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Abstract

In times of a global pandemic, interactive chat
bots are an indispensable tool to provide infor-
mation to people. With this motivation, we
study the problem of intent detection of user
utterances, which is usually the first language
understanding step in such systems. Specifi-
cally, we focus on cross-lingual transfer learn-
ing for intent detection of user utterances and
zero-shot learning for code-switched (CS) ut-
terances. We release a multilingual dataset,
M-CID, containing 6871 utterances across En-
glish, Spanish, French, German and Spanglish
(Spanish + English). We use this dataset to ex-
plore some cross-lingual transfer learning tech-
niques to study: (1) monolingual and multilin-
gual model baselines, (2) cross-lingual transfer
from English to Spanish, French and German,
and (3) zero-shot code-switching for Span-
glish. In our experiments, we observe that
XLM-R models are able to significantly out-
perform cross lingual word embedding tech-
niques for all of the above settings. We also
show that it is possible to obtain a strong per-
formance on code-switched data by only using
monolingual data from substrate languages.

1 Introduction

In the wake of the Covid-19 crisis, it is of
paramount importance to build interactive tools that
can provide essential information such as Covid
symptoms, treatment options, etc. These could
either be information retrieval systems that fetch
relevant articles (Zhang et al., 2020; Esteva et al.,
2020; MacAvaney et al., 2020) or they could be
interactive chat bots (WHO, 2020; Martin et al.,
2020) that users can interact with. In this work, we
explore the problem of intent classification; which
is the first step of a natural language understanding
system. For example, for an utterance such as What
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are the indicators of covid infection?, the first step
in responding to this request, is to identify that the
user’s intent is to ask for Covid-19 symptoms.

While neural models dominate intent predic-
tion (Liu and Lane, 2016; Zhang and Wang, 2016;
Zhang et al., 2018) they require a lot of training
data. Consequently, developing these systems for
many new languages can be a highly resource-
intensive task, especially during global pandemic
situations, internationalization is needed in a very
short amount of time. Furthermore, multilingual
systems often also need to support code-switching
(CS), which is the alternation of languages within
an utterance (Poplack, 2004). Collecting CS data
is even harder as it requires bilingual annotators
and the number of CS pairs grows quadratically
with languages. Thus, there is a need to explore
techniques that enable transfer learning from one or
more languages to other languages and CS dialects.

In order to further study multilingual intent de-
tection for Covid-19, we release M-CID (Multi-
ingual Covid Intent Detection), an open source
intent detection dataset for Covid-19 chat bots. M-
CID contains 6871 utterances across 16 intents for
4 languages: English, Spanish, French, and Ger-
man along with a Spanglish test set for CS. We
provide several strong baselines to show the im-
pact of cross lingual embedding such as MUSE
(Conneau et al., 2017), SentencePiece embeddings
from XLM-R (Kudo and Richardson, 2018; Con-
neau et al., 2020), aligning ELMo representations
(Peters et al., 2018; Schuster et al., 2019) and pre-
trained multilingual transformers, XLM-R (Con-
neau et al., 2020), comparing monolingual training
against cross lingual training. On our dataset, we
show that XLM-R models significantly out perform
cross lingual embeddings and cross lingual train-
ing improves performance across most models
compared to monolingual training. In addition
we also show the impact of cross lingual trans-



EN ES FR DE Spanglish

Train 1258 1106 1105 1086 0
Eval 148 161 173 188 0
Test 339 333 315 326 333

Total 1745 1600 1593 1600 333

Table 1: Summary statistics of the dataset. Note that
Spanglish only has a test set for zero-shot evaluations.

fer learning, where we train with the full English
train set and small portions of other languages, and
also show strong zero-shot transfer with XLM-R
based models. Lastly, we study the impact on our
code switching test set and show that monolin-
gual training on English and Spanish for XLM-
R based models is sufficient for code switching.

2 Data

We release M-CID, a dataset of 6871 natural lan-
guage utterances across 16 Covid-19 specific in-
tents and 4 languages: English, Spanish, French
and German. Additionally, the dataset also con-
tains a Spanglish test set for CS evaluation. All
of these utterances were synthetically created by
annotators based on an ontology describing all in-
tents with few representative examples. No user
data was used in this process. Monolingual utter-
ances were authored by native speakers using the
described ontology and Spanglish utterances were
created by one of the authors, who is bilingual in
Spanish and English.

We believe that this data provides a great op-
portunity to explore cross-lingual classification for
Covid-19 chat bots and to the best of our knowl-
edge, this is the first multilingual dataset for an
intent detection task for Covid-19 utterances. Ta-
ble 1 contains the utterance counts for each lan-
guage across the training, evaluation and test splits.
More details about the intent labels, distribution
of utterances across them, and some representative
examples are presented in Appendix A.

We release the data at https://fb.me/covid_
mcid_dataset.

3 Modeling Approaches

In the following section, we provide a brief descrip-
tion of all the models and the implementations used.
We use accuracy as our evaluation metric, which
works well for our setup because the intent labels
have a balanced distribution in the dataset. Ap-
pendix C contains details regarding reproducibility
and model hyperparameters for further reference.

Model Setting Accuracy

EN ES FR DE

MUSE Mono 81.12 76.28 69.52 80.06
XL 81.12 78.98 69.21 82.82

SP Mono 82.89 79.58 73.97 81.9
XL 83.48 84.08 77.14 86.50

ELMo Mono 86.14 84.98 76.83 84.05
XL 87.61 88.29 80.95 85.28

XLM-R
Base

Mono 90.27 88.59 87.30 89.88
XL 89.97 92.19 87.94 92.64

XLM-R
Large

Mono 91.45 91.29 88.25 92.94
XL 91.15 93.69 89.52 92.94

Table 2: Full training results for all languages. Mono
refers to a monolingual model for each language and
XL refers to a shared multilingual model.

3.1 Cross-Lingual Word Embeddings
Our base model is a CNN based text classifica-
tion model based on the architecture described by
Kim (2014). For regularization, we add a dropout
(Srivastava et al., 2014) after the convolution and
pooling layers. In order to enable language transfer,
we use pre-trained cross-lingual word embeddings
as an input to the model. We experiment with the
following embedding strategies:

• MUSE: We use MUSE word embeddings
(Conneau et al., 2017), with a vocabu-
lary size of 25K of for all the three lan-
guages. These are fastText (Bojanowski et al.,
2017) Wikipedia supervised word embed-
dings, aligned in a single vector space. We
refer to this model as simply MUSE.

• SentencePiece Embeddings: We experiment
with pre-trained SentencePiece embeddings
obtained from a large multilingual corpus.
Specifically, we use the SentencePiece (Kudo
and Richardson, 2018) tokenization and take
the embedding values from the already-
trained XLM-R (large) (Conneau et al., 2020)
weights. Since these are sub-word embed-
dings, they tend to be robust to misspellings
and rare tokens by breaking them down into
better-known sub-tokens. We refer to this
model as simply SP.

• Cross-lingual ELMo: We also experiment
with aligned multi-lingual deep contextual em-
beddings obtained by aligning monolingual
ELMo embeddings (Peters et al., 2018). We
use the ELMo models and alignments released

https://fb.me/covid_mcid_dataset
https://fb.me/covid_mcid_dataset


Spanish % Training French % Training

Model Zero-shot 10 20 50 80 Zero-shot 10 20 50 80

MUSE (F) 59.76 63.66 67.27 66.97 72.37 47.30 54.6 60.95 60.63 66.03
SP (F) 33.03 66.67 72.97 79.58 81.98 29.84 59.47 66.67 69.84 77.46

MUSE 25.83 52.85 61.86 69.37 75.68 24.76 40.00 55.87 60.32 70.48
SP 38.74 55.56 60.36 69.07 75.38 29.52 47.62 54.60 59.68 70.48
ELMo 71.17 75.68 83.78 82.88 88.59 63.17 65.71 73.02 73.97 79.37
XLM-R Base 84.98 86.49 90.69 90.99 93.09 78.73 82.86 86.03 86.35 89.52
XLM-R Large 90.99 90.39 91.29 92.79 93.39 83.17 83.17 86.98 87.94 88.25

Table 3: Results for cross-lingual transfer for all models. (F) refers to freezing the embeddings during training. In
the zero-shot setting, only English data is used for training and model selection. For others, the specified percentage
of target training data is also used along with English.

by Schuster et al. (2019). Specifically, we use
the alignments of the first LSTM layer, which
the authors found best in their experiments.

3.2 Pre-trained Cross-Lingual Language
Models

Using the same accuracy metric as above, we also
examine the performance of pre-trained XLM-R
(Conneau et al., 2020) models. These models are
pre-trained via an unsupervised Masked Language
Modeling (MLM) objective (Devlin et al., 2019) on
massive multilingual data. They share a Sentence-
Piece representation and a common transformer en-
coder (Vaswani et al., 2017) for different languages.
In order to use this for intent classification, we add
a linear classifier on top of the first hidden state
of the Transformer and fine-tune the network on
our dataset. For our experiments, we report results
with both XLM-R Base and XLM-R Large which
are pre-trained on 100 languages and are provided
by the PyText framework (Aly et al., 2018).

Results and Discussion Table 2 shows the test
set accuracy for all of the above models using the
full training data. In the mono setting a model is
trained per language using the data of only that
language. In the XL setting a single cross-lingual
model is trained using the data for all the languages
together. For these experiments, MUSE and SP em-
beddings were not frozen during training. While
we get different results for each language, there
are several consistent patterns. XLM-R models
significantly outperform other models. We also
see that cross-lingual models trained with all the 4
languages mostly do better than their monolingual
counterparts, barring few exceptions. Amongst the
cross-lingual embeddings, SP embeddings are bet-
ter than MUSE, which is expected as they operate

on subword units that are shared across languages.
Aligned ELMo embeddings mostly perform better
than both of these due their contextual nature.

4 Cross-lingual Learning

4.1 Language Transfer
In this set of experiments, we examine the language
transfer abilities of our models. Specifically, we
treat English as our source language, and Spanish,
French and German as the target languages. For
each of the models discussed above, we first run
zero-shot experiments where only English data is
used for training and model selection. We then
run learning curve experiments, where we progres-
sively sample 10, 20, 50 and 80 percent of the target
language training data and upsample it so that it
roughly matches the size of the English data. Here,
model selection is done using the evaluation splits
of all languages.

Results and Discussions Table 3 shows the
cross-lingual transfer results for Spanish and
French. From these results, it is evident that XLM-
R large can achieve very strong performance for
zero-shot transfer from English. For Spanish, the
zero-shot performance is 2.4 absolute points lesser
than using 80% Spanish training data. For French,
this gap is higher and there is a progressive im-
provement from zero-shot to 80% training. For
both the languages, we see that having target lan-
guage training data yields better performance than
zero-shot. XLM-R base follows a similar trend as
large. Interestingly, for French, XLM-R base has
slightly better results compared to XLM-R large
with 80% training data, which can be attributed the
high sensitivity of XLM-R fine-tuning to learning
rate.



Model Setting

EN ES EN + ES

MUSE (F) 63.06 48.65 70.57
SP (F) 62.76 43.24 78.38

MUSE 69.67 42.94 76.88
SP 68.77 55.86 79.88

XLM-R Base 83.78 77.78 88.29
XLM-R Large 87.39 91.29 88.89

Table 4: Zero-shot code-switching results for each of
the training settings. (F) refers to freezing the embed-
dings during training.

For MUSE and SP, we show results with both
freezing and fine-tuning the embeddings during
training. For MUSE, we find that freezing the
word embeddings yields a significantly better per-
formance compared to fine-tuning in the lower re-
source settings (<50%), as the model does not over-
fit to the source language. For SP, freezing the em-
beddings is better than fine-tuning in most settings.
This can be attributed to the overlap of subwords
across languages. Similar to table 2, we generally
observe better language transfer with SP as com-
pared to MUSE. Similarly, contextual ELMo em-
beddings perform better than both of these. Com-
pared to XLM-R, all of these approaches have a
much bigger performance gap between zero-shot
and 80% target language training. This suggests
that XLM-R is very effective at zero-shot cross-
lingual transfer, which aligns with the findings of
Wu and Dredze (2019).

Appendix B discusses cross-lingual transfer re-
sults for German, which exhibits similar patterns
as Spanish and French, as discussed above.

4.2 Zero-shot Code-Switching
Since code-switching is a big part of spoken lan-
guage in many cultures, we also investigate the
performance of our models on Spanglish, which
is a mix of English and Spanish. These are zero-
shot experiments where we neither use CS data for
model training nor for model selection. The only
data available is monolingual English and Spanish
data. For each of our models discussed above, we
experiment with three training data settings. We
first train two models using the training data of
each of the two languages one by one, and then a
model using both Spanish and English data.

Results and Discussions Table 4 shows the zero-
hot CS performance of different models. We do

not perform ELMo experiments for CS as it is not
intuitive to represent Spanglish context with mono-
lingual ELMo. From the results, we can see that
XLM-R models perform very well even when fine-
tuned on English only or Spanish only. XLM-R
large fine-tuned on Spanish only, outperforms all
other model settings. We also see that for MUSE
and SP, training on English only gives better per-
formance than Spanish only setting. We believe
this is because for Spanglish utterances, the trigger
words such as treatment, vaccine, donation, etc are
usually in English and thus the English only model
is able to do well. Further, freezing the embeddings
is usually worse for all settings.

5 Related Work

Cross-lingual Transfer Learning Majority of
the initial work on cross-lingual transfer was cen-
tered around aligning pre-trained word embeddings
to a common vector space (Xing et al., 2015; Zhang
et al., 2017; Conneau et al., 2017). Schuster et al.
(2019) and Aldarmaki and Diab (2019) further
build on this by exploring context-aware cross-
lingual alignment of contextualized representations
from ELMo (Peters et al., 2018). More recently,
pre-trained multilingual masked language models
such as mBERT (Devlin et al., 2019), XLM (Lam-
ple and Conneau, 2019) and XLM-R (Conneau
et al., 2020) have been introduced. XLM-R obtains
state-of-the-art performance on the XNLI (Con-
neau et al., 2018) benchmark.

6 Conclusion

In this paper, we release M-CID, a dataset for muli-
tilngual Covid-19 intent detection across English,
Spanish, French, German and Spanglish. We pro-
vide several baselines to show the impact of vari-
ous cross lingual representations and pre-trained
transformers on this dataset, along with a zero-shot,
few-shot and code-switching studies of cross lin-
gual transfer for intent detection. We show XLM-R
based models provide very strong baselines com-
pared to cross lingual embedding models. We hope
that the release of M-CID will allow for further
research for cross lingual intent detection in Covid
chat bots.
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Appendix

A Dataset Details

As an extension of table 1, we show the intent
distribution across languages and across train, eval,
and test split in table 5.

B German Cross-lingual Transfer

German % Training

Model Zero-
shot

10 20 50 80

MUSE (F) 49.08 66.26 68.40 73.93 78.53
SP (F) 33.13 66.87 75.15 78.22 80.67

MUSE 23.62 50.92 63.50 71.17 79.45
SP 33.84 61.04 67.79 75.77 80.67
ELMo 61.04 69.33 77.91 80.98 83.44
XLM-R Base 83.74 85.28 89.88 91.10 91.41
XLM-R Large 88.34 89.26 90.80 92.02 91.72

Table 6: Results for cross-lingual transfer experiments
for German, similar to the Spanish and French experi-
ments shown in Table 3.

Table 6 shows the cross-lingual transfer results
for German similar to the results for Spanish and
French in Table 3. We see similar patterns for Ger-
man as for Spanish in Section4.1. As expected,
XLM-R large achieves the best zero-shot perfor-
mance and is very close to the performance with
80% target language training data. For all models,
we see that having target language training data
yields better performance than zero-shot. Simi-
lar to Spanish and French, we find that freezing
the word embeddings yields a significantly better
performance compared to fine-tuning in the lower
resource settings for MUSE and in most settings for
SP. Further, aligned ELMo provides better cross-
lingual transfer than both SP and MUSE due to the
contextual nature of the embeddings.

C Hyperparameters for Models

We detail the experimental set up for each of our
models below. For hyperparameter tuning, we
sweep over the learning rate and batch size across
model architectures.
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Baseline DocNN Model For all of our DocNN
experiments we keep the DocNN model architec-
ture consistent and sweep the learning rate and
batch size. Here we detail the architecture. We
use a CNN model with kernel sizes [3,4,5] and 100
feature maps per kernel. We employ dropout (Sri-
vastava et al., 2014) of 0.25. We then add an MLP
with hidden dimension 128 to project to the output
classes. We optimize for the cross entropy loss, and
leverage the AdamW optimizer (Loshchilov and
Hutter, 2017). All our models are trained across 8
GPUs using distributed data parallel training with
PyTorch (Paszke et al., 2019). Our effective batch
size is computed by multiplying the batch size per
worker by the number of workers.

MUSE DocNN We initialize our embedding
layer with 300 dimension MUSE embeddings. We
train for 100 epochs with an effective batch size of
512 and learning rate 0.000691 for cross lingual,
256 and 0.00135 for English, 256 and 0.000876
for Spanish, 256 and 0.00135 for French, 512 and
0.00233 for German.

Frozen MUSE DocNN We use the same setup
as the MUSE DocNN model however, noteably
we freeze the MUSE embeddings. We train 100
epochs and use 256 batch size with a learning rate
of 0.001345 for cross lingual, English, Spanish,
French, and German.

SentencePiece (SP) DocNN We use sentence
piece embeddings loaded from the XLM-R Large
model with embedding dimension 1024. We use
an effective batch size of 256 and learning rate
0.00178 for cross lingual, English, Spanish, French,
and German.

Frozen SP DocNN We use the same configera-
tion as SP DocNN, however we freeze the sentence
piece embeddings. We use an effective batch size
of 512 and learning rate 0.000217 for cross lingual,
English, Spanish, French, and German.

Cross-lingual ELMo DocNN We use ELMo
embeddings from AllenNLP (Gardner et al., 2017)
and get 1024 dimension aligned embedding repre-
sentations using the alignments released by Schus-
ter et al. (2019). We train 100 epochs with an effec-
tive batch size of 256 and learning rate of 0.000592
for cross lingual training, 256 and 0.00115 for
English, 256 and 0.00115 for Spanish, 512 and
0.00222 for French, 256 and 0.000216 for German.

XLM-R Base We train our XLM-R base models
for 40 epochs with an effective batch size of 512.
We leverage the Adam (Kingma and Ba, 2014) op-
timizer, and use a learning rate of 0.00005 for cross
lingual training, 0.000075 for English monolingual
training, 0.00005 for Spanish monolingual training,
0.000075 for French monolingual training, 512 and
0.00005 for German monolingual training.

XLM-R Large Similar to XLM-R Base we train
our models for 40 epochs, we leverage an effective
batch size of 128. We use the Adam optimizer,
and use a learning rate of 0.00005 for cross lingual
training, 0.00002 for English monolingual training,
0.00001 for Spanish monolingual training, 0.00001
for French monolingual training, and 0.00002 for
German monolingual training.



Number of Occurrences
Intent Split English Spanish French German Spanglish

what is corona
“what is coronavirus”
“can you tell me about the virus”

Train 82 73 71 70 -
Eval 6 15 12 9 -
Test 22 12 17 21 15

what if i visited high risk area
“i traveled to new york recently am i infected”
“how do i protect myself in high risk areas”

Train 72 68 71 66 -
Eval 9 8 8 10 -
Test 24 24 21 24 25

what are treatment options
“do we have a cure yet”
“do hospitals know how to fix this”

Train 92 70 60 65 -
Eval 9 8 8 16 -
Test 24 24 21 19 25

what are symptoms
“i have a cold should i be worried”
“is coughing a sign of the virus”

Train 72 66 75 72 -
Eval 15 16 8 7 -
Test 23 18 17 21 21

travel
“is it safe to travel now”
“can i take the bus to work”

Train 87 63 71 64 -
Eval 5 11 10 13 -
Test 18 26 19 23 26

share
“share this with jack”
“send this info to my friends”

Train 82 67 62 66 -
Eval 9 12 11 10 -
Test 19 21 27 24 24

protect yourself
“how can i stay safe”
“what should i do to prevent”

Train 76 68 72 75 -
Eval 14 15 8 9 -
Test 20 17 20 16 25

okay thanks
“thanks for doing this”
“this is amazing”

Train 71 70 61 69 -
Eval 13 9 16 12 -
Test 26 21 16 19 7

news and press
“what’s the latest”
“did anything big happen today”

Train 80 73 73 71 -
Eval 8 7 11 13 -
Test 22 20 16 16 26

myths
“what are myths about covid”
“what are the misconceptions”

Train 70 68 75 69 -
Eval 8 7 10 12 -
Test 32 24 15 19 21

latest numbers
“what’s the latest statistics”
“what do the numbers look like now”

Train 78 74 68 64 -
Eval 7 9 10 15 -
Test 25 17 22 21 24

how does corona spread
“how does the virus spread”
“can people with masks transmit to other people”

Train 81 71 64 68 -
Eval 9 7 10 9 -
Test 20 22 26 23 24

hi
“hello”
“hey covid bot”

Train 82 74 67 71 -
Eval 9 8 15 14 -
Test 19 18 18 15 7

donate
“this is great how do i help you”
“i wish i could do something about this”

Train 81 67 75 64 -
Eval 9 8 8 13 -
Test 20 25 17 23 20

can i get from packages surfaces
“is it safe to get food delivered”
“how often should i clean my table”

Train 73 71 69 69 -
Eval 8 7 11 10 -
Test 24 22 20 21 25

can i get from feces animal pets
“can i get the virus from dogs”
“should i stop eating meat”

Train 79 62 71 63 -
Eval 10 13 7 16 -
Test 16 25 22 21 21

Table 5: Dataset details by intent labels. For each intent listed are the occurrences of each label in the train, eval,
and test set by language. Italicised underneath each label are two samples of utterances for that intent. Note:
Spanglish is only available as a test set hence there are no training or validation samples


