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Abstract

Advances in multimodal models have greatly
improved how interactions relevant to various
tasks are modeled. Today’s models mainly fo-
cus on the correspondence between images and
text, using this for tasks like image captioning
and image-text retrieval. However, this covers
only a subset of real-world interactions. Novel
interactions, such as sarcasm expressed through
opposing spoken words and gestures or figura-
tive descriptions of images, remain challeng-
ing. In this paper, we introduce an approach
to enhance multimodal models, which we call
Multimodal Mixtures of Experts (MMOE).
The key idea in MMOE is to train separate ex-
pert models for each type of interaction, such as
redundancy present in both modalities, unique-
ness in one modality, or varying degrees of
synergy that emerge when both modalities are
fused. On two multimodal sarcasm datasets,
we obtain new state-of-the-art results. MMOE
also provides the framework to design smaller
specialized multimodal experts, and improves
the transparency of the modeling process.

1 Introduction

Recent advances in the design and pretraining of
vision-language models have enabled significant
progress in capturing the correspondences between
images and text (Zhu et al., 2023; Li et al., 2023;
Liu et al., 2023). These models have seen suc-
cesses in image captioning (Xu et al., 2015), text-
to-image generation (Saharia et al., 2022), multi-
modal retrieval (Mithun et al., 2018), multimodal
classification (Li et al., 2021), and more. At its
core, these methods aim to capture overlaps in se-
mantic content between images and text, making
a strong multi-view redundancy assumption (Tian
et al., 2020; Liang et al., 2023b; Zbontar et al.,
2021). However, redundancy is only one type of
interaction seen between two modalities (Williams
and Beer, 2010; Liang et al., 2023a; Marsh and
Domas White, 2003). Instead, it might hinge on
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Figure 1: A single multimodal model cannot han-
dle all types of multimodal interactions well. For
example, ALBEF can handle situations when modali-
ties contain redundant information (e.g., both the text
and the image are sarcastic), but struggle when there
is synergy between modalities (e.g., the image shows a
cold winter scene and the text says it is a happy spring,
indicating the user is sarcastic about the weather).

unique details from either modality (e.g. detecting
laughter from someone not observed) or the result
of synergistic fusion of both modalities, producing
insights absent when either modality is considered
in isolation (e.g., sarcasm discerned from incongru-
ent speech and gestures). Synergy is particularly
interesting because it often arises when the predic-
tions from different modalities are contradicting,
or incongruent with one another (Bateman, 2014;
Kruk et al., 2019; Zhang et al., 2018).

The diversity of possible real-world multimodal
interactions poses a challenge to today’s multi-
modal models. Empirically, we find that one single
model may not be the most suitable in capturing all
types of interactions at the same time. For example,
models trained to learn the correspondences be-
tween words and image regions (e.g., for retrieval)
will struggle when there is only unique information



in one modality (Liang et al., 2023b; Winterbottom
et al., 2020), or when the image and text provide
contradicting information that must be contextual-
ized together (Hessel et al., 2022). We show an ex-
ample of this failure in Figure 1, where ALBEF (Li
et al., 2021) can easily detect sarcasm when it is
present in both modalities (redundancy), but fails
when requiring synergistic fusion of image and text.
Quantitatively, ALBEF has performance drop of up
to 20% on synergistic interactions compared with
redundancy interactions.

To tackle this problem, we propose MMOE, by
leveraging the key insight that different interactions
require different modeling paradigms. A natural
way to model these differences is to use a mixture
of multimodal experts with specialized expert mod-
els for each interaction. Each expert model can
be specialized based on the unique training data
they see or a special training objective. Further-
more, there is evidence that the brain also uses
separate expert regions during the multisensory in-
tegration process, depending on the types of input
modalities and multimodal contexts present during
perception (Stein et al., 2020). During inference
on unseen datapoints, MMOE automatically fuses
multiple expert models to obtain a final prediction.

MMOE achieves new state-of-the-art results on
two multimodal sarcasm datasets we tested on,
MMSarcasm and MUSTARD. Moreover, we show that
our approach is easy to implement on different
types of models: we used fusion-based vision lan-
guage models like ALBEF (Li et al., 2021), mul-
timodal language models like BLIP-2 (Li et al.,
2023), and image-captioned language models like
Qwen2 (qwe, 2024). !

2 Related Work

We cover related work in quantifying and learning
multimodal interactions, as well as recent advances
in multimodal large language models.

Multimodal interactions define the degrees of
commonality between modalities and the ways
they combine to provide new information for a
task (Liang et al., 2023d). A core problem lies in
understanding the nature of how modalities interact
and modeling these interactions using data-driven
methods. The study of multimodal interactions
have involved semantic definitions based on re-
search in multimedia (Marsh and Domas White,

"More information related to the codebase and reproduc-

tion of results is available at Appendix §A. We will make the
model checkpoints and data public once got accepted.

2003), human (and animal) communication (Partan
and Marler, 2005; Flom and Bahrick, 2007; Ruiz
et al., 2006), and human social interactions (Mai
et al., 2019; Jung et al., 2018). These have also
inspired statistical methods to quantify multimodal
interactions from unimodal predictions (Mazzetto
et al., 2021), trained model weights and activa-
tions (Sorokina et al., 2008; Tsang et al., 2018,
2019; Hessel and Lee, 2020), feature selection (It-
tner et al., 2021; Yu and Liu, 2003, 2004; Auffarth
et al., 2010), and information theory (Liang et al.,
2023a,c; Williams and Beer, 2010; Bertschinger
et al., 2014). Our work builds on this line of work
in quantifying multimodal interactions, particularly
the statistical definitions that enable accurate esti-
mation from large-scale multimodal datasets.

Multimodal language models have revolution-
ized multimodal learning, since representations of
images and text can now be fed into large language
models for flexible question-answering, reasoning,
and multi-turn dialog conditioned on images. Many
of these models are built on top of multimodal ex-
tensions of the Transformer architecture (Su et al.,
2019; Liang et al., 2022; Jaegle et al., 2021; Lu
etal.,2019; Tsai et al., 2019; Tan and Bansal, 2019).
In addition to training large-scale multimodal trans-
formers ‘natively’ from input modalities, another
line of work takes pretrained language and vision
models and aims to learn a small set of ‘adapter’
parameters to align visual and language representa-
tions (Koh et al., 2023; Li et al., 2023; Zhu et al.,
2023). These approaches have shown strong perfor-
mance on a wide range of multimodal settings, such
as in visual question answering (Wang et al., 2022),
text-to-video generation (Kondratyuk et al., 2023),
robotics tasks (Driess et al., 2023), and biomedical
analysis (Acosta et al., 2022). However, these meth-
ods train monolithic models that perform the same
computation for all types of interactions, which we
show to be suboptimal when datasets contain a mix
of diverse and complex interactions.

Ensembles and mixture of experts are com-
monly used techniques to boost a model’s perfor-
mance using a collection of expert models each
with their specialized expertise but individually
weaker than the entire model (Freund et al., 1996).
Cheng et al. (2020) utilized voting-based method
to ensemble predictions from multiple models to
provide more accurate answers. Besides discrete
voting, continuous ensembles in logit space have
also been proposed (Eigen et al., 2013; Tasci et al.,
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Figure 2: We classify multimodal datasets into three subsets based on their multimodal interactions: (1)
Redundancy (R), when both modalities agree on the same multimodal label, (2) Uniqueness (U), when modalities
disagree and make different predictions, of which one of them is correct, and (3) Synergy (S), when the ground-truth
multimodal model does not agree with either types of unimodal predictions. y; represents the prediction from
image, yo the prediction from text, and y, the ground-truth multimodal label. { A, B, C'} represents sample labels.

2021). In settings where it is difficult to define
which expert is correct, trainable ensemble func-
tions have been designed to automatically combine
multiple experts together in an end-to-end fash-
ion (He et al., 2021; Shazeer et al., 2017; Du et al.,
2022). Our work uses these ideas as a foundation
to learn different types of multimodal interactions.

3 Multimodal Mixtures of Experts

We focus on multimodal prediction tasks: given
two modalities x1 and x2, our goal is to predict the
label y using information from both x; and 5. Nat-
urally, the information may be contained uniquely
in one of the modalities, present redundantly in
both, or require synergistically combining of infor-
mation from both modalities. While prior work has
focused on designing a single multimodal model
for all datapoints in a task, our key insight is that
each datapoint may exhibit a different type of inter-
action and therefore require a different modeling
approach. Our method, which we call MMOE, is a
natural solution to this problem by (1) Classifying:
classifying what type of interactions are present
in each datapoint in the training set, (2) Training:
training expert multimodal models to learn each
type of interaction, and (3) Inference: dynamically
ensembling the mixture of expert models during in-
ference on unseen new datapoints. We now explain
each of these three steps in detail.

3.1 Classifying multimodal interactions

Prior work has provided definitions of redundant,
unique, and synergistic interactions using the lan-
guage of information theory (Williams and Beer,
2010; Liang et al., 2023a). However, estimating
information theoretic measures can be challeng-
ing for high-dimensional and continuous distribu-
tions (Pérez-Cruz, 2008). When these interactions
cannot be exactly computed, they can be approxi-
mately inferred by considering whether unimodal
models trained on each modality agree or disagree

with each other’s predictions. We formalize modal-
ity disagreement as follows:

Definition 1. (Modality disagreement) Given x1 ~
X1, xo ~ Xy, as well as unimodal classifiers
fi: X = Yand fa : X5 — ), we define modal-
ity disagreement as d(y1,y2) where y1 = f1(x1),
Yo = fo(wo) and d : Y x Y — R0 is a distance
function in label space scoring the disagreement of
f1 and f5’s predictions. Typically, for a multimodal
prediction task with a discrete label space ), the
distance function is defined as:

0, i =
d(y1, 1) :{ ifyr =12 )

1, otherwise

This binary distance function indicates that
modalities agree with each other (distance of 0)
when f; and fo produce the same prediction and
modalities disagree with each other (distance of 1)
when their predictions differ in the discrete label
space. It gives us an intuitive way to categorize
three types of multimodal interactions:

1. Redundancy: when both modalities agree with
each other on the prediction, and the final multi-
modal label is the same as each unimodal label,
so they contain redundant information.

2. Uniqueness: when modalities disagree with
each other and make different predictions in the
label space, of which one of them is the cor-
rect multimodal label so that modality contains
unique information.

3. Synergy: when the multimodal label disagrees
with either unimodal prediction so there is syn-
ergy between modalities that changes the uni-
modal prediction significantly.

Based on these guidelines, Figure 2 shows an
example where we can classify each training data-
point into what type of interaction it exhibits. For
each multimodal datapoint (z1, z2), we require its
true multimodal label v, = f} (x1,x2) (labels
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Figure 3: MMOE training: Each
datapoint is classified based on its
multimodal interaction and used to
train an expert model tailored only
for that interaction.

are obtained from humans and visible during train-
ing), and unimodal predictions y; = fi(x1) and
y2 = fa(x2) obtained from pre-trained unimodal
classifiers. Comparing these partial unimodal la-
bels with the ground-truth label enables us to infer
the interaction type as follows:

Definition 2. (Redundant, Unique, and Synergistic
interactions [RUS]) Given x1 and xo, unimodal
partial labels vy, and ys, and the ground-truth mul-
timodal label y},,. Modalities are redundant when
Y1 = Y2 = Y, so a measure of redundancy is

R = —d(y1,vyp,) —dy1,y2) —d(y2,yp,), (2)

Modalities are unique when y1 = Yy, 7 Yo (modal-

ity 1 unique) or yo = Y 7 y1 (modality 2 unique),
so a measure of uniqueness is

Up =d(y2,yp,) +dy1,y2) — dy1,ys),  (3)
Us =d(y1,yp,) +dy1,y2) — d(y2, ys),  (4)

Modalities are synergistic when y; = ya # Ym, OF
Y1 # Y2 # Yr,, S0 a measure of synergy is

S =d(y1, ) + dy2,yn,), 5)

In practice, besides the ground-truth multimodal
label y,, we obtain unimodal predictions y; and
Y2 via state-of-the-art unimodal foundation models
in the few-shot style for all training datapoints. For
vision-only predictions, we utilize vision-language
models like CogVLM (Wang et al., 2023) and GPT-
4V (Achiam et al., 2023) to obtain them during
training by providing only the query and the image.
To get text-only predictions, we provide the state-
of-the-art language models like CogVLM (Wang
et al., 2023) and GPT-4 (Achiam et al., 2023) with
the query and the language information so the
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Figure 4: MMOE inference: We
infer which interaction a test dat-
apoint requires and use a soft
weighted fusion over on the out-
puts from multiple expert models.
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model answers conditioned only on text for pre-
diction. More information related to the collection
of unimodal labels is avaiable at Appendix §F.

3.2 Training one expert model for each
multimodal interaction

Given the partitioning of multimodal datasets into
subsets each with a similar interaction, this sec-
tion now describes how we use these interaction-
specific datasets to train interaction-specific expert
models. Illustrated in Figure 3, there are a total
of three specialized models, which we term f;., fy,
and f, for expert models of redundancy, unique-
ness, and synergy respectively. While these in-
dividual expert models share the same format of
inputs with image and text data pairs, their learning
outcomes can differ significantly due to the data
distributions they are trained on.

Overall, we first use the estimation process in
Section §3.1 to partition each dataset into interac-
tion categories. We then collect all evidences of
redundant interactions across multiple tasks to train
a task-independent redundancy expert f,.. This pro-
cess is repeated for unique and synergistic inter-
actions, resulting in trained experts f,, fy, and fs.
Each expert is trained only on the subset of data-
points that maximally exhibit that interaction; this
specialization enables experts to be performant at
learning that interaction while being smaller in size
as it does not have to spend parameters learning
other very different interactions. Crucially, multi-
task training allows us to leverage the power of
scale and learn interaction experts that are adapt-
able to multiple tasks at the same time. For exam-
ple, the redundancy expert might learn correspond-
ing information between speech and gestures for
emotion recognition as well as between images and



descriptive captions for image-caption retrieval.

We also note that it is possible to design inter-
action experts using different modeling architec-
tures and training objectives based on innovations
in multimodal machine learning. For example, it
has been empirically demonstrated that late fusion
models are more suitable when modalities are re-
dundant (Gadzicki et al., 2020), and models with
expressive higher-order interactions (e.g., polyno-
mials and tensors) are suitable when there is syn-
ergy between modalities (Hou et al., 2019). We
leave these design explorations for future work.

3.3 Inference with mixture of experts

The conclusion of Section §3.2 yields three expert
models each suited for a certain type of multimodal
interaction. During inference on unseen test data-
points, we need to select one or more expert models
most suitable for that new datapoint. This is a chal-
lenge since the categorization of datapoints during
training (presented in Section §3.1) requires know-
ing the ground-truth multimodal label y;;,, which
we have during training but not during inference.
One option is to approximate g, with predictions
Um from large pre-trained multimodal models, but
that is difficult since our goal is to develop a more
efficient multimodal model and running state-of-
the-art pre-trained models can be slow.

Our key idea is that classifying an interaction
is significantly easier than predicting the label it-
self. Therefore, while pretrained multimodal mod-
els might not be able to infer the label ¥, accu-
rately, they might be able to infer which interaction
type that the datapoint belongs to (i.e., predict if
modalities have the same or different information,
and whether synergistic fusion is required versus
actually performing the fusion). Therefore, we
approximately categorize datapoints during infer-
ence through a soft mixture of weights, defined as
wy, Wy, and ws over the three interaction types.
These weights are inferred dynamically for each
datapoint using a pretrained multimodal model
(e.g., BLIP-2 in practice). We also test simple base-
lines like prior constants %, %, % or based on the
frequency statistics of each interaction to weight
each expert model; see detailed ablation studies on
these weights in Section §4.4.

Using these inferred weights, we obtain a fi-
nal prediction j = Zi:e{r,u,s} w; fi(x1, x2) as the
output of MMOE.

4 Experiments

Our experiments are designed to evaluate the effec-
tiveness of our method when applied to a diverse
set of multimodal language model architectures and
through evaluation on wide range of multimodal
tasks with diverse interactions.

4.1 Experimental Setup

We introduce the models and multimodal predic-
tion tasks that we consider for experiments in this
section. More information related to experimental
settings is available at Appendix §D.

Models We implement MMOE on top of three
categories of multimodal language models to show
its widespread applicability on top of many base
models (see Figure 5 for an illustration). These
model categories include:

1. Fusion-based vision language models (VLMs)
use cross-attention to learn multimodal interac-
tions between all regions of the image with all
words in the input text. These models are usu-
ally trained from scratch using full-parameter
finetuning. Popular examples of such models in-
clude ALBEF (Li et al., 2021), LXMERT (Tan
and Bansal, 2019) and BLIP (Li et al., 2022).

2. Multimodal LLLMs (MLLMs) like BLIP-2 (Li
et al., 2023) and FROMAGe (Koh et al., 2023)
start with an image encoder and a pretrained
LLMs as the backbone and only finetune a
lightweight transformation from image fea-
tures to LLM input tokens. Therefore, multi-
modal extended LLMs are typically trained in a
parameter-efficient fine-tuning style.

3. Image-captioned LLMs (LLMs) convert im-
ages to text using a image captioning model and
uses a text-only LL.M like Qwen2 (qwe, 2024)
on the concatenation of captioned images and
text inputs. Examples in this category include
Socratic Model (Zeng et al., 2022) and video
understanding model (Zhang et al., 2023).

Multimodal prediction tasks We implement
both the baselines and our proposed MMOE
method on the following two tasks that require
learning multimodal interactions between images
and text: (1) MMSarcasm (Cai et al., 2019) is a mul-
timodal sarcasm detection dataset collected from
twitter posts with image-text pairs. It includes 210k
image-text pair datapoints annotated for sarcas-
tic and non-sarcastic intents. (2) MUSTARD (Cas-
tro et al., 2019) is a video-level sarcasm detection
dataset including 690 annotated video clips of the



Table 1: MMOE can beat the state-of-the-art models
and be generally applied to any type of model for
improvement. For MUSTARD, Qwen-1.5B out-performs
the recent LF-DNN-v1 by 2.25 points. For MMSarcasm,
Qwen-1.5B and BLIP-2 reach approximately full marks.

Model Precision  Recall F1
MUSTARD
MulT 65.51 64.78  64.49
LF-DNN-v1 71.55 7152 71.08
ALBEF 55.15 49.34  52.08
ALBEF+MMOE 52.20 70.39  59.94
BLIP2 55.45 73.68  63.28
BLIP2+MMOE 56.60 7895  65.93
Qwen-1.5B 58.40 9145 71.28
Qwen-1.5B+MMOE 63.46 86.84 73.33
MMSarcasm

ALBEF 85.43 86.36  85.90
ALBEF+MMOE 86.81 85.17 85.99
BLIP-2 99.90 99.90  99.90
BLIP-2+MMOE 99.80 100.0  99.90
Qwen-1.5B 100.0 100.0  100.0

TV series. We choose speaker-independent train-
ing and testing splits consistent with prior work to
avoid potential overlap between speakers.

4.2 Main results

We use our results to answer the following research
questions. Firstly, we study how the best MMOE
model compares to state-of-the-art baselines on
the evaluation tasks. Secondly, we study whether
MMOE improves performance when applied on
top of all three types of base models (multimodal
fusion models, multimodal extended LLMs, and
image-captioned LLMs).

Overall comparisons with state-of-the-art On
both datasets, our best MMOE model substantially
improves the state-of-the-art. We beat LF-DNN-
v1 (Ding et al., 2022) for MUSTARD with more than 2
points of improvement. Additionally, we find that
for MMSarcasm models, the latest models includ-
ing BLIP-2 and Qwen2-1.5B-Instruct can perfectly
answer all the points in the test set correctly. Typi-
cally, by comparing MUSTARD and MMSarcasm, we
find that MMOE helps gain more improvement
on hard dataset (e.g. MUSTARD) that has low F1
but gain less improvement on easy dataset (e.g.
MMSarcasm) that already has good performance.

Improvement on various types of multimodal
models We first compare performance on tradi-
tional cross-attention multimodal fusion models
(e.g., ALBEF) with and without MMOE. Based

Figure 6: Synergy in sarcasm detection. Existing
multimodal models struggle to learn the situation when
both text and image modalities alone do not indicate
sarcasm, but sarcasm arises due to the synergy between
modalities when fused together.
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on Table 1, we find that with the help of MMOE,
ALBEEF performance increases more than 7 points
for MUSTARD dataset and around 0.1 point for
MMSarcasm dataset. We now apply MMOE to
multimodal extended large language models build-
ing on top of OPT-2.7b (Zhang et al., 2022). On
datasets like MUSTARD, it improves the performance
by more than 2 points compared with the baseline.
Finally, if we convert the images of MUSTARD and
MMSarcasm into image descriptions utilizing GPT-
4V and CogVLM, we can use text-only LLMs like
Qwen2-7B to conduct experiments. It gains 1.4%
improvement on top of image-captioned LL.Ms.

4.3 Analysis of MMOE

Given these quantitative results, we further analyze
the success of MMOE. We first study the limita-
tions of current models, showing empirical results
where one single multimodal model struggles with
diverse interactions. We also investigate whether
specialized interaction experts can be made smaller,
as compared to typically overparameterized mod-
els, which can improve efficiency. Finally, we ab-
late several design decisions in MMOE.

RQ1. What types of multimodal interaction do
current models struggle with, and how do
expert models perform?

We first show some examples where current meth-
ods using a single multimodal model fail to learn
specialized interactions, while MMOE can. On
the MUSTARD dataset, we classified all data points
by their interaction type and found that data points
with redundancy, uniqueness, and synergy inter-
action are highly imbalanced. Redundancy to be
20%, uniqueness to be 50%, and synergy to be
30% in the training data. We find that existing
multimodal models including BLIP2 and ALBEF
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Figure 7: Multimodal models struggle with synergy
much more than redundancy and uniqueness. Both
ALBEF and BLIP-2 showing significantly lower perfor-
mance on synergistic datapoints compared with redun-
dancy and uniqueness that are split based on ourselves.

struggle with synergy multimodal interaction sig-
nificantly: from Figure 7, we see that they perform
at 32% for ALBEF and 50% for BLIP-2, which is
significantly lower than for other interactions. We
show an example of this failure in Figure 6, where
both vision and language contain no clear signal of
sarcasm, but when combined, the sarcastic intent is
evident. Existing multimodal models fail to learn
this interaction between modalities.

While a single large multimodal model may fail,
MMOE uses its separate expert models to tackle
each type of interaction. Specifically, for MUSTARD
training with ALBEF, expert training brings im-
provement from 32.0% to 45.7% on synergy inter-
action, improvement from 54.32% to 57.95% on
redundancy interaction, improvement from 53.5%
to 54.4% on uniqueness interaction.

RQ2. How small can expert models be?

It is widely known that neural networks, with
enough parameters, are universal approximators
of any function. Therefore, sufficiently large mul-
timodal models will eventually be able to approxi-
mately learn all interactions, like BLIP-2 can han-
dle all easy interaction cases with one single model
for a simple dataset like MMSarcasm. However, we
hypothesize that expert models that are more spe-
cialized for each interaction can be smaller and
more efficient while retaining performance.
Overall, to reach the same performance as
the traditional finetuning baselines that train one
large multimodal model for every interaction, our
MMOE approach can be up to 0.36 times smaller
in total, and 0.79 times smaller during inference
if using only a single expert. Therefore, MMOE
presents a path towards more specialized and
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Figure 8: Qwen2-1.5B-Instruct with MMOE beats
single Qwen2-7B-Instruct model. 3xQwen2-1.5B-
Instruct with 3 x1.5B parameters beats the Qwen2-7B-
Instruct with 7B, indicating MMOE points to a more
efficient multimodal architecture.

lightweight multimodal models.

4.4 Ablation studies

Eventually, we test ablations of MMOE compo-
nents and answer three more research questions
including ways of categorizing datapoints based on
multimodal interaction types, how we train expert
models, and how we fuse expert models.

RQ3. How to categorize datapoints?

We tested the accuracy of categorizing datapoints
by their multimodal interactions. Since these in-
teraction values are unknown, we rely on human
annotations to provide a gold standard rating using
90 datapoints from the test split of MUSTARD (see
Appendix §E for more human annotation details).
We find that our categorization utilizing unimodal
labels and ground-truth labels has an F1 score of
51.26% when compared to human annotation over
the 3 interaction types (redundancy, uniqueness,
and synergy), indicating that our automatic method
is correlated with human judgment. Redundancy
interactions are easier to detect, with an accuracy
of 64.3%; synergy and uniqueness are harder to
detect, with an accuracy of 46.7% and 43.4% re-
spectively. We expect future work on quantifying
multimodal interactions to further improve MMOE
performance.

To evaluate the effectiveness of data partition
for expert training based on interaction categoriza-
tion, we first ask one research question: Does class
imbalance in data partition hurt expert model train-
ing? Therefore, we design an experiment where
we downsample the original RUS partition to make
sure each class (redundancy, uniqueness, and syn-
ergy) has an equal number of data points. Based on



Table 2: Ablation study on different data partition-
ing methods for MMOoE. #R, #U, and #S represent the
number of training datapoints for each expert model.
We test three settings (1) RUS partition: standard in-
teraction classification, (2) RUS partition (balanced):
downsample RUS partition to have the same size, and
(3) Random partition: Keep the partition sizes the same
but with random datapoints.

Partition method #R #U #S  MUSTARD F1
RUS partition 57 145 90 78.65
RUS partition (balanced) 57 57 57 75.46
Random partition 57 145 90 71.50

Table 2, it shows that using as many RUS labeled
data points as possible is the most beneficial to
MMOE, and downsampling additional data from
uniqueness and synergy causes the drop of perfor-
mance by 3 points.

Then it comes to the second question: Does the
improvement of MMOE come just from ensembling
expert models? We would like to discuss whether
our improvement is caused by simply ensembling
instead of utilizing multimodal interactions. There-
fore, we replace our RUS partition data with our
randomly selected ones. From Table 2, we find
that randomly partition is 7 points worse than our
RUS partition, proving that multimodal interaction
categorization is crucial for performance gain.

RQ4. How to train expert models?

We ablate whether cross-dataset multitask train-
ing helps in training expert models, by pooling to-
gether synergy datapoints across multiple datasets
including MUSTARD and MMSarcasm to train one syn-
ergy expert, similar with redundancy and unique-
ness part. While MUSTARD is a small-scale multi-
modal dataset with only 300+ datapoints for train-
ing, MMSarcasm’s 190k+ datapoints helps gain an
overall improvement of 2.33 points (F1 improves
from 61.57 to 63.90). Additionally, synergy experts
improve by 2.17 points with the help of an addi-
tional 2084 synergy datapoints from MMSarcasm.
Therefore, these positive multitask results indicate
that multimodal interactions are universal proper-
ties across all multimodal datasets and expert mod-
els that learn specific multimodal features for inter-
action can be transferred across different datasets.

RQ5. How to fuse expert models?

Finally, we investigate how different choices for
the fusion function used to combine multiple expert
models together can affect performance. In addi-
tion to linear weights, we also test different ways

Table 3: Ablation study on various ways of fusing
multimodal experts on MUSTARD. We find that the
model-based method is the best, but simple methods
like averaging are also enough for strong performance.
Baseline indicates the performance of existing models
(ALBEF, BLIP-2, Qwen2-1.5B) without MMOE.

Fusion function ALBEF BLIP-2 Qwen-1.5B
model-based 59.94 65.93 73.33
average 59.72 63.90 72.87
weighted 57.97 63.31 72.68
cascaded 53.73 63.67 73.96
baseline (no fusion) 52.08 63.28 71.28

of weighting these experts as inspired by prior lit-
erature in MoEs in machine learning and natural
language processing (Yuksel et al., 2012).

We find that weights matter a lot for the per-
formance, indicating that different expert models
are focusing on different side of multimodal infor-
mation. Typically, we consider (1) model-based
fusion: we train a BLIP-2 model to provide log-
its that classify test datapoints into redundancy,
uniqueness, and synergy type. (2) average fusion:
we simply use the average of expert models output
logits as the final results. (3) weighted fusion: we
pre-define a fixed weight that is 0.2, 0.5, 0.3 based
on the approximate proportion of data with those
interactions, (4) cascaded fusion: we consider do-
ing inference with the redundancy and uniqueness
expert models first; if these two models cannot pro-
vide a sufficiently confident decision, we seek help
from the synergy expert. Based on Table 3, we
find that model-based fusion generally provides the
most significant improvement compared with other
methods. However, even a simple fusion method
through fixed uniform weights provides clear im-
provements, indicating the robustness of MMOE.

5 Conclusion

This paper proposes a method to enhance multi-
modal models with a new Multimodal Mixtures
of Experts structure (MMOE). The key idea is to
train separate expert models each tailored to learn
a specific type of interaction, which overcomes
significant shortcomings of existing multimodal
LLMs when diverse types of interactions are si-
multaneously present. Classifying datapoints into
their necessary interactions enables the fusion of
expert models during inference, which gives signif-
icant boosts to performance and efficiency. MMOE
also presents other appealing features of smaller,
more efficient specialized experts, and improved
transparency of the multimodal modeling process.



Limitations

While we presented a first step towards classifying
and learning multimodal interactions, our catego-
rization is still at a rather coarse level with only
three interactions. Future work should investigate
sub-categorizations of interactions, such as differ-
ent types of synergy between modalities. This can
be used to learn mixtures of interactions at a more
fine-grained feature level. Furthermore, even ap-
proximate classification of interactions (roughly
51% F1 with human annotation) can lead to im-
proved performance, so we expect future improve-
ments in quantifying interactions to further improve
MMOE. Future work can also investigate how to
better combine multiple interactions in a composi-
tional, multi-step manner to learn more complex
higher-order interactions between modalities. Fi-
nally, we only considered modalities that have good
unimodal encoders like language models and vision
models, future work can extend this direction to
novel modalities such as sensors and medical data
where unimodal models might have to be learned
end-to-end with the multimodal interactions.

Ethics Statement

There are possible negative societal impacts of our
work. Given the framework of our multimodal
model based on sarcasm tasks, the improvement
and success of our model could allow bad agents to
use this technology in a negative manner. Emotion
detection models can be used in an inappropriate
manner or deployed without proper vetting or un-
derstanding in model outputs. Predicting peoples’
emotions and using them without consent or consid-
eration can lead to unfair actions and assumptions.
We hope to use our paper as a stepping stone for
understanding the different noises from modalities
from human expression that go into sarcasm and
their modeling practices. We do not condone any
negative use of these models under any circum-
stance.

For human evaluation, based on direct commu-
nication with our institution’s IRB office, this line
of research is exempt from IRB, and the informa-
tion obtained during our study is recorded in such
a manner that the identity of the human subjects
cannot readily be ascertained, directly or through
identifiers linked to the subjects. There is no poten-
tial risk to participants and we do not collect any
identifiable information from annotators. For the
payment, we make sure that our participants are

paid with a salary that is higher than the minimum
local wage hourly. More details related to human
evaluation can be seen in Appendix §E.
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A Codebase Link

The anonymous link for the codebase is available
here. The README file inside provides a detailed
guideline on how to run experiments. All the model
logits for reproducing the results of the experiments
and data split are also available inside.

B Asset

In this section, we list all the necessary information
for our use of models and data. In our paper, we use
MUSTARD (Castro et al., 2019) and MMSarcasm (Cai
et al., 2019) for our dataset usage. We use AL-
BEF (Li et al., 2021), BLIP-2 (Li et al., 2023),
Qwen2-1.5B-Instruct (qwe, 2024) and Qwen2-7B-
Instruct (qwe, 2024) as our model usage. We show
the required information about them and how we
follow their requirements when using them.

B.1 Model link and license
ALBEF

Model link: here
License: BSD 3-Clause "New" or "Revised"

BLIP-2

Model link: here
License: BSD 3-Clause "New" or "Revised"

Qwen2-1.5B-Instruct

Model link: here
License: Apache 2.0

Qwen-2-7B-Instruct

Model link: here
License: Apache 2.0

B.2 Data license

MUSTARD

Data link: here
License: MIT

MMSarcasm

Data link: here
License: MIT

B.3 Model and data use

Personally identifiable information All of the
used datasets in this paper are derived from public
sources. Therefore, there is no exposure of any
personally identifiable information that requires
informed consent from those individuals. The used
dataset relates to people insofar as it draws text
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from public sources that relate to people, or people
created, obeying related licenses.

Offensive content claim All the used datasets in-
cluding MUSTARD and MMSarcasm are already pub-
lic and widely used. While these datasets may
contain instances of offensive content, our work
does not aim to generate or amplify such content.
Instead, we employ these datasets for the purpose
of studying and understanding the nature of sar-
casm in text. Our use of these datasets follows
ethical guidelines, and we do not endorse or sup-
port any offensive material contained within them.
Moreover, we have implemented measures to mit-
igate the propagation of offensive content within
our research.

Data information

MUSTARD This dataset is based on English and
mainly collected from TV show clips including
Friends, The Big Bang Theory, and so on. Its do-
main mainly covers daily conversation.

MMSarcasm This dataset is based on English and
mainly collected from online Twitter content. Its
domain mainly covers political, daily life, food,
and so on.

C Al Assistance

We did use ChatGPT as the writing assistant to
help us write part of the paper. Additionally, we
utilize the power of CodePilot to help us code faster.
However, all the Al-generated writing and coding
components assisted by Al are manually checked
and modified. There is no full Al-generated content
in the paper.

D Experimental Details

We include all the technical details of our experi-
ments for reproduction.

D.1 Data statistics for experiments

MUSTARD contains 690 videos with evenly bal-
anced sarcasm and non-sarcasm labeled points.
MMSarcasm consists of train, validation, and test
sets with sizes of 29040, 2410, and 2409 instances.
Images are unique for each instance.

D.2 Model size

We include the size of ALBEF, BLIP-2, Qwen2-
1.5B-Instruct, and Qwen2-7B-Instruct model size


https://anonymous.4open.science/r/mmoe-submit-6D59/
https://github.com/salesforce/ALBEF/tree/main
https://github.com/salesforce/LAVIS/tree/main/projects/blip2
https://huggingface.co/Qwen/Qwen2-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://github.com/soujanyaporia/MUStARD
https://github.com/wrk226/pytorch-multimodal_sarcasm_detection

here. ALBEF has a total size of 3.2GB. BLIP-2-opt-
2.7b has a total size of 15.5GB. Qwen2-7B-Instruct
has a size of 15.2GB.
D.3 Computational Cost
ALBEF Training

* MMSarcasm Dataset:

- 5 A6000 GPUs
— Baseline training time: 30 minutes

¢ MUSTARD Dataset:

- 5 A6000 GPUs
— Baseline training time: 5 minutes

BLIP-2 Training
e MMSarcasm Dataset:

- 1 A100 GPU
— Baseline training time: 2 hours

e MUSTARD Dataset:
- 1 A100 GPU

— Baseline training time: 30 minutes

Qwen2-7B-Instruct Training
* MMSarcasm Dataset:

- 1 A6000 GPU
— Baseline training time: 2.5 hours

¢ MUSTARD Dataset:

- 1 A100 GPU
— Baseline training time: 10 minutes

Qwen2-1.5B-Instruct Training
* MMSarcasm Dataset:

- 1 A6000 GPU
— Baseline training time: 2 hours

¢ MUSTARD Dataset:

- 1 A100 GPU
— Baseline training time: 6 minutes

D.4 Hyper-parameter

The hyperparameters we tuned for training our
models are specified in the paper. We did not
tune/do a hyperparameter search across models
and kept the same hyperparameters per each unique
model we used. We kept our focus on training on
different splits of data for each unique model.
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D.5 Experimental Statistics

All the available results are based on a single run.

D.6 Parameter for data preprocessing

For MMSarcasm, we were only able to extract a
total of 24635 images from the released dataset
and thus filtered the dataset by the existence of
corresponding image IDs. The sizes of validation
and test sets are unaffected, while the number of
training instances drops to 19816.

During the training process of ALBEF, images
are resized into 384 x 384.

For MUSTARD, we had to split the videos into
frames for use in our image-text models. We used
FFmpeg, where we used 1 frame per second to split
into frames. Thus, we created the image modality
off on the original video dataset.

D.7 Parameter for evaluation

We used the metrics module from the sci-kit learn
package for evaluating our prediction tasks. Since
our tasks are binary prediction tasks, we chose the
binary averaging strategy for precision, recall, and
f1. Additional details can be found in the sci-kit
learn documentation for the metrics module.

E Human Evaluation Details

In this section, we provide all the technical details
for the human evaluation of multimodal interaction
classification.

E.1 Human evaluation data

To test whether the model-predicted multimodal
interaction type is aligned with human prediction,
we select 30 data points that are classified as re-
dundancy by the multimodal model, 30 that are
classified as uniqueness, and 30 that are classified
as synergy for human evaluation.

E.2 Annotation pipeline

To collect ground-truth labels for the human evalua-
tion data, we implemented a systematic annotation
pipeline. Initially, we gathered human-annotated
multimodal interaction data for all 90 data points.
Each data point was reviewed by multiple partici-
pants, and their predictions were aggregated using
an ensemble voting method.

In cases where a data point received an equal
number of votes for multiple interaction types,
these ambiguous points were set aside for further



2_570 Oh my god, where are all the men?

2_261 Oh, no, no. | just meant hypothetically.

2_500 Oh my God I love that! - Really? - NO!

FALSE CHANDLER

FALSE CHANDLER

TRUE  MONICA

Figure 9: A screenshot of the user interface for human annotation. The interface is based on Google sheet and
users are encouraged to finish one sheet including 90 data points.

review. By the end of the first annotation round, the
majority of data points were successfully labeled.
For the remaining uncertain data points, a sec-
ond round of annotation was conducted. During
this phase, we organized a discussion meeting with
the group of annotators to deliberate on these am-
biguous cases. Through collaborative discussion,
the annotators aimed to reach a consensus on the
final prediction for each of these data points.
Ultimately, each data point was assigned a single
multimodal interaction label based on the major-
ity agreement among annotators. This structured
approach ensured that the final dataset was both
accurate and representative of diverse perspectives.

E.3 Human instruction

Each human participant, they were told that they
needed to provide a multimodal interaction label
among redundancy, uniqueness, and synergy for
each data point. Typically, in the first step, partic-
ipants are told that sarcasm refers to content that
uses sarcasm, a form of verbal irony where some-
one says the opposite of what they mean, often
for humorous or emphatic effect. Sarcasm can be
used to mock or convey contempt, but it can also
be used playfully or humorously. Detecting sar-
casm in text can be challenging because it relies on
context and tone, which are often absent in written
communication.

After that, they were asked to see only the text
information and only the image information. Based
on the text-only information, they provide a yes/no
prediction on whether they think the text is express-
ing sarcastic emotion or not. The same annotation
process happens for the image-only side.
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After collecting the image-only sarcastic predic-
tion and text-only sarcastic prediction, participants
are encouraged to see the ground-truth labels of the
data point that indicate whether the ground-truth an-
swer is with sarcasm or without sarcasm. The next
step is that they were told redundancy means both
image and text modalities provide approximately
redundant information about the sarcasm predic-
tion. Uniqueness means that either image or text
modalities provide sarcastic information about the
prediction. Synergy means that when you combine
image and text, your understanding and prediction
about the sarcasm prediction switch significantly.
They are encouraged to think based on this guid-
ance together with their annotated unimodal labels
in the next stage.

Based on all the information and guidelines pro-
vided, participants eventually provide an annota-
tion among redundancy, uniqueness, and synergy.

E.4 User interface

The user did the annotation in the Google sheet
interface. When doing unimodal side prediction,
the other information is hidden. When doing the
final redundancy, uniqueness, and synergy predic-
tion, all the information that is available including
ground-truth labels, images, and text is available to
the participants. Figure 9 shows the Ul interface of
our annotation.

E.5 Recruitment and Payment

Participants for the annotation tasks were recruited
through the authors’ networks. We aimed to engage
individuals with diverse academic backgrounds to
ensure a variety of perspectives in the annotations.



Participants were compensated for their time and
effort at a competitive hourly rate. For those re-
siding in the United States, compensation was set
above the federal minimum wage. Additionally,
one annotator from Switzerland received a payment
exceeding the local minimum salary.

E.6 Data consent

Before the process of data collection, we have
a consent form selection to ask the participants
whether they are willing to have their annotation
collected for academic usage.

E.7 1IRB approval

Based on direct communication with our institu-
tion’s IRB office, this line of research is exempt
from IRB, and the information obtained during our
study is recorded in such a manner that the identity
of the human subjects cannot readily be ascertained,
directly or through identifiers linked to the subjects.
There is no potential risk to participants and we
do not collect any identifiable information from
annotators.

E.8 Participants details

Four participants participated in our human evalua-
tion experiments for classifying data points based
on multimodal interaction. All of them are between
the ages of 20-30 and have at least a bachelor’s de-
gree in computer science. 3 out of 4 participants
are male and 1 left is female. During the experi-
ment, they evaluated 90 sets of multimodal exam-
ples related to the Friends TV show and provided
predictions on the multimodal interaction type of
the data point whether it is redundancy, uniqueness,
or synergy based on the provided instruction.

F Unimodal Label Collection

F.1 Vision-only Label Collection

Prompt we used to get zero-shot vision-only pre-
diction for the Mustard dataset with GPT4V:

Prompt for Mustard Dataset

Are the people in the image being sarcastic
or not? You need to think based on their
figurative language, body language, and fa-
cial emotion. Sarcasm often happens when
people have intense feelings or emotions.
Answer with "Yes" or "No". Follow your
initial judgment and explain why.
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Prompt we used to get zero-shot vision-only pre-
diction for the MMSarcasm dataset with CogVLM:

Prompt for Mustard Dataset

Think step by step. Does this image contain
very obvious sarcasm? Answer yes or no
first. Then explain the reason.

F.2 Text-only Label Collection

Prompt we used to get zero-shot text-only predic-
tion for the MMSarcasm dataset with GPT4:

Prompt for Mustard Dataset

Are the people in the image being sarcastic
or not? You need to think based on their
figurative language, body language, and fa-
cial emotion. Sarcasm often happens when
people have intense feelings or emotions.
Answer with "Yes" or "No". Follow your
initial judgment and explain why.

Prompt we used to get zero-shot text-only pre-
diction for the MMSarcasm dataset with CogVLM:

Prompt for Mustard Dataset

Please analyze the text provided below for
sarcasm. Begin your response by stating
whether the text is sarcastic, answering with
a simple *Yes’ or ’No.” Follow your ini-
tial judgment with a detailed explanation of
your reasoning. Focus on identifying any
elements within the text that contribute to a
sarcastic tone, such as linguistic cues, con-
text, or contrast between what is said and
what may be implied. Text to evaluate:

G Image Description Collection

Prompt we used to get image information for the
Mustard dataset with GPT4V:

Prompt for Mustard Dataset

Describe the body language, figurative lan-
guage, face emotion together with their sce-
nario for characters in the TV show screen-
shot briefly.

Prompt we used to get image information for the
MMSarcasm dataset with CogVLM:



Prompt for Mustard Dataset

Provide a comprehensive description of the
image, focusing on its key elements. In-
clude details such as the main subjects, their
positions and interactions within the scene,
the background setting, and any notable
objects or features. Mention the colors,
textures, and any text or symbols present.
Highlight any action or emotion that is de-
picted. Also, specify the overall atmosphere
or mood of the image, and how these ele-
ments collectively contribute to the narra-
tive or message being conveyed.
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