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Abstract

Deep models often fail to generalize well in test domains when the data distribution
differs from that in the training domain. Among numerous approaches to address
this Out-of-Distribution (OOD) generalization problem, there has been a growing
surge of interest in exploiting Adversarial Training (AT) to improve OOD perfor-
mance. Recent works have revealed that the robust model obtained by conducting
sample-wise AT also retains transferability to biased test domains. In this paper,
we empirically show that sample-wise AT has limited improvement on OOD per-
formance. Specifically, we find that AT can only maintain performance at smaller
scales of perturbation while Universal AT (UAT) is more robust to larger-scale per-
turbations. This provides us with clues that adversarial perturbations with universal
(low dimensional) structures can enhance the robustness against large data distribu-
tion shifts that are common in OOD scenarios. Inspired by this, we propose two
AT variants with low-rank structures to train OOD-robust models. Extensive exper-
iments on DomainBed benchmark show that our proposed approaches outperform
Empirical Risk Minimization (ERM) and sample-wise AT. Our code is available at
https://github.com/NOVAglow646/NIPS22-MAT-and-LDAT-for-OOD.

1 Introduction

Existing deep learning methods have achieved good performance on visual classification tasks under
the same distribution of training sets and test sets. However, when the data distribution of the test set
is different from that of the training set, the classification performance of the deep neural networks
(DNNs) may decrease sharply [1]. This is mainly because DNNs may capture spurious features
such as the background and style information to assist the fast fitting during the training process [2].
However, in real-world scenarios, test data may differ from training data in the background and style
information, thus DNNs that rely on unstable spurious features to make predictions will fail. Solving
the above problem is known as the out-of-distribution (OOD) generalization.

Another scenario where DNNs may fail is that they are often vulnerable to adversarial examples [3].
Adversarial training (AT) is originally proposed as an effective way to defend against adversarial
attacks [4]. Moreover, there is work showing that adversarial training helps to solve the OOD
generalization problem because OOD data can be seen as stronger perturbations to some extent [5].
The reason why AT can defend against adversarial attacks meanwhile benefit OOD generalization is
that it can make DNNs robust to the interference of spurious features, such as randomly injected noise
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(in adversarial examples) or the spurious correlation between labels and background information (in
OOD generalization). In other words, AT enables DNNs to make predictions using intrinsic features
rather than spurious features.

A potential problem, however, is that existing AT methods ignore the specific design of perturbations
when used for solving OOD generalization problems. They usually simply conduct sample-wise AT
[6], which only brings limited performance improvement to OOD generalization. The essential reason
for the failure of this type of approach is that the perturbations it uses cannot distinguish invariant and
spurious features. As a result, it improves the robustness at the expense of the decreasing standard
accuracy [7]. Moreover, we empirically find that when adapting Universal AT (UAT [8]) to OOD
problems, i.e., conducting AT with domain-wise perturbations, it shows stronger input-robustness
when facing larger-scale perturbations compared to the sample-wise AT (see Section 3.2). Since
the sample injected with large-scale perturbations can be regarded as OOD samples [5], we draw
inspiration from this phenomenon that AT with universal (low-dimensional) structures can be the
key to solving OOD generalization. Therefore, we propose to use structured low-rank perturbations
related to domain information in AT, which can help the model to filter out background and style
information, thus benefiting OOD generalization. We make the following contributions in our work:

• We identify the limitations of sample-wise AT on OOD generalization through a series of
experiments. To alleviate this problem, we further propose two simple but effective AT
variants with structured priors to improve OOD performances.

• We theoretically prove that our proposed structured AT approach can accelerate the conver-
gence of reliance on spurious features to 0 when using finite-time-stopped gradient descent,
thus enhancing the robustness of the model against spurious correlations.

• By conducting experiments on the DomainBed benchmark [9], we demonstrate that our
methods outperform ERM and sample-wise AT on various OOD datasets.

2 Related Work

Solving OOD Generalization with AT. According to [3], the performance of deep models is
susceptible to small-scale perturbations injected in the input images, even if these perturbations
are imperceptible to humans. Adversarial training (AT) is an effective approach to improve the
robustness to input perturbations [4, 10, 11]. However, many recent works have begun to focus on
the connection between AT and OOD due to the fact that OOD data can be regarded as one kind of
large-scale perturbation. These works seek to exploit the robustness provided by AT to improve OOD
generalization. For instance, [6] applied sample-wise AT to OOD generalization. They theoretically
found that if a model is robust to input perturbation on training samples, it also generalizes well on
OOD data. [5] theoretically established a link between the objective of AT and the OOD robustness.
They revealed that the AT procedure can be regarded as a heuristic solution to the worst-case problem
around the training domain distribution. Nevertheless, the discussion of [6] and [5] is restricted to
the framework of using Wasserstein distance to measure the distribution shift, which is less practical
for the real-world OOD setting where domain shifts are diverse. Additionally, they only studied
the case of sample-wise AT and did not further investigate the effect of different forms of AT (not
sample-wise) on OOD performance. Other works such as [12] focus on the structure design of
the perturbations. They used multi-scale perturbations within one sample, but they did not exploit
the universal information within one training domain. In our work, we focus on real-world OOD
scenarios where there are additional clues lying in the distribution shifts, i.e, the low-rank structures
in the spurious features (such as background and style information) across one domain. We further
design a low-rank structure in the perturbations to specifically eliminate such low-rank spurious
correlations.

OOD Evaluation Benchmark. The DomainBed benchmark [9] provides a fair way of evaluating
different state-of-the-art OOD methods, which has been widely accepted by the community. By
conducting rigorous experiments in a consistent setting, they revealed that many algorithms that
claim to outperform previous methods cannot even outperform ERM. Unlike previous works using
AT to address OOD generalization, such as [6] and [5], we adopt the Domainbed benchmark for a
fair comparison of our approach with existing state-of-the-art methods in this paper.
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3 Weakness of Sample-wise AT for OOD Generalization

3.1 Preliminaries

Out-of-distribution (OOD) Generalization. Assuming x ∈ X as the random data in the input space
X and y ∈ Y as the target random data in the label space Y , we have the predictor f = w ◦ ϕ(x)
where ϕ : X → Z denotes the feature extractor and w : Z → Y denotes the classifier.

Now we give the formal definition of the OOD generalization problem. We have a set of m
training domains E = {E1, E2, ..., Em}, where each domain Ee is characterized by a input dataset
Ee := {(xe

i , y
e
i )}

ne
i=1 containing ne i.i.d input samples drawn from the distribution of Pe, and a

test domain Em+1 with data following the distribution of Pte, where Pte ̸= Pi, i = 1, 2, ...,m.
L : X → R+ denotes the loss function. The ultimate goal of OOD generalization is to find an optimal
predictor f that minimizes the risk on the unseen test domain:

min
f

E(x,y)∼Pte(x,y)[L(f(x), y)]. (1)

Adversarial Training (AT)3. According to [4], AT can be expressed as the following optimization
problem:

min
f

E(x,y)∼P(x,y)[max
δ∈S
L(f(x+ δ), y)] s.t. ∥δ∥p ≤ ϵ, (2)

where δ ∈ S is the random injected perturbation with lp norm bounded by ϵ. The inner maximization
problem can be optimized by fast gradient sign method (FGSM [13]), a simple one-step scheme:

x = x+ ϵsgn(∇xL(f(x), y)), (3)

where sgn(·) is the sign function, or by projected gradient descent (PGD [4]), a more powerful
multi-step variant:

xt+1 =
∏
S
(xt + γsgn(∇xL(f(x), y))), (4)

where
∏
S

is the projection operator onto the set S, γ is the step size and t denotes the iteration.

3.2 Weakness of AT for OOD Generalization

We now highlight some weaknesses of sample-wise AT for OOD generalization based on a series of
empirical evidence. We first conduct a toy experiment on the DomainBed benchmark [9] to evaluate
the OOD performance of AT. We run ERM and AT on four OOD datasets: PACS [14], OfficeHome
[15], VLCS [16], and NICO [17] with a fixed set of hyperparameters (detailed experimental settings
can be found in Appendix C.1). The results are shown in Table 1. We can see that the improvement
of OOD performance by AT is limited with an average improvement of only 0.1%.

Table 1: Test accuracy (%) on four OOD datasets on DomainBed benchmark with a fixed set of
hyperparameters. The improvement of AT is marginal.

Datasets

Algorithm PACS OfficeHome VLCS NICO avg

ERM 79.7 ± 0.0 59.6 ± 0.0 74.4 ± 1.0 70.7 ± 1.0 71.1
AT 81.5 ± 0.4 59.9 ± 0.4 75.3 ± 0.7 68.2 ± 2.2 71.2

We further investigate the reason behind the limitations of performance improvements on OOD
datasets of AT. Although previous works have revealed that the robust features obtained by AT can
improve OOD generalization ([6] [5] [18]), we find that sample-wise AT only tolerates small-scale
perturbations. Thus, we design an experiment on NICO dataset with multiple scales of perturbations.
The scale is calculated with the l2 norm of the perturbation matrix (experiment details are shown
in Appendix C.1). As shown in Figure 1, AT suffers severe performance degradation when using
large perturbations. This provides clues to understanding the failure of AT in OOD scenarios. The

3For simplicity, we denote ‘AT’ for sample-wise AT by default in the rest of the paper.
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distribution shifts in OOD data usually have much larger scales than the invisible perturbations
commonly used in AT. Hence, AT methods designed for small perturbations cannot handle these
large-scale domain shifts that often appear in OOD data. However, our experiment shows that this
problem can be alleviated by adapting universal AT (UAT [8]) to the OOD setting, i.e., using a
perturbation for each domain.

Figure 1: Test accuracy (%) of AT, UAT, and
ERM on NICO dataset. l∞ norm is used here.

Figure 1 shows that UAT has better generalization
performance than AT when the perturbation norm is
large. There are two empirical explanations for this:
First, the background and style information usually
have a low-rank structure, such as the grassland and
snowfield that have recurring parts. Second, similar
spurious features often appear within one specific
domain, such as PACS [14] and VLCS [16] datasets.
As stated in [8], the universal perturbation lies in
a low dimensional space. Hence using universal
(domain-wise) perturbations will help to resist such
low-rank shifts and improve the robustness of the
model.

Inspired by this, we proposed two new AT variants
with more sophisticated low-rank structures on dif-
ferent dimensions to improve OOD generalization
in the next section.

4 The Proposed Structured AT Method

In order to construct low-rank structured perturbations, we start by analyzing the structure of sample-
wise perturbations. Assume that each input data x has a shape of N ×N × C. N is the size of the
input image and C is the number of channels. For simplicity, we assume C = 3. We reparameterize
the sample-wise perturbations as a series of 2-D matrices {D1

1, D
1
2, ..., D

1
m}, {D2

1, D
2
2, ..., D

2
m},

{D3
1, D

3
2, ..., D

3
m} where Dc

e ∈ Rne×N2

denotes the perturbations in the e-th domain for the input
channel c, ne is the number of the samples in the domain Ee, and m is the number of domains.
The i-th row of Dc

e represents the c-th channel of the i-th sample in the domain Ee (see the first
column in Figure 2 for illustration). By such reparameterization, it is natural to find that there are two
orientations to reduce the rank of the perturbations:

1. Along the dimension of the number of samples (along the red arrow in the upper left
corner of Figure 2). This corresponds to reducing the number of the perturbations used
within one domain.

2. Along the dimension of the input scale (along the blue arrow in the upper left corner of
Figure 2). This corresponds to reducing the rank of the perturbation used for a specific input
sample.

In the following parts, we propose two AT variants with structured priors that reduce the rank in these
two directions.

4.1 MAT: Adversarial Training with Combinations of Multiple Perturbations

In this part, we propose domain-wise Multiple-perturbation Adversarial Training (MAT). It aims
to conduct rank minimization along the dimension of the number of samples. Instead of using
sample-wise perturbations, MAT constructs a combination of multiple perturbations and shares this
mixed perturbation within a domain. Specifically, we choose to train the linear combination of k
perturbations for each domain Ee to conduct AT. Here k is a hyperparameter and k is far less than
the number of samples in domain Ee. The optimization problem can be reformulated as:

min
f

∑
e

E(x,y)∼Pe(x,y)[L(f(x+ δe), y)], (5)

s.t. δe =
k∑

i=1

αe∗
i δe∗i , ∥δe∗i ∥p ≤ ϵ,

k∑
i=1

αe∗
i = 1, αe∗

i ≥ 0 for i = 1, 2, ..., k, (6)
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Figure 2: Illustration of how our proposed structured AT reduces the rank of the perturbations
comparing to sample-wise AT. The left column shows how we reparameterize sample-wise AT. The
perturbations are segmented by domains. A block represents the ne perturbations injected in a
channel of the samples in domain Ee. This figure shows the case where the input image has three
channels (RGB). The red and the blue arrow in the upper left shows the two orientations to reduce
the rank of the perturbations, i.e, along the dimension of the total number of the perturbations and
along the dimension of the rank of a single perturbation, respectively. The mid column illustrates that
MAT reduces the number of the perturbations used for domain Ee from ne to k (k ≪ ne). The right
column shows that LDAT further reduces the number of the perturbations from k to 1. Moreover, it
reduces the rank of a specific perturbation from N to l (l≪ N ).

where

αe∗
i , δe∗i = argmax

αe
i , δ

e
i

E(x,y)∼Pe(x,y)[L(f(x+

k∑
i=1

αe
i δ

e
i ), y)]. (7)

Here e denotes the subscript of a training domain and αe
i is the weight that can be learned for each

perturbation δei . The detailed training procedure of MAT is in Algorithm 1. We first initialize k
perturbations δei and their correspondent coefficients αe

i for each training domain e with Gaussian
noise. Then we transform δei and αe

i to make sure
∑k

i=1 α
e
i = 1, αe

i ≥ 0, and ||δei ||2 ≤ ϵ. For the
inner maximization, we conduct a one-step gradient ascent to optimize δi and αi.

MAT works as a low-rank version of sample-wise AT. In sample-wise AT, we maintain ne pertur-
bations for each domain Ee, where ne is the number of training samples in domain Ee. As for
MAT, it reduces the number of perturbations available to samples from ne to k and obtains low-rank
structures (see the third column in Figure 2 for illustration). Therefore, it fulfills rank reduction along
the sample-number dimension.

4.2 LDAT: Adversarial Training with Low-rank Decomposed Perturbations

Based on MAT, we further propose Adversarial Training with Low-rank Decomposed perturbations
(LDAT). Analogous to MAT, LDAT still shares one perturbation in a specific domain. Moreover,
LDAT imposes a low-rank constraint on the perturbation itself, which corresponds to the dimension of
the input scale. Technically, we obtain the domain-wise low-rank perturbation matrix δ ∈ RN×N×C

by multiplying two matrices: δ = AB. Here A ∈ RN×l×C and B ∈ Rl×N×C where l is a
hyperparameter and l ≪ N . Since rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B) hold for
arbitrary matrices A, B, we have rank(δ) ≤ l. Therefore LDAT reduces the rank of the perturbation
from a large value N to a relatively small value l (see the last column in Figure 2 for illustration).

5



Algorithm 1 Detailed Training Procedure of MAT
Input:

Labeled training data of m domains E1, ..., Em, where Ee := {(xe
i , y

e
i )}

ne
i=1,

number of the perturbations to be combined k, perturbation weight α learning rate η,
FGSM step size γ, perturbation radius ϵ,
number of training epochs T , learning rate for model parameters r, batch size b.

Output:
Updated model fθ with parameter θ.

1: Randomly initiate θ, perturbation δei , weight αe
i such that

∑k
i=1 α

e
i = 1, αe

i ≥ 0, ||δei ||2 ≤ ϵ,
∀i ∈ {1, ..., k} and ∀e ∈ {1, ...,m}.

2: for iterations in 1, 2, ..., T do
3: for e in 1, 2, ...,m do
4: Randomly select batch Be = {(xe

u, y
e
u)}bu=1 from domain Ee.

5: Compute the adversarial sample: xe′

u = xe
u +

∑k
j=1 α

e
jδ

e
j , ∀u ∈ {1, ..., b}

6: Update δe by δei ← δei + γ 1
b

∑b
u=1∇δei

L(fθ(xe′

u ), y
e
u), ∀i ∈ {1, ..., k}, ∀u ∈ {1, ..., b}.

7: Update αe
i by αe

i ← αe
i + η 1

b

∑b
u=1∇αe

i
L(fθ(xe′

u ), y
e
u), ∀i ∈ {1, ..., k}, ∀u ∈ {1, ..., b}.

8: Project δei to the l2 ball of radius ϵ.
9: Compute the adversarial sample: xe′

u = xe
u +

∑k
j=1 α

e
jδ

e
j , ∀u ∈ {1, ..., b}

10: Update model parameter: θ ← θ − r 1
b

∑b
u=1∇θL(fθ(xe′

u ), y
e
u), ∀u ∈ {1, ..., b}.

11: end for
12: end for

The formal definition of the LDAT objective is:

min
f

∑
e

E(x,y)∼Pe(x,y)[L(f(x+ δe), y)], s.t. δe = Ae∗Be∗, ∥δe∥p ≤ ϵ, (8)

where

Ae∗, Be∗ = argmax
Ae,Be

E(x,y)∼Pe(x,y)[L(f(x+AeBe), y)], Ae ∈ RN×l×C , Be ∈ Rl×N×C . (9)

We provide the detailed training procedure of LDAT in Appendix D due to the space limitation of
the main text. In comparison to MAT, LDAT reduces the number of perturbations available to the
samples in a domain from k to 1. In addition, it reduces the rank of the perturbation for a single
channel of a sample from N to l.

4.3 Theoretical Analysis

In this part, we theoretically explain why the domain-wise perturbation proposed in MAT and LDAT
can help to improve the robustness of the model against spurious correlations following [2] and [19].
In general, we prove that MAT and LDAT can prevent the model from relying more on spurious
features to make predictions as the spurious correlations in the training data increase. Consequently,
the model trained with MAT or LDAT will generalize better on OOD data.

Notations. Let x ∈ X denote the random data in the input space X and let y ∈ Y denote the target
random data in label space Y . For simplicity, let Y ∈ {1,−1} in this section. Let D denote an
underlying class of distributions over X × Y . Let xinv and xsp denote the invariant features and
the spurious features respectively. Also for simplicity, assume that there exists an identity mapping
Φ : Xinv ×Xsp → X such that each D ∈ D is induced by a distribution over Xinv ×Xsp (so x can
be denoted as x = (xinv, xsp)). Let xsp take values in {+β,−β} for some β > 0.

A Simple OOD Task. Consider a simple OOD task where we have two training domains representing
the grass and desert backgrounds respectively. Both domains have two classes: the cow class and
the camel class. In the grass/desert domain, the cow/camel class predominates. During test time,
the correlation between the labels and the background flips. We can abstract this cow-camel dataset
into the following model: a training dataset S with four groups of data points drawn from the four
quadrants of the feature space {−1,+1} × {−β,+β} respectively (shown in Figure 3). We set the
invariant features xinv = y and the spurious features xsp to be yβ with probability p ∈ [0.5, 1) and
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−yβ with probability 1− p. Note that p measures the intensity of spurious correlations in a certain
environment. When p = 0.5, there are no correlations between the labels and the spurious features.

β

�β

1�1

�1 � �

� 1 � �

Figure 3: Illustration of the simple
OOD task.

Consider a linear classifier h(x) = winvxinv + wspxsp.
Following [19], let us consider MAT/LDAT trained with
gradient descent algorithm stopped in finite time t. In order
to characterize the dependence of the model on spurious fea-
tures during the training process, we investigate the conver-
gence rate of wsp(t)β

|winv(t)xinv| to 0 on the above dataset, which
denotes the ratio between the output of the spurious compo-
nent to that of the invariant component. We prove that after
adding the domain-wise perturbations in finite-time-stopped
gradient descent, the lower bound of the convergence rate
of this ratio does not increase monotonically with p. Hence,
the model will not learn a large prediction weight based on
spurious features even if the spurious correlation is strong
(p is large).

In the following theorem, we denote the domain-wise per-
turbation in MAT/LDAT as δ. Theorem 4.1 applies to both
MAT and LDAT since they both use domain-wise perturbations. See Appendix A for a formal
statement and full proof of Theorem 4.1.
Theorem 4.1. (informal) Let H be the set of linear classifiers h(x) = winv(t)xinv + wsp(t)xsp.
Consider the above 2-D OOD dataset S. Assume that the empirical distribution of xinv given
xsp · y > 0 is identical to the empirical distribution of xinv given xsp · y < 0. δ is the optimal
perturbation obtained by optimizing the object in Eq. (7) or Eq. (9). Let winv(t)xinv + wsp(t)xsp

be initialized to the origin, and trained with MAT/LDAT to minimize the exponential loss on S . Then,
for any (x, y) ∈ S, we have:

Ω(E(xinv,y)∼Dinv
[

1
β+δy ln[ c1+p

c2+p
1
2
−ϵ(1−p)

1
2
+ϵ
]

M ln(t+ 1)
]) ≤ wsp(t)β

|winv(t)xinv|
, (10)

where ϵ := δy
2β is a real number close to 0, c1 := 2(2M(1+δ)−1)

(β+δy)2 , c2 := 2(2M(1+δ)−1)

(δy+β)
3
2
−ϵ(β−δy)

1
2
+ϵ

.

M = max
x∈S

ŵ · x denotes the maximum value of the margin of the max-margin classifier ŵ on

S. Ω(·) is the lower bound of a given function within a constant factor. Therefore, the lower
bound of the convergence rate does not increase monotonically with p under the condition that
2ϵc1 + c2 +

3
4 + 3

2ϵ < 0.

To sum up, since we can prevent this lower bound from growing monotonically with p, we accelerate
the convergence rate of wsp(t)β

|winv(t)xinv| to 0 when there is stronger spurious correlation (larger p). Recall

that the ratio wsp(t)β
|winv(t)xinv| reflects the degree of reliance on spurious features. Therefore, faster

convergence of this ratio to 0 (smaller lower bound) means that the model will end up relying less on
the spurious correlations within a finite training time. In other words, the OOD robustness can be
enhanced by using domain-wise perturbations.

Remark. Here, we demonstrate that MAT and LDAT show stronger OOD robustness compared
to ERM. We compare the result in Theorem 4.1 to that in Theorem 2 of [2]. The full statement of
the Theorem 2 in [2] is in Appendix B. According to the Theorem 2 in [2], even if the max-margin
classifier does not rely on xsp for any level of spurious correlation p ∈ [0.5, 1), ERM trained by
gradient descent stopped in finite time still fails to avoid using spurious features. Moreover, when
conducting ERM with finite-time-stopped gradient descent, the lower bound of the convergence rate
of wsp(t)β

|winv(t)xinv| to 0 is

Ω(
ln c+p

c+
√

p(1−p)

M ln t
) ≤ wsp(t)β

|winv(t)xinv|
, (11)

where c := 2(2M−1)
β2 , and M follows the definition in Theorem 4.1. This lower bound grows

monotonically with p, thus ERM will have slower convergence for larger spurious correlations.
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However, with domain-wise perturbations, we can modify the lower bound so that it does not increase
monotonically with the spurious correlation p. Thus, we can draw the conclusion that using a
perturbation for each domain is helpful to reduce dependence on spurious features compared to ERM.

5 Experiments

5.1 Experimental Setup

We conduct experiments on the DomainBed benchmark [9], a testbed for OOD generalization that
implements consistent experimental protocols across various approaches to ensure fair comparisons.
We evaluate on PACS [14], OfficeHome [15], VLCS [16], NICO [17], and Colored MNIST [1].
There are several changes in our experimentation setting comparing to DomainBed:

1. Backbone Network. We use ResNet-18 [20] as our backbone for datasets excluding Colored
MNIST instead of ResNet-50 used in [9] for efficiency.

2. Hyperparameter Search Space. We use a smaller hyperparameter search space than [9].
We conduct a random search of 8 trials for PACS, OfficeHome, and VLCS while 6 trials for
NICO and Colored MNIST in the hyperparameter search space, instead of 20 trials adopted
in [9] for feasibility. See Appendix C.2 for more details.

Model Selection Strategy. Since hyperparameter choice has a significant impact on the OOD
performance, it is critical to use appropriate model selection method. For PACS, OfficeHome, and
VLCS datasets, we use training-domain validation proposed in [9] since it is more in line with the
OOD scenario. For NICO, we adopt OOD validation following [21]. For Colored MNIST, we use
test-domain validation [9] since it can enlarge the gaps in OOD performance among the algorithms
while the gap induced by training-domain validation on Colored MNIST is marginal.

Hyperparameters for MAT and LDAT. To retain low-rank structures in perturbations, we set the
upper bound of the search space of the perturbation number k in MAT to be 20. Similarly, the upper
bound of the rank of the perturbation used in LDAT l is 20. Specifically, the search space of k and l
is {5, 10, 15, 20} (except on CMNIST, where k ∈ [5, 20] and l ∈ [10, 20]). The complete setup of
the hyperparameters for MAT and LDAT is provided in Appendix C.2.

5.2 OOD Performance on Benchmark datasets.

Table 2 summarizes the results on the five OOD datasets. The results of other approaches for PACS,
OfficeHome, NICO, and Colored MNIST datasets are adopted from [21]. The results on VLCS of
other algorithms are missing (denoted as "-") because [21] does not experiment on this dataset.

Comparison with ERM and Sample-wise AT. From Table 2, we observe that both MAT and
LDAT outperform ERM (on both our runs and the results in [21]) and AT on average. In particular,
MAT achieves consistently better results than ERM on all five datasets. Additionally, the average
performance of AT is worse than ERM, which is consistent with our observations in Section 3.2.

Comparison with Existing State-of-the-Art Approaches. Although the results from [21] use a
different training protocol from ours: they use a larger search space and 20 random search for the
hyperparameter combinations, the comparison between ERM ([21]) and ERM (our runs) indicates
that their corresponding performances are close. A similar comparison has been made in [22]. We
find that MAT outperforms all previous algorithms and LDAT ranked fourth among all methods,
merely after VREx [23] and IRM [1] (see avg1 in Table 2). And even when excluding Colored
MNIST (toy example), our methods still outperform ERM by 0.4 ∼ 1.4%, whereas other methods
show no improvement over ERM (see avg3). From these results, we can see that the promotion of
our proposed methods is higher than the other works, and our methods clearly outperform ERM. We
also extend our evaluation to compare with adversarial augmentation based method [5] in Appendix
C.3. Single-training domain generalization experiments are shown in Appendix C.4, which shows
that our methods can maintain OOD performance without the reliance on multi-source training data.

Comparison between MAT and LDAT. From Table 2 we can see that MAT outperforms LDAT on
average. Since LDAT reduces the number of the perturbations used in a domain from k to 1 (shown in
Figure 2), LDAT can be regarded as a low-rank version of MAT. This indicates that the oversimplified
perturbations may be less effective than the ones maintaining some flexibility.
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Table 2: Test accuracy (%) on OOD datasets within DomainBed benchmark using ResNet-18. Here
"avg1" denotes the average accuracy on PACS, OfficeHome, NICO, CMNIST datasets and “avg2”
denotes the average accuracy on all five datasets. “avg3” denotes the average accuracy on the other
three datasets except for CMNIST and VLCS. “avg4” denotes the average accuracy on the other four
datasets except for CMNIST. The best results are in bold.

Datasets

Algorithm PACS OfficeHome VLCS NICO CMNIST avg1 avg2 avg3 avg4

ERM (Our runs) 81.7 ± 0.3 62.1 ± 0.1 74.4 ± 1.0 73.2 ± 1.9 28.1 ± 1.5 61.3 63.9 72.3 72.9
AT (Our runs) 81.5 ± 0.3 62.1 ± 0.3 76.2 ± 0.3 69.7 ± 1.6 29.1 ± 1.5 60.6 63.7 71.1 72.4

ERM[21] 81.5 ± 0.0 63.3 ± 0.2 - 71.4 ± 1.3 29.9 ± 0.1 61.5 - 72.1 -
RSC[24] 82.8 ± 0.4 62.9 ± 0.4 - 69.7 ± 0.3 28.6 ± 1.5 61.0 - 71.8 -
MMD[25] 81.7 ± 0.2 63.8 ± 0.1 - 68.3 ± 1.8 50.7 ± 0.1 66.1 - 71.3 -
SagNet[26] 81.6 ± 0.4 62.7 ± 0.4 - 69.3 ± 1.0 30.5 ± 0.7 61.0 - 71.2 -
CORAL[27] 81.6 ± 0.6 63.8 ± 0.3 - 68.3 ± 1.4 30.0 ± 0.5 61.0 - 71.2 -
IRM[1] 81.1 ± 0.3 63.0 ± 0.2 - 67.6 ± 1.4 60.2 ± 2.4 68.0 - 70.6 -
VREx[23] 81.8 ± 0.1 63.5 ± 0.1 - 71.0 ± 1.3 56.3 ± 1.9 68.2 - 72.1 -
GroupDRO[28] 80.4 ± 0.3 63.2 ± 0.2 - 71.8 ± 0.8 32.5 ± 0.2 62.0 - 71.8 -
DANN[29] 81.1 ± 0.4 62.9 ± 0.6 - 68.6 ± 1.1 24.5 ± 0.8 59.3 - 70.9 -
MTL[30] 81.2 ± 0.4 62.9 ± 0.2 - 70.2 ± 0.6 29.3 ± 0.1 60.9 - 71.4 -
Mixup[31] 79.8 ± 0.6 63.3 ± 0.5 - 66.6 ± 0.9 27.6 ± 1.8 59.3 - 69.9 -
ANDMask[32] 79.5 ± 0.0 62.0 ± 0.3 - 72.2 ± 1.2 27.2 ± 1.4 60.2 - 71.2 -
MLDG[33] 73.0 ± 0.4 52.4 ± 0.2 - 51.6 ± 6.1 32.7 ± 1.1 52.4 - 59.0 -

MAT (Our work) 82.3 ± 0.5 64.5 ± 2.1 74.6 ± 0.8 74.2 ± 1.5 65.4 ± 8.1 71.6 72.2 73.7 73.9
LDAT (Our work) 82.6 ± 0.5 61.0 ± 0.9 75.3 ± 0.3 74.4 ± 1.6 52.5 ± 5.4 67.6 69.1 72.7 73.3

Origin ERM AT MAT LDAT

Figure 4: The pixel attention heatmap of ERM, AT, MAT and LDAT on NICO dataset. The redder
part indicates that the model relies more on this part to make predictions.

Since both MAT and LDAT outperform most existing state-of-the-art methods and they both exploit
low-rank structures, these two methods mutually corroborate the effectiveness of low-rank structure
for OOD generalization. The respective advantages of the two methods are as follows:

• MAT is a complex and high-rank version of LDAT, which has a stronger ability to describe
more complex spurious background information. As shown by the attention heatmap in
Figure 4, MAT can better capture the object than LDAT when faced with a more complex
background (the example in the second row of Figure 4).

• LDAT costs less memory than MAT during the training process, although there is no
significant difference in training time between the two methods. When the memory is
limited, LDAT is preferred.
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5.3 Empirical Understanding

Visualization. To empirically show that MAT and LDAT can reduce the reliance on spurious features,
we visualize the pixel attention heatmap of ERM, AT, MAT, and LDAT on NICO dataset using
GradCam [34]. It reflects the contribution of different components of the feature map to the prediction
results. We pick the model with the best performance for each method. The results in Figure 4
indicate that the model trained by MAT and LDAT focuses more on the object itself, while ERM and
AT adopt the background information that spuriously correlates to the class to make predictions.

Parameter Analysis. The number of the perturbations k used in a domain in MAT and the rank
of the perturbation l in LDAT are two key hyperparameters. We conduct further experiments to
analyze the impact on the performances of k and l. We adopt a fixed set of parameters except for k
and l and evaluate on PACS dataset. The results in Figure 5 show that MAT and LDAT are able to
keep their performances over ERM as long as k and l are far less than the number of the samples N .
Additionally, we can observe from the trend that when k and l are too small (= 5), the performances
degenerate. This implies the oversimplified structures of the perturbations can be less effective for
generalization. When k and l take larger value (about 1000), the performance will drop (see Table 3).
For the selection of optimal parameters (range), we observe that the parameters that are good on one
dataset also work well on others (see Table 6 in the appendix), so in practice we adopt the strategy of
searching for the optimal parameters roughly on one dataset and then applying them to other datasets.
Additional analysis on the impact of the learning rate for the perturbations is in Appendix C.2.
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Figure 5: The performance at different values of the number of perturbations to combined within one
domain k (in MAT) and the rank of the perturbation in a domain l (in LDAT).

Table 3: The test accuracy (%) on CMNIST with different k and l.

Algorithm k ∈ [5, 20], l ∈ [10, 20] k or l = 200 k or l = 500 k or l = 1000

MAT 65.4 ± 8.1 34.9 ± 20.2 25.6 ± 8.5 23.4 ± 10.8
LDAT 52.5 ± 5.4 24.9 ± 8.9 19.0 ± 6.6 10.3 ± 0.1

6 Conclusion

In this work, we empirically revealed the limitations of sample-wise AT on OOD tasks. Due to
the lack of constraints on the perturbation and the utilization of domain features, sample-wise AT
fails to generalize well when facing large-scale perturbations which is close to the real-world OOD
scenarios. We further proposed two AT variants with structured priors, named MAT and LDAT, which
add low-rank perturbations to improve model’s robustness against the distribution shift of spurious
correlations. We theoretically proved the domain-wise perturbations used in MAT and LDAT can
benefit OOD generalization, and validated the effectiveness of the proposed methods on OOD tasks
through a series of experiments on Domainbed benchmark.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section .
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1.
(b) Did you describe the limitations of your work? [Yes] See Section 5.2. We mention

that the oversimplified perturbation (LDAT) will be less effective than the ones with
more flexibility (MAT).

(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Full assump-
tions are in Appendix A.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No] It will release
upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section C.1 and C.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 2 for an example.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use DomainBed

benchmark and GradCam and cite their creators.
(b) Did you mention the license of the assets? [No] All assets we use are open source.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] All datasets we use are open source.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [No]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [No]
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