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Abstract

Advances in multimodal models have greatly001
improved how interactions relevant to various002
tasks are modeled. Today’s models mainly fo-003
cus on the correspondence between images and004
text, using this for tasks like image captioning005
and image-text retrieval. However, this covers006
only a subset of real-world interactions. Novel007
interactions, such as sarcasm expressed through008
opposing spoken words and gestures or figura-009
tive descriptions of images, remain challeng-010
ing. In this paper, we introduce an approach011
to enhance multimodal models, which we call012
Multimodal Mixtures of Experts (MMOE).013
The key idea in MMOE is to train separate ex-014
pert models for each type of interaction, such as015
redundancy present in both modalities, unique-016
ness in one modality, or varying degrees of017
synergy that emerge when both modalities are018
fused. On two multimodal sarcasm datasets,019
we obtain new state-of-the-art results. MMOE020
also provides the framework to design smaller021
specialized multimodal experts, and improves022
the transparency of the modeling process.023

1 Introduction024

Recent advances in the design and pretraining of025

vision-language models have enabled significant026

progress in capturing the correspondences between027

images and text (Zhu et al., 2023; Li et al., 2023;028

Liu et al., 2023). These models have seen suc-029

cesses in image captioning (Xu et al., 2015), text-030

to-image generation (Saharia et al., 2022), multi-031

modal retrieval (Mithun et al., 2018), multimodal032

classification (Li et al., 2021), and more. At its033

core, these methods aim to capture overlaps in se-034

mantic content between images and text, making035

a strong multi-view redundancy assumption (Tian036

et al., 2020; Liang et al., 2023b; Zbontar et al.,037

2021). However, redundancy is only one type of038

interaction seen between two modalities (Williams039

and Beer, 2010; Liang et al., 2023a; Marsh and040

Domas White, 2003). Instead, it might hinge on041

2 modalities provide 
redundant information
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2 modalities interact to 
provide new information

ALBEF 60% acc
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Figure 1: A single multimodal model cannot han-
dle all types of multimodal interactions well. For
example, ALBEF can handle situations when modali-
ties contain redundant information (e.g., both the text
and the image are sarcastic), but struggle when there
is synergy between modalities (e.g., the image shows a
cold winter scene and the text says it is a happy spring,
indicating the user is sarcastic about the weather).

unique details from either modality (e.g. detecting 042

laughter from someone not observed) or the result 043

of synergistic fusion of both modalities, producing 044

insights absent when either modality is considered 045

in isolation (e.g., sarcasm discerned from incongru- 046

ent speech and gestures). Synergy is particularly 047

interesting because it often arises when the predic- 048

tions from different modalities are contradicting, 049

or incongruent with one another (Bateman, 2014; 050

Kruk et al., 2019; Zhang et al., 2018). 051

The diversity of possible real-world multimodal 052

interactions poses a challenge to today’s multi- 053

modal models. Empirically, we find that one single 054

model may not be the most suitable in capturing all 055

types of interactions at the same time. For example, 056

models trained to learn the correspondences be- 057

tween words and image regions (e.g., for retrieval) 058

will struggle when there is only unique information 059
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in one modality (Liang et al., 2023b; Winterbottom060

et al., 2020), or when the image and text provide061

contradicting information that must be contextual-062

ized together (Hessel et al., 2022). We show an ex-063

ample of this failure in Figure 1, where ALBEF (Li064

et al., 2021) can easily detect sarcasm when it is065

present in both modalities (redundancy), but fails066

when requiring synergistic fusion of image and text.067

Quantitatively, ALBEF has performance drop of up068

to 20% on synergistic interactions compared with069

redundancy interactions.070

To tackle this problem, we propose MMOE, by071

leveraging the key insight that different interactions072

require different modeling paradigms. A natural073

way to model these differences is to use a mixture074

of multimodal experts with specialized expert mod-075

els for each interaction. Each expert model can076

be specialized based on the unique training data077

they see or a special training objective. Further-078

more, there is evidence that the brain also uses079

separate expert regions during the multisensory in-080

tegration process, depending on the types of input081

modalities and multimodal contexts present during082

perception (Stein et al., 2020). During inference083

on unseen datapoints, MMOE automatically fuses084

multiple expert models to obtain a final prediction.085

MMOE achieves new state-of-the-art results on086

two multimodal sarcasm datasets we tested on,087

MMSarcasm and MUSTARD. Moreover, we show that088

our approach is easy to implement on different089

types of models: we used fusion-based vision lan-090

guage models like ALBEF (Li et al., 2021), mul-091

timodal language models like BLIP-2 (Li et al.,092

2023), and image-captioned language models like093

Qwen2 (qwe, 2024). 1094

2 Related Work095

We cover related work in quantifying and learning096

multimodal interactions, as well as recent advances097

in multimodal large language models.098

Multimodal interactions define the degrees of099

commonality between modalities and the ways100

they combine to provide new information for a101

task (Liang et al., 2023d). A core problem lies in102

understanding the nature of how modalities interact103

and modeling these interactions using data-driven104

methods. The study of multimodal interactions105

have involved semantic definitions based on re-106

search in multimedia (Marsh and Domas White,107

1More information related to the codebase and reproduc-
tion of results is available at Appendix §A. We will make the
model checkpoints and data public once got accepted.

2003), human (and animal) communication (Partan 108

and Marler, 2005; Flom and Bahrick, 2007; Ruiz 109

et al., 2006), and human social interactions (Mai 110

et al., 2019; Jung et al., 2018). These have also 111

inspired statistical methods to quantify multimodal 112

interactions from unimodal predictions (Mazzetto 113

et al., 2021), trained model weights and activa- 114

tions (Sorokina et al., 2008; Tsang et al., 2018, 115

2019; Hessel and Lee, 2020), feature selection (It- 116

tner et al., 2021; Yu and Liu, 2003, 2004; Auffarth 117

et al., 2010), and information theory (Liang et al., 118

2023a,c; Williams and Beer, 2010; Bertschinger 119

et al., 2014). Our work builds on this line of work 120

in quantifying multimodal interactions, particularly 121

the statistical definitions that enable accurate esti- 122

mation from large-scale multimodal datasets. 123

Multimodal language models have revolution- 124

ized multimodal learning, since representations of 125

images and text can now be fed into large language 126

models for flexible question-answering, reasoning, 127

and multi-turn dialog conditioned on images. Many 128

of these models are built on top of multimodal ex- 129

tensions of the Transformer architecture (Su et al., 130

2019; Liang et al., 2022; Jaegle et al., 2021; Lu 131

et al., 2019; Tsai et al., 2019; Tan and Bansal, 2019). 132

In addition to training large-scale multimodal trans- 133

formers ‘natively’ from input modalities, another 134

line of work takes pretrained language and vision 135

models and aims to learn a small set of ‘adapter’ 136

parameters to align visual and language representa- 137

tions (Koh et al., 2023; Li et al., 2023; Zhu et al., 138

2023). These approaches have shown strong perfor- 139

mance on a wide range of multimodal settings, such 140

as in visual question answering (Wang et al., 2022), 141

text-to-video generation (Kondratyuk et al., 2023), 142

robotics tasks (Driess et al., 2023), and biomedical 143

analysis (Acosta et al., 2022). However, these meth- 144

ods train monolithic models that perform the same 145

computation for all types of interactions, which we 146

show to be suboptimal when datasets contain a mix 147

of diverse and complex interactions. 148

Ensembles and mixture of experts are com- 149

monly used techniques to boost a model’s perfor- 150

mance using a collection of expert models each 151

with their specialized expertise but individually 152

weaker than the entire model (Freund et al., 1996). 153

Cheng et al. (2020) utilized voting-based method 154

to ensemble predictions from multiple models to 155

provide more accurate answers. Besides discrete 156

voting, continuous ensembles in logit space have 157

also been proposed (Eigen et al., 2013; Tasci et al., 158
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Figure 2: We classify multimodal datasets into three subsets based on their multimodal interactions: (1)
Redundancy (R), when both modalities agree on the same multimodal label, (2) Uniqueness (U), when modalities
disagree and make different predictions, of which one of them is correct, and (3) Synergy (S), when the ground-truth
multimodal model does not agree with either types of unimodal predictions. y1 represents the prediction from
image, y2 the prediction from text, and y∗m the ground-truth multimodal label. {A, B, C} represents sample labels.

2021). In settings where it is difficult to define159

which expert is correct, trainable ensemble func-160

tions have been designed to automatically combine161

multiple experts together in an end-to-end fash-162

ion (He et al., 2021; Shazeer et al., 2017; Du et al.,163

2022). Our work uses these ideas as a foundation164

to learn different types of multimodal interactions.165

3 Multimodal Mixtures of Experts166

We focus on multimodal prediction tasks: given167

two modalities x1 and x2, our goal is to predict the168

label y using information from both x1 and x2. Nat-169

urally, the information may be contained uniquely170

in one of the modalities, present redundantly in171

both, or require synergistically combining of infor-172

mation from both modalities. While prior work has173

focused on designing a single multimodal model174

for all datapoints in a task, our key insight is that175

each datapoint may exhibit a different type of inter-176

action and therefore require a different modeling177

approach. Our method, which we call MMOE, is a178

natural solution to this problem by (1) Classifying:179

classifying what type of interactions are present180

in each datapoint in the training set, (2) Training:181

training expert multimodal models to learn each182

type of interaction, and (3) Inference: dynamically183

ensembling the mixture of expert models during in-184

ference on unseen new datapoints. We now explain185

each of these three steps in detail.186

3.1 Classifying multimodal interactions187

Prior work has provided definitions of redundant,188

unique, and synergistic interactions using the lan-189

guage of information theory (Williams and Beer,190

2010; Liang et al., 2023a). However, estimating191

information theoretic measures can be challeng-192

ing for high-dimensional and continuous distribu-193

tions (Pérez-Cruz, 2008). When these interactions194

cannot be exactly computed, they can be approxi-195

mately inferred by considering whether unimodal196

models trained on each modality agree or disagree197

with each other’s predictions. We formalize modal- 198

ity disagreement as follows: 199

Definition 1. (Modality disagreement) Given x1 ∼ 200

X1, x2 ∼ X2, as well as unimodal classifiers 201

f1 : X1 → Y and f2 : X2 → Y , we define modal- 202

ity disagreement as d(y1, y2) where y1 = f1(x1), 203

y2 = f2(x2) and d : Y × Y → R≥0 is a distance 204

function in label space scoring the disagreement of 205

f1 and f2’s predictions. Typically, for a multimodal 206

prediction task with a discrete label space Y , the 207

distance function is defined as: 208

d(y1, y2) =

{
0, if y1 = y2

1, otherwise
(1) 209

210
This binary distance function indicates that 211

modalities agree with each other (distance of 0) 212

when f1 and f2 produce the same prediction and 213

modalities disagree with each other (distance of 1) 214

when their predictions differ in the discrete label 215

space. It gives us an intuitive way to categorize 216

three types of multimodal interactions: 217

1. Redundancy: when both modalities agree with 218

each other on the prediction, and the final multi- 219

modal label is the same as each unimodal label, 220

so they contain redundant information. 221

2. Uniqueness: when modalities disagree with 222

each other and make different predictions in the 223

label space, of which one of them is the cor- 224

rect multimodal label so that modality contains 225

unique information. 226

3. Synergy: when the multimodal label disagrees 227

with either unimodal prediction so there is syn- 228

ergy between modalities that changes the uni- 229

modal prediction significantly. 230

Based on these guidelines, Figure 2 shows an 231

example where we can classify each training data- 232

point into what type of interaction it exhibits. For 233

each multimodal datapoint (x1, x2), we require its 234

true multimodal label y∗m = f∗
m(x1, x2) (labels 235

3



Training

model model model

𝑦! 𝑦" 𝑦#

Figure 3: MMOE training: Each
datapoint is classified based on its
multimodal interaction and used to
train an expert model tailored only
for that interaction.

Fuse

model model model

𝑦"

Inference

Figure 4: MMOE inference: We
infer which interaction a test dat-
apoint requires and use a soft
weighted fusion over on the out-
puts from multiple expert models.

LLM LLM

MLLM

VLM

utterance

image
description

LLM
Fusio
n

utterance

utterance
vision
encoder

vision
encoder

text
encoder

Figure 5: MMOE applicability:
MMOE can be used as a drop-in
layer to multimodal fusion LLMs,
multimodal LLMs, and image-
captioned LLMs.

are obtained from humans and visible during train-236

ing), and unimodal predictions y1 = f1(x1) and237

y2 = f2(x2) obtained from pre-trained unimodal238

classifiers. Comparing these partial unimodal la-239

bels with the ground-truth label enables us to infer240

the interaction type as follows:241

Definition 2. (Redundant, Unique, and Synergistic242

interactions [RUS]) Given x1 and x2, unimodal243

partial labels y1 and y2, and the ground-truth mul-244

timodal label y∗m. Modalities are redundant when245

y1 = y2 = y∗m, so a measure of redundancy is246

R = −d(y1, y
∗
m)− d(y1, y2)− d(y2, y

∗
m), (2)247

Modalities are unique when y1 = ym ̸= y2 (modal-248

ity 1 unique) or y2 = ym ̸= y1 (modality 2 unique),249

so a measure of uniqueness is250

U1 = d(y2, y
∗
m) + d(y1, y2)− d(y1, y

∗
m), (3)251

U2 = d(y1, y
∗
m) + d(y1, y2)− d(y2, y

∗
m), (4)252

Modalities are synergistic when y1 = y2 ̸= ym or253

y1 ̸= y2 ̸= y∗m, so a measure of synergy is254

S = d(y1, y
∗
m) + d(y2, y

∗
m), (5)255

In practice, besides the ground-truth multimodal256

label y∗m, we obtain unimodal predictions y1 and257

y2 via state-of-the-art unimodal foundation models258

in the few-shot style for all training datapoints. For259

vision-only predictions, we utilize vision-language260

models like CogVLM (Wang et al., 2023) and GPT-261

4V (Achiam et al., 2023) to obtain them during262

training by providing only the query and the image.263

To get text-only predictions, we provide the state-264

of-the-art language models like CogVLM (Wang265

et al., 2023) and GPT-4 (Achiam et al., 2023) with266

the query and the language information so the267

model answers conditioned only on text for pre- 268

diction. More information related to the collection 269

of unimodal labels is avaiable at Appendix §F. 270

3.2 Training one expert model for each 271

multimodal interaction 272

Given the partitioning of multimodal datasets into 273

subsets each with a similar interaction, this sec- 274

tion now describes how we use these interaction- 275

specific datasets to train interaction-specific expert 276

models. Illustrated in Figure 3, there are a total 277

of three specialized models, which we term fr, fu, 278

and fs for expert models of redundancy, unique- 279

ness, and synergy respectively. While these in- 280

dividual expert models share the same format of 281

inputs with image and text data pairs, their learning 282

outcomes can differ significantly due to the data 283

distributions they are trained on. 284

Overall, we first use the estimation process in 285

Section §3.1 to partition each dataset into interac- 286

tion categories. We then collect all evidences of 287

redundant interactions across multiple tasks to train 288

a task-independent redundancy expert fr. This pro- 289

cess is repeated for unique and synergistic inter- 290

actions, resulting in trained experts fr, fu, and fs. 291

Each expert is trained only on the subset of data- 292

points that maximally exhibit that interaction; this 293

specialization enables experts to be performant at 294

learning that interaction while being smaller in size 295

as it does not have to spend parameters learning 296

other very different interactions. Crucially, multi- 297

task training allows us to leverage the power of 298

scale and learn interaction experts that are adapt- 299

able to multiple tasks at the same time. For exam- 300

ple, the redundancy expert might learn correspond- 301

ing information between speech and gestures for 302

emotion recognition as well as between images and 303
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descriptive captions for image-caption retrieval.304

We also note that it is possible to design inter-305

action experts using different modeling architec-306

tures and training objectives based on innovations307

in multimodal machine learning. For example, it308

has been empirically demonstrated that late fusion309

models are more suitable when modalities are re-310

dundant (Gadzicki et al., 2020), and models with311

expressive higher-order interactions (e.g., polyno-312

mials and tensors) are suitable when there is syn-313

ergy between modalities (Hou et al., 2019). We314

leave these design explorations for future work.315

3.3 Inference with mixture of experts316

The conclusion of Section §3.2 yields three expert317

models each suited for a certain type of multimodal318

interaction. During inference on unseen test data-319

points, we need to select one or more expert models320

most suitable for that new datapoint. This is a chal-321

lenge since the categorization of datapoints during322

training (presented in Section §3.1) requires know-323

ing the ground-truth multimodal label y∗m, which324

we have during training but not during inference.325

One option is to approximate y∗m with predictions326

ŷm from large pre-trained multimodal models, but327

that is difficult since our goal is to develop a more328

efficient multimodal model and running state-of-329

the-art pre-trained models can be slow.330

Our key idea is that classifying an interaction331

is significantly easier than predicting the label it-332

self. Therefore, while pretrained multimodal mod-333

els might not be able to infer the label y∗m accu-334

rately, they might be able to infer which interaction335

type that the datapoint belongs to (i.e., predict if336

modalities have the same or different information,337

and whether synergistic fusion is required versus338

actually performing the fusion). Therefore, we339

approximately categorize datapoints during infer-340

ence through a soft mixture of weights, defined as341

wr, wu, and ws over the three interaction types.342

These weights are inferred dynamically for each343

datapoint using a pretrained multimodal model344

(e.g., BLIP-2 in practice). We also test simple base-345

lines like prior constants 1
3 ,

1
3 ,

1
3 or based on the346

frequency statistics of each interaction to weight347

each expert model; see detailed ablation studies on348

these weights in Section §4.4.349

Using these inferred weights, we obtain a fi-350

nal prediction ŷ =
∑

i=∈{r,u,s}wifi(x1, x2) as the351

output of MMOE.352

4 Experiments 353

Our experiments are designed to evaluate the effec- 354

tiveness of our method when applied to a diverse 355

set of multimodal language model architectures and 356

through evaluation on wide range of multimodal 357

tasks with diverse interactions. 358

4.1 Experimental Setup 359

We introduce the models and multimodal predic- 360

tion tasks that we consider for experiments in this 361

section. More information related to experimental 362

settings is available at Appendix §D. 363

Models We implement MMOE on top of three 364

categories of multimodal language models to show 365

its widespread applicability on top of many base 366

models (see Figure 5 for an illustration). These 367

model categories include: 368

1. Fusion-based vision language models (VLMs) 369

use cross-attention to learn multimodal interac- 370

tions between all regions of the image with all 371

words in the input text. These models are usu- 372

ally trained from scratch using full-parameter 373

finetuning. Popular examples of such models in- 374

clude ALBEF (Li et al., 2021), LXMERT (Tan 375

and Bansal, 2019) and BLIP (Li et al., 2022). 376

2. Multimodal LLMs (MLLMs) like BLIP-2 (Li 377

et al., 2023) and FROMAGe (Koh et al., 2023) 378

start with an image encoder and a pretrained 379

LLMs as the backbone and only finetune a 380

lightweight transformation from image fea- 381

tures to LLM input tokens. Therefore, multi- 382

modal extended LLMs are typically trained in a 383

parameter-efficient fine-tuning style. 384

3. Image-captioned LLMs (LLMs) convert im- 385

ages to text using a image captioning model and 386

uses a text-only LLM like Qwen2 (qwe, 2024) 387

on the concatenation of captioned images and 388

text inputs. Examples in this category include 389

Socratic Model (Zeng et al., 2022) and video 390

understanding model (Zhang et al., 2023). 391

Multimodal prediction tasks We implement 392

both the baselines and our proposed MMOE 393

method on the following two tasks that require 394

learning multimodal interactions between images 395

and text: (1) MMSarcasm (Cai et al., 2019) is a mul- 396

timodal sarcasm detection dataset collected from 397

twitter posts with image-text pairs. It includes 210k 398

image-text pair datapoints annotated for sarcas- 399

tic and non-sarcastic intents. (2) MUSTARD (Cas- 400

tro et al., 2019) is a video-level sarcasm detection 401

dataset including 690 annotated video clips of the 402
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Table 1: MMOE can beat the state-of-the-art models
and be generally applied to any type of model for
improvement. For MUSTARD, Qwen-1.5B out-performs
the recent LF-DNN-v1 by 2.25 points. For MMSarcasm,
Qwen-1.5B and BLIP-2 reach approximately full marks.

Model Precision Recall F1

MUSTARD

MulT 65.51 64.78 64.49
LF-DNN-v1 71.55 71.52 71.08

ALBEF 55.15 49.34 52.08
ALBEF+MMOE 52.20 70.39 59.94

BLIP2 55.45 73.68 63.28
BLIP2+MMOE 56.60 78.95 65.93

Qwen-1.5B 58.40 91.45 71.28
Qwen-1.5B+MMOE 63.46 86.84 73.33

MMSarcasm

ALBEF 85.43 86.36 85.90
ALBEF+MMOE 86.81 85.17 85.99

BLIP-2 99.90 99.90 99.90
BLIP-2+MMOE 99.80 100.0 99.90

Qwen-1.5B 100.0 100.0 100.0

TV series. We choose speaker-independent train-403

ing and testing splits consistent with prior work to404

avoid potential overlap between speakers.405

4.2 Main results406

We use our results to answer the following research407

questions. Firstly, we study how the best MMOE408

model compares to state-of-the-art baselines on409

the evaluation tasks. Secondly, we study whether410

MMOE improves performance when applied on411

top of all three types of base models (multimodal412

fusion models, multimodal extended LLMs, and413

image-captioned LLMs).414

Overall comparisons with state-of-the-art On415

both datasets, our best MMOE model substantially416

improves the state-of-the-art. We beat LF-DNN-417

v1 (Ding et al., 2022) for MUSTARD with more than 2418

points of improvement. Additionally, we find that419

for MMSarcasm models, the latest models includ-420

ing BLIP-2 and Qwen2-1.5B-Instruct can perfectly421

answer all the points in the test set correctly. Typi-422

cally, by comparing MUSTARD and MMSarcasm, we423

find that MMOE helps gain more improvement424

on hard dataset (e.g. MUSTARD) that has low F1425

but gain less improvement on easy dataset (e.g.426

MMSarcasm) that already has good performance.427

Improvement on various types of multimodal428

models We first compare performance on tradi-429

tional cross-attention multimodal fusion models430

(e.g., ALBEF) with and without MMOE. Based431

Figure 6: Synergy in sarcasm detection. Existing
multimodal models struggle to learn the situation when
both text and image modalities alone do not indicate
sarcasm, but sarcasm arises due to the synergy between
modalities when fused together.

Yeah, I mean, it 
would be rude to 

them for us to 
leave now.

They are attending a large event and everyone 
stands up to clap. They definitely should not 

leave at this point. It indicates sarcasm.

Image Modality Text Modality

Synergy Information

on Table 1, we find that with the help of MMOE, 432

ALBEF performance increases more than 7 points 433

for MUSTARD dataset and around 0.1 point for 434

MMSarcasm dataset. We now apply MMOE to 435

multimodal extended large language models build- 436

ing on top of OPT-2.7b (Zhang et al., 2022). On 437

datasets like MUSTARD, it improves the performance 438

by more than 2 points compared with the baseline. 439

Finally, if we convert the images of MUSTARD and 440

MMSarcasm into image descriptions utilizing GPT- 441

4V and CogVLM, we can use text-only LLMs like 442

Qwen2-7B to conduct experiments. It gains 1.4% 443

improvement on top of image-captioned LLMs. 444

4.3 Analysis of MMOE 445

Given these quantitative results, we further analyze 446

the success of MMOE. We first study the limita- 447

tions of current models, showing empirical results 448

where one single multimodal model struggles with 449

diverse interactions. We also investigate whether 450

specialized interaction experts can be made smaller, 451

as compared to typically overparameterized mod- 452

els, which can improve efficiency. Finally, we ab- 453

late several design decisions in MMOE. 454

RQ1. What types of multimodal interaction do 455

current models struggle with, and how do 456

expert models perform? 457

We first show some examples where current meth- 458

ods using a single multimodal model fail to learn 459

specialized interactions, while MMOE can. On 460

the MUSTARD dataset, we classified all data points 461

by their interaction type and found that data points 462

with redundancy, uniqueness, and synergy inter- 463

action are highly imbalanced. Redundancy to be 464

20%, uniqueness to be 50%, and synergy to be 465

30% in the training data. We find that existing 466

multimodal models including BLIP2 and ALBEF 467
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Figure 7: Multimodal models struggle with synergy
much more than redundancy and uniqueness. Both
ALBEF and BLIP-2 showing significantly lower perfor-
mance on synergistic datapoints compared with redun-
dancy and uniqueness that are split based on ourselves.

struggle with synergy multimodal interaction sig-468

nificantly: from Figure 7, we see that they perform469

at 32% for ALBEF and 50% for BLIP-2, which is470

significantly lower than for other interactions. We471

show an example of this failure in Figure 6, where472

both vision and language contain no clear signal of473

sarcasm, but when combined, the sarcastic intent is474

evident. Existing multimodal models fail to learn475

this interaction between modalities.476

While a single large multimodal model may fail,477

MMOE uses its separate expert models to tackle478

each type of interaction. Specifically, for MUSTARD479

training with ALBEF, expert training brings im-480

provement from 32.0% to 45.7% on synergy inter-481

action, improvement from 54.32% to 57.95% on482

redundancy interaction, improvement from 53.5%483

to 54.4% on uniqueness interaction.484

RQ2. How small can expert models be?485

It is widely known that neural networks, with486

enough parameters, are universal approximators487

of any function. Therefore, sufficiently large mul-488

timodal models will eventually be able to approxi-489

mately learn all interactions, like BLIP-2 can han-490

dle all easy interaction cases with one single model491

for a simple dataset like MMSarcasm. However, we492

hypothesize that expert models that are more spe-493

cialized for each interaction can be smaller and494

more efficient while retaining performance.495

Overall, to reach the same performance as496

the traditional finetuning baselines that train one497

large multimodal model for every interaction, our498

MMOE approach can be up to 0.36 times smaller499

in total, and 0.79 times smaller during inference500

if using only a single expert. Therefore, MMOE501

presents a path towards more specialized and502
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Figure 8: Qwen2-1.5B-Instruct with MMOE beats
single Qwen2-7B-Instruct model. 3×Qwen2-1.5B-
Instruct with 3×1.5B parameters beats the Qwen2-7B-
Instruct with 7B, indicating MMOE points to a more
efficient multimodal architecture.

lightweight multimodal models. 503

4.4 Ablation studies 504

Eventually, we test ablations of MMOE compo- 505

nents and answer three more research questions 506

including ways of categorizing datapoints based on 507

multimodal interaction types, how we train expert 508

models, and how we fuse expert models. 509

RQ3. How to categorize datapoints? 510

We tested the accuracy of categorizing datapoints 511

by their multimodal interactions. Since these in- 512

teraction values are unknown, we rely on human 513

annotations to provide a gold standard rating using 514

90 datapoints from the test split of MUSTARD (see 515

Appendix §E for more human annotation details). 516

We find that our categorization utilizing unimodal 517

labels and ground-truth labels has an F1 score of 518

51.26% when compared to human annotation over 519

the 3 interaction types (redundancy, uniqueness, 520

and synergy), indicating that our automatic method 521

is correlated with human judgment. Redundancy 522

interactions are easier to detect, with an accuracy 523

of 64.3%; synergy and uniqueness are harder to 524

detect, with an accuracy of 46.7% and 43.4% re- 525

spectively. We expect future work on quantifying 526

multimodal interactions to further improve MMOE 527

performance. 528

To evaluate the effectiveness of data partition 529

for expert training based on interaction categoriza- 530

tion, we first ask one research question: Does class 531

imbalance in data partition hurt expert model train- 532

ing? Therefore, we design an experiment where 533

we downsample the original RUS partition to make 534

sure each class (redundancy, uniqueness, and syn- 535

ergy) has an equal number of data points. Based on 536

7



Table 2: Ablation study on different data partition-
ing methods for MMoE. #R, #U, and #S represent the
number of training datapoints for each expert model.
We test three settings (1) RUS partition: standard in-
teraction classification, (2) RUS partition (balanced):
downsample RUS partition to have the same size, and
(3) Random partition: Keep the partition sizes the same
but with random datapoints.

Partition method #R #U #S MUSTARD F1

RUS partition 57 145 90 78.65
RUS partition (balanced) 57 57 57 75.46
Random partition 57 145 90 71.50

Table 2, it shows that using as many RUS labeled537

data points as possible is the most beneficial to538

MMOE, and downsampling additional data from539

uniqueness and synergy causes the drop of perfor-540

mance by 3 points.541

Then it comes to the second question: Does the542

improvement of MMOE come just from ensembling543

expert models? We would like to discuss whether544

our improvement is caused by simply ensembling545

instead of utilizing multimodal interactions. There-546

fore, we replace our RUS partition data with our547

randomly selected ones. From Table 2, we find548

that randomly partition is 7 points worse than our549

RUS partition, proving that multimodal interaction550

categorization is crucial for performance gain.551

RQ4. How to train expert models?552

We ablate whether cross-dataset multitask train-553

ing helps in training expert models, by pooling to-554

gether synergy datapoints across multiple datasets555

including MUSTARD and MMSarcasm to train one syn-556

ergy expert, similar with redundancy and unique-557

ness part. While MUSTARD is a small-scale multi-558

modal dataset with only 300+ datapoints for train-559

ing, MMSarcasm’s 190k+ datapoints helps gain an560

overall improvement of 2.33 points (F1 improves561

from 61.57 to 63.90). Additionally, synergy experts562

improve by 2.17 points with the help of an addi-563

tional 2084 synergy datapoints from MMSarcasm.564

Therefore, these positive multitask results indicate565

that multimodal interactions are universal proper-566

ties across all multimodal datasets and expert mod-567

els that learn specific multimodal features for inter-568

action can be transferred across different datasets.569

RQ5. How to fuse expert models?570

Finally, we investigate how different choices for571

the fusion function used to combine multiple expert572

models together can affect performance. In addi-573

tion to linear weights, we also test different ways574

Table 3: Ablation study on various ways of fusing
multimodal experts on MUSTARD. We find that the
model-based method is the best, but simple methods
like averaging are also enough for strong performance.
Baseline indicates the performance of existing models
(ALBEF, BLIP-2, Qwen2-1.5B) without MMOE.

Fusion function ALBEF BLIP-2 Qwen-1.5B

model-based 59.94 65.93 73.33
average 59.72 63.90 72.87
weighted 57.97 63.31 72.68
cascaded 53.73 63.67 73.96

baseline (no fusion) 52.08 63.28 71.28

of weighting these experts as inspired by prior lit- 575

erature in MoEs in machine learning and natural 576

language processing (Yuksel et al., 2012). 577

We find that weights matter a lot for the per- 578

formance, indicating that different expert models 579

are focusing on different side of multimodal infor- 580

mation. Typically, we consider (1) model-based 581

fusion: we train a BLIP-2 model to provide log- 582

its that classify test datapoints into redundancy, 583

uniqueness, and synergy type. (2) average fusion: 584

we simply use the average of expert models output 585

logits as the final results. (3) weighted fusion: we 586

pre-define a fixed weight that is 0.2, 0.5, 0.3 based 587

on the approximate proportion of data with those 588

interactions, (4) cascaded fusion: we consider do- 589

ing inference with the redundancy and uniqueness 590

expert models first; if these two models cannot pro- 591

vide a sufficiently confident decision, we seek help 592

from the synergy expert. Based on Table 3, we 593

find that model-based fusion generally provides the 594

most significant improvement compared with other 595

methods. However, even a simple fusion method 596

through fixed uniform weights provides clear im- 597

provements, indicating the robustness of MMOE. 598

5 Conclusion 599

This paper proposes a method to enhance multi- 600

modal models with a new Multimodal Mixtures 601

of Experts structure (MMOE). The key idea is to 602

train separate expert models each tailored to learn 603

a specific type of interaction, which overcomes 604

significant shortcomings of existing multimodal 605

LLMs when diverse types of interactions are si- 606

multaneously present. Classifying datapoints into 607

their necessary interactions enables the fusion of 608

expert models during inference, which gives signif- 609

icant boosts to performance and efficiency. MMOE 610

also presents other appealing features of smaller, 611

more efficient specialized experts, and improved 612

transparency of the multimodal modeling process. 613
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Limitations614

While we presented a first step towards classifying615

and learning multimodal interactions, our catego-616

rization is still at a rather coarse level with only617

three interactions. Future work should investigate618

sub-categorizations of interactions, such as differ-619

ent types of synergy between modalities. This can620

be used to learn mixtures of interactions at a more621

fine-grained feature level. Furthermore, even ap-622

proximate classification of interactions (roughly623

51% F1 with human annotation) can lead to im-624

proved performance, so we expect future improve-625

ments in quantifying interactions to further improve626

MMOE. Future work can also investigate how to627

better combine multiple interactions in a composi-628

tional, multi-step manner to learn more complex629

higher-order interactions between modalities. Fi-630

nally, we only considered modalities that have good631

unimodal encoders like language models and vision632

models, future work can extend this direction to633

novel modalities such as sensors and medical data634

where unimodal models might have to be learned635

end-to-end with the multimodal interactions.636

Ethics Statement637

There are possible negative societal impacts of our638

work. Given the framework of our multimodal639

model based on sarcasm tasks, the improvement640

and success of our model could allow bad agents to641

use this technology in a negative manner. Emotion642

detection models can be used in an inappropriate643

manner or deployed without proper vetting or un-644

derstanding in model outputs. Predicting peoples’645

emotions and using them without consent or consid-646

eration can lead to unfair actions and assumptions.647

We hope to use our paper as a stepping stone for648

understanding the different noises from modalities649

from human expression that go into sarcasm and650

their modeling practices. We do not condone any651

negative use of these models under any circum-652

stance.653

For human evaluation, based on direct commu-654

nication with our institution’s IRB office, this line655

of research is exempt from IRB, and the informa-656

tion obtained during our study is recorded in such657

a manner that the identity of the human subjects658

cannot readily be ascertained, directly or through659

identifiers linked to the subjects. There is no poten-660

tial risk to participants and we do not collect any661

identifiable information from annotators. For the662

payment, we make sure that our participants are663

paid with a salary that is higher than the minimum 664

local wage hourly. More details related to human 665

evaluation can be seen in Appendix §E. 666
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Jack Hessel, Ana Marasović, Jena D Hwang, Lillian738
Lee, Jeff Da, Rowan Zellers, Robert Mankoff, and739
Yejin Choi. 2022. Do androids laugh at electric740
sheep? humor" understanding" benchmarks from741
the new yorker caption contest. arXiv preprint742
arXiv:2209.06293.743

Ming Hou, Jiajia Tang, Jianhai Zhang, Wanzeng Kong,744
and Qibin Zhao. 2019. Deep multimodal multilin-745
ear fusion with high-order polynomial pooling. Ad-746
vances in Neural Information Processing Systems,747
32:12136–12145.748

Jan Ittner, Lukasz Bolikowski, Konstantin Hemker,749
and Ricardo Kennedy. 2021. Feature synergy, re-750
dundancy, and independence in global model ex-751
planations using shap vector decomposition. arXiv752
preprint arXiv:2107.12436.753

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew754
Zisserman, Oriol Vinyals, and Joao Carreira. 2021.755
Perceiver: General perception with iterative attention.756
arXiv preprint arXiv:2103.03206.757

Tzyy-Ping Jung, Terrence J Sejnowski, et al. 2018.758
Multi-modal approach for affective computing. In759
2018 40th annual international conference of the ieee760
engineering in medicine and biology society (embc),761
pages 291–294. IEEE.762

Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried.763
2023. Grounding language models to images for764
multimodal inputs and outputs. In International Con-765
ference on Machine Learning, pages 17283–17300.766
PMLR.767

Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, 768
Jonathan Huang, Rachel Hornung, Hartwig Adam, 769
Hassan Akbari, Yair Alon, Vighnesh Birodkar, 770
et al. 2023. Videopoet: A large language model 771
for zero-shot video generation. arXiv preprint 772
arXiv:2312.14125. 773

Julia Kruk, Jonah Lubin, Karan Sikka, Xiao Lin, Dan 774
Jurafsky, and Ajay Divakaran. 2019. Integrating 775
text and image: Determining multimodal document 776
intent in instagram posts. In Proceedings of the 777
2019 Conference on Empirical Methods in Natu- 778
ral Language Processing and the 9th International 779
Joint Conference on Natural Language Processing 780
(EMNLP-IJCNLP), pages 4622–4632. 781

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 782
2023. Blip-2: Bootstrapping language-image pre- 783
training with frozen image encoders and large lan- 784
guage models. arXiv preprint arXiv:2301.12597. 785

Junnan Li, Dongxu Li, Caiming Xiong, and Steven 786
Hoi. 2022. Blip: Bootstrapping language-image pre- 787
training for unified vision-language understanding 788
and generation. In International conference on ma- 789
chine learning, pages 12888–12900. PMLR. 790

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, 791
Shafiq Joty, Caiming Xiong, and Steven Chu Hong 792
Hoi. 2021. Align before fuse: Vision and language 793
representation learning with momentum distillation. 794
Advances in neural information processing systems, 795
34:9694–9705. 796

Paul Pu Liang, Yun Cheng, Xiang Fan, Chun Kai 797
Ling, Suzanne Nie, Richard J Chen, Zihao Deng, 798
Nicholas Allen, Randy Auerbach, Faisal Mahmood, 799
et al. 2023a. Quantifying & modeling multimodal 800
interactions: An information decomposition frame- 801
work. In Thirty-seventh Conference on Neural Infor- 802
mation Processing Systems. 803

Paul Pu Liang, Zihao Deng, Martin Q Ma, James Zou, 804
Louis-Philippe Morency, and Russ Salakhutdinov. 805
2023b. Factorized contrastive learning: Going be- 806
yond multi-view redundancy. In Thirty-seventh Con- 807
ference on Neural Information Processing Systems. 808

Paul Pu Liang, Chun Kai Ling, Yun Cheng, Alex 809
Obolenskiy, Yudong Liu, Rohan Pandey, Alex Wilf, 810
Louis-Philippe Morency, and Ruslan Salakhutdinov. 811
2023c. Multimodal learning without labeled mul- 812
timodal data: Guarantees and applications. arXiv 813
preprint arXiv:2306.04539. 814

Paul Pu Liang, Yiwei Lyu, Xiang Fan, Jeffrey Tsaw, 815
Yudong Liu, Shentong Mo, Dani Yogatama, Louis- 816
Philippe Morency, and Russ Salakhutdinov. 2022. 817
High-modality multimodal transformer: Quantify- 818
ing modality & interaction heterogeneity for high- 819
modality representation learning. Transactions on 820
Machine Learning Research. 821

Paul Pu Liang, Amir Zadeh, and Louis-Philippe 822
Morency. 2023d. Foundations & trends in multi- 823
modal machine learning: Principles, challenges, and 824
open questions. ACM Computing Surveys. 825

10



Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae826
Lee. 2023. Visual instruction tuning. arXiv preprint827
arXiv:2304.08485.828

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.829
2019. Vilbert: Pretraining task-agnostic visiolinguis-830
tic representations for vision-and-language tasks. Ad-831
vances in neural information processing systems, 32.832

Sijie Mai, Haifeng Hu, and Songlong Xing. 2019. Di-833
vide, conquer and combine: Hierarchical feature fu-834
sion network with local and global perspectives for835
multimodal affective computing. In Proceedings of836
the 57th annual meeting of the association for com-837
putational linguistics, pages 481–492.838

Emily E Marsh and Marilyn Domas White. 2003. A839
taxonomy of relationships between images and text.840
Journal of documentation.841

Alessio Mazzetto, Dylan Sam, Andrew Park, Eli Upfal,842
and Stephen Bach. 2021. Semi-supervised aggre-843
gation of dependent weak supervision sources with844
performance guarantees. In Proceedings of The 24th845
International Conference on Artificial Intelligence846
and Statistics, volume 130 of Proceedings of Ma-847
chine Learning Research, pages 3196–3204. PMLR.848

Niluthpol Chowdhury Mithun, Juncheng Li, Florian849
Metze, and Amit K Roy-Chowdhury. 2018. Learn-850
ing joint embedding with multimodal cues for cross-851
modal video-text retrieval. In Proceedings of the852
2018 ACM on international conference on multime-853
dia retrieval, pages 19–27.854

Sarah R Partan and Peter Marler. 2005. Issues in the855
classification of multimodal communication signals.856
The American Naturalist, 166(2):231–245.857

Fernando Pérez-Cruz. 2008. Estimation of information858
theoretic measures for continuous random variables.859
Advances in neural information processing systems,860
21.861

Natalie Ruiz, Ronnie Taib, and Fang Chen. 2006. Ex-862
amining the redundancy of multimodal input. In863
Proceedings of the 18th Australia conference on864
Computer-Human Interaction: Design: Activities,865
Artefacts and Environments, pages 389–392.866

Chitwan Saharia, William Chan, Saurabh Saxena,867
Lala Li, Jay Whang, Emily L Denton, Kam-868
yar Ghasemipour, Raphael Gontijo Lopes, Burcu869
Karagol Ayan, Tim Salimans, et al. 2022. Photo-870
realistic text-to-image diffusion models with deep871
language understanding. Advances in neural infor-872
mation processing systems, 35:36479–36494.873

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,874
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff875
Dean. 2017. Outrageously large neural networks:876
The sparsely-gated mixture-of-experts layer. arXiv877
preprint arXiv:1701.06538.878

Daria Sorokina, Rich Caruana, Mirek Riedewald, and 879
Daniel Fink. 2008. Detecting statistical interactions 880
with additive groves of trees. In Proceedings of the 881
25th international conference on Machine learning, 882
pages 1000–1007. 883

Barry E Stein, Terrence R Stanford, and Benjamin A 884
Rowland. 2020. Multisensory integration and the 885
society for neuroscience: Then and now. Journal of 886
Neuroscience, 40(1):3–11. 887

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, 888
Furu Wei, and Jifeng Dai. 2019. Vl-bert: Pre-training 889
of generic visual-linguistic representations. arXiv 890
preprint arXiv:1908.08530. 891

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning 892
cross-modality encoder representations from trans- 893
formers. arXiv preprint arXiv:1908.07490. 894

Erdal Tasci, Caner Uluturk, and Aybars Ugur. 2021. A 895
voting-based ensemble deep learning method focus- 896
ing on image augmentation and preprocessing varia- 897
tions for tuberculosis detection. Neural Computing 898
and Applications, 33(22):15541–15555. 899

Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, 900
Cordelia Schmid, and Phillip Isola. 2020. What 901
makes for good views for contrastive learning? Ad- 902
vances in Neural Information Processing Systems, 903
33. 904

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, 905
J Zico Kolter, Louis-Philippe Morency, and Ruslan 906
Salakhutdinov. 2019. Multimodal transformer for un- 907
aligned multimodal language sequences. In Proceed- 908
ings of the 57th Annual Meeting of the Association 909
for Computational Linguistics, pages 6558–6569. 910

Michael Tsang, Dehua Cheng, Hanpeng Liu, Xue 911
Feng, Eric Zhou, and Yan Liu. 2019. Feature in- 912
teraction interpretability: A case for explaining ad- 913
recommendation systems via neural interaction de- 914
tection. In International Conference on Learning 915
Representations. 916

Michael Tsang, Dehua Cheng, and Yan Liu. 2018. De- 917
tecting statistical interactions from neural network 918
weights. In International Conference on Learning 919
Representations. 920

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai 921
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren 922
Zhou, and Hongxia Yang. 2022. Ofa: Unifying ar- 923
chitectures, tasks, and modalities through a simple 924
sequence-to-sequence learning framework. In Inter- 925
national Conference on Machine Learning, pages 926
23318–23340. PMLR. 927

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi 928
Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang, Lei 929
Zhao, Xixuan Song, et al. 2023. Cogvlm: Visual ex- 930
pert for pretrained language models. arXiv preprint 931
arXiv:2311.03079. 932

11

https://proceedings.mlr.press/v130/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html
https://proceedings.mlr.press/v130/mazzetto21a.html


Paul L Williams and Randall D Beer. 2010. Non-933
negative decomposition of multivariate information.934
arXiv preprint arXiv:1004.2515.935

Thomas Winterbottom, Sarah Xiao, Alistair McLean,936
and Noura Al Moubayed. 2020. On modality bias in937
the tvqa dataset. arXiv preprint arXiv:2012.10210.938

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,939
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,940
and Yoshua Bengio. 2015. Show, attend and tell:941
Neural image caption generation with visual atten-942
tion. In International conference on machine learn-943
ing, pages 2048–2057. PMLR.944

Lei Yu and Huan Liu. 2003. Efficiently handling fea-945
ture redundancy in high-dimensional data. In Pro-946
ceedings of the ninth ACM SIGKDD international947
conference on Knowledge discovery and data mining.948

Lei Yu and Huan Liu. 2004. Efficient feature selection949
via analysis of relevance and redundancy. The Jour-950
nal of Machine Learning Research, 5:1205–1224.951

Seniha Esen Yuksel, Joseph N Wilson, and Paul D Gader.952
2012. Twenty years of mixture of experts. IEEE953
transactions on neural networks and learning sys-954
tems, 23(8):1177–1193.955

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and956
Stephane Deny. 2021. Barlow twins: Self-supervised957
learning via redundancy reduction. In Proceedings958
of the 38th International Conference on Machine959
Learning, volume 139 of Proceedings of Machine960
Learning Research, pages 12310–12320. PMLR.961

Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof962
Choromanski, Adrian Wong, Stefan Welker, Fed-963
erico Tombari, Aveek Purohit, Michael Ryoo, Vikas964
Sindhwani, et al. 2022. Socratic models: Compos-965
ing zero-shot multimodal reasoning with language.966
arXiv preprint arXiv:2204.00598.967

Ce Zhang, Taixi Lu, Md Mohaiminul Islam, Ziyang968
Wang, Shoubin Yu, Mohit Bansal, and Gedas Berta-969
sius. 2023. A simple llm framework for long-970
range video question-answering. arXiv preprint971
arXiv:2312.17235.972

Mingda Zhang, Rebecca Hwa, and Adriana Kovashka.973
2018. Equal but not the same: Understanding the974
implicit relationship between persuasive images and975
text. In British Machine Vision Conference (BMVC).976

Susan Zhang, Stephen Roller, Naman Goyal, Mikel977
Artetxe, Moya Chen, Shuohui Chen, Christopher De-978
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.979
Opt: Open pre-trained transformer language models.980
arXiv preprint arXiv:2205.01068.981

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and982
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing983
vision-language understanding with advanced large984
language models. arXiv preprint arXiv:2304.10592.985

12

https://proceedings.mlr.press/v139/zbontar21a.html
https://proceedings.mlr.press/v139/zbontar21a.html
https://proceedings.mlr.press/v139/zbontar21a.html


A Codebase Link986

The anonymous link for the codebase is available987

here. The README file inside provides a detailed988

guideline on how to run experiments. All the model989

logits for reproducing the results of the experiments990

and data split are also available inside.991

B Asset992

In this section, we list all the necessary information993

for our use of models and data. In our paper, we use994

MUSTARD (Castro et al., 2019) and MMSarcasm (Cai995

et al., 2019) for our dataset usage. We use AL-996

BEF (Li et al., 2021), BLIP-2 (Li et al., 2023),997

Qwen2-1.5B-Instruct (qwe, 2024) and Qwen2-7B-998

Instruct (qwe, 2024) as our model usage. We show999

the required information about them and how we1000

follow their requirements when using them.1001

B.1 Model link and license1002

ALBEF1003

Model link: here1004

License: BSD 3-Clause "New" or "Revised"1005

BLIP-21006

Model link: here1007

License: BSD 3-Clause "New" or "Revised"1008

Qwen2-1.5B-Instruct1009

Model link: here1010

License: Apache 2.01011

Qwen-2-7B-Instruct1012

Model link: here1013

License: Apache 2.01014

B.2 Data license1015

MUSTARD1016

Data link: here1017

License: MIT1018

MMSarcasm1019

Data link: here1020

License: MIT1021

B.3 Model and data use1022

Personally identifiable information All of the1023

used datasets in this paper are derived from public1024

sources. Therefore, there is no exposure of any1025

personally identifiable information that requires1026

informed consent from those individuals. The used1027

dataset relates to people insofar as it draws text1028

from public sources that relate to people, or people 1029

created, obeying related licenses. 1030

Offensive content claim All the used datasets in- 1031

cluding MUSTARD and MMSarcasm are already pub- 1032

lic and widely used. While these datasets may 1033

contain instances of offensive content, our work 1034

does not aim to generate or amplify such content. 1035

Instead, we employ these datasets for the purpose 1036

of studying and understanding the nature of sar- 1037

casm in text. Our use of these datasets follows 1038

ethical guidelines, and we do not endorse or sup- 1039

port any offensive material contained within them. 1040

Moreover, we have implemented measures to mit- 1041

igate the propagation of offensive content within 1042

our research. 1043

Data information 1044

MUSTARD This dataset is based on English and 1045

mainly collected from TV show clips including 1046

Friends, The Big Bang Theory, and so on. Its do- 1047

main mainly covers daily conversation. 1048

MMSarcasm This dataset is based on English and 1049

mainly collected from online Twitter content. Its 1050

domain mainly covers political, daily life, food, 1051

and so on. 1052

C AI Assistance 1053

We did use ChatGPT as the writing assistant to 1054

help us write part of the paper. Additionally, we 1055

utilize the power of CodePilot to help us code faster. 1056

However, all the AI-generated writing and coding 1057

components assisted by AI are manually checked 1058

and modified. There is no full AI-generated content 1059

in the paper. 1060

D Experimental Details 1061

We include all the technical details of our experi- 1062

ments for reproduction. 1063

D.1 Data statistics for experiments 1064

MUSTARD contains 690 videos with evenly bal- 1065

anced sarcasm and non-sarcasm labeled points. 1066

MMSarcasm consists of train, validation, and test 1067

sets with sizes of 29040, 2410, and 2409 instances. 1068

Images are unique for each instance. 1069

D.2 Model size 1070

We include the size of ALBEF, BLIP-2, Qwen2- 1071

1.5B-Instruct, and Qwen2-7B-Instruct model size 1072
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here. ALBEF has a total size of 3.2GB. BLIP-2-opt-1073

2.7b has a total size of 15.5GB. Qwen2-7B-Instruct1074

has a size of 15.2GB.1075

D.3 Computational Cost1076

ALBEF Training1077

• MMSarcasm Dataset:1078

– 5 A6000 GPUs1079

– Baseline training time: 30 minutes1080

• MUSTARD Dataset:1081

– 5 A6000 GPUs1082

– Baseline training time: 5 minutes1083

BLIP-2 Training1084

• MMSarcasm Dataset:1085

– 1 A100 GPU1086

– Baseline training time: 2 hours1087

• MUSTARD Dataset:1088

– 1 A100 GPU1089

– Baseline training time: 30 minutes1090

Qwen2-7B-Instruct Training1091

• MMSarcasm Dataset:1092

– 1 A6000 GPU1093

– Baseline training time: 2.5 hours1094

• MUSTARD Dataset:1095

– 1 A100 GPU1096

– Baseline training time: 10 minutes1097

Qwen2-1.5B-Instruct Training1098

• MMSarcasm Dataset:1099

– 1 A6000 GPU1100

– Baseline training time: 2 hours1101

• MUSTARD Dataset:1102

– 1 A100 GPU1103

– Baseline training time: 6 minutes1104

D.4 Hyper-parameter1105

The hyperparameters we tuned for training our1106

models are specified in the paper. We did not1107

tune/do a hyperparameter search across models1108

and kept the same hyperparameters per each unique1109

model we used. We kept our focus on training on1110

different splits of data for each unique model.1111

D.5 Experimental Statistics 1112

All the available results are based on a single run. 1113

D.6 Parameter for data preprocessing 1114

For MMSarcasm, we were only able to extract a 1115

total of 24635 images from the released dataset 1116

and thus filtered the dataset by the existence of 1117

corresponding image IDs. The sizes of validation 1118

and test sets are unaffected, while the number of 1119

training instances drops to 19816. 1120

During the training process of ALBEF, images 1121

are resized into 384 x 384. 1122

For MUSTARD, we had to split the videos into 1123

frames for use in our image-text models. We used 1124

FFmpeg, where we used 1 frame per second to split 1125

into frames. Thus, we created the image modality 1126

off on the original video dataset. 1127

D.7 Parameter for evaluation 1128

We used the metrics module from the sci-kit learn 1129

package for evaluating our prediction tasks. Since 1130

our tasks are binary prediction tasks, we chose the 1131

binary averaging strategy for precision, recall, and 1132

f1. Additional details can be found in the sci-kit 1133

learn documentation for the metrics module. 1134

E Human Evaluation Details 1135

In this section, we provide all the technical details 1136

for the human evaluation of multimodal interaction 1137

classification. 1138

E.1 Human evaluation data 1139

To test whether the model-predicted multimodal 1140

interaction type is aligned with human prediction, 1141

we select 30 data points that are classified as re- 1142

dundancy by the multimodal model, 30 that are 1143

classified as uniqueness, and 30 that are classified 1144

as synergy for human evaluation. 1145

E.2 Annotation pipeline 1146

To collect ground-truth labels for the human evalua- 1147

tion data, we implemented a systematic annotation 1148

pipeline. Initially, we gathered human-annotated 1149

multimodal interaction data for all 90 data points. 1150

Each data point was reviewed by multiple partici- 1151

pants, and their predictions were aggregated using 1152

an ensemble voting method. 1153

In cases where a data point received an equal 1154

number of votes for multiple interaction types, 1155

these ambiguous points were set aside for further 1156
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Figure 9: A screenshot of the user interface for human annotation. The interface is based on Google sheet and
users are encouraged to finish one sheet including 90 data points.

review. By the end of the first annotation round, the1157

majority of data points were successfully labeled.1158

For the remaining uncertain data points, a sec-1159

ond round of annotation was conducted. During1160

this phase, we organized a discussion meeting with1161

the group of annotators to deliberate on these am-1162

biguous cases. Through collaborative discussion,1163

the annotators aimed to reach a consensus on the1164

final prediction for each of these data points.1165

Ultimately, each data point was assigned a single1166

multimodal interaction label based on the major-1167

ity agreement among annotators. This structured1168

approach ensured that the final dataset was both1169

accurate and representative of diverse perspectives.1170

E.3 Human instruction1171

Each human participant, they were told that they1172

needed to provide a multimodal interaction label1173

among redundancy, uniqueness, and synergy for1174

each data point. Typically, in the first step, partic-1175

ipants are told that sarcasm refers to content that1176

uses sarcasm, a form of verbal irony where some-1177

one says the opposite of what they mean, often1178

for humorous or emphatic effect. Sarcasm can be1179

used to mock or convey contempt, but it can also1180

be used playfully or humorously. Detecting sar-1181

casm in text can be challenging because it relies on1182

context and tone, which are often absent in written1183

communication.1184

After that, they were asked to see only the text1185

information and only the image information. Based1186

on the text-only information, they provide a yes/no1187

prediction on whether they think the text is express-1188

ing sarcastic emotion or not. The same annotation1189

process happens for the image-only side.1190

After collecting the image-only sarcastic predic- 1191

tion and text-only sarcastic prediction, participants 1192

are encouraged to see the ground-truth labels of the 1193

data point that indicate whether the ground-truth an- 1194

swer is with sarcasm or without sarcasm. The next 1195

step is that they were told redundancy means both 1196

image and text modalities provide approximately 1197

redundant information about the sarcasm predic- 1198

tion. Uniqueness means that either image or text 1199

modalities provide sarcastic information about the 1200

prediction. Synergy means that when you combine 1201

image and text, your understanding and prediction 1202

about the sarcasm prediction switch significantly. 1203

They are encouraged to think based on this guid- 1204

ance together with their annotated unimodal labels 1205

in the next stage. 1206

Based on all the information and guidelines pro- 1207

vided, participants eventually provide an annota- 1208

tion among redundancy, uniqueness, and synergy. 1209

E.4 User interface 1210

The user did the annotation in the Google sheet 1211

interface. When doing unimodal side prediction, 1212

the other information is hidden. When doing the 1213

final redundancy, uniqueness, and synergy predic- 1214

tion, all the information that is available including 1215

ground-truth labels, images, and text is available to 1216

the participants. Figure 9 shows the UI interface of 1217

our annotation. 1218

E.5 Recruitment and Payment 1219

Participants for the annotation tasks were recruited 1220

through the authors’ networks. We aimed to engage 1221

individuals with diverse academic backgrounds to 1222

ensure a variety of perspectives in the annotations. 1223
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Participants were compensated for their time and1224

effort at a competitive hourly rate. For those re-1225

siding in the United States, compensation was set1226

above the federal minimum wage. Additionally,1227

one annotator from Switzerland received a payment1228

exceeding the local minimum salary.1229

E.6 Data consent1230

Before the process of data collection, we have1231

a consent form selection to ask the participants1232

whether they are willing to have their annotation1233

collected for academic usage.1234

E.7 IRB approval1235

Based on direct communication with our institu-1236

tion’s IRB office, this line of research is exempt1237

from IRB, and the information obtained during our1238

study is recorded in such a manner that the identity1239

of the human subjects cannot readily be ascertained,1240

directly or through identifiers linked to the subjects.1241

There is no potential risk to participants and we1242

do not collect any identifiable information from1243

annotators.1244

E.8 Participants details1245

Four participants participated in our human evalua-1246

tion experiments for classifying data points based1247

on multimodal interaction. All of them are between1248

the ages of 20-30 and have at least a bachelor’s de-1249

gree in computer science. 3 out of 4 participants1250

are male and 1 left is female. During the experi-1251

ment, they evaluated 90 sets of multimodal exam-1252

ples related to the Friends TV show and provided1253

predictions on the multimodal interaction type of1254

the data point whether it is redundancy, uniqueness,1255

or synergy based on the provided instruction.1256

F Unimodal Label Collection1257

F.1 Vision-only Label Collection1258

Prompt we used to get zero-shot vision-only pre-1259

diction for the Mustard dataset with GPT4V:1260

Prompt for Mustard Dataset

Are the people in the image being sarcastic
or not? You need to think based on their
figurative language, body language, and fa-
cial emotion. Sarcasm often happens when
people have intense feelings or emotions.
Answer with "Yes" or "No". Follow your
initial judgment and explain why.

1261

Prompt we used to get zero-shot vision-only pre- 1262

diction for the MMSarcasm dataset with CogVLM: 1263

Prompt for Mustard Dataset

Think step by step. Does this image contain
very obvious sarcasm? Answer yes or no
first. Then explain the reason.

1264

F.2 Text-only Label Collection 1265

Prompt we used to get zero-shot text-only predic- 1266

tion for the MMSarcasm dataset with GPT4: 1267

Prompt for Mustard Dataset

Are the people in the image being sarcastic
or not? You need to think based on their
figurative language, body language, and fa-
cial emotion. Sarcasm often happens when
people have intense feelings or emotions.
Answer with "Yes" or "No". Follow your
initial judgment and explain why.

1268

Prompt we used to get zero-shot text-only pre- 1269

diction for the MMSarcasm dataset with CogVLM: 1270

Prompt for Mustard Dataset

Please analyze the text provided below for
sarcasm. Begin your response by stating
whether the text is sarcastic, answering with
a simple ’Yes’ or ’No.’ Follow your ini-
tial judgment with a detailed explanation of
your reasoning. Focus on identifying any
elements within the text that contribute to a
sarcastic tone, such as linguistic cues, con-
text, or contrast between what is said and
what may be implied. Text to evaluate:

1271

G Image Description Collection 1272

Prompt we used to get image information for the 1273

Mustard dataset with GPT4V: 1274

Prompt for Mustard Dataset

Describe the body language, figurative lan-
guage, face emotion together with their sce-
nario for characters in the TV show screen-
shot briefly.

1275

Prompt we used to get image information for the 1276

MMSarcasm dataset with CogVLM: 1277
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Prompt for Mustard Dataset

Provide a comprehensive description of the
image, focusing on its key elements. In-
clude details such as the main subjects, their
positions and interactions within the scene,
the background setting, and any notable
objects or features. Mention the colors,
textures, and any text or symbols present.
Highlight any action or emotion that is de-
picted. Also, specify the overall atmosphere
or mood of the image, and how these ele-
ments collectively contribute to the narra-
tive or message being conveyed.

1278
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