tree Selection: Mine Iron_Ore Selection: Sleep_in_bed

Explanation: Meet sheep first. Explanation: Savanna biome Explanation: Meet iron_ore first. Explanation: Village has beds.
only has Acacia tree.

Figure 3: Selection Demonstration from ‘“Selector”. Given parallel sub-goals, i.e. candidate skills, our Selector
will determine the sequence in which to carry out these sub-goals based on their current proximity to the agent
and modify the original plan produced by the LM planner.

plans on the success rate. For example, in Minecraft, if the agent chooses to execute a further goal
like collect wood first, the much closer target sheep may disappear and be hard to find again.

In order to improve the efficiency of our plans, we propose to use a selector that selects the most
efficient path with the highest execution success rate as the final plan. Specifically, we design a
state-aware selector to choose the nearest goal under state s; as the current goal g; from the candidate
goal sets in plan P;. It predicts the goal distribution p(g;|s¢, P;) under the current state s; and plan
P,, where g; € Gy, G describes all current executable goals in P;. A straight way to implement
the selector is to leverage the semantic similarity between the current state and the goal text using
a vision-language model (VLM) such as CLIP [35]. Nevertheless, this may not exactly reflect the
difficulty of completing the goal since VLM lacks practical experience. For example, an “oak tree” in
front of the agent could lead to high semantic similarity for the “chopping tree” goal, but it may be
inefficient to achieve this goal if a canyon is in the middle between the agent and the oak tree.

To mitigate this, we implement a horizon-predictive selector that embeds practical task experience to
accurately rank the goals based on their efficiency and feasibility. Here, we define the horizon of a
goal h:(g) := T, — t as the remaining time steps to complete the given goal, where T, is the time of
completing goal g. This metric accurately reflects how quickly we can achieve the given goal from
the current state. To estimate the horizon, we learn a neural network to fit the offline trajectories by
minimizing the entropy loss —log p(h¢(g) | st, g), where h; is the ground-truth horizon in trajectories
of completing goal g. Therefore, the goal distribution can be formulated as follows:

~exp(—p(ge, se))
flge | se, Pr) = >ogea, exXp(—p(g; st) ”

We set goal-sensitive Impala CNN [6] as the backbone of the selector. In practice, the horizon predic-
tive selector can be jointly trained with the controller policies and share the backbone parameters [6].

4 Experiments

This section analyzes and evaluates our proposed “describe, explain, plan, and select” (DEPS) method.
To minimize performance variation caused by the low-level controller, we standardize all experiments
with one controller learned by behavior cloning. We refer to the details of this controller in Appendix
C. In Section 4.1, we introduce our testing environments and our evaluation task set, consisting of the
hardest 71 tasks from MCU SkillForgeChain [22]. In Section 4.2, we report our performance in the
context of existing LLM-based planners. Ablation studies are conducted in Section 4.3. Finally, we
pay close attention to the hardest task, Obt ainDiamond, which is long-hailed as a major challenge
in the community. The experiments on ALFWorld and Tabletop Manipulation environments are
shown in Appendix A.

4.1 Experimental Setup

Environment and Task Setting We first evaluate our proposed method in Minecraft, a popular
open-world environment with both challenges discussed in Section 1. For better reflecting the
performance of DEPS, we choose three Minecraft environments with different versions for better

evaluation, including Minedojo [10] with Minecraft 1.11.2, MineRL [3] with Minecraft 1.16.5, and
MC-TextWorld [22] with Minecraft 1.19.2. Rules and items have something different in the above
three Minecraft environments, which can better evaluate the dynamic and interactive planning abilities
of DEPS.

Table 1: Attributes of 8 meta tasks covering Task101: We evaluate the algorithm on Minecraft Task101. We
group the consisted 71 task into 8 different meta groups, with each focusing on testing a different aspect of our
proposed method.

Meta Name Number Example Task Max. Steps Initial Inventory ~ Given Tool
MT1 Basic 14 Make a wooden door. 3000 Empty Axe
MT2 Tool (Simple) 12 Make a stone pickaxe. 3000 Empty Axe
MT3 Hunt and Food 7 Cook the beef. 6000 Empty Axe
MT4 Dig-Down 6 Mine coal. 3000 Empty Axe
MTS5 Equipment 9 Equip the leather helmet. 6000 Empty Axe
MT6 Tool (Complex) 7 Make shears and bucket. 6000 Empty Axe
MT7 IronStage 13 Obtain an iron sword. 6000 Empty Axe
MT8 Challenge 1 Obtain a diamond! 12000 Empty Axe

We choose 71 tasks from the Minecraft Universe Benchmark SkillForgeChain [22] for evaluation.
These tasks are related to items that can be obtained in the Minecraft overworld. To better present the
results, we divide the 71 Minecraft tasks into 8 meta groups according to the ingredients and function
of the tasks, i.e., MT1-MTS. The instruction for every task is written in natural language, e.g., make
a wooden door in MT1 (Basic group) and obtain a diamond in MT8 (Challenge group),
as illustrated in Table 1. Considering how long it typically takes human players to complete each
task as a ballpark [14], we set different maximum episode steps for different meta tasks from 3000
(for easiest Basic tasks) to 12000 (for the hardest Challenge tasks). The names, number of required
skills, and functions of all tasks are listed in Appendix B. We give an empty inventory for every task
in Survival mode and require the agent to obtain every item from the environment by itself. Note that
our agent will be summoned in different environments randomly for each evaluation. Biomes and
initial positions are also different each time. Following the previous work [18], we take the success
rate as the evaluation metric.

Baselines We compare DEPS with other language-based planners, including GPT as Zero-shot
Planner(GPT) [16], ProgPrompt(PP) [42], Chain-of-Thought(CoT) [45], Inner Monologue(IM) [17],
and Code as Policies(CaP) [20]. For all baseline models, we use the same demonstration example
in the prompt, the same LM model from OpenAl, and the same controller in all tasks for a fair
comparison. Since these methods were not originally experimented with Minecraft, we reproduce
them to conform to the Minecraft specification based on prompt and feedback template design. All
planner methods access the LLM model through OpenAl API (text-davinci-03 model [32]
for GPT, CoT, and IM, and code-davinci-02 model [8] for PP, CaP, and Ours). All hyper-
parameters of LLM (including the temperature and best_of, etc.) are kept as default. We also list the
full prompt of all different methods in Appendix G.

4.2 Main Results

Every task is executed 30 times and the average results in Minedojo [10] for every meta task are listed
in Table 2. Our approach achieves the best performance with all meta tasks. As the complexity of the
task increases from MT1-MTS, the planner usually needs to give more accurate task steps (i.e., longer
goal sequence) to achieve the final task. Therefore the success rate of all agents decreases with the
reasoning steps increasing. Starting from MT6, almost all existing LLM-based planners fail (nearly
0 success rate). DEP (w/o Selector) already consistently beats existing LLM-based planners in all
meta tasks with a significant margin. This validates that “describe, explain and plan” can estimate the
reason for current plan failure and correct the original flawed plans. Due to the limited maximum
episode length and restricted control success rate for a hard goal (e.g., Mine diamond with
iron_pickaxe), the final success rate is still capped.

Table 2: Success rates of DEPS and existing LLM planners on Minecraft Task101. The full task-by-task list is in
Appendix F.

Methods MTI MT2 MT3 MT4 MT5 MT6 MT7 MT8 AVG
GPT[16,32] 25.854+24.8 47.884£31.5 10.78%14.6 7.14+9.0 1.98+5.9 0.0+0.0 0.040.0 0.0+£0.0 1542
PP[42] 30.61£23.6 40.09+30.6 17.13£19.1 16.00+17.3 3.21+£4.9 0.47%1.3 0.60+2.2 0.0£0.0 16.88
CoT[45] 40.244+30.8 55.21+£26.8 6.82+11.6 4.76+8.2 1.73£5.2 0.0£0.0 0.0+£0.0 0.0£0.0 18.89
IM[17] 46.89+31.4 53.734+20.8 3.64+6.9 18.41£17.4 457474 0.64+1.7 1.0242.5 0.0+£0.0 21.64
CaP[20] 60.08£17.3 60.11£20.24 8.72£9.7 20.33£21.0 2.84+4.6 0.63+1.3 0.60+2.2 0.0£0.0 25.77
DEP 75.70£104 66.13+13.4 45.69£16.2 43.35+20.2 15.93+13.9 5.71£3.7 4.60+7.1 0.50£0.5 39.36
DEPS 79.77£8.5 79.46+£10.6 62.40+17.9 53.32£29.3 29.24427.3 13.804+8.0 12.564+13.3 0.594+0.5 48.56

In addition, selector also greatly improves the final task success rate of the agent (from DEP w/o
Selector to DEPS). Hard meta tasks usually require the completion of multiple sub-goals (up to
dozens of goals), thus bringing more flexibility and providing more candidate goals for the Selector.
At the same time, as the agent conducts experiments with limited episode length, it also places high
demands on the efficiency of the plan. Therefore, the Selector brings a significant improvement on
efficiency-sensitive tasks such as MT7 (up to +2.7 times success rate).

Robustness on different controller and different Minecraft versions We also evaluate DEPS
on MineRL [3] and MC-Textworld [22]. Note that DEPS is a planning method, which needs to
equip the goal-conditioned controller for interacting with the Minecraft environments. We choose
MC-Controller [6] and Steve-1 [21] as controllers to interact with Minedojo and MineRL, respectively.
These two methods are all control policies that perceive visual partial observations and produce
mouse and keyboard actions. While MC-Textworld is a text world, which only keeps the Minecraft
crafting recipes and mining rules. So MC-Textworld does not require the controller. The DEPS
results of the task set MT1-MTS8 on different Minecraft environments are shown in Table 3. The
results report that DEPS can generate effective plans in various Minecraft environments. The results
on MC-Textworld [22] also show that the performance drops on more difficult task sets from MT6 to
MTS8 are mainly from the controller limitation.

Table 3: Success rates of DEPS under different Minecraft environments.
Environment Version Controller MTI1 MT2 MT3 MT4 MT5 MT6 MT7 MT8

MineDojo [10] 1.11.2 [6] 7977 79.46 6240 5332 2924 13.80 1256 0.59
MineRL [3] 1.16.5 [21] 84.05 8032 2425 3621 9.16 1722 1679 1.84
MC-Textworld [22] 1.19.2 - 100.00 90.00 80.00 56.25 64.71 57.14 69.57 50.00

4.3 Ablation Study

We conduct ablation experiments to investigate the number of candidate executable goals for different
Selector models and the specific impact of the rounds of DEPS.

4.3.1 Ablation on Selector

We verify the robustness of our proposed Selector under different parallel goals. The agent is asked
to complete 2, 3, and 4 candidate goals (the precondition is consistent for all goals), respectively. The
goals of the task correspond to different kinds of mobs or materials.

We report the final success rate of our method (DEP) with different selector implementations,
including using a fixed sequence of goals, a random sequence of goals, and selecting a goal based on
MineCLIP [10], CLIP [35], and our horizon-predictive Selector (HPS). As Figure 4 shows, in one
round of parallel candidate goals, an improvement of A=+22.3%, +29.2%, +32.6% is obtained using
our horizon-predictive Selector compared to not any selector (i.e., fixed plan), respectively.

At a limited episode length, e.g., 1000 steps, goal-model shows a greater advantage, which proves that
goal-model can improve the execution efficiency of the plan in embodied environments. In addition,
compared to using vision-language models such as CLIP [35] and MineCLIP [10] as a goal model,
horizon-predictive has the best performance due to better estimation of the horizon information. The
curve trend also demonstrates that agents with Selector scale up under large amounts of goals in an
open-world environment.

Parallel Goals = 3 Table 4: Success Rate of DEPS under different maxi-
mum rounds of re-planning. Round 0 represents the
vanilla Planner w/o the re-planning process. oo rep-

= resents the re-planning process will not end until task

success or reaching the maximum horizon, which is still

Z limited by the maximum tokens of LLMs. The maxi-
mum number of rounds for Codex is around 7-8 rounds.

Parallel Goals =2

Success Rate

0 500 1000 1500 2000 2500 3000 O 500 1000 1500 2000 2500 3000

Maximum Episode Length

Parallel Goals = 4

- Rounds 0 1 3 5 %9 A
o . Selector Model (0 — OO)
3 °° Goals Setting _ ps
.. ZB_“E“_: Plains cLp MT1 28.6 506 68.1 79.8 79.8 +51.2
a = N P " MineCLIP MT2 371 712 714 792 795 +42.4
- c@mMm _ MT3 151 20.1 403 408 624 +47.3

00 MT4 159 174 483 507 533 +374
b e e MT5 32 32 32 152 292 +26.0

. . . . MT6 0.5 0.5 1.1 1.9 138 +13.3
Figure 4: The success rates of DEPS with differ- MT7 06 23 29 29 126 +12.0

ent selectors under varying numbers of parallel MTS 00 00 00 00 06 +0.6
goals and maximum episode lengths.

4.3.2 Ablation on Re-Planning Rounds

We evaluate our agent on all tasks with increasing maximum rounds of DEPS. The round is defined as
a cycle of interactive LLM-based planning with description, explanation, and planning and selecting,
i.e., an updated plan. All tasks for every maximum round are executed 30 times and the average
success rate is reported in Table 4. We take the vanilla LLM planner as the baseline, in which the
model takes the initially generated plan as the final execution plan, without involving any description,
re-planning, or self-explanation processes during the task execution. Our results in the previous
subsection utilize the maximum rounds possible under maximum tokens capped by OpenAl. We
also report the success rate increment from vanilla planner to DEPS of every meta task in column
A in Table 4. This set of experiments demonstrates that DEPS can iteratively improve its plan in
open-world environments. More description, self-explanation, and re-planning rounds produce better
results, especially for hard tasks.

44 ObtainDiamond Challenge

Mining diamonds in the open-world game Minecraft, i.e. MT8 in Table 2, has been a long-standing
challenge for the community [14]. It is challenging because mining diamonds from scratch in
Minecraft involves acquiring a sequence of difficult-to-obtain items that require complex planning
on goals like mining, inventory management, crafting with and without a crafting table, tool use,
smelting iron ingot in a furnace, and mining at the lowest depths. We take the ObtainDiamond
task as a bonus experiment to show the capabilities of our zero-shot planner on complex tasks in
embodied environments. Previous methods’ success rates on this challenge further vouch for its
difficulty. [43, 34] leverages domain-secific reward functions and RL fine-tuning to achieve «~0.1%
success rate in 15 minutes of game play. VPT further boosts the success rate to 20% within 20
minutes of play through pre-training on collects ~~70k hours human demonstrations and finetuning
with human-designed reward function [3]. DreamerV3 is trained from scratch to collect diamonds in
a modified Minecraft environment (easier to break blocks) with world models to achieve a success
rate of 2% [15].

Our DEPS manages to achieve on-par performance in this grand challenge; our agent achieves a
0.59% success rate within 10 minutes of gameplay. Note our method does not specifically fine-tune
for this challenge. It is designed to be multi-task in its nature. Furthermore, considering our planner
operates with demonstration prompts on a fixed Large Language Model, it can be straightforwardly
adapted to other open-ended environments with modifications.

5 Related Works

Task planning with LLMs There have been some methods leveraging the large language model
to generate action plans for high-level tasks in embodied environments [46, 9, 11]. [16] decompose
natural language commands into sequences of executable actions by text completion and semantic

translation, while SayCan generates feasible plans for robots by jointly decoding an LLM weighted
by skill affordances from value functions [4]. For better executing the plan in embodied environments,
some methods use an object detector describing the initial environment into the language prompt to
produce environment-suitable plans and adopt success detectors to check that each step is executed
successfully [17, 20]. [42] and [20] use the pythonic-style prompt to produce more executable plans.
However, all of the above methods assume that the initial plan from the LLM is correct. When there
are bugs in the initial plan, it’s difficult for the agent to finish the task successfully.

Interactive Planning with LLMs Inner Monologue [17] pilots the front of interactive planning
with LLMs, which introduces the feedback (including success detection and scene description) to
the planner. However, we found it could still suffer from accumulative planning error, especially in
long-horizon open-world tasks. Rather, our “Describe, Explain, Plan and Select” (DEPS) method can
produce more reliable plans by leveraging chain-of-thought thinking and explanation to locate the
errors in previous plans. Moreover, we also propose a goal Selector to further improve the efficiency
of the plan, thereby yielding much better performances. Readers are encouraged to refer to the
comparative results in Section 4.2 between DEPS and these prior arts. There are also some concurrent
works on planning with LLMs [39, 26, 23, 33, 47].

Agents in Minecraft Some previous works have employed the hierarchical architecture to solve
long-horizon tasks in Minecraft [30, 27, 24]. Recently, based on the internet-scale corpus, [10]
pre-trains a language-conditioned reward function and learns multi-task MineAgent. [3] collects a
vast amount of human demonstrations to train a behavior cloning agent. More recently, [15] utilized a
learned world model to distill a policy that can efficiently explore in Minecraft. There are also some
works focus on learning goal-conditioned policies for better instruction-following [6, 7, 21]. While
these efforts all focus on improving the low-level controller. Rather, the planner in our architecture
emphasizes applying domain knowledge to propose and arrange the sub-goals. It significantly
influences the complexity and breadth of tasks that the agent can handle. Moreover, our planner is
zero-shot, making it possible to generalize to other long-horizon open worlds.

6 Limitations

Albeit the impressive results of our approach, we believe there are at least two major limitations within
our approach. First of all, our framework relies on privately-held LLMs like GPT-3 and ChatGPT,
which makes it less accessible to those who cannot afford or access the service. However, we’re fully
committed to ensuring a more democratized method and will explore using open-sourced models
including OPT [48] and BLOOM [38]. Another issue is the explicit step-by-step planning in our
system. Although it brings us superior performances over the baselines, the planning bottleneck can
also prevent our model from being further scaled up. A more appealing approach will be amortizing
the planning within an end-to-end trainable goal-conditioned policy, which is worth exploring next.
Furthermore, some previous fundamental challenges in planning (e.g., dead ends) may not prevalent
in our adopted environments and hence could be inadvertently overlooked by our paper. We are
dedicated to addressing more fundamental challenges present in building a multi-task generalist agent
in our series of following work.

7 Conclusion

We investigate the problem of planning in open worlds. We identify two major challenges unique to
these environments: 1) long-term planning requires precise and multi-step reasoning, and 2) planning
efficiency could be compromised since canonical planners do not take the agent’s proximity to parallel
goals/subtasks into consideration. We propose “Describe, Explain, Plan and Select” (DEPS), an
interactive approach based on Large Language Models (LLMs) to tackle them both. Our experiments
in the challenging Minecraft domain verify the advantages of our approach over counterparts by
marking the milestone of robustly accomplishing 70+ Minecraft tasks and nearly doubling the overall
performances. DEPS also is the first planning-based agent that can reach the diamond in this game.

10

Acknowledgements

This work is funded in part by the National Key R&D Program of China #2022ZD0160301, a
grant from CCF-Tencent Rhino-Bird Open Research Fund, NSF grants #I1S-1943641, #11S-1956441,
#CCF-1837129, an SRA from Meta and a research gift from Amazon Alexa Al, and a gift from
Relational AI. We thank Dai Zhixiang from NVIDIA and Xu Hongming from BIGAI on training
LLMs and infrastructure supports, respectively.

References

[1] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, L. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican,
M. Reynolds, et al. Flamingo: a visual language model for few-shot learning. arXiv preprint
arXiv:2204.14198, 2022. 1

[2] P-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI
conference on artificial intelligence, 2017. 1

[3] B. Baker, I. Akkaya, P. Zhokhov, J. Huizinga, J. Tang, A. Ecoffet, B. Houghton, R. Sampedro,
and J. Clune. Video pretraining (vpt): Learning to act by watching unlabeled online videos.
arXiv preprint arXiv:2206.11795,2022. 7, 8,9, 10

[4] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan, E. Jang,
R. Julian, et al. Do as i can, not as i say: Grounding language in robotic affordances. In 6th
Annual Conference on Robot Learning, 2022. 1, 2, 3, 5, 10, 21

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020. 1, 3, 15, 21, 22

[6] S.Cai, Z. Wang, X. Ma, A. Liu, and Y. Liang. Open-world multi-task control through goal-aware
representation learning and adaptive horizon prediction. arXiv preprint arXiv:2301.10034, 2023.
6,8, 10, 21,24

[7] S. Cai, B. Zhang, Z. Wang, X. Ma, A. Liu, and Y. Liang. Groot: Learning to follow instructions
by watching gameplay videos. arXiv preprint arXiv:2310.08235, 2023. 10

[8] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021. 3,7, 21, 22

[9] I. Dasgupta, C. Kaeser-Chen, K. Marino, A. Ahuja, S. Babayan, F. Hill, and R. Fergus. Col-
laborating with language models for embodied reasoning. In NeurIPS Foundation Models for
Decision Making Workshop, 2022. 9

[10] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,
and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale

knowledge. Advances in Neural Information Processing Systems Datasets and Benchmarks,
2022.1,2,7,8,10, 18, 21,26

[11] R. Gong, Q. Huang, X. Ma, H. Vo, Z. Durante, Y. Noda, Z. Zheng, S.-C. Zhu, D. Terzopoulos,
L. Fei-Fei, et al. Mindagent: Emergent gaming interaction. arXiv preprint arXiv:2309.09971,
2023. 9

[12] W. H. Guss, M. Y. Castro, S. Devlin, B. Houghton, N. S. Kuno, C. Loomis, S. Milani, S. P.
Mohanty, K. Nakata, R. Salakhutdinov, J. Schulman, S. Shiroshita, N. Topin, A. Ummadisingu,
and O. Vinyals. The minerl 2020 competition on sample efficient reinforcement learning using
human priors. arXiv: Learning, 2021. 2

[13] W.H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mohanty, D. P. Liebana,
R. Salakhutdinov, N. Topin, et al. Neurips 2019 competition: the miner]l competition on sample
efficient reinforcement learning using human priors. arXiv preprint arXiv:1904.10079, 2019. 2

11

[14] W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso, and R. Salakhutdinov.
Minerl: A large-scale dataset of minecraft demonstrations. arXiv preprint arXiv:1907.13440,
2019. 2,7,9,24

[15] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023. 9, 10

[16] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. ICML, 2022. 3, 4,7, 8,9, 15, 16, 17, 21,
24,25, 26, 28

[17] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022. 2,3, 5,7, 8, 10, 15, 16, 17, 24, 25, 26, 30, 34,
35

[18] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The malmo platform for artificial
intelligence experimentation. In Jjcai, pages 4246-4247. Citeseer, 2016. 2,7

[19] A.Kanervisto, S. Milani, K. Ramanauskas, N. Topin, Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, W. Yang,
W. Hong, Z. Huang, H. Chen, G. Zeng, Y. Lin, V. Micheli, E. Alonso, F. Fleuret, A. Nikulin,
Y. Belousov, O. Svidchenko, and A. Shpilman. Minerl diamond 2021 competition: Overview,
results, and lessons learned. neural information processing systems, 2022. 2

[20] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code as
policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753,
2022. 2,3,5,7,8, 10, 25, 26, 31

[21] S. Lifshitz, K. Paster, H. Chan, J. Ba, and S. Mcllraith. Steve-1: A generative model for
text-to-behavior in minecraft. arXiv preprint arXiv:2306.00937, 2023. 8, 10

[22] H. Lin, Z. Wang, J. Ma, and Y. Liang. Mcu: A task-centric framework for open-ended agent
evaluation in minecraft. arXiv preprint arXiv:2310.08367,2023. 6,7, 8, 18

[23] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg. Text2motion: From natural language
instructions to feasible plans. arXiv preprint arXiv:2303.12153,2023. 10

[24] Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu, and W. Yang. Juewu-mc: Playing minecraft with sample-
efficient hierarchical reinforcement learning. arXiv preprint arXiv:2112.04907, 2021. 10

[25] X.Ma, S. Yong, Z. Zheng, Q. Li, Y. Liang, S.-C. Zhu, and S. Huang. Sqa3d: Situated question
answering in 3d scenes. arXiv preprint arXiv:2210.07474,2022. 1

[26] J. Mai, J. Chen, B. Li, G. Qian, M. Elhoseiny, and B. Ghanem. Llm as a robotic brain: Unifying
egocentric memory and control. arXiv preprint arXiv:2304.09349, 2023. 10

[27] H. Mao, C. Wang, X. Hao, Y. Mao, Y. Lu, C. Wu, J. Hao, D. Li, and P. Tang. Seihai: A sample-
efficient hierarchical ai for the minerl competition. In Distributed Artificial Intelligence: Third
International Conference, DAI 2021, Shanghai, China, December 17-18, 2021, Proceedings 3,
pages 38-51. Springer, 2022. 10

[28] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer.
Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837,2022. 23

[29] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013. 2

[30] J. Oh, S. Singh, H. Lee, and P. Kohli. Zero-shot task generalization with multi-task deep

reinforcement learning. In International Conference on Machine Learning, pages 2661-2670.
PMLR, 2017. 10

[31] OpenAl. Gpt-4 technical report, 2023. 21, 22

12

[32] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
arXiv preprint arXiv:2203.02155, 2022. 3,5,7, 8

[33] J. S. Park, J. C. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative
agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442,2023. 10

[34] V. P. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. A. Arjona-
Medina, and S. Hochreiter. Align-rudder: Learning from few demonstrations by reward
redistribution. /CML, 2020. 9

[35] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning, pages 8748-8763. PMLR, 2021. 5, 6, 8

[36] S.Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,
2022. 1

[37] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019. 23

[38] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ili¢, D. Hesslow, R. Castagné, A. S. Luccioni,
F. Yvon, M. Gallé, et al. Bloom: A 176b-parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100, 2022. 10

[39] N. Shinn, B. Labash, and A. Gopinath. Reflexion: an autonomous agent with dynamic memory
and self-reflection. arXiv preprint arXiv:2303.11366, 2023. 10

[40] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-
tion. In Conference on Robot Learning. PMLR, 2022. 2, 3, 15, 16, 17, 23

[41] M. Shridhar, X. Yuan, M.-A. Coté, Y. Bisk, A. Trischler, and M. Hausknecht. Alfworld: Aligning
text and embodied environments for interactive learning. arXiv preprint arXiv:2010.03768,
2020. 2, 3, 15, 16

[42] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models. arXiv
preprint arXiv:2209.11302,2022. 3,4, 7, 8, 10, 25, 26, 28

[43] A. Skrynnik, A. Staroverov, E. Aitygulov, K. Aksenov, V. Davydov, and A. I. Panov. For-
getful experience replay in hierarchical reinforcement learning from expert demonstrations.
Knowledge-Based Systems, 218:106844, 2021. 9

[44] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 22

[45] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou. Chain of thought
prompting elicits reasoning in large language models. 36th Conference on Neural Information
Processing Systems (NeurlPS 2022),2022. 5,7, 8, 15, 25, 26, 29

[46] A.Zeng, A. Wong, S. Welker, K. Choromanski, F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani,
J. Lee, V. Vanhoucke, et al. Socratic models: Composing zero-shot multimodal reasoning with
language. arXiv preprint arXiv:2204.00598, 2022. 2,9

[47] C. Zhang, K. Yang, S. Hu, Z. Wang, G. Li, Y. Sun, C. Zhang, Z. Zhang, A. Liu, S.-C. Zhu,
et al. Proagent: Building proactive cooperative ai with large language models. arXiv preprint
arXiv:2308.11339, 2023. 10

[48] S.Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan, M. Diab, X. Li, X. V.
Lin, et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068,
2022. 10

13

Appendix

Contents
A Additional Experiments 15
Al ALFWorld e 15
ALl Tasks . . . 15
A12 Results e 15
A.2 Tabletop Manipulation 16
A2.1 Tasks e e e 16
A22 Results e 17
B Minecraft Task Details 18
C DEPS Implementation Details 20
C.1 Controller e e e e 20
C.2 LLMasPlanner e 21
C3 LLMasExplainer L 22
C4 Othermodules. e 23
D Comparison with other LLM-based Planners 23
E Discussion on ObtainDiamond Task 24
F Success Rates of ALL Tasks in Minecraft 25
G Prompt for Different Tasks and Different Methods 27
G.1 Prompt for Minecraft Tasks 27
G.1.1 DEPS e 27
G.1.2 Baselines e e e 28
G.2 Promptfor ALFWorld Tasks 31
G.2.1 DEPS e 31
G.2.2 Baselines e e 33
G.3 Prompt for Tabletop Manipulation Tasks 34
G.3.1 DEPS . . . e 34
G.3.2 Baselines e 35
H Full Dialogue 35

14

A Additional Experiments

Additional experiments are conducted on the ALFWorld [41] and Tabletop Manipulation environ-
ments [40] to showcase the generalization capabilities of DEPS.

A.1 ALFWorld

ALFWorld [41] is an interactive learning environment that aligns text and embodiment, allowing
agents to acquire abstract, text-based policies in TextWorld, and subsequently execute goals from the
ALFRED benchmark in a visually rich environment.

A.1.1 Tasks

The ALFWorld framework contains six types (namely Pick & Place, Examine in Light,
Clean & Place, Heat & Place, Cool & Place, Pick Two & Place) of tasks with
various difficulty levels. Tasks involve first finding a particular object, which often requires the agent
to open and search receptacles like drawers or cabinets. Subsequently, all tasks other than Pick &
Place require some interaction with the object such as heating (place the object in a microwave and
start it) or cleaning (wash the object in a sink). To complete the task, the object must be placed in the
designated location. We sample 10 tasks from ALFWorld randomly and list all the task names, types,
and the number of receptacles in Table 5. We classify them into 6 groups based on their functionality.
For all tasks, the maximum number of steps is set as 50.

Table 5: Task list in ALFWorld.

Group No. Task Number of Receptacles
1 put some soapbottle on garbagecan 13
Pick & Place 2 putatissuebox in dresser 26
3 put some soapbar on drawer 15
Clean & Place 4 putaclean soapbar in bathtpb.bas1.n 16
5 clean some tomato and put it in fridge 35
Cool & Place 6 putacool tomatg in countertop 30
7 putacool bread in countertop 27
Heat & Place 8 heat some cup and put it in cabinet 36
Pick Two & Place 9 find two cup and put them in cabinet 36
Examine in Light 10 look at mug under the desklamp 18

We select the GPT as Zero-Shot Planner (GPT) [16] and Inner Monologue (IM) [17] as baseline
methods. For the Inner Monologue, the planning goal is the next goal among all candidate goals.
For the GPT and DEP, which produce the full plan at once, the planning goal is the full plan (a goal
sequence). Then the plan will be executed step-by-step, i.e., the current goal will be given to the
controller and select suitable action according to the current state. The goal termination module is
also employed with the LLM. For better demonstrate the effectiveness of self-explanation in DEP, we
also augment the zero-shot planner with re-planning ability (GPT+RP). All planner methods access
the LLM model through OpenAl API (text—-davinci-03 model [5]). Since ALFWorld is a text
world, the environment will be given a literal description and candidate language-conditioned actions
for each state, so the controller under ALFWorld is also LLM-based. Chain-of-Thought [45] is also
employed in the controller for better decision-making. All prompts for planner and controller in
ALFWorld are listed in Section G.2.

A.1.2 Results

Each task is executed five times, and the average results for each task group are presented in Table 6.
BUTLER is the a training-based method, the results are sourced from [41]. Re-planning is a crucial
capability in complex and exploratory environments. The short-horizon planning approach (IM) with

15

Task: put some soapbottle on garbagecan

[

[/
.

L Dl

initial frame Goal: pick a soapbottle Goal: pick a soapbottle Goal: pick a soapbottle Goal: put a soapbottle Goal: put a soapbottle
at cabinet 4 at cabinet 4 at cabinet 4 on garbagecan at gar- on garbagecan at gar-
Action: go to cabinet4 Action: open cabinet4 Action: take soapbottle bagecan 1 bagecan 1
2 from cabinet 4 Action: go to garbage- Action: put soapbottle
can 1 2 in/on garbagecan 1

Figure 5: Planning in the ALFWorld experiments.

re-planning capability outperforms the long-horizon planning approach (GPT) without re-planning
capability with a large margin. Furthermore, the long-horizon planning method augmented with
re-planning capability (GPT+RP) achieves superior performance ranging from 10% (GPT) to 52%.
DEP further enhances the feasibility of planning with descriptions and self-explanation. Notably,
all planning methods fail on Place Two & Place tasks, which is attributable to LLM’s lack
of requisite knowledge for this task. It is worth investigating how to effectively incorporate the
distinctive knowledge of an environment into LLM.

Table 6: Success rates of tasks in ALFWorld.

Group BUTLER [41] GPT[16] GPT+RP IM[17] DEP

Pick & Place 46.0% 33.3% 100.0% 333% 93.3%
Clean & Place 39.0% 0.0% 10.0% 50.0% 50.0%
Cool & Place 100.0% 0.0% 30.0% 50.0% 100.0%
Heat & Place 74.0% 0.0% 40.0% 0.0% 80.0%
Pick Two & Place 24.0% 0.0% 0.0% 0.0% 0.0%

Examine in Light 22.0% 0.0% 100.0% 0.0% 100.0%
Average 37.0% 10.0% 52.0% 30.0% 76.0%
Average .0% 10.0% 52.0% 30.0% 76.0%

A.2 Tabletop Manipulation

The Tabletop Manipulation experiments are conducted on a Universal Robot UR5e with a suction
gripper in the simulated environments [40].

A.2.1 Tasks

The assessment of all methods is conducted in five seen tasks, as illustrated in Table 7, wherein the
seen tasks are employed for training the CLIPort [40] as the controller. The task involves a robotic
arm equipped with a gripper, which is tasked with rearranging a number of blocks and bowls on a
table to achieve a desired configuration specified via natural language (e.g., "putting the blocks in the
bowls with matching colors").

Table 7: Task list in CLIPort.

No Task Name Instruction
1 Assembling Kits Put the objects in the corresponding holes.
2 Towers of Hanoi Move the rings to the darker brown side.
3 Put Block in Bowl Match the blocks and the bowls.
4 Packing Shapes Pack the objects in the brown box.
5 Stack Block Pyramid Stack the blocks into a pyramid.

16

Task: assembling-kits

initial frame 1. put the cyan letter 2. put the green 3. put the blue letter 4. put the brown ring 5. put the red letter E
L shape in the letter L hexagon in the M shape in the letter in the ring hole shape in the letter E
shape hole hexagon hole M shape hole shape hole

Task: put-block-in-bow!

-
b

b-

initial frame 1. put the blue blocks 2. put the red blocks 3. put the
in a blue bow! in a red bow! blocks in a
. bowl
Task: packing-shapes

v
-
-
-
-
-

initial frame 1. pack the unicorn 2. pack the 3. pack the android 4. pack the lion figure 5. pack the alarm
toy in the brown box butterfinger chocolate toy in the brown box in the brown box clock in the brown
in the brown box box

Figure 6: Planning in the Tabletop Manipulation experiments.

We utilized Inner Monologue (IM) [17] and Zero-shot Planner (GPT) [16] as planning baselines,
in addition to comparing with a multi-task CLIPort policy directly trained on long-horizon task
instructions (i.e., without utilizing LLLM for planning). As CLIPort is a single-step policy that
does not spontaneously terminate during policy rollout, we report CLIPort evaluations with Oracle
termination (i.e., repeat until the Oracle indicates task completion) and fixed-step termination (i.e.,
repeat for k steps). For Inner Monologue, which directly produces the next-step goal and terminates
when the LLM ceases to generate new steps, we similarly set the maximum number of steps to be k
for practical considerations. For the zero-shot planner [16] and our DEP, which produce the full plan
at once, they are augmented with the LLM-based termination. DEP also involves the description,
explanation, and re-planning process. The same k step is suitable for these two methods. In practice,
k is set as 15. The prompts for all methods are listed in Section G.3. We use the checkpoints provided
by CLIPort as the controller and all planner methods access the ChatGPT (as LLM) through OpenAl
API (gpt-3.5-turbo model). Each task is evaluated 5 times with different seeds.

A.2.2 Results

The results of each method are listed in Table 8. All LLM-based planning methods perform well on
tabletop rearrangement tasks. Given the compact nature of the tabletop environment, the performance
gap among the various LLM-planning methods is not as pronounced as in the open-ended Minecraft.
This observation underscores the robust generalization capabilities of LLM-based planning methods
across diverse environments.

Table 8: Success rates for various methods across different tasks in Tabletop Manipulation environment.

Task CLIPort [40] +oracle GPT [16] IM[17] DEP
Assembling Kits 60.0% 60.0% 60.0% 60.0%
Towers of Hanoi 100.0% 100.0% 40.0% 100.0%
Put Block in Bowl 100.0% 100.0% 82.0% 100.0%
Packing Shapes 40.0% 40.0% 60.0% 40.0%
Stack Block Pyramid 80.0% 100.0% 40.0% 100.0%
Average 76.0% 80.0% 56.4% 80.0%

17

B Minecraft Task Details

To fully validate the multitask planning and execution capability of our agent, we choose over 70
tasks from the Minecraft Universe Benchmark [22] as the set of evaluation tasks. These tasks are
related to items that can be obtained in the Minecraft overworld. These tasks are also a subset of
MineDojo [10] programmatic tasks. Minedojo exists some programmatic tasks sharing the same
object item given different conditions (e.g., obtain wool given shear or obtain wool given nothing).
Minedojo expands the richness of the same tasks (sharing the same Minecraft item as an object)
by giving different initial conditions (e.g., obtain wool given shears or obtain wool
given nothing). We keep only the 71 hardest conditions (i.e. given nothing) as tasks.

We list all task names, objects, and their required skills number for planning from Table 9 to Table 16.
Object item is used as the basis for the successful completion of the task. These objects cannot be
obtained directly from the environment, and usually require multiple goals (i.e., reasoning steps) to
be constructed. Here we only consider the number of required goal types, and multiple identical
goals are unified into 1 reasoning step. Note that the reasoning steps for each task are not fixed, and
as the initial state of the agent and the biome is in change, more reasoning steps may be required to
complete it, we only report the most basic case here.

As shown in Figure 4, for each task, a relaxed (longer) maximum episode steps will increase the
success rate of the task. To fully test the efficiency of our method, we set an upper limit on the episode
length for each task. Since different tasks have different difficulty levels, we double the average
completion time of human players for different meta-tasks as the upper limit of the episode. The play
time are computed as corresponding maximum steps (i.e., Max. Steps in Table 1) of episode length at
20Hz.

Table 9: Task details on MT1 Basic set.

Meta-Task ID Task Name Reql'ured Object nitial Instruction
Skills Inventory
1 CraftPlanks 2 planks Obtain a plank.
2 CraftSticks 3 stick Obtain a stick.
3 CraftWoodenSlab 4 wooden_slab Obtain a wooden slab.
4 CraftWoodenPressure 3 wooden_pressure Obtain a wooden pressure plate.
5 CraftBowl 4 bowl Obtain a bowl.
6 CraftWoodenButton 3 wooden_button Obtain a wooden button.
MT1 7 CraftChest 4 chest oull Obtain a chest.
Basic 8 CraftOakStairs 4 oak_stairs Obtain an oak stair.
9 CraftSign 5 sign Obtain a sign.
10 CraftFence 5 fence Obtain a fence.
11 CraftFenceGate 5 fence_gate Obtain a fence gate.
12 CraftBoat 4 boat Obtain a boat.
13 CraftTrapdoor 4 trapdoor Obtain a trap door.
14 CraftWoodenDoor 4 door Obtain a door.

Table 10: Task details on MT2 Tool (Simple) set.

Meta-Task ID Task Name Reql.nred Object nitial Instruction
Skills Inventory
15 CraftCraftingTable 3 crafting_table Obtain a crafting table.
16 CraftWoodenPickaxe 5 wooden_pickaxe Obtain a wooden pickaxe.
17 CraftWoodenAxe 5 wooden_axe Obtain a wooden axe.
18 CraftWoodenHoe 5 wooden_hoe Obtain a wooden hoe.
MT2 19 CraftWoodenSword 5 wooden_sword Obtain a wooden sword.
20 CraftWoodenShovel 5 wooden_shovel Obtain a wooden shovel.
Tool null .
(Simple) 21 Craf tFurnacg 7 furnace. Obta¥n a furnace..
22 CraftStonePickaxe 7 stone_pickaxe Obtain a stone pickaxe.
23 CraftStoneAxe 7 stone_axe Obtain a stone axe.
24 CraftStoneHoe 7 stone_hoe Obtain a stone hoe.
25 CraftStoneShovel 7 stone_shovel Obtain a stone shovel.
26 CraftStoneSword 7 stone_sword Obtain a stone sword.

18

Table 11: Task details on MT3 Hunt and Food set.

Required . Initial .
Meta-Task ID Task Name qu Object Instruction
Skills Inventory
27 CraftBed 5 bed Obtain a bed.
MT3 28 CraftPainting 6 painting Obtain a painting.
29 CraftCarpet 5 carpet Obtain a carpet.
Hunt . . .
& 30 CraftItemFrame 6 item_frame null Obtain an item frame.
Food 31 CookPorkchop 9 cooked_porkchop Cook the porkchop.
32 CookBeef 9 cooked_beef Cook the beef.
33 CookMutton 9 cooked_mutton Cook the mutton.
Table 12: Task details on MT4 Dig-Down set.
Meta-Task ID Task Name Rqulred Object Initial Instruction
Skills Inventory
34 CraftStoneStairs 7 stone_stairs Obtain a stone stair.
35 CraftStoneSlab 7 stone_slab Obtain a stone slab.
36 CraftArmorStand 10 armor_stand Obtain an armor stand.
37 CraftCobblestoneWall 7 cobblestone_wall Obtain a cobblestone wall.
38 CraftQuartzBlock 10 quartz_block Obtain a quartz block.
39 CraftStoneBrick 9 stone_brick Obtain a stone brick.
MT4
Die-Down 40 SmeltStone 9 stone null Smelt a stone.
&0 41 CraftTorch 9 torch Obtain a stone brick.
42 ObtainCoal 8 coal Mine coal.
43 CraftStoneBrickStairs 10 stonebrick_stairs Obtain a stone brick.
44 CraftStonePressurePlate 9 stone_pressure_plate Obtain a stone brick.
45 CraftStoneButton 7 stone_button Obtain a stone brick.
46 CraftLever 7 level Obtain a stone brick.
Table 13: Task details on MT5 Equipment set.
Meta-Task ID Task Name Reql.nred Object Initial Instruction
Skills Inventory
47 EquipLeatherBoots 5 leather_boots Equip the leather boot.
48 EquipLeatherChestplate 5 leather_chestplate Equip the leather chestplate.
49 EquipLeatherHelmet 5 leather_helmet Equip the leather helmet.
MT5 50 EquipLeatherLeggings 5 leather_leggings Equip the leather leggings.
Equipment 51 EquipShield 11 shield null Equip the shield.
quip 52 EquipIronChestplate 11 iron_chestplate Equip the iron chestplate.
53 EquipIronLeggings 11 iron_leggings Equip the iron leggings.
54 EquipIronHelmet 11 iron_helmet Equip the iron helmet.
55 EquipIronBoots 11 iron_boots Equip the iron boots.
Table 14: Task details on MT6 Tool (Complex) set.
Required . Initial .
Meta-Task ID Task Name A Object Instruction
Skills Inventory
56 CraftBucket 11 bucket Obtain a bucket.
57 CraftShears 11 shears Make shears.
MT6 58 CraftIronPickaxe 11 iron_pickaxe Obtain an iron pickaxe.
Tool 59 CraftIronAxe 11 iron_axe null Obtain an iron axe.
(Complex) 60 CraftIronHoe 11 iron_hoe Obtain an iron hoe.
61 CraftIronShovel 11 iron_shovel Obtain an iron shovel.
62 CraftIronSword 11 iron_sword Obtain an iron sword.

19

Table 15: Task details

on MT7 Iron-Stage set.

Meta-Task ID Task Name Reqlflred Object Initial Instruction
Skills Inventory

63 CraftIronBars 11 iron_bars Obtain an iron bar.

64 CraftIronNugget 11 iron_nugget Obtain an iron nugget.

65 CraftMinecart 11 minecart Obtain a minecart.

66 CraftHopper 12 hopper Obtain a hopper.

67 CraftHopperMinecart 14 hopper_minecart Obtain a hopper minecart.

MT7 68 CraftFurnaceMinecart 12 furnace_minecart Obta?n a furnace minecart.

Tron-Stage 69 CraftCauldron 11 cauldr()n. null Obta¥n a cauldrop.

70 CraftChestMinecart 13 chest_minecart Obtain a chest minecart.

71 CraftIronDoor 11 iron_door Obtain an iron door.

72 CraftIronTrapdoor 11 iron_trapdoor Obtain an iron trapdoor.

73 CraftTripwireHook 11 tripwire_hook Obtain a tripwire hook.

74 CraftHWPressurePlate 11 heavy_weighted_plate Obtain a heavy weighted plate.

75 CraftRail 11 rail Obtain a rail.

Table 16: Task details on MT8 Challenge set.
Meta-Task ID Task Name Rqulred Object nitial Instruction
Skills Inventory

ChﬁlTeg £ 76 obtainDiamond 12 diamond null Obtain a diamond.

C DEPS Implementation Details

We study three different implementations of DEPS for each of the experimental settings. While
each version incorporates description and self-explanation to improve planning of LLM, there are
differences in the internal components of each system, as seen in Table 17.

Table 17: Comparison between different versions of DEPS implemented in three different environments.

Minecraft ALFWorld Tabletop Manipulation
LLM code—-davinci-02 text-davinci-03 gpt-3.5-turbo
Controller Behavior Cloning Learned =~ LLM-based CLIPort
Descriptor Inventory Description Env Support heuristics
Explainer =~ LLM-based LLM-based LLM-based
Selector Horizon Prediction Module N/A N/A

C.1 Controller

As the name implies, tasks in Minecraft are usually related to mine and craft goals. Mine goals
require the agent to collect raw materials from the environment using the appropriate tools. Craft
goals ask the agent to synthesize using existing materials. Any raw material used requires the agent
to collect through suitable tools (e.g., diamonds can only be collected by an iron pickaxe or a better
pickaxe). So a task usually requires dozens of step-by-step mine and craft goals, as the required
skills in Table 9. Note that the successful execution of a task needs to satisfy certain exact numerical
constraints due to the presence of strict generation recipes in the environment (e.g., a log can craft
4 planks, so harvesting 6 planks requires at least 2 logs). When the number of materials collected
is not enough, the goal cannot be completed successfully. When more materials are collected than
actually needed, the execution success rate of the task could also be reduced because the plan can not
be finished under the maximum action steps.

20

Table 18: The success rate of different skill/goal with imitation learning controller.

ID Skill Description Success Rate Episode Length
0 Mine 1 oak wood 0.39 600
1 Mine birch wood 0.29 600
2 Mine 1 cobblestone with pickaxe 0.95 600
3 Mine 1 stone with pickaxe 0.70 600
4 Mine 1 seed 0.18 600
5 Mine 1 leaves with shears 0.68 600
6 Mine 1 dirt 0.54 600
7 Mine 1 iron ore with stone pickaxe 0.40 3000
8 Mine 3 iron ore with stone pickaxe 0.16 3000
9 Mine 1 diamond with iron pickaxe 0.35 12000
10 Mine 1 diamond with stone pickaxe 0.00 12000
11 Kill 1 sheep with axe 0.44 600
12 Kill 1 cow with axe 0.60 600
13 Kill 1 chicken with axe 0.46 600
14 Kill 1 pig with axe 0.49 600
15 Kill 1 llama 0.50 600
16 Equip tool on mainhand 1.00 600
Craft w/o crafting_table 1.00 600
17-261 Craft w/ crafting_table 0.90 600
Smelt w/ furnace 0.80 600

We designed the agent’s skill space based on these goals, as shown in Table 18, with a total of 262
goals. Every goal is designed with an objective item (e.g., | minecraft : cobblestone for skill
“Mine 1 cobblestone with pickaxe”), which is used to evaluate the achievement of the
goal. The skill, as a goal-conditioned policy 7(a|s, g) for decision-making, maps the current state s
and goal g to action a. The goal is specified as natural language instructions here, which is similar to

[4].

When training the controller, we adopt the observation space provided by MineDolJo [10], which
includes an RGB camera view, yaw/pitch angle, GPS location, and the type of 3 x 3 blocks surrounding
the agent. We discretize the original multi-discrete action space provided by MineDojo into 42 discrete
actions. We use the proposed imitation learning method proposed by [6] in training. To be specific, a
modified goal-sensitive Impala CNN is used as the backbone network. The success rate under a fixed
episode length of every skill is listed in Table 18.

C.2 LLM as Planner

DEPS relies on Large Language Models (LLMs) to generate language-based plans. In our Minecraft
experiment, we chose Codex [8] as the LLM Planner because it can accept longer input tokens and
is cost-effective. However, DEPS is compatible with various types of LLMs. Therefore, we used
GPT3 [5] and ChatGPT as LLM Planners in the ALFWorld and Tabletop Manipulation experiments,
respectively. Due to the effective planning and error correction performance of DEPS, the initial
plan generated by the LLM has little impact on the final performance of the Agent. We also conduct
ablation experiments on

even if the initial plan generated by the LLM has low accuracy, DEPS can generate a final feasible
plan through self-explanation and re-planning. Therefore, we conducted ablation experiments on
LLM in Minecraft.

We choose Codex [8], ChatGPT, GPT3 [5], and recent GPT-4 [31] as Planners. We used Vanilla
Planner [16] as baselines and excluded the re-planning process. Given the same prompt with DEPS,
the performance of baseline models reflects the planning ability of different LLMs. The success rate
of baseline and DEPS on different LLMs are reported in Table 19.

21

Table 19: Success rates for different LLMs on Minecraft tasks.

Grou Codex [8] GPT-3 [5] ChatGPT GPT-4 [31]
P baseline DEPS | baseline DEPS | baseline DEPS | baseline DEPS
MT1 28.6 79.8 27.2 75.4 20.3 70.2 49.2 89.3

MT2 37.1 79.5 42.1 76.3 28.2 68.5 48.3 85.0
MT3 15.1 62.4 7.8 58.7 32 50.4 38.04 63.4
MT4 15.9 533 6.7 50.2 4.8 47.8 27.0 55.7
MT5 3.2 29.2 2.7 17.2 0.8 16.3 15.7 32.2
MT6 0.5 13.8 0.3 7.9 0.3 6.0 4.9 16.19
MT7 0.6 12.6 0.4 53 0.5 52 3.1 16.41

The success rate of Vanilla Planner varies on the LLMs. The GPT-4 baseline achieved an initial plan
accuracy twice as high as the baselines on other LLMs, demonstrating superior planning ability. After
being augmented by Descriptor, Explainer, and Selector, DEPS based on different LLMs showed
almost identical success rates. This indicates that DEPS-augmented LLMs can generate more feasible
plans in open-world environments even if the initial plan is less successful.

It is noteworthy that DEPS is constrained by the maximum token limits of various models, which
dictate the maximum re-planning rounds that can be supported. Longer re-planning rounds tend to
yield superior performance, particularly in long-horizon tasks requiring more skills (in MT6-MT7),
as detailed in the Section 4.3.

Since we use pretrained LLM as a planner, it indeed requires exposure to a large amount of Minecraft-
related corpus during the pretraining phase. Considering that Minecraft is one of the most popular
games worldwide, there is relatively abundant data about Minecraft available online. We conducted
experiments using open-source pretrained LLaMA2-70B on several Minecraft tasks and found that
DEPS based on LLaMA?2 also performs reliable planning under Minecraft conditions. Consider-
ing limited training data used by LLaMA?2, we further finetuned an open-source language model
(LLaMAZ2-13B) using Minecraft texts obtained from the internet which exhibited better planning
performance. The results are shown in Table 20.

Table 20: Results of DEPS based on open-sourced LLaMA language models.

Language Model CraftingTable WoodenPickaxe Furnace StonePickaxe
Pretrained LLaMA2-70B [44] 60.0 50.0 40.0 50.0
Finetuned LLaMA2-13B [44] 90.0 80.0 70.0 80.0

OpenAl Codex [8] 90.0 80.0 66.7 73.3

C.3 LLM as Explainer

Given the description and previous plan, the explainer can generate a self-explanation of the failure of
the current plan and give instructions to fix the bugs. The explainer is implemented with the OpenAl
completion mode based on text-davinci-03 models. The prompt for the explainer is listed in
Listing 1.

Here are some actions that the agent fails to perform in Minecraft. Please give
the explanation of action execution failure according to the current inventory
information of the agent.

#H4#

Failed Action: mine({’iron_ore’:1}, null); # step 5: mine 1 iron_ore without tool

Current Inventory: null

Explanation: Because mining iron_ore needs to use the tool stone_pickaxe, but my
inventory does not have stone_pickaxe. So I need to craft stone_pickaxe first.

#H#

Failed Action: craft ({’stone_pickaxe’:1}, {’cobblestone’:3, ’'stick’:2}, '
crafting_table’); # step 1: craft 1 stone_pickaxe from 3 cobblestone and 2
stick, on crafting_table

Current Inventory: null

Explanation: Because crafting stone_pickaxe needs to have 3 cobblestone and 2
stick in inventory, but my inventory does not have cobblestone and stick. So I

need to mine cobblestone and craft stick first.

22

###

Failed Action: craft ({’stick’:4}, {’planks’:2}, null); # step 3: craft 4 stick
from 2 planks first

Current Inventory: null

Explanation: Because crafting stick needs to have planks in inventory, but my
inventory does not have planks. So I need to craft planks first.

#H#
Listing 1: Prompt for Explainer in Minecraft tasks

C.4 Other modules

Goal Parser We need to map the plan expressed in free-form language to the pre-defined controller
skills set. We use the LLM as an automatic parser to parse the language plan first. For the goals
not following pre-defined code expression, we calculate its semantic distance to the skills by cosine
similarity with pre-trained Sentence-Bert model [37] and select the most similar skill as the corre-
sponding goal. All executable goals are listed in Appendix C. The LLM-based parser is general and
can be transferred to other domains easily by modifying the prompt. The prompt for Minecraft parser
is listed in Listing 2.

Extract the action name, action type, goal object, tool and action rank from the

input text.

input: mine ({’log’:3}, null); # step 1: mine 3 log without tool
name: mine_log

action: mine

object: {’log’:3}

tool: null
rank: 1
###

input: craft ({’planks’:12}, {’log’:3}, null); # step 2: craft 12 planks from 3 log
name: craft_planks

action: craft

object: {’planks’:12}

materials: {’log’:3}
tool: null

rank: 2

#H#

Listing 2: Prompt for Goal Parser in Minecraft tasks

Success Detector The successful execution of a plan is contingent upon the agent’s perception
of the current goal’s completion status, which is assessed by the success detector. In Minecraft,
agents possess an inventory that contains all pertinent information regarding the agent’s current
state. Thus, the Success Detector can be implemented by monitoring changes in object information
within the item inventory. In other scenarios, we can query the LLM to ascertain whether the agent
has accomplished a general goal by describing the agent’s current state. Alternatively, in certain
environments [40], the execution of a goal is linked to the agent’s current reward, signifying that
these rewards can serve as automatic success detectors.

Prompt The generalization of the LLM to different tasks relies on well-designed prompts and
related demonstrations [28]. Given an instruction command (e.g., ObtainDiamond) as task 7', a
prompt generator (ProG) will translate 7" into prompt text. We also added two DEP examples in the
prompt as demonstrations to make the LLM output familiar to the chain-of-thought thinking and
structural output. We also design a chain-of-thought code-comments-type planning prompt to better
demonstrate the capabilities of LLM. All messages are modified to suitable prompts through the
prompt-generator before being input to LLM, including task 7" and description d;. The full prompt
sentences and interaction logs are listed in Appendix H.

D Comparison with other LLLM-based Planners

The architectures of the different LLM-based planners are illustrated in Figure 7. Where (b) describes
the information in the environment into LLM via scene descriptor and success detector, and directly

23

Scene

I etruction Desaription

l e
PLANNER) EXPLAINER PLANNER PLANNER
LLM e LLM LLM LLM

Instruction

PLANNER I
|
| LM plan 5
plan
description |
Scene Success
goal Description GQueue Detector
SELECTOR DESCRIPTOR T ¢ N
VLM [VLM goal
S goal glt+1) goal g(t)
| CONTROLL
1 & skill T ER CONTROLL CONTROLL
goaitsel running logs T 'y ER ER
action T 1
DE)S action 4 action 4
y obs * obs
obs— - -
CONTROLL ENV ENV
ER ENV ENV
actiorr
(a) Ours (b) Short-horizon (c) Long-Horizon (d) Long-Horizon
action planning one-shot planning planning & re-planning

Figure 7: Comparison of LLM-based planner architecture. (a), (b), (c), (d) represents planner of ours, Inner
Monologue [17], Zero-Shot Planner [16] and Zero-Shot Planner with re-planning process, respectively.

plans the next goal/action, (c) is Zero-Shot planner [16], which generates the step-by-step goal
sequences as plan and ignores the environment state and execution feedback, (d) is the Zero-Shot
planner augmented with textual feedback and re-planning process. DEPS further rethink and explain
the feedback of previous plans explicitly with the descriptor and explainer. The LLM-based planner
will re-plan the task according to the explanation, as demonstrated in Figure 7(a). In addition, the
goal Selector further improves the executability of the LLM plan.

E Discussion on ObtainDiamond Task

e
ﬂcr’aft stone pickaxe ‘mine iron ore ‘cr‘aft furnace i smelt iron ingot ﬂcr‘aft iron pickaxe @mine diamond

Figure 8: The milestone goals of the ObtainDiamond task.

As outlined in Section 4.4, ObtainDiamond task is a formidable task within the open-ended
Minecraft environment. Given the necessity to explore an infinitely expansive world, an efficient plan
can prove advantageous, as shown in Figure 8. The task is allotted a maximum of 12,000 steps to
interact with the environment, which is comparable to that of human performance [14]. Rather than
manually devising explicit hierarchical rewards, we opt to utilize DEPS for generating a hierarchical
plan, which is then transferred to the downstream controller to progressively achieve each goal. When
equipped with an Oracle Controller, DEPS yields a success rate of 60% for ObtainDiamond. In
our experimentation, we employed Behavior Cloning to train a Controller agent [6]. DEPS+BC
Controller achieved a success rate of 0.6% in randomly generated Minecraft worlds. The primary
bottleneck impeding overall agent success rate lies within the goal-conditioned Controller, not the
plans generated by DEPS. Thus, it is worth exploring the development of a data-efficient Controller
capable of accepting Language goals.

Another rationale for using DEPS is that, akin to reality, materials in Minecraft possess quantity con-
straints, and durability for tools. In ObtainDiamond task, an iron pickaxe is typically insufficient

24

to support the agent, given the rarity of diamonds within the environment (which are predominantly
found between depths of 2-16 layers and appear only 0.0846% of the time). The robust re-planning
capabilities of DEPS can facilitate the generation of a feasible plan (initiating with crafting an
iron-pickaxe) based on the agent’s current state.

Additionally, we report the milestones, which demonstrate the decreasing success rate of subsequent
tasks in Figure 9 attributable to the task’s inherent complexity and Controller constraints.

96.7
89.0 89.0 89.0 ...
83.1
-7 67.9
316
w A
8,8 8y7

Milestone Items

100

8

o

6

o

Success Rate

4

o

2

o

0

Figure 9: Success rate of milestone items for mining diamond.

F Success Rates of ALL Tasks in Minecraft

We report the complete and detailed success rate table of all tasks for different methods in Table 21,
including Zero-shot Planner [16], ProgPrompt [42], Chain-of-Thought [45], Inner Monologue [17],
Code as Policies [20], and proposed methods (i.e., DEP w/o Selector, and DEPS).

All tasks are executed for at least 30 times across different world seeds, given the same initial
conditions. The birth positions of the world are random according to the seed. The average success
rates are listed in Table 21. Our approach is state-of-the-art on almost all tasks, especially on difficult
tasks that require more skills.

25

Table 21: Success rate comparison of various methods on MineDojo [10] environments.

Meta-Task Task Object GPT[16] PP[42] CoT[45] IM[17] CaP[20] DEP DEPS
planks 56.7 56.7 833 833 833 833 833
stick 0.0 56.7 833 833 833 833 86.7
wooden_slab 26.7 26.7 56.7 833 833 833 767
wooden_button 233 50.0 733 73.3 73.3 733 96.7
wooden_pressure_plate 80.0 80.0 533 80.0 80.0 80.0 86.7
chest 0.0 26.7 0.0 0.0 50.0 76.7 767
Basic oak_stairs 20.0 40.0 36.7 16.7 36.7 56.7 60.0
MT1 sign 233 0.0 433 0.0 433 633 86.7
fence 20.0 20.0 0.0 20.0 433 633 80.0
fence_gate 63.3 0.0 63.3 63.3 63.3 933 733
boat 0.0 0.0 0.0 26.7 56.7 833 733
trapdoor 26.7 26.7 26.7 56.7 56.7 833 76.7
bowl 0.0 233 0.0 233 46.7 70.0 80.0
wooden_door 233 233 46.7 46.7 46.7 66.7 80.0
crafting_table 70.0 23.3 70.0 70.0 70.0 70.0 90.0
wooden_pickaxe 80.0 80.0 80.0 80.0 80.0 80.0 80.0
wooden_axe 46.7 46.7 70.0 70.0 70.0 70.0 96.7
wooden_hoe 86.7 56.7 86.7 30.0 86.7 86.7 86.7
wooden_sword 833 833 833 833 833 833 86.7
Tool(Simple) wooden_shovel 76.7 76.7 76.7 76.7 76.7 76.7 90.0
MT2 furnace 20.0 20.0 0.0 40.0 40.0 60.0 66.7
stone_pickaxe 16.7 16.7 36.7 36.7 53.3 533 733
stone_axe 0.0 0.0 30.0 30.0 30.0 46.7 70.0
stone_hoe 20.0 20.0 36.7 36.7 56.7 56.7 66.7
stone_shovel 56.7 56.7 40.0 36.7 36.7 56.7 66.7
stone_sword 16.7 0.0 533 533 36.7 533 80.0
bed 16.7 233 233 6.7 6.7 233 433
painting 333 0.0 0.0 16.7 16.7 533 86.7
carpet 0.0 333 0.0 0.0 13.3 333 433
H““t&‘f;""d item_frame 233 50.0 233 0.0 233 733 833
cooked_porkchop 0.0 0.0 0.0 0.0 0.0 40.0 50.0
cooked_beef 0.0 0.0 0.0 0.0 0.0 533 63.3
cooked_mutton 0.0 13.3 0.0 0.0 0.0 433 66.7
stone_stairs 16.7 233 20.0 36.7 16.7 56.7 66.7
stone_slab 16.7 50.0 0.0 16.7 333 50.0 733
Dig-down cobblestone_wall 16.7 16.7 16.7 16.7 433 433 633
MT4 lever 0.0 0.0 0.0 46.7 46.7 70.0 833
coal 0.0 16.7 0.0 6.7 0.0 16.7 20.0
torch 0.0 6.7 0.0 6.7 0.0 233 133
leather_boots 0.0 133 0.0 13.3 13.3 36.7 60.0
leather_chestplate 0.0 6.7 16.7 0.0 6.7 233 36.7
leather_helmet 16.7 6.7 0.0 6.7 0.0 26.7 70.0
Equipment leather_leggings 0.0 0.0 0.0 20.0 0.0 300 56.7
MTS5 iron_chestplale 0.0 0.0 0.0 0.0 0.0 0.0 0.0
iron_leggings 0.0 0.0 0.0 0.0 0.0 33 3.3
iron_helmet 0.0 0.0 0.0 0.0 0.0 0.0 33
iron_boots 0.0 0.0 0.0 0.0 0.0 6.7 20.0
shield 0.0 0.0 0.0 0.0 6.7 16.7 133
bucket 0.0 33 0.0 0.0 33 10.0 6.7
shears 0.0 0.0 0.0 0.0 0.0 10.0 30.0
Tool Complex iron_pickaxe 0.0 0.0 0.0 6.7 0.0 6.7 10.0
MT6 iron_axe 0.0 0.0 0.0 0.0 0.0 0.0 16.7
iron_hoe 0.0 0.0 0.0 0.0 0.0 33 13.3
iron_shovel 0.0 0.0 0.0 0.0 0.0 6.7 13.3
iron_sword 0.0 0.0 0.0 0.0 33 33 6.7
iron_bars 0.0 0.0 0.0 0.0 0.0 0.0 6.7
iron_nugget 0.0 6.7 0.0 6.7 6.7 233 40.0
minecart 0.0 0.0 0.0 0.0 0.0 33 10.0
hopper 0.0 0.0 0.0 0.0 0.0 33 6.7
hopper_minecart 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tron-Stage furnace_n}inecal‘t 0.0 0.0 0.0 0.0 0.0 33 3.3
MT7 chest_minecart 0.0 0.0 0.0 0.0 0.0 33 33
iron_door 0.0 0.0 0.0 0.0 0.0 0.0 33
iron_trapdoor 0.0 0.0 0.0 0.0 0.0 33 16.7
tripwire_hook 0.0 0.0 0.0 6.7 0.0 16.7 30.0
heavy_weighted_pressure_plate 0.0 0.0 0.0 0.0 0.0 33 333
rail 0.0 0.0 0.0 0.0 0.0 0.0 6.7
cauldron 0.0 0.0 0.0 0.0 0.0 0.0 33
MTS8 diamond 0.0 0.0 0.0 0.0 0.0 0.5 0.6
Challenge

26

G Prompt for Different Tasks and Different Methods

G.1 Prompt for Minecraft Tasks

G.1.1 DEPS

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.
Planner: OK.

User: How to obtain 1 wooden_button in Minecraft step-by-step?
Planner: The code for obtaining 1 wooden_button is as follows:
def obtain_1_wooden_button (inventory={}) :
mine ({’log’:1}, null); # step 1l: mine 1 log without tool
craft ({’planks’:4}, {’log’:1}, null); # step 2: craft 4 planks from 1 log
craft ({’wooden_button’:1}, {’planks’:1}, null); # step 3: craft 1 wooden_button
from 1 planks
return "wooden_button"
Descriptor: I succeed in step 1, 2, 3.
User: Good. I finish all steps and I obtain 1 stone_pickaxe successfully.
Planner: OK.

User: How to obtain 1 stone_sword in Minecraft step-by-step?
Planner: The code for obtaining stone_sword is as follows:
def obtain_1_stone_sword(inventory = {}):
mine ({’log’:3}, null); # step 1: mine 3 log without tool
craft ({"planks’:12}, {’log’:3}, null); # step 2: craft 12 planks from 3 log
craft ({’stick’:4}, {’'planks’:2}, null); # step 3: craft 4 stick from 2 planks
mine ({’cobblestone’ :2}, null); # step 4: mine 2 cobblestone without tool
craft ({’stone_sword’ :1}, {’cobblestone’:2, ’'stick’:1}, ’crafting table’); #
step 5: craft 1 stone_sword from 2 cobblestone and 1 stick, on
crafting_table
return ’stone_sword’

Descriptor: I succeed on step 1, 2, 3, but I fail on step 4 "mine ({’cobblestone
:2}, null);". My inventory now has 10 planks, 4 stick.
Explainer: Because mining cobblestone needs to use the tool wooden_pickaxe.
User: Please fix the above errors and replan the task "obtain 1 stone_sword".
RePlanner: The code for crafting stone_sword is as bellows:
def obtain_1_stone_sword(inventory = {’planks’:10, ’stick’:4}):
craft ({’wooden_pickaxe’:1}, {’planks’:3, ’stick’:2}, ’'crafting_table’); # step
1: craft 1 wooden_pickaxe from 3 planks and 2 stick, on crafting_table
mine ({’cobblestone’ :2}, ’'wooden_pickaxe’); # step 2: mine 2 cobblestone with
wooden_pickaxe
craft ({’stone_sword’:1}, {’cobblestone’:2, ’'stick’:1}, ’crafting_table’); #
step 3: craft 1 stone_sword from 2 cobblestone and 1 stick, on
crafting_table
return ’stone_sword’

Descriptor: I fail on step 1 "craft ({’wooden_pickaxe’:1}, {’planks’:3, ’'stick’:2},
'crafting_table’);". My inventory now has 10 planks, 4 stick.
Explainer: Because the action needs to use the tool crafting_table, but I do not
have it.
User: Please fix the above errors and replan the task "obtain 1 stone_sword".
RePlanner: The code for crafting stone_sword is as bellows:
def obtain_1_stone_sword(inventory = {’planks’:10, ’stick’:4}):
craft ({’crafting_table’:1}, {’planks’:4}, null); # step 1l: craft 1
crafting_table from 4 planks
craft ({’wooden_pickaxe’:1}, {’planks’:3, ’stick’:2}, ’'crafting_table’); # step
2: craft 1 wooden_pickaxe from 3 planks and 2 stick, on crafting_table
mine ({’ cobblestone’ :2}, ’wooden_pickaxe’); # step 3: mine 2 cobblestone with
wooden_pickaxe
craft ({’stone_sword’:1}, {’cobblestone’:2, ’'stick’:2}, ’'crafting_table’); #
step 4: craft 1 stone_sword from 2 cobblestone and 1 stick, on
crafting_table
return ’stone_sword’
Descriptor: I succeed in step 1, 2, 3, 4.
User: Good. I finish all steps and I obtain 1 stone_pickaxe successfully.

27

Planner: OK.

Listing 3: Prompt for DEPS in Minecraft tasks

G.1.2 Baselines

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.
Planner: OK.

User: How to obtain 1 wooden_button in Minecraft step-by-step?
Planner: The plan is as follows:

step 1: mine 1 log

step 2: craft 4 planks

step 3: craft 1 wooden_button

##

User: How to obtain stone_sword in Minecraft step-by-step?
Planner: The plan is as follows:
step 1: mine 3 log

step 2: craft 12 planks

step 3: craft 4 stick

step 4: craft 1 crafting_ table
step 5: craft 1 wooden_pickaxe
step 6: mine 2 cobblestone
step 7: craft 1 stone_sword
###

Listing 4: Prompt for Zero-shot Planner [16] in Minecraft tasks.

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.
Planner: OK.

User: How to obtain 1 wooden_button in Minecraft step-by-step?
Planner: The code for obtaining wooden_button is as follows:
rrr
from actions import mine_log, craft_planks, craft_wooden_button
def obtain_wooden_button (inventory = {}):
mine_log(num = 1); # step 1: mine 1 log
craft_planks(num = 4); # step 2: craft 4 planks
craft_wooden_button(num = 1); # step 3: craft 1 wooden_button
return "wooden_button"

User: How to obtain 1 stone_sword in Minecraft step-by-step?

Planner: The code for obtaining stone_sword is as follows:

rrr

from actions import mine_log, craft_planks, craft_stick, craft_crafting_table,
craft_wooden_pickaxe, mine_cobblestone, craft_stone_sword

def obtain_stone_sword (inventory = {}):
mine_log(num = 3); # step 1: mine 3 log
craft_planks (num = 12); # step 2: craft 12 planks
craft_stick(num = 4); # step 3: craft 4 stick
craft_crafting _table(num = 1); # step 4: craft 1 crafting_table
craft_wooden_pickaxe (num = 1); # step 5: craft 1 wooden_pickaxe
mine_cobblestone (num = 2); # step 6: mine 2 cobblestone
craft_stone_sword(num = 1); # step 7: craft 1 stone_sword
return "stone_sword"

Listing 5: Prompt for ProgPrompt [42] in Minecraft tasks.

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.
Planner: OK.

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.

28

Planner: OK.

User: How to obtain 1 wooden_button in Minecraft step-by-step?

Planner: The plan is as follows:

step 1: mine 1 log without tool

Thinking: Inventory will add 1 log, as inventory = lxlog

step 2: craft 4 planks from 1 log

Thinking: Inventory will add 4 planks and delete 1 log, as inventory = 4xplanks

step 3: craft 1 wooden_button from 1 planks

Thinking: Inventory will add 1 wooden_button and delete 1 planks, as inventory = 3%
planks + lxwooden_button

#H#

User: How to obtain stone_sword in Minecraft step-by-step?

Planner: The plan is as follows:

step 1: mine 3 log without tool

Thinking: Inventory will add 3 log, as inventory = 3xlog.

step 2: craft 12 planks from 3 log

Thinking: Inventory will add 12 planks and delete 3 log, as inventory = 12«planks

step 3: craft 4 stick from 2 planks

Thinking: Inventory will add 4 stick and delete 2 planks, as inventory = 1l0xplanks
+ 4xstick

step 4: craft 1 crafting_table from 4 planks

Thinking: Inventory will add 1 crafting_table and delete 4 planks, as inventory =
6xplanks + 4xstick + lxcrafting_table

step 5: craft 1 wooden_pickaxe from 3 planks and stick, on crafting_table

Thinking: Inventory will add 1 wooden_pickaxe, delete 3 planks and delete 2 stick,

as inventory = 3xplanks + 2xstick + lxcrafting_table + lxwooden_pickaxe
step 6: mine 2 cobblestone with wooden_pickaxe
Thinking: Inventory will add 2 cobblestone, as inventory = 3%planks + 2%stick + 1x

crafting_table + lxwooden_pickaxe + 2xcobblestone

step 7: craft 1 stone_sword from 2 cobblestone and 1 stick, on crafting_table

Thinking: Inventory will add 1 stone_sword, delete 2 cobblestone, and delete 1
stick, as inventory = 3xplanks + lxstick + lxcrafting_table + lxwooden_pickaxe
+ lxstone_sword

#H#

Listing 6: Prompt for Chain-of-Thought [45] in Minecraft tasks

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.
Planner: OK.

Scene: My inventory has nothing.
Planner: mine 1 log

Robot Thought: mining log needs no tool
Successful Action: True

Scene: My inventory has 1 log.

Planner: craft 4 planks

Robot Thought: crafting 4 planks needs 1 log
Successful Action: True

Scene: My inventory has 4 planks

Planner: craft 1 wooden_button

{Robot Thought}: crafting 1 wooden_button needs 1 planks
Successful Action: True

Scene: My inventory has nothing.
Planner: mine 3 log

Robot Thought: mining log needs no tool
Successful Action: True

Scene: My inventory has 3 log.

Planner: craft 12 planks
Robot Thought: crafting 12 planks needs 3 log

29

Successful Action: True

Scene: My inventory has 12 planks

Planner: craft 4 stick

Robot Thought: crafting 4 stick needs 2 planks
Successful Action: True

Scene: My inventory has 10 planks, 4 stick

Planner: craft 1 wooden_pickaxe

Robot Thought: crafting 1 wooden_pickaxe needs 3 planks and 2 stick on
crafting_table

Successful Action: False

Scene: My inventory has 10 planks, 4 stick

Planner: craft 1 crafting_table

Robot Thought: crafting 1 crafting_table needs 4 planks
Successful Action: True

Scene: My inventory has 6 planks, 4 stick, 1 crafting_table

Planner: craft 1 wooden_pickaxe

Robot Thought: crafting 1 wooden_pickaxe needs 3 planks and 2 stick, on
crafting_table

Successful Action: True

Scene: My inventory has 3 planks, 2 stick, 1 crafting table, 1 wooden_pickaxe
Planner: mine 2 cobblestone

Robot Thought: mining cobblestone needs wooden_pickaxe as tool

Successful Action: True

Scene: My inventory has 3 planks, 2 stick, 1 crafting_table, 1 wooden_pickaxe, 2
cobblestone

Planner: craft 1 stone_sword

Robot Thought: crafting 1 stone_sword needs 2 cobblestone and 1 stick, on
crafting_table

Successful Action: True

Listing 7: Prompt for Inner Monologue [17] in Minecraft tasks

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.
Planner: OK.

User: How to obtain 1 wooden_button in Minecraft step-by-step?
Planner: The code for obtaining wooden_button is as follows:
def craft_stone_sword(inventory = {}):

step 1: mine 1 log without tool

while not inventory.has({’log’:1}):

mine (obj = "log", tool = null);
step 2: craft 4 planks from 1 log
while not inventory.has({’planks’:4}):

assert inventory.has({’log’:1}), "I do not have enough log for crafting
planks"
craft (obj = "planks", tool = null);

step 3: craft 1 wooden_button from 1 planks
while not inventory.has ({’wooden_button’:1}):
assert inventory.has({’planks’:1}), "I do not have enough planks for
crafting wooden_button"
craft (obj = "wooden_button", tool = null);
return "wooden_button"
#H#H

User: How to obtain 1 stone_sword in Minecraft step-by-step?
Planner: The code for obtaining stone_sword is as follows:
def craft_stone_sword(inventory = {}):

step 1: mine 3 log without tool

while not inventory.has ({’log’:3}):

mine (obj = "log", tool = null);
step 2: craft 12 planks from 3 log
while not inventory.has ({’planks’:12}):

assert inventory.has({’log’:1}), "I do not have enough log for crafting
planks"
craft (obj = "planks", tool = null);

step 3: craft 4 stick from 2 planks
while not inventory.has ({’stick’:4}):

30

assert inventory.has({’planks’:2}), "I do not have enough planks for
crafting stick”
craft (obj = "stick", tool = null);
step 4: craft 1 crafting_ table from 4 planks
while not inventory.has ({’crafting_table’:1}):
assert inventory.has({’planks’:4}), "I do not have enough planks for
crafting crafting_table"
craft (obj = "crafting_table", tool = null)
step 5: craft 1 wooden_pickaxe from 3 planks and 2 stick, on crafting_table
while not inventory.has ({’wooden_pickaxe’:1}):

assert inventory.has({’planks’:3}), "I do not have enough planks for
crafting wooden_pickaxe"

assert inventory.has({’stick’:2}), "I do not have enough stick for crafting
wooden_pickaxe"

assert inventory.has ({’crafting_table’:1}), "I do not have the tool
crafting_table for crafting wooden_pickaxe"

craft (obj = "crafting_table", tool = "crafting_table")

step 6: mine 2 cobblestone with tool wooden_pickaxe
while not inventory.has ({’cobblestone’:2}):
assert inventory.has ({’wooden_pickaxe’:1}), "I do not have the tool
wooden_pickaxe for mining cobblestone"
mine (obj = "cobblestone", tool = "wooden_pickaxe")
step 7: craft 1 stone_sword from 2 cobblestone and 1 stick on crafting_table
while not inventory.has ({’stone_sword’:1}):
assert inventory.has ({’cobblestone’:2}), "I do not have enough cobblestone
for crafting stone_sword"

assert inventory.has({’stick’:1}), "I do not have enough stick for crafting
stone_sword"
assert inventory.has ({’crafting_table’:1}), "I do not have the tool
crafting_table for crafting wooden_pickaxe"
craft (obj = "stone_sword", tool = "crafting_table")
return "stone_sword"

#H##
Listing 8: Prompt for Code as Policies [20] in Minecraft tasks

G.2 Prompt for ALFWorld Tasks
G.2.1 DEPS

Human: —-= Welcome to TextWorld, ALFRED! =-
Descriptor: You are in the middle of a room. Looking quickly around you, you see a
cabinet 1, a diningtable 1 and a fridge 1.

Human: Your task is to: put a cool tomato in cabinet. Please generate the
sequences of sub-goals to complete the task.

Planner: The task is to put a cool tomato in cabinet. The plan is below:

#1 pick a tomato at fridge 1
#2 cool a tomato at fridge 1
#3 Put a tomato in cabinet at cabinet 1

Descriptor: I fail on step 1 pick a tomato at fridge 1. I’m not carrying a tomato
and there is no tomato, so the goal can’t be accomplished.

Explainer: It’s probably because there isn’t a tomato at fridge 1. The task is to
put a cool tomato in cabinet. So I should pick a tomato somewhere else. I'm
most likely to pick a tomato at diningtable 1.

Planner: So the new plan is below:

#1 pick a tomato at diningtable 1
#2 put a tomato in cabinet at cabinet 1

Descriptor: I succeed on step 1.

Descriptor: I failed on step 2 put a tomato in cabinet at cabinet 1. I put a
tomato in cabinet, but tomato 2 may not be a cool tomato, so the goal is not
accomplished.

Explainer: It’s probably because the tomato isn’t cool enough. The task is to put
a cool tomato in cabinet. So I should cool the tomato. I’m most likely to cool

a tomato at fridge 1.
Planner: So the new plan is below:
#2 cool a tomato at fridge 1
#3 put a tomato in cabinet at cabinet 1
Descriptor: I succeed on step 2.
Descriptor: I succeed on step 3. I finish the task!!!

Human:-= Welcome to TextWorld, ALFRED! =-

Descriptor: You are in the middle of a room. Looking quickly around you, you see a
desk 1, and a shelf 1.

Human: Your task is to: look at mug under the desklamp. Please generate the
sequences of sub-goals to complete the task.

31

Planner: The task is to look at mug under the desklamp. The plan is below:
#1 pick up a mug at shelf 1
#2 use the desklamp at desk 1

Descriptor: I succeed on step 1.

Descriptor: I succeed on step 2. I finish the task!!!

Listing 9: Prompt for DEP in ALFWorld tasks

Human: You are in the middle of a room. You are not carrying anything. Your goal
is to: pick a plate at diningtable 1.

he 5 admissible actions of the current situation are

. go to cabinet 1

. go to diningtable 1

. go to fridge 1

. inventory

. look

AI: The goal is to pick a plate at diningtable 1. I’'m not at diningtable 1. So I
should go to diningtable 1 first. So the answer is 2.

Human: You arrive at loc 17. On the diningtable 1, you see a plate 2, and a tomato
2.

The 7 admissible actions of the current situation are

T
1
2
3
4
5

take plate 2 from diningtable 1

take tomato 2 from diningtable 1

AI: The goal is to pick a plate at diningtable 1. I'm at diningtable 1, and there
is a plate 2. So I should take plate 2 from diningtable 1. So the answer is 6.

Human: You pick up the plate 2 from the diningtable 1.

The 6 admissible actions of the current situation are

1. examine diningtable 1

1. examine diningtable 1
2. go to cabinet 1

3. go to fridge 1

4. inventory

5. look

6.

7 o

2. go to cabinet 1
3. go to fridge 1
4. inventory

5. look

6.

put plate 2 in/on diningtable 1
AI: The goal is to pick a plate at diningtable 1. According to Human, I pick up
the plate 2 from diningtable 1. So the goal is accomplished.

Human: You are facing fridge 1. You are carrying plate 2. Your goal is to: cool a
plate at fridge 1.

The 6 admissible actions of the current situation are

1. examine fridge 1

2. go to cabinet 1

3. go to diningtable 1

4. inventory

5. look

6. cool plate 2 with fridge 1

AI: The goal is to cool a plate at fridge 1. I'm at fridge 1. So I should cool
plate 2 with fridge 1. So the answer is 6.

Human: You cool the plate 2 using the fridge 1.

The 5 admissible actions of the current situation are

1. examine fridge 1

2. go to cabinet 1

3. go to diningtable 1
4. inventory

5. look

AI: The goal is to cool a plate at fridge 1. According to Human, I cool the plate
2 using the fridge 1. So the goal is accomplished.

Human: You are facing diningtable 1. You are not carrying anything. Your goal is
to: pick a plate at diningtable 1.

The 6 admissible actions of the current situation are

1. examine diningtable 1

2. go to cabinet 1

3. go to fridge 1

4. inventory

5. look

6. take tomato 2 from diningtable 1

AI: The goal is to pick a plate at diningtable 1. I'm at diningtable 1, but there
is no action to pick a plate. So the answer is 0 (none). So the goal can’t be
accomplished, probably because there is no plate at diningtable 1.

32

Human: You are facing fridge 1. You are not carrying anything. Your goal is to:
cool a plate at fridge 1.

he 5 admissible actions of the current situation are

. examine fridge 1

. go to cabinet 1

. go to diningtable 1

. inventory

. look

AI: The goal is to cool a plate at fridge 1. I'm at fridge 1, but there is no
action to cool a plate. So the answer is 0 (none). So the goal can’t be
accomplished, probably because I'm not carrying a plate.

T
1
2
3
4
5

Human: You are facing fridge 1. You are carrying a plate. Your goal is to: pick a
tomato at fridge 1.

he 5 admissible actions of the current situation are

. examine fridge 1

. go to cabinet 1

. go to diningtable 1

. inventory

. look

AI: The goal is to pick a tomato at fridge 1. I'm at fridge 1, but there is no
action to pick a tomato. So the answer is 0 (none). So the goal can’t be
accomplished, probably because I can’t pick a tomato while carrying a plate.

Listing 10: Prompt for the controller of DEP in ALFWorld tasks

T
1
2
3
4
5

G.2.2 Baselines

Human: -= Welcome to TextWorld, ALFRED! =-
Your task is to: cool some plate and put it in cabinet.
Scene: You are in the middle of a room. Looking quickly around you, you see a
cabinet 1, a diningtable 1 and a fridge 1.
he 5 admissible actions of the current situation are
. go to cabinet 1
. go to diningtable 1
. go to fridge 1
. inventory
. look
Robot Thought: The task is to cool some plate and put it in cabinet. I'm carrying
nothing. So I need to find a plate first. There are cabinet, diningtable and
fridge, but no plate. I'm most likely to find a plate near diningtable. So I
should go to diningtable 1. So the answer is 2.
Robot Action: go to diningtable 1

T
1
2
3
4
5

Scene: You arrive at loc 17. On the diningtable 1, you see a plate 2, and a tomato
2.
The 7 admissible actions of the current situation are

take plate 2 from diningtable 1

. take tomato 2 from diningtable 1

Robot Thought: The task is to cool some plate and put it in cabinet. I'm carrying
nothing. So I need to find a plate first. There is a plate 2. So I should take
plate 2 from diningtable 1. So the answer is 6.

Robot Action: take plate 2 from diningtable 1

1. examine diningtable 1
2. go to cabinet 1

3. go to fridge 1

4. inventory

5. look

6.

7

Scene: You pick up the plate 2 from the diningtable 1.
The 7 admissible actions of the current situation are
1. examine diningtable 1

2. examine plate 2
3. go to cabinet 1
4. go to fridge 1
5. inventory

6. look

7

. put plate 2 in/on diningtable 1

Robot Thought: The task is to cool some plate and put it in cabinet. I'm carrying
a plate 2. So I need to cool a plate first. There are cabinet, diningtable,
and fridge. I'm most likely to cool a plate near fridge. So I should go to
fridge 1. So the answer is 4.

Robot Action: go to fridge 1

Scene: You arrive at loc 41. The fridge 1 is closed.

33

The 8 admissible actions of the current situation are

1. cool plate 2 with fridge 1

2. examine fridge 1

3. examine plate 2

4. go to cabinet 1

5. go to diningtable 1

6. inventory

7. look

8. open fridge 1

Robot Thought: The task is to cool some plate and put it in cabinet. I’'m carrying
a plate 2. So I need to cool a plate first. There is a fridge 1. So I should
cool plate 2 with fridge 1. So the answer is 1.

Robot Action: cool plate 2 with fridge 1

Scene: You cool the plate 2 using the fridge 1.

The 8 admissible actions of the current situation are

1. cool plate 2 with fridge 1

examine fridge 1

examine plate 2

go to cabinet 1

go to diningtable 1

inventory

look

open fridge 1

Robot Thought: The task is to cool some plate and put it in cabinet. I’'m carrying
a cool plate 2. So I need to find a cabinet first. There is a cabinet 1. So I
should go to cabinet 1. So the answer is 4.

Robot Action: go to cabinet 1

OO\]O\U‘I»&QJ[\J

Scene: You arrive at loc 20. The cabinet 1 is closed.
The 7 admissible actions of the current situation are
1. examine cabinet 1

2. examine plate 2

3. go to diningtable 1
4. go to fridge 1

5. inventory

6. look

7.

open cabinet 1

Robot Thought: The task is to cool some plate and put it in cabinet. I'm carrying
a cool plate 2. So I need to find a cabinet first. There is a cabinet 1. The
cabinet is closed. So I should open cabinet 1. So the answer is 7.

Robot Action: open cabinet 1

Scene: You open the cabinet 1. The cabinet 1 is open. In it, you see nothing.

The 8 admissible actions of the current situation are

1. close cabinet 1

examine cabinet 1

examine plate 2

go to diningtable 1

go to fridge 1

inventory

look

put plate 2 in/on cabinet 1

Robot Thought: The task is to cool some plate and put it in cabinet. I’'m carrying
a cool plate 2. So I need to find a cabinet first. There is a cabinet 1. So I
should put plate 2 in/on cabinet 1. So the answer is 8.

Robot Action: put plate 2 in/on cabinet 1

(D\IG\U‘IVBL»)N

Scene: You put the plate 2 in/on the cabinet 1. You won!!!

Listing 11: Prompt for Inner Monologue [17] in ALFWorld tasks

G.3 Prompt for Tabletop Manipulation Tasks
G.3.1 DEPS

system: The template of the lang goal is as follow: put the <color> blocks in a <
color> bowl. For example, "put the green blocks in a blue bowl" is a valid
lang goal. Do not provide any additional explanations or instructions beyond
writing lang goals.

user: There are 4 bowls of blue, green, pink, yellow on the table. There are 3

blocks of red, yellow, blue on the table. How to match the blocks and the
bowls?

34

assistant:
1. put the yellow blocks in a yellow bowl
2. put the blue blocks in a blue bowl

Listing 12: Prompt for DEP in CLIPort tasks

G.3.2 Baselines

system: The template of the language goal is as follows: put the <color> blocks in
a <color> bowl. For example, "put the green blocks in a blue bowl" is a valid
lang goal. Do not provide any additional explanations or instructions beyond
writing lang goals and determing the game is DONE. Please write a single lang
goal in your response!

user: There are 4 bowls of blue, green, pink, yellow on the table. There are 3
blocks of red, yellow, blue on the table. What should I do as the first step
to match the blocks with the bowls of the literally same color? Note that not
all the blocks can be matched and you can determine the game is DONE anywhere.

assistant: put the yellow blocks in a yellow bowl

user: OK. What should I do next?
assistant: put the blue blocks in a blue bowl

user: OK. I finish the task!

Listing 13: Prompt for Inner Monologue [17] in Tabletop Manipulation tasks

H Full Dialogue

User: You are a helper agent in Minecraft. You need to generate the sequences of
goals for a certain task in Minecraft.
Planner: OK.

User: How to obtain 1 diamond in Minecraft step-by-step?
Planner: The code for task obtaining diamond is as bellows:
def obtain_1_diamond(inventory = {}):
mine ({’log’:3}, null); # step 1l: mine 3 log without tool
craft ({’planks’:12}, {’log’:3}, null); # step 2: craft 12 planks from 3 log
craft ({’stick’:4}, {’planks’:2}, null); # step 3: craft 4 stick from 2 planks
craft ({’crafting_table’:1}, {’planks’:4}, null); # step 4: craft 1
crafting_table from 4 planks
craft ({’wooden_pickaxe’:1}, {’planks’:3, ’stick’:2}, ’'crafting_table’); # step
5: craft 1 wooden_pickaxe from 3 planks and 2 stick, on crafting_table

mine ({’cobblestone’ :2}, ’'wooden_pickaxe’); # step 6: mine 2 cobblestone with
wooden_pickaxe
craft ({’stone_pickaxe’:1}, {’cobblestone’:3, ’'stick’:2}, ’'crafting_table’); #

step 7: craft 1 stone_pickaxe from 3 cobblestone and 2 stick, on
crafting_table

mine ({’diamond’ :1}, ’stone_pickaxe’); # step 8: mine 1 diamond with
stone_pickaxe

return ’diamond’

Descriptor: I succeed on step 1, 2, 3, 4, 5, 6, but I fail on step 7 "craft ({’
stone_pickaxe’:1}, {’cobblestone’:3, ’stick’:2}, ’'crafting_table’);". My
inventory now has 7 planks, 2 stick, 1 crafting_table, 1 wooden_pickaxe, 2
cobblestone, 5 dirt.

Explainer: Because crafting stone_pickaxe needs 3 cobblestone, but I only have 2
cobblestone in inventory.

User: Please fix above errors and re-plan the task "obtain 1 diamond".

RePlanner: The code for task obtaining 1 diamond is as follows:

def obtain_1_diamond(inventory = {’planks’:7, ’stick’:2, ’crafting_table’:1, '

wooden_pickaxe’ :1, ’cobblestone’:2, ’'dirt’:5}):
mine ({’cobblestone’ :1}, ’wooden_pickaxe’); # step 1: mine 1 cobblestone with
wooden_pickaxe
craft ({’stone_pickaxe’:1}, {’cobblestone’:3, ’'stick’:2}, ’'crafting_table’); #

step 2: craft 1 stone_pickaxe from 3 cobblestone and 2 stick, on
crafting_table

mine ({’diamond’ :1}, ’stone_pickaxe’); # step 3: mine 1 diamond with
stone_pickaxe

35

return ’diamond’

Descriptor: I succeed on step 1, 2 in new plan, but I fail on step 3 "mine ({’
diamond’ :1}, ’stone_pickaxe’);". My inventory now has 7 planks, 1
crafting_table, 1 wooden_pickaxe, 1 cobblestone, 5 dirt, 1 stone_pickaxe.

Explainer: Because mining diamond needs to use the tool iron_pickaxe, but I do not

have it.

User: Please fix above errors and re-plan the task "obtain 1 diamond".

RePlanner: The code for obtaining 1 diamond is as follows:

def obtain_1_diamond(inventory = {’planks’:7, ’crafting_table’:1, ’'wooden_pickaxe
’:1, ’'cobblestone’:1, ’'dirt’:5, ’stone_pickaxe’:1}):
mine ({’iron_ore’:1}, ’stone_pickaxe’); # step 1: mine 1 iron_ore with
stone_pickaxe
smelt ({’iron_ingot’:1}, {’iron_ore’:1}, ’'furnace’); # step 2: craft 1

iron_ingot from 1 iron_ore, on furnace

craft ({’iron_pickaxe’:1}, {’iron_ingot’:3, ’'stick’:2}, ’'crafting_table’); #
step 3: craft 1 iron_pickaxe from 3 iron_ingot and 2 stick, on
crafting_table

mine ({’diamond’ :1}, ’iron_pickaxe’); # step 4: mine 1 diamond with iron_pickaxe

return ’diamond’

Descriptor: I success on step 1 in new plan, but I fail on step 2 "smelt ({’

iron_ingot’:1}, {’iron_ore’:1}, ’furnace’);". My inventory now has 7 planks, 1
crafting_table, 1 wooden_pickaxe, 6 cobblestone, 1 iron_ore, 20 dirt, 64
stone.

Explainer: Because smelting iron ingot needs to use the tool furnace, but I do not
have it.

User: Please fix above errors and replan the task "obtain 1 diamond".
RePlanner: The code for obtaining 1 diamond is as follows:
def mine_1_diamond (inventory = {’planks’:7, ’'crafting_table’:1, ’'wooden_pickaxe’:1,
’cobblestone’ :6, ’'iron_ore’:1, ’'dirt’:20, ’'stone’:64}):
craft ({’ furnace’ :1}, {’cobblestone’:8}, null); # step 1: craft 1 furnace from 8
cobblestone
craft ({’iron_ingot’:1}, {’iron_ore’:1}, ’'furnace’); # step 2: craft 1
iron_ingot from 1 iron_ore, on furnace
craft ({"iron_pickaxe’:1}, {’iron_ingot’:3, ’'stick’:2}, ’'crafting_table’); #
step 3: craft 1 iron_pickaxe from 3 iron_ingot and 2 stick, on
crafting_table
mine ({’diamond’ :1}, ’iron_pickaxe’); # step 4: mine 1 diamond with iron_pickaxe
return ’diamond’

Descriptor: I fail on step 1 "craft ({’furnace’:1}, {’cobblestone’:8}, null);". My
inventory now has 7 planks, 1 crafting_table, 1 wooden_pickaxe, 6 cobblestone,
1 iron_ore, 20 dirt, 64 stone.
Explainer: Because crafting furnace needs 8 cobblestone, but I only have 6
cobblestone.
User: Please fix above errors and re-plan the task "obtain 1 diamond".
RePlanner: The code for obtaining 1 diamond is as follows:
def obtain_1_diamond(inventory = {’planks’:7, ’crafting_table’:1, ’'wooden_pickaxe
’:1, ’'cobblestone’:6, ’"iron_ore’:1, ’'dirt’:20, ’stone’:64}):
mine ({’cobblestone’ :8}, ’stone_pickaxe’); # step 1l: mine 8 cobblestone with
stone_pickaxe
craft ({’ furnace’ :1}, {’cobblestone’:8}, null); # step 2: craft 1 furnace from 8
cobblestone
smelt ({’iron_ingot’:1}, {’iron_ore’:1}, ’furnace’); # step 3: craft 1
iron_ingot from 1 iron_ore, on furnace
craft ({’iron_pickaxe’:1}, {’iron_ingot’:3, ’stick’:2}, ’crafting_table’); #
step 4: craft 1 iron_pickaxe from 3 iron_ingot and 2 stick, on
crafting_table
mine ({’diamond’ :1}, ’iron_pickaxe’); # step 5: mine 1 diamond with iron_pickaxe
return ’diamond’

Descriptor: I succeed on step 1 in new plan, but I fail on step 2 "craft ({’furnace
’:1}, {’cobblestone’:8}, null);". My inventory now has 7 planks, 1
crafting_table, 1 wooden_pickaxe, 1 stone_pickaxe, 8 cobblestone, 1 iron_ore,
20 dirt, 64 stone.

Explainer: Because crafting furnace needs to use the tool crafting table, but I do

not have it.

User: Please fix above errors and re-plan the task "obtain 1 diamond".

RePlanner: The code for obtaining 1 diamond is as follows:

def obtain_1_diamond(inventory = {’planks’:7, ’crafting_table’:1, ’'wooden_pickaxe
’:1, ’'cobblestone’:8, ’"iron_ore’:1, ’'dirt’:20, ’stone’:64}):

36

craft ({’ furnace’:1}, {’cobblestone’:8}, ’crafting_table’); # step 1l: craft 1
furnace from 8 cobblestone, on crafting_table

smelt ({’iron_ingot’:1}, {’iron_ore’:1}, ’'furnace’); # step 2: smelt 1
iron_ingot from 1 iron_ore, on furnace

craft ({"iron_pickaxe’:1}, {’iron_ingot’:3, ’'stick’:2}, ’'crafting_table’); #
step 3: craft 1 iron_pickaxe from 3 iron_ingot and 2 stick, on
crafting_table

mine ({’diamond’ :1}, ’iron_pickaxe’); # step 4: mine 1 diamond with iron_pickaxe

return ’diamond’

Descriptor: I succeed on step 1, 2 in new plan, but I fail on step 3 "craft ({’
iron_pickaxe’:1}, {’iron_ingot’:3, ’'stick’:2}, ’'crafting_table’);". My
inventory now has 6 planks, 1 crafting_table, 1 wooden_pickaxe, 1
stone_pickaxe, 1 furnace, 1 iron_ingot, 20 dirt, 64 stone.

Explainer: Because crafting iron pickaxe needs 3 iron_ingot, but I only have 1
iron_ingot.

User: Please fix above errors and re-plan the task "obtain 1 diamond".

RePlanner: The code for obtaining 1 diamond is as follows:

def mine_1_diamond(inventory = {’planks’:6, ’'crafting_table’:1, ’'wooden_pickaxe’:1,
’stone_pickaxe’:1, ’furnace’:1, ’iron_ingot’:1, ’dirt’:20, ’stone’:64}):
mine ({’iron_ore’:2}, ’stone_pickaxe’); # action 1: mine 2 iron_ore with
stone_pickaxe
smelt ({’iron_ingot’:2}, {’iron_ore’:2}, ’furnace’); # action 2: craft 2

iron_ingot from 2 iron_ore, on furnace

craft ({’iron_pickaxe’:1}, {’iron_ingot’:3, ’'stick’:2}, ’'crafting_table’); #
action 3: craft 1 iron_pickaxe from 3 iron_ingot and 2 stick, on
crafting_table

mine ({’diamond’ :1}, ’iron_pickaxe’); # action 4: mine 1 diamond with
iron_pickaxe

return ’diamond’

Descriptor: I succeed on step 1, 2 in new plan, but I fail on step 3 "craft ({’
iron_pickaxe’:1}, {’iron_ingot’:3, ’'stick’:2}, ’'crafting_table’);". My
inventory now has 5 planks, 1 crafting_table, 1 wooden_pickaxe, 1
stone_pickaxe, 1 furnace, 3 iron_ingot, 20 dirt, 64 stone.

Explainer: Because crafting iron_pickaxe needs 2 stick, but I do not have it.

User: Please fix above errors and re-plan the task "obtain 1 diamond".

RePlanner: The code for obtaining 1 diamond is as follows:

def obtain_1_diamond(inventory = {’planks’:5, ’crafting_table’:1, ’'wooden_pickaxe
":1, ’"stone_pickaxe’:1, ’furnace’:1, ‘iron_ingot’:3, ’dirt’:20, ’stone’:64}):

craft ({’stick’:2}, {’planks’:1}, null); # action 15: craft 2 stick from 1
planks
craft ({’iron_pickaxe’:1}, {’iron_ingot’:3, ’stick’:2}, ’crafting_table’); #
action 16: craft 1 iron_pickaxe from 3 iron_ingot and 2 stick, on
crafting_table
mine ({’diamond’ :1}, ’iron_pickaxe’); # action 17: mine 1 diamond with
iron_pickaxe
return ’diamond’
Descriptor: I succeed in step 1, 2, 3.
User: Good. I finish all steps and I obtain 1 stone_pickaxe successfully.
Planner: OK.

Listing 14: Full dialogue of task ObtainDiamond

37

	Introduction
	Background
	Towards Reliable Planning in Embodied Open-World Environments
	DEPS Overview
	Describe, Explain and Plan with LLM Generates Executable Plans
	Horizon-Predictive Selector Yields Efficient Plans

	Experiments
	Experimental Setup
	Main Results
	Ablation Study
	Ablation on Selector
	Ablation on Re-Planning Rounds

	ObtainDiamond Challenge

	Related Works
	Limitations
	Conclusion
	Additional Experiments
	ALFWorld
	Tasks
	Results

	Tabletop Manipulation
	Tasks
	Results

	Minecraft Task Details
	DEPS Implementation Details
	Controller
	LLM as Planner
	LLM as Explainer
	Other modules

	Comparison with other LLM-based Planners
	Discussion on ObtainDiamond Task
	Success Rates of ALL Tasks in Minecraft
	Prompt for Different Tasks and Different Methods
	Prompt for Minecraft Tasks
	DEPS
	Baselines

	Prompt for ALFWorld Tasks
	DEPS
	Baselines

	Prompt for Tabletop Manipulation Tasks
	DEPS
	Baselines

	Full Dialogue

