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Abstract. Replacing convolution with morphological operations in train-
able layers has received significant attention lately. Among the various
strategies that have emerged, smooth morphological layers have shown
strong potential and flexibility, as a single layer can behave either like a
(pseudo-)erosion or a (pseudo-)dilation depending on the sign and value of
its trainable control parameter. In this work, we build upon the so-called
SMorph layer by introducing a harmonized formulation that addresses
previously identified asymptotic limitations when learning grayscale ero-
sion and dilation. We also investigate and compare two strategies (a novel
penalty term in the training loss and shared-weight layers) to improve the
learning of grayscale opening and closing operations in two-layer networks.
Finally, we evaluate the performance of this improved SMorph layer on a
salt-and-pepper denoising task in a four-layer network architecture, and
compare it with other morphological and convolutional networks.

Keywords: mathematical morphology - morphological network - smooth
morphological layer - grayscale transform - salt-and-pepper denoising.

1 Introduction

Over the past decade, convolutional neural networks (CNNs) have revolution-
ized numerous image processing tasks such as object recognition and semantic
segmentation. By learning representative multiscale filter banks through train-
able convolutional layers, CNNs capture both low-level and high-level features,
enabling them to effectively capture complex visual patterns. As universal approx-
imators (provided that the depth of the network is large enough [24]), they offer
a powerful framework for approximating a broad class of image operators in a
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data-driven way. Yet, convolutional layers also suffer from well-known limitations.
As a matter of fact, they remain limited in terms of interpretability and they
often struggle with small or low-contrast objects. In contrast, morphological
operations are particularly well-suited to process such challenging features and
offer geometrically meaningful and interpretable operations. This motivates the re-
placement of standard convolution layers with trainable morphological operations,
leading to the development of morphological neural networks (MNNs). These net-
works thus enable the automatic learning of morphological operations sequences
along with their optimal structuring elements. Beside, the Matheron-Maragos-
Bannon-Barrera (MMBB) representation theory of non-linear operators [2, 14, 12]
establishes theoretical guarantees regarding the decomposition of any (translation
invariant) image operator as a composition of morphological operations. While
this property plays a similar role to the universal approximation theory for neural
networks, no general construction algorithm exists to derive in practice such
decomposition for a given image operator. Thus, MNNs also offer an appealing
data-driven approach to uncover such representations.

However, erosion and dilation operations (as well as their compositions) rely
on pointwise computations of minimum and maximum over local neighborhoods,
which are not differentiable everywhere, unlike standard convolution. A first
workaround to this issue explored the use of smooth approximations of these op-
erations. Leveraging the counter-harmonic mean [1], the so-called P-convolution
(PConv) layer was proposed in [13] and was shown to effectively learn target
morphological operations such as erosion, dilation, opening, closing and top-hat.
Other smooth approximations of min and max were also explored, including the
LogSumExp in [19, 18] or the a-softmax which led to the definition of the SMorph
layer in [8,6]. This latter was notably shown to outperform the PConv layer in
learning grayscale morphological operation. A key advantage of these smooth
formulations is that their asymptotic behavior is driven by the value of a trainable
control parameter. Each layer can act either as an erosion when the parameter
tends to —oo, or as a dilation when it tends to 4+o0o. As almost-everywhere
differentiable layers such as MaxPooling or ReLU became standard components
in neural network architectures, exact morphological layers were proposed as an
alternative to smooth approximations by adapting the backpropagation step [5,
15,20, 16]. This enabled the design of morphological networks performing exact
morphological operations, though at the cost of reduced flexibility in learning the
optimal sequence of erosions and dilations from data. However, morphological
networks, whether based on exact or smooth layers, are still challenging to train
and prone to convergence issues [6], which restricts their actual practical applica-
tions. Recent studies have therefore investigated how these difficulties relate to
the differentiability of the layers and to their initialization strategies [3,4].

In this work, we extend the SMorph layer proposed in [8, 6]. Specifically, we
introduce a reformulated version that resolves the asymptotic shortcomings of
SMorph, and we propose constraint-based strategies that significantly improve
convergence when learning opening and closing operations in two-layer networks.
Our contributions are organized as follows. In Section 2, we recall the definition
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Fig. 1. Architecture of a k-layer morphological network, adapted from [6]. Upper path
describes the target morphological transform T = O,; lower path the network N itself.

of the SMorph layer and introduce a novel harmonized formulation, referred
to as HSMorph. In Section 3, we examine the behavior of HSMorph layers in
two-layer networks for learning opening and closing operations. We also propose
two architectural improvements, namely a novel penalty term in the training
loss and shared-weight layers, to improve network convergence. In Section 4, we
evaluate the performance of HSMorph in four-layer networks for salt-and-pepper
denoising tasks and compare it with other morphological layers. Finally, Section 5
concludes the paper and outlines future research directions.

2 Smooth Morphological Layers

Smooth layers are designed as fully differentiable approximations of true morpho-
logical operations. These layers rely on smooth approximations of the min and
max functions, such as the counter-harmonic mean, LogSumExp, or a-softmax,
with each formulation determining the asymptotic behavior of the layer. The
behavior of each approximation, and thus the layer itself, depends on a control pa-
rameter. Its sign determines which function is approximated (min when negative,
with the layer acting like a (pseudo-)erosion, and max when positive, with the
layer acting like a (pseudo-)dilation), while its magnitude governs the accuracy
of the approximation (the larger in absolute value, the closer the approximation
is to the true operation). Smooth layers can then be integrated into neural net-
work architectures in the same way as traditional convolutional layers. Figure 1
illustrates such a morphological network composed of k& SMorph layers, used to
learn a target morphological operation and its associated structuring element.

2.1 The SMorph Layer

The SMorph layer is based on the a—softmax function [9], denoted by S, and
defined, for any x = (1,...,2,) € R” and o € R, as

T»L_ 581‘60‘1’;
Sa(x) = XW' (1)
i=1
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The control parameter a governs the behavior of S, (x): when a = 0, S4(x)
corresponds to the arithmetic mean of x, while lim,_, o Sp(x) = min; z; and
limg 400 So(x) = max; ;. Thus, S, provides an asymptotic approximation of
the min and max functions depending on the value of «.

Let f: V — R be an image, where x € V' denotes the pixel coordinates on a
2D (or N-D) grid V C Z2, and f(z) € R the corresponding pixel value, and let
w: W — R be a structuring function (or kernel), with spatial support W C Z2.
The SMorph operation of image f with kernel w and parameter o € R is defined

as
ZyeW (f(l" +y) + w(y))ea(f(r+y)+w(y))

SMorph(f,w, a)(z) = ZyGW ea(f(z+y)+w(y)) ' @

This formulation directly follows from the definition of the a-softmax function,
by substituting the entries x; in Equation (1) with f(z + y) + w(y). Thus, the
asymptotic behavior of SMorph(f, w, &) mirrors that of the a-softmax:

Jim_ SMorph(f,w,0)(w) = min {f(z+y) +w@)} = (f&-w)@), @)

lim SMorph(f,w,a)(z) =max {f(z+y)+w(y)} = (fed)2), (4

a—+00

with @ the symmetrized version of the kernel w with respect to the origin 0,.

Consequently, when o — —o0, SMorph(f, w, a) converges to the erosion of
the image f with —w. Conversely, when oo — +00, SMorph(f, w, a) converges to
the dilation of f with w. As observed in [8, 6], the SMorph layer provides a good
approximation of an erosion or a dilation when |a| > 5. The performed operation
is otherwise only considered to be a pseudo-erosion or pseudo-dilation.

2.2 Proposed HSMorph Layer

The definition of SMorph introduced in [8, 6] and recalled in Equation (2) has
two shortcomings regarding its asymptotic behavior: given any kernel w, the
layer either approximates the erosion of image f with negated kernel —w when
a <0, i.e., SMorph(f,w,a) ~ f © —w ; or approximates the dilation of f with
symmetrized kernel @ when « > 0, i.e., SMorph(f, w, a) ~ f @ ; but never with
w itself. While the former behavior was explicitly reported in [8, 6], the latter was
not discussed, as all filters considered in their experiments were symmetric. We
propose here a revised definition of the SMorph layer that ensures consistency,
so that it approximates the erosion and dilation of f with the same kernel w. To
this end, we replace the filter w in Equation (2) by the new filter @, defined as

()

o = tanh(a) (1 +tanh(e) ., 11— tanh(a)w> ,

5 T T3
and define the HSMorph (for Harmonized SMorph) layer as

HSMorph(f, w, a) = SMorph(f, s, a). (6)
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Fig. 2. Asymptotic behavior of SMorph and HSMorph layers. For a given kernel w
(top left corner), the S/HSMorph(-,w, &) layer behaves as a true erosion (o — —o0)
or dilation (o — 400) operation of input f with the associated structuring function w’.
For o = 0, the layer behaves as a local arithmetic mean operation of f + w’.

The asymptotic behavior of @, follows directly from that of the hyperbolic

tangent: lim 1, = —w and lim @, = @. Equations (3) and (4) then lead to
a——00 a—+o0

lim _ HSMorph(f, w,a) = lim_SMorph(f, #o,0) = f Sw, (7

QBIJI:OO HSMorph(f, w, @) :agrfoo SMorph(f, Wa,a) = f®w. (8)

Figure 2 illustrates the asymptotic behavior of SMorph and HSMorph layers.
Since tanh(5) = — tanh(—5) &~ 0.9999, the convergence regime of HSMorph is
essentially the same as that of SMorph: the performed operation can be regarded
as an erosion or dilation when |a| > 5, and as a pseudo-operation otherwise.

2.3 Comparison of SMorph and HSMorph Layers

To assess whether the definition of the filter @, in Equation (5) affects the ability
of the HSMorph layer to accurately learn a target morphological operation and
its corresponding structuring function, we conducted a comparative experiment
against the standard SMorph layer. More specifically, we independently trained
one-layer SMorph and HSMorph networks, following the architecture in Figure 1,
to separately learn erosion and dilation operations. We used eight target structur-
ing functions, as presented in Figure 3. In addition to the six symmetric functions
used in [8, 6], we introduced two new asymmetric ones, named adiag and brand.
Both erosion and dilation operations were applied with every structuring function
to all 60k images contained in the MNIST dataset [10]. The original images were
used as input to the network, and training was performed by minimizing the
mean squared error (MSE) between network outputs and target images resulting
from true morphological operations. We used the same training procedure as
described in [8,6]: a batch size of 32, and the Adam optimizer with an initial
learning rate of 0.01, which was reduced by a factor of 10 when the loss plateaued
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Fig. 3. Learning results for the erosion (first two rows) and dilation (last two rows)
operations with one-layer SMorph and HSMorph networks on the MNIST dataset:
learned filter w, corresponding control parameter o, RMSE between w and the target
structuring element, and number of training epochs, for eight target elements (columns).
Each metric comes with the mean + standard deviation over five runs per experiment.

for five consecutive epochs. Training was stopped when the loss plateaued for ten
consecutive epochs. Each filter was initialized using a centered normal distribution
with standard deviation o = 0.01, and « = 0. Training was done simultaneously
on w and «, and five independent runs were conducted per experiment.

Figure 3 presents the obtained results. For SMorph, both the displayed filter
and the reported root mean square error (RMSE) are obtained after applying
the appropriate asymptotic correction (negation for erosion, symmetrization for
dilation) to the original learned filter. The results obtained with both SMorph
and HSMorph layers are generally similar in terms of filter accuracy, convergence
speed and final loss (typically around 107%), with HSMorph even outperforming
SMorph in the case of the cross3 erosion task. The only exception is the adiag
erosion scenario, where HSMorph converged to a pseudo-erosion (o« = —1.8) with
a slightly inaccurate filter. While the actual reason for this counter-performance
remains unclear, we believe it is not due to the asymmetry of the target filter, as
the new HSMorph formulation successfully learned other asymmetric scenarios
(dilation with adiag and both erosion and dilation with brand). In any case, the
HSMorph layer was not intended to improve SMorph performance on asymmet-
ric filters but rather to correct its asymptotic behavior. Overall, the obtained
results confirm that replacing w with 1, in Equation (6) preserves the learning
performance of SMorph, while addressing its asymptotic limitations. Therefore,
we exclusively use HSMorph in place of SMorph for the remainder of this article.
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3 Improvement Strategies for Two-Layer Networks

While one-layer SMorph networks can successfully learn erosion and dilation
operations along with their associated structuring functions, two-layer networks
encounter greater difficulty in learning their dual compositions: opening and
closing [8, 6]. In this section, we introduce two strategies designed to enhance the
learning capacity of two-layer networks on such operations.

3.1 Shared-Weight Dual Layer

When learning opening and closing operations, two-layer networks are expected
to converge as follows: for openings, the first layer should converge to an erosion
(o1 < 0) and the second layer to a dilation (g > 0); for closings, the roles are
reversed. Both layers should specifically learn the same structuring function, in
line with the definition of opening and closing. However, this is rarely the case,
as observed in [8, 6] and illustrated in the top rows of the opening and closing
sections of Figure 4, especially when the network fails to converge. Thus, enforcing
strict weight sharing across the two layers is an appealing idea to improve learning
results. Moreover, this allows the number of learnable parameters to be reduced.

Therefore, we introduce a dual-layer variant, referred to as HSMorphDual,
designed to improve the learning of opening and closing operations in two-layer
networks. For any input image f: V — R, this layer is defined as

HSMorphDual( f,w, a1, ag) = HSMorph(HSMorph(f, w, a1),w, as), (9)

where w: W — R is the shared filter, and oy, @3 € R the two control parameters.
This dual layer consists of two successive HSMorph layers with control parameters
a1 and ag and one shared filter w, enforcing kernel consistency across the two
stages, in line with true opening and closing operations. The independence of
oy and as allows the layer to approximate a (pseudo-)opening (a3 < 0 < ag) or
(pseudo-)closing (s < 0 < 1) operation, provided that sgn(aq) # sgn(as).
Two-layer networks that use this strategy contain a single HSMorphDual
layer, as it effectively combines the roles of two conventional layers. Architectures
composed of such dual layers are denoted HSMorph-S, where “S” indicates “weight
sharing” across two consecutive standard layers as described in Equation (9).

3.2 Constraint on Control Parameters

As originally observed in [8,6], and further illustrated in the top rows of the
opening and closing sections in Figure 4, a consistent pattern in failed training
scenarios for learning opening and closing operations is that the control parameters
a1 and as tend to remain close to zero. This results in pseudo-operations, often
with an incorrect sign on one of the two control parameters.

To address this issue, we introduce a novel regularization term C (for “con-
straint”) to encourage the control parameters oy and as of two consecutive
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HSMorph layers to move away from zero and from each other during training.
This penalty term is defined for any a;,as € R (such that ajag # 1) as

1

—_— 10
1-— Q1009 ( )

Clay,az) =
The loss function used to train the network A with respect to a target morpho-
logical transform T (see Figure 1) is then given for any input f: V — R by

loss=MSEWN(f), T(f)) + X C(ai,a2), (11)

where A > 0 is the penalty coefficient, typically set to 0.01 in our experiments.
The function C remains positive as long as ayas < 1, which is always the case
in practice since both parameters are initialized at zero. Minimizing C(«, )
(i.e., — 07) is therefore equivalent to minimizing the product ajay toward —oo.
This penalty term has appealing gradient properties. Its partial derivatives are

ocC (D) oC g
—_— = —-— d _— =
Do, (a1, a9) ( an (a1, a9) (

1-— a1a2)2 8042 (12)

1-— 011(12)2 ’
Notably, the partial derivative of C' with respect to a; depends positively on s,
and vice versa, with their ratio being exactly as/a;. Thus, the gradient signs
are controlled by the opposite parameter, naturally pushing a; and ay toward
opposite signs during training, hence favoring opening or closing. Moreover, the
parameter with the smaller magnitude receives a stronger update, encouraging a
faster deviation from zero and preventing stagnation. Networks trained with this
regularization term, as shown in Equation (11), are denoted HSMorph—C.

3.3 Comparison of the Proposed Strategies for two-layer Networks

To evaluate the effectiveness of the proposed strategies for improving the learning
of opening and closing operations in two-layer networks, we conducted a compar-
ative experiment following the same procedure as in Section 2.3. More specifically,
we compared the performances of the following network configurations:

‘HSMorph: a standard two-layer HSMorph network;

HSMorph—C: the same two-layer HSMorph architecture with the penalty term
from Equation (10) added to the training loss, as in Equation (11);

HSMorph-S: architecture with a single HSMorph Dual layer from Equation (9),
equivalent to two HSMorph layers with shared weights;

HSMorph—SC: with one HSMorphDual layer combined with the penalty term.

Figure 4 presents the obtained results for five target structuring functions:
two challenging cases (cross3 and disk2) from [8, 6] where standard two-layer
SMorph networks failed, one successful case (complex) from the same study, and
the two asymmetric structuring functions (adiag and brand) introduced in this
work. The three remaining targets (cross7, disk3, and diamond3) from [8, 6] were
successfully learned by all four network configurations and are omitted from
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Fig. 4. Learning results for the opening (first four rows) and closing (last four) operations
using four variants of a two-layer HSMorph network on MNIST: learned filters w; and
w2, corresponding parameters o1 and ag, and RMSE between w1, w2 and the target
structuring element across five elements (columns). Each metric shows mean £ standard
deviation over five runs. Convergence failures appear in red; medium results in orange.

Figure 4 for brevity. In the three cases where the standard HSMorph network fails
(cross3, disk2, and adiag), both HSMorph—C and HSMorph—SC configurations
systematically resolve the convergence issue, with the closing of cross8 as only
exception, where the reconstructed cross is incomplete and misaligned, yielding a
poor RMSE. In contrast, the HSMorph—S configuration, which relies on a dual
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layer with shared weights, does not provide any convergence improvements. Thus,
the control parameters oy and «s play a far more decisive role than enforcing
a shared kernel w between consecutive layers for learning opening and closing
operations. Convergent two-layer networks naturally align their filters w; and ws
to the target filter without requiring weight sharing, while a; and as directly
determine the nature and quality of the operation performed by each layer. In
contrast, enforcing shared weights in the HSMorph Dual layer may overly restrict
the solution space, making it harder to reach a suitable minimum, which likely
explains the lack of improvement with the HSMorph—S configuration. Overall,
these results show that promoting divergence of control parameters has a much
significant impact than strict weight sharing in ensuring convergence and accurate
learning of opening and closing operations.

4 Application to a Denoising Task

We finally evaluate the improvement strategies proposed in the previous Section 3
for deeper network architectures. Specifically, we investigate the performance of
four-layer HSMorph networks on a salt-and-pepper denoising task, a classical
setting for evaluating morphological approaches [5]. Given the nature of this
noise, morphological networks are expected to converge toward morphological
alternating filters [17], i.e., an opening followed by a closing or vice versa. We
compare the same four configurations as in Section 3, adapted to a four-layer
architecture: a baseline HSMorph network, a HSMorph—C network with con-
strained control parameters, a HSMorph—S network composed of two dual layers
with shared weights, and a HSMorph—SC network combining both the constraint
and the dual layers. For the constrained configurations, we replace the penalty
term C'(aq, ag) in Equation (11) with a new term C(«q, ag, ag, ag) designed for
a four-layer configuration:

1
Clay, az, a3,a4) = g(c(ala a2) + C(az, —a3) + C(as, ay)) (13)

Defined as such, this adapted constraint loss encourages the first pair (aq, o)
and the last pair (a3, a4) of layers to have opposite signs, and the middle pair
(2, aig) of layers to have the same sign, thus guiding the four-layer network to a
behavior consistent with the expected morphological alternating filtering.

In addition to the four HSMorph configurations, we also evaluate three other
four-layer models: an exact morphological network (using the MorphoLayers
library [21]), a smooth network using PConv layers [13], and a standard convolu-
tional network [7]. Since each exact layer must be explicitly set as either an erosion
or a dilation, the MorphoLayers network was configured to perform a closing
followed by an opening (which is the configuration toward which HSMorph-C
networks naturally converge for most of the runs in these denoising experiments).
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Table 1. Denoising results on the MNIST dataset: PSNR values (dB) between clean
images and network outputs on the test set after training for denoising task, for seven
four-layer networks (rows) and five salt-and-pepper noise levels (columns). Each cell
contains the mean p £ standard deviation o (top) and the maz value (bottom) over

five runs per experiment. Best result per column in bold, second best underlined.

Noise (%)

Networks

29.70 £ 0.12 | 28.33 +0.24 | 25.58 + 0.41 20.52 4+ 0.05 18.44 £+ 0.01
HSMorph

max: 29.81 max: 28.61 max: 26.31 max: 20.59 max: 18.45

31.51 £ 0.02 | 27.64 +0.02 | 25.71 £ 0.26 | 22.38 +0.14 || 20.12 4+ 0.03
HSMorph-C

max: 31.53 max: 27.66 max: 26.09 max: 22.73 max: 20.16

28.41 +0.22 || 24.40 £ 0.01 || 22.92 +£0.01 20.31 + 0.07 18.29 £+ 0.01
HSMorph-S

max: 28.86 max: 24.41 max: 22.92 max: 20.40 max: 18.29

31.38 + 0.53 || 24.66 £0.47 || 22.22 + 0.01 19.75 £ 0.01 19.25 £+ 0.32
HSMorph-SC

max: 32.42 max: 25.06 max: 22.22 max: 19.76 max: 19.63

24.56 +1.22 [ 23.26 £1.72 | 24.89 £ 1.51 21.98 +0.44 19.00 £ 0.37
MorphoL [21]

max: 26.26 max: 26.59 max: 26.61 max: 22.46 max: 19.26

27.88+1.41 || 23.75 £ 1.15 | 23.54 £ 1.11 21.05 +1.08 17.78 £ 0.62
PConv [13]

max: 30.04 max: 25.23 max: 25.28 max: 22.05 max: 18.38
C 7l 26.80 +8.69 | 18.67 £9.90 || 18.92 + 4.28 17.30 £+ 2.49 19.58 £ 1.74

onv
max: 34.70 max: 30.05 max: 26.88 max: 22.29 max: 20.85

PSNR
35

Table 2. Denoising results on the FashionMNIST dataset: PSNR values (dB) between
clean images and network outputs on the test set after training for denoising task, for
seven four-layer networks (rows) and five salt-and-pepper noise levels (columns). Each
cell contains the mean p + standard deviation o (top) and the maz value (bottom)
over five runs per experiment. Best result per column in bold, second best underlined.

Noise (%)

Networks

26.33 +0.01 | 24.34 £0.01 | 23.78 +£0.02 || 22.66 +£0.15 |§ 20.39 £ 0.14
HSMorph

max: 26.34 max: 24.35 max: 23.80 max: 22.95 max: 20.51

27.81 +0.41 | 26.37 +0.01 | 25.42 +0.01 || 23.17 + 0.03 § 20.27 £ 0.02
HSMorph-C

max: 28.58 max: 26.38 max: 25.43 max: 23.22 max: 20.29

29.99 +0.01 | 25.83+0.97 | 22.88 £0.01 | 20.64 +£0.01 } 20.15 £+ 0.01
HSMorph-S —

max: 30.00 max: 26.32 max: 22.89 max: 20.65 max: 20.16

25.30 + 0.01 | 24.75+£0.04 || 23.75+0.09 || 20.28 £0.04 § 20.17 £ 0.01
HSMorph-SC

max: 25.31 max: 24.81 max: 23.83 max: 20.34 max: 20.18

22.79 +0.49 [ 22.29 £0.60 || 22.83 +0.77 || 21.33 £0.88 19.51 £ 0.28
MorphoL [21]

max: 23.31 max: 23.18 max: 24.15 max: 22.61 max: 19.80

26.84 +1.31 | 25.54+0.67 | 23.54 +0.63 || 22.61 + 0.38 17.61 £+ 0.89
PConv [13]

max: 29.33 max: 26.18 max: 24.70 max: 23.12 max: 18.69
c 7l 16.36 =9.98 @ 15.26 + 8.46 § 16.26 +-8.44 | 16.06 + 6.58 | 15.22 + 6.09

onv
max: 30.95 max: 29.10 max: 25.05 max: 22.11 max: 19.76

PSNR
35

30

20
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The PConv network includes batch rescaling in [1, 2] before each layer (see [8]).
The convolutional baseline uses standard convolution layers, each being followed
by the ReLU activation function, with the same basic structure as in [7, 11, 23],
i.e., a network made of four successive convolution-ReLU layers, but without
batch normalization layers in order to keep the same architecture as morphological
networks (see Figure 1). All models were trained independently on all 60k images
in MNIST and Fashion-MNIST [22] datasets, separately, using salt-and-pepper
noisy images as inputs and the corresponding clean images as targets. Performance
was then evaluated on their test sets (containing 10k images each).

Tables 1 and 2 summarize the denoising performance of the seven network
configurations at various noise levels, for MNIST and Fashion-MNIST, respectively.
For each experiment, we report the mean and standard deviation of the peak
signal-to-noise ratio (PSNR), computed over five runs and averaged over the entire
test set, as well as the maximum PSNR achieved. Across nearly all experiments,
the HSMorph—C network consistently achieves the highest mean PSNR, regardless
of the dataset or noise level. In the few cases where it does not, it ranks second
best. Conversely, HSMorph—S and HSMorph—SC models offer no significant
improvement over the baseline HSMorph model, further supporting the conclusion
from Section 3.3: promoting divergence between the control parameters with
the penalty term added to the loss significantly improves the convergence and
learning of smooth morphological networks with HSMorph layers.

Moreover, the HSMorph—C model consistently outperforms both the smooth
PConv network and the exact MorphoLayers approach, suggesting that the flexible
nature of smooth morphological layers, when properly regularized, offers a more
effective alternative to both fixed morphological operators and earlier smooth
formulations. Finally, the convolutional network presents poor performances
on average, its high standard deviation indicating frequent convergence issues
and unstable training. However, as highlighted by the maximum PSNR over
five runs (displayed below the average and standard deviation values in each
cell of Tables 1 and 2), successful runs often achieve the highest PSNR among
all networks, sometimes significantly. This instability is a known limitation of
convolutional architectures without batch normalization layers [7,11]. While
such layers generally improve convergence and denoising performance, they were
omitted here to allow a fair comparison with the morphological models which
all follow the architecture depicted in Figure 1. As the convolutional network
without batch normalization and the HSMorph network used for these denoising
experiments have the same number of learnable parameters (each layer contains
the filter weights, plus the biais or the control parameter, associated with the
convolutional or smooth morphological layer, respectively), adding new learnable
parameters through batch normalization layers only in the convolutional model
could significantly advantage its convergence and learning capacities. In future
work, new experiments could be conducted that integrate batch normalization
layers added before convolutional and morphological layers, in both convolutional
and smooth morphological architectures, respectively, to assess the superiority of
the former with normalization layers for such denoising tasks.
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5 Conclusion

In this work, we introduced a harmonized version of the SMorph layer that
overcomes asymptotic limitations while maintaining the performance of one-layer
networks when learning erosion and dilation operations. We also proposed a novel
penalty term added to the training loss function and shared-weight dual layers to
improve the convergence of two-layer networks for learning opening and closing
operations, with the former proving to be significantly more effective. Finally,
we investigated the proposed HSMorph layer and its improvement strategies
in a four-layer network for salt-and-pepper denoising, and compared with other
morphological (smooth and exact) and convolutional networks. The obtained
results confirmed the superiority of our model with the penalty term, highlighting
the importance of control parameter divergence in smooth-layer networks. Future
work will focus on integrating these smooth layers into deeper architectures to as-
sess their potential in broader vision tasks, as well as performing a comprehensive
benchmarking of morphological networks with classical architectures.
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