
Learning to Handle Complex Constraints
for Vehicle Routing Problems

Jieyi Bi1, Yining Ma1,†, Jianan Zhou1,
Wen Song2, Zhiguang Cao3, Yaoxin Wu4, Jie Zhang1

1Nanyang Technological University
2Shandong University

3Singapore Management University
4Eindhoven University of Technology

jieyi001@e.ntu.edu.sg, yiningma@u.nus.edu,
jianan004@e.ntu.edu.sg, wensong@email.sdu.edu.cn,
zgcao@smu.edu.sg, y.wu2@tue.nl, zhangj@ntu.edu.sg

Abstract

Vehicle Routing Problems (VRPs) can model many real-world scenarios and often
involve complex constraints. While recent neural methods excel in constructing
solutions based on feasibility masking, they struggle with handling complex con-
straints, especially when obtaining the masking itself is NP-hard. In this paper, we
propose a novel Proactive Infeasibility Prevention (PIP) framework to advance the
capabilities of neural methods towards more complex VRPs. Our PIP integrates the
Lagrangian multiplier as a basis to enhance constraint awareness and introduces
preventative infeasibility masking to proactively steer the solution construction
process. Moreover, we present PIP-D, which employs an auxiliary decoder and two
adaptive strategies to learn and predict these tailored masks, potentially enhancing
performance while significantly reducing computational costs during training. To
verify our PIP designs, we conduct extensive experiments on the highly challenging
Traveling Salesman Problem with Time Window (TSPTW), and TSP with Draft
Limit (TSPDL) variants under different constraint hardness levels. Notably, our PIP
is generic to boost many neural methods, and exhibits both a significant reduction
in infeasible rate and a substantial improvement in solution quality.

1 Introduction

Vehicle routing problems (VRPs) are NP-hard combinatorial optimization problems with complex
constraints that model real-world scenarios, such as logistics [1] and supply chains [2]. For decades,
traditional solvers relied on hand-crafted rules for VRP optimization and constraint handling. Recently,
the learning-to-optimize community [3] has successfully trained deep neural networks to automatically
construct VRP solutions in an end-to-end manner [4–6]. These data-driven neural methods offer
greater efficiency and high parallelism for batch optimization, making them favorable alternatives.

In general, neural methods construct VRP solutions by autoregressively sampling a node from its
predicted distribution while masking out nodes that would violate constraints to ensure the solution’s
feasibility. Despite successes (e.g., on TSP and CVRP), this masking mechanism assumes that 1) the
feasibility of the entire solution can be properly decomposed into the feasibility of each node selection

†Yining Ma is the corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

step, and 2) ground truth masks are easily obtainable for each step. However, such assumptions
may fail in VRPs (e.g., TSPTW) with complex interdependent constraints among decision variables
(i.e., nodes). As will be discussed in Section 4.1, this creates a masking dilemma - considering only
the local feasibility of node selections does not guarantee the overall feasibility of the constructed
solutions, while computing global feasibility masks that account for future impacts transforms
masking itself into another intractable NP-hard problem.

These observations highlight significant gaps in applying recent neural methods to practical VRPs,
necessitating research on new constraint-handling frameworks. In the literature, few studies have
focused on novel ways of handling feasibility in neural constructive solvers. Although preliminary
methods have attempted to mitigate it by relaxing constraints into soft ones [7, 8] or supplementing
networks with more feasibility-related features [9], the former is prone to failure when applied to
more complex scenarios, while the latter requires problem-specific features and a large supervised
learning dataset, limiting its adaptability to broader VRPs. Consequently, neural methods still show
limited flexibility, poor feasibility rates and large optimality gaps in solving those complex VRPs.

In this paper, we propose a novel Proactive Infeasibility Prevention (PIP) framework to extend the
capabilities of neural constructive methods for VRPs with complex interdependent constraints. Our
PIP first integrates the Lagrangian multiplier method into the reinforcement learning framework
of neural methods, promoting initial constraint awareness and search guidance. To further address
the limitations of the Lagrangian multiplier method on complex constraints, we then introduce
preventative infeasibility masking to proactively steer the search to (near-)feasible regions during
solution construction. By doing so, PIP significantly enhances feasibility rates and reduces optimality
gaps. Moreover, to reduce the costs of obtaining preventative infeasibility information during training,
we present PIP-D, which employs an auxiliary decoder to learn and predict masking information.
Our PIP-D also incorporates two adaptive strategies: one to balance infeasible and feasible masking
information for different problem hardness, and another to periodically update the model so as to
balance training efficiency with prediction accuracy. These advancements enable PIP-D to achieve
comparable or even better performance than PIP, particularly on larger and more constrained VRP
instances, while significantly reducing computational complexity.

Our contributions are as follows: 1) Conceptually, we represent an early work to address and advance
the handling of complex interdependent constraints in VRPs, where the original masking loses effec-
tiveness due to the aforementioned dilemma, thereby extending the applications of neural methods to
more practical scenarios. 2) Methodologically, we propose novel PIP and PIP-D approaches that can
boost the capabilities of most constructive neural methods. Specifically, we leverage the Lagrangian
multiplier method and introduce preventative infeasibility masking, which is further learned by an
auxiliary decoder network with two adaptive strategies, to proactively and efficiently steer the search
during solution construction. 3) Experimentally, we conduct extensive validation to demonstrate the
effectiveness and versatility of PIP across various backbone models (i.e., AM [4], POMO [5], and
GFACS [10]) and complex VRP variants (i.e., TSPTW and TSPDL). Notably, PIP achieves both
a significant (up to 93.52%) reduction in infeasible rate and a substantial improvement in solution
quality on synthetic and benchmark datasets with different constraint hardness levels.

2 Related work

Neural solvers for VRPs. Existing literature on learning to optimize VRPs features two primary
paradigms: constructive solvers and iterative solvers. Constructive solvers learn policies to con-
struct solutions from scratch in an end-to-end manner. Early works introduce Pointer Network to
approximate the optimal solution to TSP [11, 12] and CVRP [13] in an autoregressive (AR) way.
Among all AR solvers, the attention-based model (AM) [4] represents a milestone in solving a series
of VRPs. Later, the policy optimization with multiple optima (POMO) [5] further improves upon
AM by considering the symmetry property of VRP solutions. Numerous recent studies have then
aimed to further enhance their performance [14–23] and versatility [24–27]. Besides the AR methods,
several works construct a heatmap, which indicates the probability distribution of each edge being
part of the optimal solution, to solve VRPs in a non-autoregressive (NAR) manner [10, 28–34].
Despite the superior performance on large-scale instances, we note that a recent work [35] questions
the effectiveness of heatmap generative methods due to the misalignment of training and testing
objectives. Differently, iterative solvers learn policies to iteratively refine an initial solution. The
policies are often trained in contexts of classic heuristics or meta-heuristics for obtaining more

2

efficient and effective search components [36–45]. Generally, constructive solvers can efficiently
achieve desirable performance levels, whereas iterative solvers hold the potential to search for near-
optimal solutions with a prolonged time budget. Additionally, there are also several works studying
the scalability [46–52], generalization [53–58], and robustness [59, 60] of neural VRP solvers, and
leveraging large language models (LLMs) to optimize VRPs [61–63].

Constraint handling for VRPs. Most neural methods for VRPs manage constraints using a feasibil-
ity masking mechanism that eliminates actions leading to infeasible solutions during construction
or iteration search [4, 28, 32, 41]. However, such a mechanism assumes the availability of accurate
masks and often lacks constraint awareness learning during training, which is not always practical
or desirable. For example, Zhao et al. [64] highlighted the benefits of learning to modulate agent
behaviours in the 3D Bin Packing Problem, and Ma et al. [45] showed that temporary constraint viola-
tions could enhance neural iterative solvers. Despite their successes, these approaches are inherently
unsuitable for assisting constructive solvers to address the VRPs with complex interdependent con-
straints studied in this paper. While Tang et al. [8] and Zhang et al. [7] proposed methods to transform
hard constraints into soft ones via relaxation techniques and problem redefinition, respectively, they
may only be able to yield near-feasible solutions with large infeasible rates for VRPs with complex
constraints. More recently, Chen et al. [9] developed a multi-step look-ahead (MUSLA) method
specifically tailored for TSPTW, incorporating problem-specific features and a large supervised
learning dataset. In contrast, this paper proposes a more flexible and generic PIP framework based
on novel ideas of preventative infeasibility masking, learnable decoders, and adaptive strategies to
advance a broader range of neural methods without needing labelled training data.

3 Preliminaries

In this paper, we mainly consider two VRP variants with complex interdependent constraints (i.e.,
TSPTW and TSPDL), and neural solvers (i.e., AM [4], POMO [5] and GFACS [10]).

Problem definitions and notations. A VRP instance can be defined over a complete graph G =
{V, E}, where V = {v0, v1, . . . , vn} denotes the node set, and E = {e (vi, vj) |vi, vj ∈ V, i ̸= j}
denotes the directed edge set among all nodes. The objective is to minimize the total cost (e.g.
Euclidean length) of the solution tour. To form a feasible solution, each node in V should be visited
exactly once while respecting problem-specific constraints. We consider two types of VRP constraints
that are practical in industry: 1) Time window constraint: The arrival time at node vi, denoted as ti,
must fall within a customer-specific time window [li, ui]. If The vehicle arrives early (i.e., ti < li),
it must wait until li; 2) Draft limit constraint: Each node vi represents a port with a non-negative
demand δi and a maximum draft di. We denote the current cumulative load of the freighter at port vi
as αi in a given solution, which should not exceed the corresponding maximum draft di of the port.

Constructive solvers for VRPs. Popular neural constructive solvers [4, 5] typically parameterize the
policy using an encoder-decoder model with parameter θ, trained with reinforcement learning (RL).
Given a VRP instance G = {V, E}, the features of each node vi are represented as f v

i = {xi, yi, ci},
where xi, yi are node coordinates, ci represents constraint-related features (e.g., ci = {li, ui} for
time windows in TSPTW and ci = {δi, di} for demand and draft limits in TSPDL). The encoder
transforms node features into high-dimensional representation embeddings hi, which, combined
with the context of the partial tour, represent the current state. The decoder takes them as inputs and
outputs probabilities for candidate nodes (actions). The reward R(τ |G) is the negative tour length.
The policy πθ is typically trained using REINFORCE [65] as follows:

∇LRL (θ|G) =
1

K

K∑
i=1

(R (τi|G)− b(G))∇ log πθ (τi|G) , (1)

where K denotes the number of sampled solutions τi for a given training instance G, and b(·) is a
baseline function to reduce the variance. Specifically, the baseline is the reward (negative tour length)
of the solution derived greedily in AM or the average reward of sampled solutions 1

K

∑K
i=1 R (τi|G)

in POMO. Notably, POMO stipulates the starting node of each solution for diversification, which,
however, may hinder solution feasibility in our studied complex constrained problems. Based on our
preliminary experiments, POMO with and without diverse starting nodes achieve around 50.70%
and 1.75% infeasible rates on the easy TSPTW-50 datasets, respectively. Therefore, we remove the
starting node stipulation in POMO and instead sample n solutions to calculate the baseline.

3

�0

Infeasible solutionFeasible solutionPartial solution

�2
�1

�3

�0

�2
�1

�3

�0

�1

Travelling Time

�2

�3

Time Window

Visited NodeUnvisited NodeArrival Time (Feasible) Assumed Arrival TimeArrival Time (Infeasible)

Visited Edge (Feasible) Assumed Edge (Accessible)Visited Edge (Infeasible)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

 t = 0

 t = 1

 t = 2

 t = 5

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

 t = 0

 t = 1

 t = 5

 t = 2
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

 t = 0

 t = 1

 t = 2

 t = 2

...

...

Figure 1: A TSPTW instance to illustrate the malfunction of existing masking mechanism (left
three panels) and NP-hardness of obtaining precise infeasible masks (right panel). The orange bar
represents the time window [li, ui] for node vi. For the partial solution v0 → v1, both v2 and v3 are
locally feasible. However, selecting v3 results in the irreversible infeasibility of v2 afterwards.

4 Methodology

We now discuss the limitations of existing masking mechanisms in solving VRPs with complex
interdependent constraints, followed by a detailed introduction of our PIP and PIP-D frameworks.

4.1 Dilemma of feasibility masking

The core of feasibility masking in neural constructive solvers is to filter out invalid actions that violate
constraints, based on the assumption that the global feasibility can be decomposed into the feasibility
of each node selection step, and that ground truth masks are obtainable for each step. Without
loss of generality, we illustrate the dilemma of feasibility masking using a TSPTW example. In
TSPTW, nodes are masked out if they have been visited or cannot be visited before their time window
closes. However, the feasibility of selecting a node at a particular step impacts the current time,
thereby affecting all future selections due to the interdependence of time window constraints. Thus,
considering only local feasibility does not guarantee overall feasibility and may lead to irreversible
infeasibility. For instance, in a 4-node TSPTW instance with time windows {[0, 7], [1, 4], [2, 4], [2, 6]}
as illustrated in the left panel of Figure 1, there is a feasible solution τ = (v0 → v1 → v2 → v3).
Yet, with the partial solution v0 → v1, both v2 and v3 appear locally feasible. If the solver selects v3,
the tour becomes infeasible irreversibly. A potential remedy is to compute global feasibility masks
that consider all future possibilities, as illustrated in the right panel of Figure 1. However, this makes
masking itself an NP-hard problem, which creates a dilemma between ensuring solution feasibility
and managing computational complexity. Note that this dilemma is less critical in CVRPTW, which
involves multiple vehicles and routes, providing more flexibility. If one route becomes infeasible,
another vehicle departing at time 0 can cover the missed nodes, reducing the impact of constraint
interdependencies. However, this issue is severe in TSPTW and other variants like TSPDL.

4.2 Guided policy search by PIP

We first formulate the solution construction process of VRP as a Constrained MDP (CMDP) defined
by the tuple (S,A,P,R, C), where S is the state space, A is the action space that travels from node
vi to node vj , R : S ×A× S is the reward function, C : S ×A× S is the constraint violation cost
(penalty) function, and P : S ×A× S → [0, 1] is the transition probability function. At each time
step, the neural solver outputs the probability of all candidate nodes, and selects one to construct a
complete solution τ . The objective of CMDP is to learn a policy πθ : S → P(A) that maximizes the
summation of the state-wise reward subject to certain constraints,

max
θ

J (πθ) = Eτ∼πθ

 ∑
e(vi,vj)∈τ

R (e (vi, vj))

 ,
s.t. πθ ∈ ΠF , ΠF = {π ∈ Π |JCm

(π) ≤ κm, ∀m ∈ [1,M]},

(2)

where J is the expected return of the policy, ΠF denotes the set of all feasible policies, κm represents
the boundary of the inequality constraints Cm, and M is the number of constraints. Specifically, a

4

Π

ΠF

!!!

!!"

!!#

(b)
Π

ΠF

!!! !!"

!!#

(a)
Π

ΠF

(c)
Π

ΠF

!!!

!!"

!!#

(d)
Π

ΠF

!!! !!"
!!#

(e)

!!!

!!"

!!#

Figure 2: Illustration of policy optimization trajectories on VRP with varying difficulty levels -
(a)(b)(d) easy and (c)(e) hard, and different constraint handling schemes - (a) feasibility masking,
(b)(c) Lagrangian multiplier, and (d)(e) our PIP. The orange-filled circle denotes the feasible policy
space ΠF , while the dotted frame represents the actual search space of the neural policies πθ.

feasible policy π is one whose expected value of constraint violation w.r.t Cm, denoted as JCm
(π),

does not exceed κm. Note that κm is set to 0 throughout this paper since we consider the hard
constraints that do not tolerate any violation. Moreover, we set the reward function R to the negative
value of the Euclidean distance between two nodes, i.e., R (e (vi, vj)) = −||vi − vj ||2.

By applying feasibility masking, the search is confined to only feasible regions, allowing neural
methods to focus solely on the objective function in Eq. (2) without explicitly considering constraint
awareness or constraint violations. However, these methods lose effectiveness when such masks are
unavailable, leading to inefficient searches in large infeasible regions. To address this, we propose PIP,
combining a Lagrangian multiplier for constraint awareness and preventative infeasibility masking to
confine the search space to near-feasible regions for complex constrained problems.

Lagrangian-assisted constraint awareness. We design a Lagrangian multiplier based method to
incorporate constraints C into the reward function R. Based on the Lagrangian Multiplier Theorem,
the CMDP formulation in Eq. (2) is transformed into the following MDP formulation for VRPs:

min
λ≥0

max
θ

L(λ, θ) = min
λ≥0

max
θ

−Eτ∼πθ

 ∑
e(vi,vj)∈τ

||vi − vj ||2 +
M∑

m=1

λmJCm
(τ) + JIN

 , (3)

where L is the Lagrangian function, and λm is a non-negative Lagrangian multiplier. Generally,
the constraint violation term is calculated as the total violation value of all constraints. In TSPTW,
JTW(τ) =

∑n
i=0 max(ti − ui, 0), and in TSPDL, JDL(τ) =

∑n
i=0 max(αi − di, 0). Additionally,

we introduce the number of infeasible nodes in the solution τ , termed as JIN, as an extra term in
the Lagrangian function for better constraint awareness, which is empirically found to be effective
to reduce the infeasibility rate. While Lagrangian relaxation has been explored in neural iterative
methods for soft objectives [8], our approach introduces a distinct constraint violation cost function
tailored for neural constructive methods and considers fixing the Lagrangian multiplier λ (the dual
variable) and optimizing the primal variable θ, significantly reducing computational overheads.

Preventative infeasibility (PI) masking. As depicted in Figure 2(b), the customized Lagrangian
multiplier guides the neural policy towards a potentially feasible and high-quality space using Eq. (3).
However, for more complex cases shown in Figure 2(c), neural solvers may still struggle to navigate
the large search space. To further improve training efficiency and solution feasibility, we introduce
preventative infeasibility (PI) masking to proactively avoid selecting infeasible nodes during the
solution construction process. As shown in the left panel of Figure 3, if selecting a candidate node (i.e.,
orange node) results in any remaining candidates (i.e., green node) becoming potentially unvisitable
in the next step due to constraint violations, it is marked as infeasible (i.e., red node) since selecting
it would cause irreversible future infeasibility (see Appendix A.3 for a detailed example). Note
that we employ a simple yet effective one-step PI masking in this paper to balance computational
costs without iterating over all future possibilities (which is NP-hard). Together with the customized
Lagrangian multiplier, our PIP proactively reduces the search space to a near-feasible domain ΠF̃ , as
shown in Figures 2(d)-(e). Notably, such PIP design is generic and can be applied to enhance most
neural constructive solvers for VRPs with complex interdependent constraints.

5

Node
Feature

Encoder

Routing
Decoder

PIP
Decoder

Partial
Solution

PIP
Loss

Probabilities

PI Labels

PI Prediction
Sampler

RL
Loss

Loop

Node
Embedding

PI
Estimater

Solution Feature

Solution
Embedding

�s

Node Embedding
Assumed Visited Edge

Visited NodeUnvisited Node Assumed Visited Node Potential Infeasible Node
Input OutputVisited Edge Feasible Edge Infeasible Edge

Predicted Infeasible Node

Preventative Infeasibility
Estimater

Assume
& Step

...

Sampler

RL
Loss

λ

λ

PIP Method

PIP-D Method

Figure 3: An illustrative overview of our proposed approach: Left - Preventative infeasibility (PI)
estimator. Right - PIP (highlighted in green) framework and PIP-D (highlighted in blue) framework.

4.3 Learning to prevent infeasibility

Benefiting from the constraint-aware optimization guided by our PIP, neural methods gain enhanced
capabilities to address complex constraints, significantly boosting feasibility and optimality. However,
acquiring the above PI information introduces extra computational costs (see Section 5). To alleviate
this, we propose an auxiliary decoder network to learn and predict these masks, replacing the time-
consuming process of generating PI information with a much faster forward pass of the PIP decoder.
This further accelerates the training process, resulting in an enhanced version of our PIP framework,
termed PIP-D. The overall framework of PIP-D is illustrated in Figure 3.

Auxiliary PIP decoder. As presented in Figure 3, we incorporate an auxiliary decoder to learn and
predict the PI masks. Our PIP-D simultaneously involves training a routing decoder (the original one)
that maximizes the expected reward of solutions in Eq. (3) and a PIP decoder that minimizes the
prediction error on the PI masking using a weighted binary cross-entropy loss. The combined loss
function is a weighted sum of these two objectives, i.e., L = αLRL + βLPIP. To ensure the generality,
the PIP decoder mirrors the architecture of the backbone model and only adjusts the final output layer
with Sigmoid activation. More details of our PIP decoder are provided in Appendix B.

PIP-D training with adaptive strategies. Nevertheless, efficiently training the PIP decoder together
with the routing decoder necessitates effective designs. We address this with two adaptive strategies.
Firstly, training the PIP decoder at every gradient step would result in higher computational complexity
than the original PIP, counteracting our goal of reducing training complexity. Hence, we adopt a
periodic update strategy that intermittently updates the PIP decoder instead of continuously doing so.
This approach is based on the observation that the PI masks recommended by the neural network tend
to remain robust over short training periods. Specifically, we first train the PIP decoder with Einit
epochs, then periodically update Eu epochs per Ep epochs, and finally conduct El-epoch updates. In
this way, the computational costs are reduced and can be adaptively adjusted. Secondly, we consider
balancing feasible and infeasible PI signals for instances with different inherent hardness. Given that
the proportion of PI signals identified for feasible and infeasible nodes can vary significantly across
different VRP variants with different inherent hardness, we employ a weighted balancing strategy to
mitigate the influence of label imbalance [66], which is formulated as follows:

∇LPIP (θ|G) = − 1

T

T∑
t=0

(ωinfsb · gt · ∇ log (pθ (gt)) + ωfsb · (1− gt) · ∇ log (1− pθ (gt))) , (4)

where T is the total decoding step to construct a complete solution. The weights of each category are
calculated by their corresponding sample number, i.e, ωinfsb = Ninfsb+Nfsb

2Ninfsb
, ωfsb = Ninfsb+Nfsb

2Nfsb
, where

Ninfsb and Nfsb are the number of infeasible and feasible nodes identified by our PI masking (gt)
in a specific decoding step t, respectively. Moreover, beyond the above two critical strategies, we
explore additional strategies to accelerate the training of the PIP decoder, including fine-tuning and
early-stopping techniques, which are discussed in Appendix D.3.

6

Table 1: Experiments on TSPTW instance with three different hardness†.

Method
n = 50 n = 100

Infeasible%
Obj.↓ Gap↓ Time↓

Infeasible%
Obj.↓ Gap↓ Time↓Sol.↓ Inst. ↓ Sol.↓ Inst.↓

E
as

y

LKH3 0.00% 0.00% 7.31 0.00% 4.6h 0.00% 0.00% 10.21 0.00% 8.5h
ORTools 0.00% 0.00% 7.34 0.96% 7h 0.00% 0.00% 10.41 1.97% 14h
Greedy-L 100.00% 100.00% / / 13.8s 100.00% 100.00% / / 1.3m
Greedy-C 0.00% 0.00% 26.08 257.27% 4.5s 0.00% 0.00% 52.14 411.13% 12s
JAMPR # / 0.00% / 249.03% 1.2m / 100.00% / / 1.6m
OSLA # / 11.80% / 8.15% 15.6s / / / / /
MUSLA # / 8.20% / 7.32% 1.3m / 18.60% / 14.6% 9.8m
MUSLA adapt # / 0.10% / 5.63% 7.7m / 0.60% / 12.01% 1.1h

AM 100.00% 100.00% / / 5m 100.00% 100.00% / / 21m
AM* 3.46% 0.22% 8.02 9.82% 5.2m 7.87% 1.49% 11.84 16.07% 21m
AM*+PIP 0.55% 0.00% 7.87 7.67% 10.7m 0.45% 0.00% 11.42 11.86% 1h
AM*+PIP-D 0.51% 0.00% 7.91 8.19% 11m 0.25% 0.00% 11.53 13.02% 1h

POMO 100.00% 100.00% / / 13s 100.00% 100.00% / / 21s
POMO* 1.75% 0.00% 7.54 3.08% 13s 2.11% 0.00% 10.83 6.07% 21s
POMO* + PIP 0.32% 0.00% 7.50 2.65% 15s 0.15% 0.00% 10.57 3.53% 48s
POMO* + PIP-D 0.28% 0.00% 7.49 2.51% 15s 0.06% 0.00% 10.66 4.39% 48s

M
ed

iu
m

LKH3 0.00% 0.00% 13.02 0.00% 7h 0.00% 0.00% 18.74 0.00% 10.8h
ORTools 15.77% 15.77% 13.02 0.30% 5.9h 0.52% 0.52% 19.34 3.23% 13.8h
Greedy-L 100.00% 100.00% / / 15s 100.00% 100.00% / / 1m
Greedy-C 47.52% 47.52% 25.33 96.43% 4.2s 20.34% 20.34% 51.62 176.07% 11.4s

AM 100.00% 100.00% / / 5m 100.00% 100.00% / / 21m
AM* 24.84% 0.27% 13.81 6.11% 5m 50.19% 0.09% 21.42 14.34% 21m
AM*+PIP 7.62% 0.35% 13.68 5.06% 11m 12.73% 0.04% 20.57 9.82% 1h
AM*+PIP-D 11.96% 0.33% 13.65 4.87% 11m 8.80% 0.02% 20.80 11.03% 1h

POMO 100.00% 100.00% / / 13s 100.00% 100.00% / / 21s
POMO* 14.92% 3.77% 13.68 5.23% 13s 18.77% 0.12% 20.78 10.93% 21s
POMO* + PIP 4.53% 0.90% 13.40 2.91% 15s 3.88% 0.19% 19.61 4.65% 48s
POMO* + PIP-D 3.83% 0.65% 13.45 3.32% 15s 3.34% 0.03% 19.79 5.64% 48s

H
ar

d

LKH3 0.12% 0.12% 25.61 0.00% 7h 0.07% 0.07% 51.24 0.00% 1.4d
ORTools 65.72% 65.72% 25.76 -0.00% 2.4h 89.07% 89.07% 51.61 0.00% 1.6h
Greedy-L 100.00% 100.00% / / 21.8s 100.00% 100.00% / / 1.3m
Greedy-C 72.55% 72.55% 26.39 1.53% 4.5s 93.38% 93.38% 52.95 1.43% 11.1s

AM 100.00% 100.00% / / 5m 100.00% 100.00% / / 21m
AM* 39.87% 18.88% 26.08 1.425% 5m 100.00% 100.00% / / 21m
AM*+PIP 18.07% 1.98% 25.71 0.38% 11m 41.92% 16.46% 51.49 0.47% 1h
AM*+PIP-D 30.39% 4.40% 25.80 0.67% 11m 53.09% 5.33% 51.55 0.57% 1h

POMO 100.00% 100.00% / / 13s 100.00% 100.00% / / 21s
POMO* 39.26% 35.25% 26.22 1.61% 13s 100.00% 100.00% / / 21s
POMO* + PIP 5.54% 2.67% 25.66 0.18% 15s 31.49% 16.27% 51.42 0.37% 48s
POMO* + PIP-D 6.76% 3.07% 25.69 0.28% 15s 13.18% 6.48% 51.39 0.31% 48s

Results are adopted from [9] due to unavailable source code, with our ‘Easy’ settings corresponding to their ‘Medium’ dataset.
/ The corresponding results are not available due to no feasible solutions or not given by [9].
† We report the average results for instances where feasible solutions were found, which vary across different models. Despite these
variations, the results for overlapping feasible instances consistently show similar patterns (see Appendix D.2).

5 Experiments

In this paper, we propose a Proactive Infeasibility Prevention (PIP) framework and its enhanced
version, PIP-D, to address the limitations of existing masking mechanisms for handling complex con-
straints. Notably, our PIP and PIP-D are generic and can be applied to boost various problem variants
and neural methods. To evaluate the effectiveness of our method, we apply our PIP frameworks to
two representative AR constructive methods, AM [4] and POMO [5], and the latest NAR constructive
GFACS [10]. For the benchmark problem, we consider two representative complex VRP variants with
strong interdependent constraints that challenge existing neural methods (i.e., TSPTW and TSPDL,
each at varying levels of hardness) with small problem scale n = 50, 100 for AM [4] and POMO [5]
and large scale n = 500 for GFACS [10]. All the experiments are conducted on servers with NVIDIA
GeForce RTX 3090 GPUs and Intel(R) Xeon(R) Gold 6326 CPU at 2.90GHz. Our implementation in
PyTorch are publicly available at https://github.com/jieyibi/PIP-constraint.

Implementation details. We generate instances at different hardness levels following prior works.
For TSPTW [7, 9, 30, 67], we generate three types of instances: Easy, Medium and Hard, by adjusting
the width and overlap of the time window. For TSPDL [68–70], we consider two levels of hardness:
Medium and Hard. More details of such instance generation are provided in Appendix A. To ensure a

7

https://github.com/jieyibi/PIP-constraint

Table 2: Experiments on TSPDL instances with two different hardness.

Method
n = 50 n = 100

Infeasible%
Obj.↓ Gap↓ Time↓

Infeasible%
Obj.↓ Gap↓ Time↓Sol.↓ Inst. ↓ Sol.↓ Inst.↓

M
ed

iu
m

LKH3 0.00% 0.00% 10.87 0.00% 5.1h 0.00% 0.00% 16.39 0.00% 14h
ORTools 100.00% 100.00% / / 10.9s 100.00% 100.00% / / 56.9s
Greedy-L 100.00% 100.00% / / 2.4m 100.00% 100.00% / / 9.5m
Greedy-C 0.00% 0.00% 26.09 144.24% 9.1s 0.00% 0.00% 52.16 222.71% 27s

POMO* 17.72% 12.52% 10.98 3.80% 6.9s 49.39% 32.19% 17.11 9.15% 18s
POMO* + PIP 2.21% 0.43% 11.22 3.41% 8.5s 2.88% 0.38% 17.71 8.08% 31s
POMO* + PIP-D 2.64% 0.37% 11.26 3.78% 8.4s 2.14% 0.23% 17.84 8.86% 31s

H
ar

d

LKH3 0.00% 0.00% 13.30 0.00% 6.8h 0.00% 0.00% 20.70 0.00% 1.2d
ORTools 100.00% 100.00% / / 10.6s 100.00% 100.00% / / 56.8s
Greedy-L 100.00% 100.00% / / 2.4m 100.00% 100.00% / / 9.4m
Greedy-C 0.00% 0.00% 26.07 99.73% 10.9s 0.00% 0.00% 52.17 156.37% 25s

POMO* 37.01% 29.25% 13.03 4.11% 6.8s 99.98% 99.85% 20.95 15.87% 18s
POMO* + PIP 4.53% 2.10% 13.66 3.13% 8.5s 28.55% 20.66% 22.30 12.67% 31s
POMO* + PIP-D 3.89% 0.82% 13.80 3.95% 8.5s 12.84% 7.91% 22.84 12.32% 31s

comprehensive comparison, we also train and evaluate the models learned solely using our designed
Lagrangian multiplier method. Meanwhile, we mark the models that use the Lagrangian multiplier
with an ∗ for clarity. For our proposed approaches, our PIP models build on the Lagrangian multiplier
by further incorporating one-step preventative infeasibility masking, while the enhanced version,
PIP-D, is trained with a periodically and adaptively updated PIP decoder as previously described.
Hyper-parameters for training follow the original settings of the backbone models except for the ones
related to the added PIP decoder. Detailed hyper-parameters and additional results are available in
Appendix C and D. During inference, we adhere to the settings of the original backbone models. For
the AM series models, we sample 1280 solutions per instance; for the POMO series models, we use a
greedy strategy with 8× augmentation; and for the GFACS series models, we employ 100 ants to
generate solutions for each instance over 10 pheromone iterations.

Baselines. We compare our proposed PIP framework with two types of baselines: 1) heuristic
methods, including LKH3 [71], a strong solver designed for multiple VRP variants; OR-Tools [72],
a more flexible solver allowing different combinations of multiple diverse constraints; and Greedy
Heuristics that selects locally optimal candidates at each step, where Greedy-L picks the nearest
candidate and Greedy-C chooses based on complex constraints: in TSPTW, the soonest time window
ends relative to the current time; and in TSPDL, the minimal draft limit; 2) Neural methods, including
the original AM [4], POMO [5] and GFACS [10], as well as JAMPR [73], adapted by [9] to solve
TSPTW from VRPTW; and MUSLA [9], a prior work on TSPTW trained in supervised manner,
where OSLA is its one-step version and MUSLA adapt adopts an adaptive inference strategy. More
details on the compared baselines are presented in Appendix C.

Evaluation metrics. In this paper, we report the following metrics to evaluate the performance
of our proposed PIP framework: 1) the ratio of infeasible solutions (Infeasible%), which includes
the solution-level (Sol.) infeasible rate that considers all generated solutions during inference and
the instance-level (Inst.) infeasible rate that considers the comprehensive results of Ns solutions
generated by the sampling (Ns = 1, 280 in AM series models) or augmentation (Ns = 8 in POMO
series models). If at least one feasible solution is found among these Ns solutions, the instance
is considered to have feasible solutions; 2) average optimality gap (Gap) w.r.t the strong baseline
LKH [71] for the best feasible solutions within Ns solutions; 3) average tour length (Obj.) of the
feasible best solutions within Ns solutions; and 4) inference time, where we report the total time
taken to solve 10,000 (n = 50 and 100) or 128 (n = 500) instances, with batch parallelism enabled
on a single GPU. For baselines run in CPU, we exhibit the results in parallel on 16 CPU cores.

5.1 Model performance on complex constrained problems

The performance comparison on TSPTW and TSPDL at various levels of problem hardness is
presented in Table 1 and Table 2, respectively. Notably, the original backbone models AM and POMO
could not solve the problem even at the easiest level. By incorporating the Lagrangian multiplier
(indicated by *), the models begin to generate some feasible solutions. However, this advantage
diminishes under more complex constraints. For example, the instance-level infeasibility rates for

8

POMO and AM on Hard TSPTW-100 reach 100% in Table 1, which is dramatically reduced to 6.28%
with the addition of PIP-D, while also improving solution quality. Compared to traditional heuristics
like ORTools, Greedy-L, and Greedy-C, our PIP-D consistently outperforms these methods and shows
favourable results against JAMPR and MUSLA, especially in large-scale problems. Furthermore,
compared to PIP, our PIP-D delivers competitive or even better objective values and optimality gaps
while significantly enhancing training efficiency (e.g., 1.5 times faster for n = 50 and 5.8 times faster
for n = 100, w.r.t POMO* + PIP). Notably, the superiority of PIP-D is more significant on the more
constrained hardness levels and larger problem sizes. For TSPDL, we observe similar patterns, where
our PIP and PIP-D models consistently outperform other baselines in terms of both infeasibility
reduction and solution quality. These results validate that our PIP approach significantly reduces
infeasible rates and substantially improves solution quality compared to existing neural methods.

5.2 Model performance on large-scale problems

Table 3: Results on Medium TSPTW-500.

Method
Infeasible%

Gap↓ Time↓Sol.↓ Inst.↓

LKH3 0.00% 0.00% 0.00% 26m
Greedy-L 100.00% 100.00% / 3.2m
Greedy-C 100.00% 100.00% / 4.1s

GFACS* 58.20% 57.81% 21.32% 6.4m
GFACS* + PIP 4.72% 1.56% 15.04% 6.5m

GFACS* + PIP-D 0.03% 0.00% 11.95% 6.5m

We further evaluate the capability of solving large-
scale problems by implementing our PIP framework
on GFACS [10]. As displayed in Table 3, equipping
GFACS with our PIP significantly reduces the infea-
sible rate, for both the solution level and instance
level and simultaneously enhances solution quality.
Notably, GFACS* + PIP-D almost guarantees to ob-
tain all feasible solutions. Different from AM and
POMO, GFACS is a NAR constructive solver, which
showcases the generality of our framework.

5.3 Further Experiments

Ablation on each PIP and PIP-D design. We now provide in-depth discussions on the effectiveness
of the three proposed designs: the Lagrangian multiplier (*), the PI masking (PIP) and the learnable
decoder (PIP-D). As shown in Tables 1 and 2, in Easy datasets, the solution-level infeasible rate for
POMO* is 2.11%, improving to 0.06% with PIP-D. This shows that, for less complex constraints, the
Lagrangian multiplier alone effectively guides the policy to feasible regions, hedging the impact of
PIP and PIP-D, which aligns with Figure 2(b) and (d) where ΠF is relatively large compared to Π.
However, in more complex scenarios, where ΠF is much smaller relative to Π (as in Figure 2(c)), the
neural policy struggles even with the Lagrangian multiplier. In such cases, our PIP and PIP-D become
crucial, significantly confining the search space as depicted in Figure 2(e). In Medium datasets, the
infeasible rate drops from 18.7% in POMO* to 3.34% in POMO* + PIP-D; in Hard datasets, it drops
dramatically from 100% in POMO* to 6.48% in POMO* + PIP-D. These results verify that our PIP
framework achieves significant improvement, especially as problem complexity increases.

Sol. Inst. Gap
0

5
TW + IN (Ours)
TW

Figure 4: Effects of JIN

Sol. Inst. Gap Train T.0.0

2.5

5.0
Einit = 200 (Ours)
Einit = 100

Figure 5: Effects of Less Update.

Ablation on the terms in Lagrangian function. In Figure 4, we
exhibit the results with and without the JIN in Eq.(3), which validates
its efficacy of enhancing the constraint awareness.

Ablation on weighted balancing strategy. Recall that the ratio of
infeasible to feasible samples in PIP labels varies with the inher-
ent constraint hardness. Our preliminary experiments suggest that
such a ratio can reach up to 20:1 in the case of Hard datasets, caus-
ing significant label imbalance. This imbalance may significantly
impact the performance of POMO* + PIP-D on several datasets,
especially the harder ones, leading to 0% prediction accuracy on the
minority class and causing a 100% infeasible rate for the backbone
solver without a weighted balancing strategy. This indicates that the
hardness-adaptive label balance strategy is essential. Moreover, for
the accuracy of PIP-D, please refer to Appendix D.4.

Ablation on periodical update strategy. In Figure 5, we evaluate PIP-D models with fewer updates.
Results show that more updates improve performance, despite a slight increase in training time.

Ablation on different step numbers. Instead of iterating over all future possibilities, we use one-step
PI masking to approximate NP-hard feasibility mask and reduce computational cost. To provide a

9

Table 4: Results of PIP steps on Medium TSPTW-50.

Method PIP Step Sol. Infsb%↓ Inst. Infsb%↓ Gap↓ Time↓

POMO*+PIP 0 76.92% 47.28% 4.24% 13s
POMO*+PIP 1 4.53% 0.90% 2.91% 15s
POMO*+PIP 2 2.90% 0.50% 2.93% 4.2m

POMO*+PIP-D 0 47.86% 20.86% 3.49% 13s
POMO*+PIP-D 1 3.83% 0.65% 3.32% 15s
POMO*+PIP-D 2 2.59% 0.35% 3.34% 4.2m

Table 5: Results of PIP steps on Hard TSPTW-100.

Model PIP Step Sol. Infsb%↓ Inst. Infsb%↓ Gap↓ Time↓

POMO*+PIP 0 100.00% 100.00% / 21s
POMO*+PIP 1 31.49% 16.27% 0.37% 48s
POMO*+PIP 2 26.87% 12.88% 0.37% 35m

POMO*+PIP-D 0 79.73% 63.29% 0.31% 21s
POMO*+PIP-D 1 13.18% 6.48% 0.31% 48s
POMO*+PIP-D 2 11.62% 5.63% 0.31% 35m

Table 6: Results on LKH3 with the similar in-
stance inference time limit as POMO*+PIP(-D).

Method
n = 50 n = 100

Inst. Time Obj. Inst. Infsb% Inst. Time Obj. Inst. Infsb%

E
as

y

LKH3 (Default) 27s 7.31 0.00% 49s 10.21 0.00%
LKH3 0.37s 7.35 0.00% 0.9s 10.37 0.00%

POMO*+PIP 0.38s 7.50 0.00% 0.9s 10.57 0.00%
POMO*+PIP-D 0.38s 7.49 0.00% 0.9s 10.66 0.00%

M
ed

iu
m

LKH3 (Default) 40s 13.02 0.00% 1.0m 18.74 0.00%
LKH3 0.37s 13.06 0.00% 0.9s 19.00 0.00%

POMO*+PIP 0.38s 13.40 0.90% 0.9s 19.61 0.19%
POMO*+PIP-D 0.38s 13.45 0.65% 0.9s 19.79 0.03%

H
ar

d

LKH3 (Default) 40s 25.61 0.12% 3.2m 51.24 0.07%
LKH3 0.37s 25.43 30.60% 0.9s 49.94 97.28%

POMO*+PIP 0.38s 25.66 2.67% 0.9s 51.42 16.27%
POMO*+PIP-D 0.38s 25.69 3.07% 0.9s 51.39 6.48%

Table 7: Results on LKH3 with the similar total
inference time limit as POMO*+PIP(-D).

Method
n = 50 n = 100

Total Time Obj. Inst. Infsb% Total Time Obj. Inst. Infsb%

E
as

y

LKH3 (Default) 4.6h 7.31 0.00% 8.5h 10.21 0.00%
LKH3 26s 8.81 99.29% 58s / 100.00%

POMO*+PIP 21s 7.50 0.00% 48s 10.57 0.00%
POMO*+PIP-D 21s 7.49 0.00% 48s 10.66 0.00%

M
ed

iu
m

LKH3 (Default) 7h 13.02 0.00% 10.8h 18.74 0.00%
LKH3 25s 13.05 39.91% 63s / 100.00%

POMO*+PIP 21s 13.40 0.90% 48s 19.61 0.19%
POMO*+PIP-D 21s 13.45 0.65% 48s 19.79 0.03%

H
ar

d

LKH3 (Default) 7h 25.61 0.12% 1.4d 51.24 0.07%
LKH3 22s / 100.00% 54s / 100.00%

POMO*+PIP 21s 25.66 2.67% 48s 51.42 16.27%
POMO*+PIP-D 21s 25.69 3.07% 48s 51.39 6.48%

comprehensive picture of the computational trade-offs, we further conduct experiments on PIP and
PIP-D with different step numbers. In Table 4 and 5, we gather the results (solution feasibility and
quality) and the inference time for different PIP steps. Results suggest that zero-step PIP saves time
but suffers from unacceptable performance; the two-step PIP improves performance slightly but is
computationally expensive. Hence, one-step PIP balances these trade-offs effectively.

Comparison with LKH3 under different inference time budget. To provide a more comprehensive
comparison with LKH3, we provide additional results of LKH3 with identical time limits as the
proposed approach across varying instance difficulty levels (Easy, Medium, Hard) and scales (n =
50, 100 nodes). The time limits are configured in two ways: matching the per instance inference
time without parallelization and matching the total inference time with parallelization on a GPU.
As shown in Table 6, POMO*+PIP(-D) outperforms LKH3 on Hard datasets, while maintaining
competitive results on Easy and Medium datasets. While comparing per-instance time might seem
fair for CPU-based LKH3, ignoring parallelization could disadvantage GPU-based solvers (thus not
fair for GPU-based solvers). To further explore this, we conduct another experiment but with a similar
total inference time limit across both methods, which is a common practice in most existing NCO
papers. Results, in Table 7, show that our POMO*+PIP(-D) performs consistently better than LKH3
across most of the hardness. Moreover, to leverage the strengths of both approaches and further
reveal the practical usage of our method, we explore a hybrid method that combines our PIP(-D)
framework with LKH3. The results, as shown in Appendix D.3, reveal that LKH3’s search efficiency
can be significantly enhanced when initialized with solutions from our PIP(-D) framework.

6 Conclusions

In this paper, we study an unsolved challenge in neural VRP solvers and correspondingly propose
a novel Proactive Infeasibility Prevention (PIP) framework to advance their capabilities towards
addressing VRPs with complex constraints. Technically, we introduce a Lagrangian multiplier method
and preventative infeasibility masking to proactively guide the solution construction process. By
further incorporating an auxiliary decoder, our PIP framework enhances training efficiency while
exhibiting superior performance on more complex datasets. While our PIP is generic and has shown
great ability to boost both AR and NAR constructive methods, one potential limitation is that it may
not improve performance on all backbone solvers and all VRP variants. Future directions include: 1)
exploring other strategies to reduce computational complexity, such as employing a trainable heatmap
to confine the candidate space of PI masking calculation, 2) applying PIP to more neural methods
at larger scales, 3) extending PIP to neural iterative solvers, 4) applying PIP to more VRP variants
with complex constraints, including those hard-constrained VRPs whose feasibility masking is not
NP-hard but with large optimality gaps, 5) exploring the applications of PIP in other domains, such
as job shop scheduling, where operations need to be completed in a specific order and infeasibility
can be proactively prevented using PIP, and 6) developing theoretical justifications for PIP.

10

Acknowledgments and Disclosure of Funding

This research is supported in part by the National Research Foundation, Singapore under its AI
Singapore Programme (AISG Award No: AISG3-RP-2022-031) and in part by the Singapore Ministry
of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant. We are grateful to Dr. Yingpeng
Du and Dr. Yuan Jiang for the constructive discussions. We would like to thank the anonymous
reviewers and (S)ACs of NeurIPS 2024 for their constructive comments and service to the community.

References
[1] Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing problem and

related algorithms for logistics distribution: A literature review and classification. Operational Research,
pages 1–30, 2020.

[2] Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu. Efficiently
solving the practical vehicle routing problem: A novel joint learning approach. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 3054–3063,
2020.

[3] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421, 2021.

[4] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

[5] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. POMO:
Policy optimization with multiple optima for reinforcement learning. In Advances in Neural Information
Processing Systems, volume 33, pages 21188–21198, 2020.

[6] Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, and Jie Zhang. A review on
learning to solve combinatorial optimisation problems in manufacturing. IET Collaborative Intelligent
Manufacturing, 5(1):e12072, 2023.

[7] Rongkai Zhang, Anatolii Prokhorchuk, and Justin Dauwels. Deep reinforcement learning for traveling
salesman problem with time windows and rejections. In 2020 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2020.

[8] Qiaoyue Tang, Yangzhe Kong, Lemeng Pan, and Choonmeng Lee. Learning to solve soft-constrained
vehicle routing problems with lagrangian relaxation. arXiv preprint arXiv:2207.09860, 2022.

[9] Jingxiao Chen, Ziqin Gong, Minghuan Liu, Jun Wang, Yong Yu, and Weinan Zhang. Looking ahead to
avoid being late: Solving hard-constrained traveling salesman problem. arXiv preprint arXiv:2403.05318,
2024.

[10] Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Bengio. Ant colony
sampling with gflownets for combinatorial optimization. arXiv preprint arXiv:2403.07041, 2024.

[11] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural Information
Processing Systems, volume 28, pages 2692–2700, 2015.

[12] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Learning Representations
Workshop Track, 2017.

[13] Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V Snyder. Reinforcement learning
for solving the vehicle routing problem. In Advances in Neural Information Processing Systems, pages
9861–9871, 2018.

[14] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 12042–12049, 2021.

[15] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging symmetricity for neural combinato-
rial optimization. In Advances in Neural Information Processing Systems, 2022.

[16] André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial optimization
problems. In International Conference on Learning Representations, 2022.

11

[17] Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and Youngjune
Gwon. Simulation-guided beam search for neural combinatorial optimization. In Advances in Neural
Information Processing Systems, volume 35, pages 8760–8772, 2022.

[18] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisimulation
quotienting for generalizable neural combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023.

[19] Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre Laterre,
and Thomas D Barrett. Combinatorial optimization with policy adaptation using latent space search. In
Advances in Neural Information Processing Systems, 2023.

[20] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Thomas D Barrett. Winner
takes it all: Training performant RL populations for combinatorial optimization. In Advances in Neural
Information Processing Systems, 2023.

[21] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. In Advances in Neural Information Processing Systems, 2023.

[22] André Hottung, Mridul Mahajan, and Kevin Tierney. PolyNet: Learning diverse solution strategies for
neural combinatorial optimization. arXiv preprint arXiv:2402.14048, 2024.

[23] Fu Luo, Xi Lin, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization. arXiv preprint arXiv:2403.19561, 2024.

[24] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
encoding networks for neural combinatorial optimization. In Advances in Neural Information Processing
Systems, volume 34, 2021.

[25] Jingwen Li, Yining Ma, Ruize Gao, Zhiguang Cao, Andrew Lim, Wen Song, and Jie Zhang. Deep rein-
forcement learning for solving the heterogeneous capacitated vehicle routing problem. IEEE Transactions
on Cybernetics, 2021.

[26] Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui Wang,
Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan Zhou, Jieyi Bi,
Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter Kool, Zhiguang Cao,
Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun Kwon, Lin Xie, and Jinkyoo
Park. RL4CO: an extensive reinforcement learning for combinatorial optimization benchmark. arXiv
preprint arXiv:2306.17100, 2023.

[27] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi. MVMoE: Multi-
task vehicle routing solver with mixture-of-experts. In International Conference on Machine Learning,
2024.

[28] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

[29] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
7474–7482, 2021.

[30] Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic programming
for vehicle routing problems. In International Conference on Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pages 190–213. Springer, 2022.

[31] Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. Advances in Neural Information Processing Systems, 35:25531–25546, 2022.

[32] Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
Advances in Neural Information Processing Systems, 2023.

[33] Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling salesman
problem. Advances in Neural Information Processing Systems, 2023.

[34] Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-enhanced ant
systems for combinatorial optimization. In Advances in Neural Information Processing Systems, 2023.

[35] Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking post-
hoc search-based neural approaches for solving large-scale traveling salesman problems. In International
Conference on Machine Learning, 2024.

12

[36] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization. In
Advances in Neural Information Processing Systems, volume 32, pages 6281–6292, 2019.

[37] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing
problems. In International Conference on Learning Representations, 2020.

[38] André Hottung and Kevin Tierney. Neural large neighborhood search for the capacitated vehicle routing
problem. In European Conference on Artificial Intelligence, pages 443–450. IOS Press, 2020.

[39] Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Eren Akçay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian Conference on Machine
Learning, pages 465–480, 2020.

[40] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for
solving routing problems. IEEE Transactions on Neural Networks and Learning Systems, 33(9):5057–5069,
2021.

[41] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang. Learning
to iteratively solve routing problems with dual-aspect collaborative transformer. In Advances in Neural
Information Processing Systems, volume 34, pages 11096–11107, 2021.

[42] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model with
lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. In Advances in Neural
Information Processing Systems, volume 34, pages 7472–7483, 2021.

[43] Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network guided lo-
cal search for the traveling salesperson problem. In International Conference on Learning Representations,
2022.

[44] Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Hongliang Guo, Yuejiao Gong, and Yeow Meng Chee.
Efficient neural neighborhood search for pickup and delivery problems. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, pages 4776–4784, 7 2022.

[45] Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[46] Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Advances in
Neural Information Processing Systems, 34:26198–26211, 2021.

[47] Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4648–4658, 2022.

[48] Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learning to
aolve large-scale tsp instances. In International Conference on Artificial Intelligence and Statistics, pages
1219–1231. PMLR, 2023.

[49] Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian. Pointerformer:
Deep reinforced multi-pointer transformer for the traveling salesman problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37, pages 8132–8140, 2023.

[50] Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-tsp:
Hierarchically solving the large-scale traveling salesman problem. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 9345–9353, 2023.

[51] Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In International Conference on
Learning Representations, 2023.

[52] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning global
partition and local construction for solving large-scale routing problems in real-time. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024.

[53] Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning tsp re-
quires rethinking generalization. In International Conference on Principles and Practice of Constraint
Programming, 2021.

13

[54] Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman problem
with hardness-adaptive curriculum. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[55] Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee. Learning
generalizable models for vehicle routing problems via knowledge distillation. In Advances in Neural
Information Processing Systems, 2022.

[56] Jiwoo Son, Minsu Kim, Hyeonah Kim, and Jinkyoo Park. Meta-SAGE: Scale meta-learning scheduled
adaptation with guided exploration for mitigating scale shift on combinatorial optimization. In International
Conference on Machine Learning, 2023.

[57] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural
methods for vehicle routing problems. In International Conference on Machine Learning, pages 42769–
42789. PMLR, 2023.

[58] Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. ASP: Learn a
universal neural solver! IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

[59] Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In International
Conference on Learning Representations, 2022.

[60] Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang Yang,
and Junchi Yan. ROCO: A general framework for evaluating robustness of combinatorial optimization
solvers on graphs. In International Conference on Learning Representations, 2023.

[61] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In International Conference on Learning Representations, 2024.

[62] Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. arXiv preprint arXiv:2310.19046, 2023.

[63] Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu Zhang.
Evolution of heuristics: Towards efficient automatic algorithm design using large language model. In
International Conference on Machine Learning, 2024.

[64] Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. Online 3d bin packing with constrained
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 741–749, 2021.

[65] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

[66] Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily large
TSP instances. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[67] Rodrigo Ferreira Da Silva and Sebastián Urrutia. A general vns heuristic for the traveling salesman problem
with time windows. Discrete Optimization, 7(4):203–211, 2010.

[68] Jørgen Glomvik Rakke, Marielle Christiansen, Kjetil Fagerholt, and Gilbert Laporte. The traveling
salesman problem with draft limits. Computers & Operations Research, 39(9):2161–2167, 2012.

[69] Raca Todosijević, Anis Mjirda, Marko Mladenović, Saïd Hanafi, and Bernard Gendron. A general variable
neighborhood search variants for the travelling salesman problem with draft limits. Optimization Letters,
11:1047–1056, 2017.

[70] Shahin Gelareh, Bernard Gendron, Saïd Hanafi, Rahimeh Neamatian Monemi, and Raca Todosijević. The
selective traveling salesman problem with draft limits. Journal of Heuristics, 26:339–352, 2020.

[71] Keld Helsgaun. LKH-3 (version 3.0.7), 2017. URL http://webhotel4.ruc.dk/~keld/research/
LKH-3/.

[72] Vincent Furnon and Laurent Perron. Or-tools routing library. URL https://developers.google.com/
optimization/routing/.

[73] Jonas K Falkner and Lars Schmidt-Thieme. Learning to solve vehicle routing problems with time windows
through joint attention. arXiv preprint arXiv:2006.09100, 2020.

[74] Qiang Ma, Suwen Ge, Danyang He, Darshan Thaker, and Iddo Drori. Combinatorial optimization by graph
pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936, 2019.

14

http://webhotel4.ruc.dk/~keld/research/LKH-3/
http://webhotel4.ruc.dk/~keld/research/LKH-3/
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

[75] Majed G Alharbi, Ahmed Stohy, Mohammed Elhenawy, Mahmoud Masoud, and Hamiden Abd El-
Wahed Khalifa. Solving traveling salesman problem with time windows using hybrid pointer networks
with time features. Sustainability, 13(22):12906, 2021.

[76] Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and Andre A
Cire. Combining reinforcement learning and constraint programming for combinatorial optimization. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[77] Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M Solomon. An optimal algorithm for the
traveling salesman problem with time windows. Operations research, 43(2):367–371, 1995.

15

Learning to Handle Complex Constraints for
Vehicle Routing Problems (Appendix)

A Details of considered VRPs

In this paper, we mainly consider two VRP variants with complex interdependent constraints:
Traveling Salesman Problem with Time Window (TSPTW) and TSP with Draft Limit (TSPDL). We
first detail their corresponding data generation process, then demonstrate the interdependent nature of
constraints inherent in these problem variants.

A.1 Traveling salesman problem with time window (TSPTW)

Each TSPTW instance includes a depot node and n customer nodes with four properties: 2-
dimensional coordinates in Euclidean space (xi, yi), lower bound (li) and upper bound (ui) of
time windows. In prior works [7, 9, 30, 67], they generate the coordinates following a uniform
distribution confined in a square box (xi, yi) ∼ U [0, 100] while generating time window differently.
Concretely, there are three ways to synthesize the time window: 1) construct a near-optimal TSP
solution first and generate the time window according to the distance between the two adjacent nodes
in the pre-generated near-optimal solution (e.g. in [74, 75]); 2) construct random node permutation
first and generate time window according to the distance between the two adjacent nodes in the
pre-generated random solution (e.g. in [30, 67, 76]); and 3) generate the time window under a
uniform distribution without prior TSP permutation (e.g. in [7, 9]). The first two methods generate
the time window based on a pre-generated TSP solution which can guarantee the existence of feasible
solutions for the generated instances. However, they diminish the impact of time window constraints
due to the strong prior knowledge of TSP and the pre-generated solutions. Meanwhile, the first
method necessitates obtaining a near-optimal solution for TSP initially, which incurs additional
computational costs. In contrast to the first two methods, the third method appears more generic
but does not guarantee feasibility. Below, we describe the detailed settings for instance generation,
considering three different levels of hardness, as outlined in the main paper.

Easy TSPTW. We mainly follow the settings from recent works [7, 9] and employ the third method
presented above to generate time window. In specific, the lower bound of the time window li follows a
uniform distribution, i.e., li ∼ U [0, TN], where TN is an estimator of expected tour length in relation
to the problem scale. For example, T20 ≈ 10.9 [9]. The upper bound of the time window ui is
generated based on li, where ui ∼ li + TN · U [α, β], and α and β are set to 0.5 and 0.75, respectively.

Medium TSPTW. It follows the same settings of the easy TSPTW, except that α and β are set to 0.1
and 0.2, respectively. To decrease α and β, we derive TSPTW instances with tighter time windows,
resulting in an increased hardness level.

Hard TSPTW. Different from easy and medium TSPTW, hard instances are generated following the
settings of the benchmark dataset [67]. The second method is leveraged to generate time window.
Concretely, we first obtain a permutation τ by randomly shuffling nodes. Then, the time window is
generated based on τ following a uniform distribution, li ∼ U [ψi − η, ψi] and ui ∼ U [ψi, ψi + η],
where ψi denotes the cumulative distance of the partial solution until time step i. η is a factor to
control the width of the time window. As preliminary experiments [9] suggest, the original η was set
at 500, allowing the instance to achieve optimality using a simple greedy heuristic. Hence, in this
paper, we set η to 50 to generate tighter time windows and increase hardness.

Following the conventions [4, 5], we normalize the node coordinates into [0, 1] by dividing a scale
factor ρ = 100. Pertaining to the time window, we also divide li and ui by ρ. In specific, following
[30], we first modify the upper bound of the depot u0 to the maximum value of the upper bound
of time window among all the customer nodes plus the travelling distance between them, i.e, u0 =
max(ui + ||vi − v0||2), i ∈ [1, n]. Then we use u0 as the normalization factor, scaling all li and ui
by it to confine their values within the range of [0, 1].

16

A.2 Traveling salesman problem with draft limit (TSPDL)

TSPDL is prevalent in marine transportation scenarios, which consider the vessel capacity of the
freighters. Each node has its own demand δi and draft limit di. A TSPDL instance is derived
from a TSP instance by mutating the draft limit to less than the total demand for σ% of nodes, i.e.,
di ∼ [δi,

∑n
j=0 δj], while the draft limits of remaining nodes are equal to the total demand, i.e.,

di =
∑n

j=0 δj . We can adjust σ to manipulate the hardness of the TSPDL dataset. The demand is
set to one for customer nodes or zero for depot node v0 following benchmark datasets [68, 69, 71].
The mutation proportion σ% varies, being either a random value or fixed to 10, 25, 50, or 75 percent.
We observe that a small σ% results in a simple TSPDL dataset that can be effectively managed
with heuristics. In this paper, we focus on relatively hard problems by setting σ% to 75% for the
Medium dataset and 90% for the Hard dataset. Note that the availability of feasible solutions can be
guaranteed through the feasibility check, as demonstrated in the following PyTorch implementation.

node_demand = torch.cat([torch.zeros((batch_size, 1)), torch.ones((batch_size,
problem_size - 1))], dim=1) # shape: (batch_size, problem_size)

demand_sum = node_demand.sum(dim=1).unsqueeze(1)
for i in range(batch_size):

feasible = False
while not feasible:

mutation of dl randomly occurs in w% of the nodes except the depot
mutation = torch.randint(1, demand_sum[i].int().item(), size =

(problem_size * sigma // 100,))
count = torch.bincount(mutation)
count_cumsum = torch.cumsum(count, dim=0)
feasible = (count_cumsum <= torch.arange(0, count.size(0))).all()

To summarize, the feasibility guarantee based on the data generation rules described above, and its
corresponding accessibility by LKH3 [71] are presented in Table 8. For example, the data generation
process of the easy TSPTW dataset cannot theoretically guarantee the existence of a feasible solution
for each test instance. However, LKH3 find (at least) one feasible solution for each test instance.
These results showcase that feasible solutions consistently exist for the synthetic test instances (or
datasets) used in this paper, with any reported infeasibility arising solely from the method itself.

Table 8: Feasibility guarantee based on the generation rules and the accessibility by LKH3.

Variant Hardness Feasibility Guarantee Feasibility Accessibility by LKH3

TSPTW
Easy ✓

Medium ✓
Hard ✓

TSPDL
Medium ✓ ✓

Hard ✓ ✓

A.3 Irreversible solution infeasibility

As mentioned in Section 4, exiting masking mechanism fails to handle problems with complex
interdependent constraints (e.g., TSPTW and TSPDL), since it may cause irreversible solution infea-
sibility during solution construction. Here, we provide a detailed explanation of how our preventative
infeasibility masking helps twist the irreversible solution infeasibility, as illustrated in Figure 6. Given
a 5-node (v0, v1, v2, v3, v4) TSPTW instance with the time window {[0, 7], [1, 4], [5, 7], [2, 5], [4, 7]},
and the current partial solution v0 → v1, we derive the preventative infeasibility mask by assuming
that one of the candidates (v2, v3, v4) is visited and check the accessibility of assumed arrival time
for remaining unvisited nodes. As shown in the left panel, we assume that v2 is the next visited node
and see what would happen if we travel from v0 → v1 → v2 to remaining unvisited nodes v3 and
v4. We notice a constraint violation on the assumed tour v0 → v1 → v2 → v3 since the assumed
current time is already 5 at node v2; thus, the earliest arrival time to v3 is 7, which falls outside
the time window of v3. Note that another assumed tour v0 → v1 → v2 → v4 will also violate the
time window of v3 in the end, since it further pushes the assumed arrival time at v3. Therefore, v2

17

�0

�1

�2

�3

�4

Preventative Infeasible Nodes Feasible Nodes

Travelling Time Time Window

Visited NodeUnvisited Node

Arrival Time (Feasible) Arrival Time (Infeasible)

Visited Edge Assumed Visited Edge Inaccesible Edge Accesible Edge
Assumed Visited Node Potential Infeasible Node

 t = 0

 t = 5

 t = 1
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
 t = 7

 t = 7

�0

�1

�2

�3

�4

 t = 0

 t = 5

 t = 1
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
 t = 5

 t = 3

Figure 6: A TSPTW example of Preventative Infeasibility Masking in handling irreversible solution
infeasibility. A dark green square denotes an unit of the travel time. No service time is considered.

is marked as an infeasible node by our preventative infeasibility masking, and then it will further
consider other candidate nodes (i.e., v3 and v4), given the current partial solution v0 → v1, following
the same logic. Intuitively, this infeasibility is caused by the wrong selection of v2 in the current step,
which pushes the current time to a high value that exceeds time windows of some remaining unvisited
nodes, resulting in irreversible solution infeasibility. With that said, once some candidates with late
time windows have been selected, it will cause a lapse of current time, which irreversibly influences
the remaining unvisited nodes (e.g., with early time windows) in future steps of solution construction.
Such phenomena can also be observed in other interdependent constraints that exhibit incremental or
quantified properties, such as demand-related constraints, vehicle number constraints, etc.

B Network architecture of PIP decoder

The network architecture of our PIP-D framework generally mirrors that of the backbone model, but
it incorporates dual decoders (i.e., routing decoder and PIP decoder). For the PIP decoder, we replace
the final output layer with a Sigmoid layer to adjust the output range, unless the backbone model’s
last layer is already a Sigmoid, as in GFACS [10], in which case no replacement is necessary.

Specifically, the AR backbone models AM [4] and POMO [5] share a similar architecture, with a
multi-head attention (MHA) layer serving as the foundation. Without loss of generality, we take
POMO decoder as an example for a demonstration purpose. As shown in Figure 3, the decoder
receives the node embedding hi, the solution embedding hs, and the real-time solution feature f s as
inputs, which are then used to compute the query (q), key (k), and value (v) for the MHA layer:

qb =W b
q [h

s, f s], kbi =W b
khi, vbi =W b

vhi, (5)

where W b
q , W b

k , and W b
v are parameter matrices of the bth (b ∈ [1, B]) attention head, and [,] denotes

the concatenation operator. The output of the MHA layer is calculated as:

ab =

n∑
i=0

Softmax
(
(qb)T kb√

dk

)
i

vbi , (6)

where dk is the dimension of the key. Subsequently, the output of each head passes through a linear
layer parameterized by Wo, resulting in ha =Wo[a

0, a1, . . . , aB]. The decoder then computes the
selection probabilities for all candidates nodes using a single-head attention layer:

pi = Softmax
(
ξ · tanh

(
hTa hi√
dh

))
, (7)

where dh is the dimension of the node embedding. ξ is used to clip the logits to encourage policy
exploration [4, 5]. For binary classification tasks in the PIP decoder, we replace the final output layer
(i.e., the Softmax layer in the above equation) with a Sigmoid layer.

18

In contrast to AM and POMO, the encoder of GFACS outputs edge embeddings, and the decoder
consists of a 3-layer multilayer perception (MLP). Each edge embedding he is processed through:

hl+1
e = ζ(Wlh

l
e), (8)

where l ∈ [0, 2] denotes the layer index, Wl represents a linear layer, and ζ(·) is an activation
function, i.e. SiLU for l = 0, 1 and Sigmoid for l = 2. Given the significant correlation between
preventative infeasibility masking and the current partial solution τt, we convert its NAR decoder
to an AR one by adding an extra input layer that integrates the embedding of the last edge het in τt
and the current solution feature fs into the edge embedding itself, i.e., h0e = [he, het , f

s]. Note that
GFACS only consider n

5 (nearest) edges for each node. But for complex constrained problems (e.g.,
TSPTW), travelling distance may not be sufficient. Instead of using distance as the sole criterion,
we select the n

5 neighbors for each node based on the extent of time window overlap, defined as
(min(ui, uj)−max(li, lj)) for all customer nodes. For the depot, since time window overlap is less
relevant, we select n

5 nodes with the earliest li.

C Experiment details

We mark the model with Lagrangian multiplier objective function as * (e.g., AM*), and the model
further with the preventative infeasibility masking as PIP (e.g., AM*+PIP). We follow their original
setups (e.g., model architectures and hyper-parameters) in AM [4], POMO [5] and GFACS [10].
Pertaining to the PIP-D model (e.g., AM*+PIP-D), we employ an auxiliary decoder (i.e., PIP decoder)
that is trained with the ground-truth PIP labels in a supervised manner. To balance the trade-off
between training efficiency and empirical performance, we update it periodically. Specifically, within
E total training epochs, the PIP decoder is first trained with Einit epochs, and then periodically
updated Eu epochs per Ep epochs. To boost the performance, we switch Eu to El for the final
El epochs. The detailed settings are presented in Table 9. For the training epochs that utilize the
outputs of the offline (i.e., freezed) PIP decoder as the preventative infeasibility masks, we employ
the best-so-far PIP decoder that achieves the highest accuracy on feasible samples, since inaccurate
predictions can lead to the exclusion of some feasible candidates. We set the Lagrangian multiplier λ
to 1 in the main experiments, with further analyses presented in Appendix D.1.

Table 9: Hyper-parameters of the periodical update strategy for PIP decoder.

Method n E Einit Ep Eu El

POMO* + PIP-D
50 10000 200 1000 50 50

100 10000 100 1000 20 50
AM* + PIP-D 50, 100 100 10 10 2 5

GFACS* + PIP-D 500 50 10 10 2 5

Baselines. We compare our proposed PIP framework against the following baselines, with implemen-
tation details provided below:

• LKH3 [71], a strong solver designed for a wide range of VRP variants, which we use to
generate the (near-)optimal solutions for the test instances with 10,000 trails and 1 run.

• OR-Tools [72], a more flexible solver allowing different combinations of diverse constraints,
which we employ the local cheapest insertion as the first solution strategy and the guided
local search as the local search strategy with time limit µ for each instance (i.e., 20s for
n = 50 and 40s for n = 100 following [27]). As for TSPDL, we have tried all first solution
strategies outlined in the official documentation, yet we still fail to find any feasible solution.

• Greedy Heuristics, a classical hand-crafted method considering the local optimal candidates
at each step. The Greedy-L heuristic selects the candidate with the shortest distance, and
the Greedy-C heuristic selects a node based on the satisfaction of constraints, which is the
candidate with the soonest time window end w.r.t current time in TSPTW and the candidate
with the minimal draft limit in TSPDL.

• AM [4], a milestone neural AR constructive solver leveraging the Transformer architecture.
We implement TSPTW and TSPDL following its default settings.

19

• POMO [5], an enhanced constructive solver upon AM by considering the symmetry property
of VRP solutions. POMO shares a similar architecture with AM. We implement TSPTW
and TSPDL following its default settings except removing its stipulated starting node due to
the unsuitability to the complex constrained problems, which is also noted in [22].

• GFACS [10], a neural NAR constructive solver, which introduces the generative flow net-
works (GFlowNets) to improve the canonical ant colony optimization (ACO) algorithm. It
incorporates a heuristic matrix and a pheromone matrix, where the former is parameterized
with a neural network, and the latter is updated based on the exploration of multiple ants.
We implement TSPTW on it following its default settings.

• JAMPR [73], a state-of-the-art model for a similar problem variant VRPTW, which was
further adapted by [9] to solve TSPTW. In this paper, we directly report its result listed in
[9] due to the unavailability of source code.

• MUSLA [9], a recent method with designs tailored for TSPTW, incorporating problem-
specific features and a large supervised learning dataset, where OSLA is its one-step version
and MUSLA adapt adopts an adaptive inference strategy to balance the optimality gap and
the solution feasibility. Results are adopted from [9] due to the unavailability of source code,
with our ’Easy’ setting corresponding to their ’Medium’ one in [9].

D Additional analyses and discussions

D.1 Effects of different Lagrangian multiplier λ

Sol.

Inst.Gap

1

2

3

4

5

6

 = 1 (Ours)
 = 0.5
 = 2

Figure 7: Radar chart of the model performance with
different Lagrangian multipliers λ, including the met-
rics of the solution-level infeasible rate (Sol.), the
instance-level infeasible rate (Inst.) and the optimal-
ity gap (Gap).

Our PIP leverages the Lagrangian multiplier
method to guide neural policy search. While
some existing methods, such as [8], employ
bi-level optimization techniques to jointly up-
date the Lagrangian multiplier and the primal
objective function, we find these approaches
to be inefficient. Therefore, we opt to fix the
value of the Lagrangian multiplier λ and fo-
cus solely on optimizing the primal variables
in this paper. Here, we investigate the effect
of different Lagrangian multipliers on the so-
lution quality and feasibility. The results are
shown in the left panel of Figure 7, where we
observe that a larger λ results in a lower in-
feasible rate but with an increased optimality
gap, whereas a smaller λ reduces the optimal-
ity gap but at the expense of a much higher
infeasible rate. Consequently, we set λ = 1
for a balance, prioritizing the optimization of
the primal objective function.

D.2 Performance comparison on overlap feasible instances

We report the average objective values and optimality gaps in Tables 1 and 2. It should be noted,
however, that these metrics are calculated across different sets of feasible instances. Considering that
a complete overlap of feasible instances across all baselines is impractical (due to the 100% infeasibile
rates of some baselines), we present additional results on a set of overlapped feasible instances across
POMO variants to facilitate a more conprehensive comparison. As shown in Table 10, the models
with our PIP consistently outperforms POMO in terms of solution quality. On the easy dataset, PIP-D
exceeds PIP due to the incorporation of data augmentation during inference. In summary, despite
the different instance sets, the optimality gaps displayed in Table 1 (w/o overlap) exhibit numerical
patterns and conclusions that align with those empirically observed on the overlapped sets.

20

Table 10: The optimality gap of overlapped feasible instances among 10000 TSPTW-50 instances.

Method Gap Overlap Gap w. Aug. Overlap Gap w/o Aug.

E
as

y

POMO* 3.08% 3.08% 5.95%
POMO* + PIP 2.65% 2.65% 4.87%

POMO* + PIP-D 2.51% 2.51% 6.51%

Overlap number 10000 9768

M
ed

iu
m POMO* 5.23% 5.22% 6.83%

POMO* + PIP 2.91% 2.89% 4.43%
POMO* + PIP-D 3.32% 3.28% 4.84%

Overlap number 9524 8067
H

ar
d

POMO* 1.61% 1.62% 1.66%
POMO* + PIP 0.18% 0.18% 0.26%

POMO* + PIP-D 0.28% 0.28% 0.42%

Overlap number 6336 5758

D.3 Discussion on reducing the computational complexity

As illustrated in Figure 1, the feasibility masking (i.e., n-step PIP) in complex constraints is NP-Hard.
While iterating over all future possibilities would make PI masking complete, it is computationally
inefficient. Therefore, we approximate it with one-step PI masking, whose efficiency is validated
in Table 4 and Table 5. To enhance training efficiency, we use an auxiliary decoder to further
approximate one-step PI masking, avoiding the need to acquire it continuously during training.
Besides, we further explore some strategies for accelerating the training and inference of PIP.

• Apply sparse strategies to refine PIP calculations. Due to the O(n2) complexity of PIP,
applying it to all the unvisited candidate nodes will be computationally expensive. For
large-scale problems, we only consider top K neighbours, which is implemented on GFACS.
Results in Table 3 show that GFACS*+PIP-D maintains similar training and inference times
as GFACS* on TSPTW-500 (i.e., 28.3h and 6.5m vs. 28.1h and 6.4m).

• Couple with the state-of-the-art solvers (e.g. LKH3). Our PIP is empirically verified to
be efficient due to its capability to obtain good and feasible solutions within a very short
time (LKH3: 1.4d vs POMO*+PIP-D: 48s), while LKH3 can get near-optimal solutions
with prolonged time. To leverage the strengths of both approaches, we use our PIP-D to
provide better initial solutions for LKH3. As shown in Table 11, this combination reduces
the infeasibility rate from 53.11% to 0.21% and improves the objective from 51.65 to 51.25
within only a few seconds per instance. Notably, initializing LKH3 with POMO*+PIP-D
outperforms the default LKH3 setup (10,000 trials), achieving slightly better solution quality
while using only 27% of the inference time (9 hours vs. 1.4 days). We also show the progress
of objective value and instance-level infeasibility rate over inference times in Figures 8, 9
for clearer comparison.

• Fine-tune Lagrangian method (*) with PI masking. On top of the basic Lagrangian
method (e.g., POMO*), PIP further employs the preventative infeasibility (PI) masking
throughout the training process. We would like to note that there is another way to exploit
the preventative infeasibility information and reduce the computational complexity, i.e., by
leveraging the PI mask to fine-tune the pretrained Lagrangian method. The comprehensive
empirical results on Medium TSPTW-50 are shown in Table 12, where the first two methods
denote the PIP and Lagrangian methods applied to POMO, respectively. The results indicate
that a few steps of fine-tuning the Lagrangian method using PIP masks can yield favorable
improvements in the feasible rate and the optimality gap, and significantly reduce the training
complexity as well.

• Early stop of PI masking. At each solution construction (i.e., decoding) step, our PIP
leverages preventative infeasibility masking to proactively steer the policy search to (near-
)feasible regions, leading to increased computational overheads as the problem sizes scale
up. Here, we explore the potential of early stopping PIP, where PIP is only employed during
the initial steps of solution construction. Based on our empirical observation depicted in the
left panel of Figure 10, infeasibility predominately occurs in the first few steps of the entire

21

process. This observation reveals the possibility of merely acquiring PI masks for the initial
few steps, which could improve the training efficiency. We leave it to future work.

Table 11: Results of LKH3 and POMO*+PIP-D under different time limits.

Method Init. Sol. LKH3 Max Trials Total Time Inst. Time Inst. Infsb% Obj.
LKH3 Default 10000 1.4d 3.2m 0.07% 51.24
LKH3 Default 5000 22.5h 2.2m 0.19% 51.24
LKH3 Default 1000 4h 23s 2.57% 51.26
LKH3 Default 100 53m 5.1s 53.11% 51.65

POMO*+PIP-D / / 48s 0.9s 6.48% 51.39
POMO*+PIP-D+LKH3 POMO*+PIP-D 100 53m 5.1s 0.21% 51.25
POMO*+PIP-D+LKH3 POMO*+PIP-D 1000 9h 52s 0.05% 51.24

Figure 8: Average infeasibility rates over time. Figure 9: Average objective values over time.

Table 12: Experimental results of different fine-tuning settings on Medium TSPTW-50.

Training epoch with * Fine-tune epochs with PIP Training Time
Infeasible%

Obj.↓ Gap↓Sol.↓ Inst.↓
10000 (POMO* + PIP) 120h 4.53% 0.90% 13.38 2.91%

10000 (POMO*) 0 60h 14.92% 3.77% 13.68 5.23%

10000 100 61.3h 4.45% 1.03% 13.61 4.56%
9900 100 60.7h 5.20% 1.31% 13.60 4.45%
9000 1000 67h 5.63% 1.24% 13.55 4.08%

0 10 20 30 40 50
Index of the Starting Infeasible Node

10 2

10 1

100

101

102

Pe
rc

en
ta

ge
 (%

)

Easy Medium Hard
90

92

94

96

98

100
Accuracy
Recall
Specificity

Medium Hard

76

78

80

82

84 Accuracy
Recall
Specificity

Figure 10: Right panel: Log-scale barplot of frequency stats of the starting infeasible node index.
Middle panel: Evaluation metrics on TSPTW-50. Right panel: Evaluation metrics on TSPDL-50.

D.4 Analyses of PIP decoder accuracy

We use an auxiliary decoder (i.e., PIP decoder) in the proposed PIP-D framework, whose goal is to
learn and predict PI masks by identifying infeasible candidates based on the current partial solution.
We formulate it as a binary classification task. Here, we demonstrate the efficacy of the learned PIP
decoder through various evaluation metrics, including accuracy, recall (of infeasible samples), and

22

specificity (recall of feasible samples). As shown in the last two panels of Figure 10, our PIP decoder
can accurately predict the PI masks across all hardness levels in TSPTW and TSPDL, especially for
the more complex constrained one. This indicates that our PIP decoder aligns well with the goal of
ensuring high accuracy in feasibility predictions.

D.5 Performance under different inference time budget.

For a fair comparison, we also extend the inference time (by sampling more solutions and data
augmentation) of the baselines to a similar one as POMO + PIP and POMO + PIP-D. Results show
that incorporating the Lagrangian multiplier (POMO* and AM*) may lead to some improvement (in
Table 1 and 2), but not for the cases in Table 13 under complex constraints and larger scales. Even
with prolonged inference time, existing methods do not deliver any feasible solutions for the studied
complex constrained VRP. In contrast, our PIP-D with 48s time significantly reduces infeasibility
from 100% to 6.48% compared to baselines running for 2.5m, and exhibits an optimality gap of
around only 0.3%. Furthermore, PIP can perform even better with more inference time.

Table 13: Results under different times on Hard TSPTW-100.

Method Inst. Infsb% Gap Ns Time
POMO (short) 100.00% / 8 21s
POMO (long) 100.00% / 80 2.5m

POMO* (short) 100.00% / 8 21s
POMO* (long) 100.00% / 80 2.5m

POMO*+PIP (short) 16.27% 0.37% 8 48s
POMO*+PIP (long) 11.75% 0.33% 24 2.4m

POMO*+PIP-D (short) 6.48% 0.31% 8 48s
POMO*+PIP-D (long) 5.19% 0.28% 24 2.4m

D.6 Sensitivity analyses

Statistical significance. To validate the statistical significance of experiments, we first conduct the
Kolmogorov–Smirnov test to identify the normality of the evaluation metrics. The results indicate that
the optimality gap, solution-level infeasible rate, and instance-level infeasible rate are not normally
distributed. Hence, we employ the Wilcoxon test to evaluate the statistical significance. As revealed in
Figure 11, the performance disparity among different methods is significant across all hardness levels,
especially in more complex constrained problems, underscoring the effectiveness of our method.
Note that this result further supports the improvement of our PIP framework reported in Table 1.

POMO* POMO* + PIP POMO* + PIP-D

2.5

0.0

2.5

5.0

7.5

10.0

12.5

*** ****

(a) Easy TSPTW

POMO* POMO* + PIP POMO* + PIP-D

0

5

10

15 *** ******

(b) Medium TSPTW

POMO* POMO* + PIP POMO* + PIP-D

2

0

2

4

6

8 *** ******

(c) Hard TSPTW

Figure 11: Boxplot of the optimality gap. In the boxplot, the * symbol denotes statistical significance,
where ***, **, and * indicate significant differences between models with p-values < 0.001, 0.01,
and 0.05, respectively, based on the Wilcoxon test.

Performance under different hyper-parameters. We explore the variance in model performance
under different hyper-parameters. We fix the total update epoch of the PIP decoder and adjust its
interval. Results in Table 14 demonstrate that our PIP model is robust to different interval settings
within the same total update epoch. However, reducing the number of updates, as shown in Figure 5,

23

leads to a decline in model performance. Additionally, we present results using different normalization
layers. Although further adjustments to the model architecture can enhance performance (e.g., using
layer normalization), we adhere to the conventional settings outlined in [4] for a fair comparison.

Table 14: Sensitivity analyses of hyper-parameters on Medium TSPTW-50.

Einit Ep Eu El

Infeasible%
GapSol. Inst.

200 1000 50 50 3.83% 0.65% 3.32%
200 500 25 25 3.41% 0.68% 3.36%
200 100 5 5 4.60% 1.00% 3.34%

Normalization
Infeasible%

GapSol. Inst.
Instance (Ours) 3.83% 0.65% 3.32%

Batch 4.14% 0.96% 3.10%
Layer 4.15% 0.58% 2.75%

D.7 Benchmark performance

We further evaluate our PIP framework on the benchmark datasets [77] to verify the three strategies
we proposed in this paper. Results show that compared to the baseline model POMO*, both our PIP
and PIP-D frameworks significantly reduce the infeasibility rate and enhance solution quality.

Table 15: Model performance on the benchmark datasets [77].

Instance Opt.
POMO* POMO* + PIP POMO* + PIP-D

Instance Opt.
POMO* POMO* + PIP POMO* + PIP-D

Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

n20w20.001 378 / / 389 2.91% 389 2.91% n40w40.003 474 / / 496 4.64% 497 4.85%
n20w20.002 286 / / 292 2.10% 292 2.10% n40w40.004 452 / / / / / /
n20w20.003 394 / / / / / / n40w40.005 453 / / 470 3.75% 471 3.97%
n20w20.004 396 405 2.3% 405 2.27% 405 2.27% n40w60.001 494 / / / / 525 6.28%
n20w20.005 352 / / 360 2.27% 360 2.27% n40w60.002 470 / / / / 502 6.81%
n20w40.001 254 / / 276 8.66% 279 9.84% n40w60.003 408 / / / / / /
n20w40.002 333 / / 347 4.20% 339 1.80% n40w60.004 382 / / 406 6.28% 420 9.95%
n20w40.003 317 / / 332 4.73% 332 4.73% n40w60.005 328 336 2.4% 342 4.27% 344 4.88%
n20w40.004 388 / / 401 3.35% 401 3.35% n40w80.001 395 / / 407 3.04% 407 3.04%
n20w40.005 288 314 9.0% 294 2.08% 302 4.86% n40w80.002 431 / / 448 3.94% 452 4.87%
n20w60.001 335 377 12.5% 349 4.18% 353 5.37% n40w80.003 412 447 8.5% 444 7.77% 454 10.19%
n20w60.002 244 / / 252 3.28% 260 6.56% n40w80.004 417 / / 430 3.12% 435 4.32%
n20w60.003 352 369 4.8% 358 1.70% 358 1.70% n40w80.005 344 390 13.4% 362 5.23% 379 10.17%
n20w60.004 280 296 5.7% 298 6.43% 289 3.21% n60w80.001 458 / / / / / /
n20w60.005 338 / / 385 13.91% 361 6.80% n60w80.002 498 / / 540 8.43% 548 10.04%
n20w80.001 329 348 5.8% 347 5.47% 347 5.47% n60w80.003 550 / / 635 15.45% 646 17.45%
n20w80.002 338 390 15.4% 347 2.66% 360 6.51% n60w80.004 566 / / 611 7.95% 632 11.66%
n20w80.003 320 361 12.8% 328 2.50% 328 2.50% n60w80.005 468 / / 535 14.32% / /
n20w80.004 304 339 11.5% 341 12.17% 339 11.51% n80w60.001 554 / / 582 5.05% / /
n20w80.005 264 312 18.2% 302 14.39% 302 14.39% n80w60.002 633 / / 678 7.11% / /
n40w20.001 500 / / / / / / n80w60.004 619 / / 678 9.53% / /
n40w20.002 552 / / / / 610 10.51% n80w60.005 575 / / / / / /
n40w20.003 478 / / / / 507 6.07% n80w80.001 624 / / / / / /
n40w20.004 404 / / 419 3.71% 418 3.47% n80w80.002 592 / / 624 5.41% 638 7.77%
n40w20.005 499 / / / / / / n80w80.003 589 / / 648 10.02% 674 14.43%
n40w40.001 465 / / / / / / n80w80.004 594 / / 674 13.47% 676 13.80%
n40w40.002 461 / / 485 5.21% 483 4.77% n80w80.005 570 / / 627 10.00% / /

Average Gap 9.8% 5.2% 5.3% Average Gap 8.10% 7.44% 8.50%

Infeasible% 63.0% 22.2% 14.8% Infeasible% 88.89% 25.93% 37.04%

E Broader impacts

This paper focuses on real-world scenarios and proposes a novel Proactive Infeasibility Prevention
(PIP) framework to enhance the capabilities of neural methods towards solving more complex VRPs.
Potential positive societal impacts include: 1) enhancing industrial efficiency, e.g., in logistics
and transportation. By preemptively identifying infeasible solutions, it can reduce computational
overheads and improve the efficiency of decision-making process; 2) advancing the AI and operation
research (OR) communities. Our PIP framework aims to alleviate the existing challenges in the neural
VRP solvers, thereby promoting the advancement of AI as well as OR. On the other hand, negative
societal impacts may include environmental unfriendliness due to computational resource usage.

24

F Licenses for existing assets

The used assets in this work are listed in Table 16, which are all open-source for academic research.
We will release our source code with the MIT License.

Table 16: Used assets, licenses, and their usage.

Type Asset License Usage

Code

LKH3 [71] Available for academic use Evaluation
OR-Tools [72] Apache-2.0 license Evaluation

AM [4] MIT License Revision
POMO [5] MIT License Revision

GFACS [10] MIT License Revision

Datasets Dumas et al. [77] Available for academic use Evaluation

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please see abstract and Section 1, which accurately reflect the paper’s contribu-
tions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

26

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results in Section 5 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27

Answer: [Yes]

Justification: The source code and data are publicly released with the MIT License in
https://github.com/jieyibi/PIP-constraint.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are presented in Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We validate the statistical significance of experiments in Appendix D.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

28

https://github.com/jieyibi/PIP-constraint
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources is reported in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential positive societal impacts and negative societal impacts of this
work are discussed in Appendix E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

29

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Licenses for existing assets are detailed in Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

30

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code and data are publicly released with the MIT License in
https://github.com/jieyibi/PIP-constraint, with detailed documentations.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

https://github.com/jieyibi/PIP-constraint

	Introduction
	Related work
	Preliminaries
	Methodology
	Dilemma of feasibility masking
	Guided policy search by PIP
	Learning to prevent infeasibility

	Experiments
	Model performance on complex constrained problems
	Model performance on large-scale problems
	Further Experiments

	Conclusions
	Details of considered VRPs
	Traveling salesman problem with time window (TSPTW)
	Traveling salesman problem with draft limit (TSPDL)
	Irreversible solution infeasibility

	Network architecture of PIP decoder
	Experiment details
	Additional analyses and discussions
	Effects of different Lagrangian multiplier
	Performance comparison on overlap feasible instances
	Discussion on reducing the computational complexity
	Analyses of PIP decoder accuracy
	Performance under different inference time budget.
	Sensitivity analyses
	Benchmark performance

	Broader impacts
	Licenses for existing assets

