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Abstract

We present a novel self-supervised feature learn-
ing method using Vision Transformers (ViT) as
the backbone, specifically designed for object
detection and instance segmentation. Our ap-
proach addresses the challenge of extracting fea-
tures that capture both class and positional infor-
mation, which are crucial for these tasks. The
method introduces two key components: (1) a po-
sitional encoding tied to the cropping process in
contrastive learning, which utilizes a novel vec-
tor field representation for positional embeddings;
and (2) masking and prediction, similar to conven-
tional Masked Image Modeling (MIM), applied
in parallel to both content and positional embed-
dings of image patches. These components en-
able the effective learning of intertwined content
and positional features. We evaluate our method
against state-of-the-art approaches, pre-training
on ImageNet-1K and fine-tuning on downstream
tasks. Our method outperforms the state-of-the-
art SSL methods on the COCO object detection
benchmark, achieving significant improvements
with fewer pre-training epochs. These results
suggest that better integration of positional infor-
mation into self-supervised learning can improve
performance on the dense prediction tasks. Our
code is available at https://github.com/
KJ-rc/IntertwinedSSL.

1. Introduction
In recent years, self-supervised learning (SSL) methods
(Chen et al., 2020; He et al., 2020; Caron et al., 2020; Grill
et al., 2020; Caron et al., 2021; Zbontar et al., 2021; Ermolov
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et al., 2021) for image feature extraction have advanced
significantly. These approaches enable feature extraction
from unlabeled images and, with larger training datasets,
have improved performance in various downstream tasks
(Deng et al., 2009; Geiger et al., 2012; Lin et al., 2014; Wu
et al., 2015; Zhou et al., 2017).

While early methods did not restrict the scope of down-
stream tasks, targeting a broad range from image classifica-
tion to dense prediction tasks such as semantic segmenta-
tion, recent years have seen a shift toward developing SSL
methods tailored to specific downstream tasks. This shift
stems from the recognition that the features required for
image classification, which depends on global image-level
representations, differ significantly from those necessary
for dense prediction tasks, where pixel-level or patch-level
features play a crucial role.

This study builds on recent research trends, focusing specif-
ically on object detection (OD) and instance segmentation
(IS) as downstream tasks. These tasks require the precise
identification of individual object instances within an im-
age, which necessitates extracting appropriate features from
localized regions such as pixels, patches, or subregions.
The core focus of this research is on effectively integrat-
ing both the content information of these local regions and
their positional information within the image into feature
representations, as these are arguably crucial for OD and IS
tasks.

Among SSL methods, contrastive learning is an early and
foundational approach that continues to be widely adopted.
In this method, two random crops are taken from a single
image, augmented with random transformations, and the
feature representations are trained to be similar in the feature
space. This approach can be interpreted as focusing on learn-
ing position-invariant features for the entire image. Subse-
quently, pixel-level contrastive learning was introduced to
better suit dense prediction tasks. Besides using crops, these
methods pair individual pixels and train their features to be
similar. A key challenge in this approach lies in determining
which pixels to pair. To address this, various strategies have
been proposed, including methods based on proximity in
feature space (Li et al., 2022a; Su et al., 2024), methods
relying on geometric positional correspondence (Yun et al.,
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Conventional Ours

Figure 1. Proposed position encoding. Conventional methods always apply the same positional encoding to randomly cropped views. In
contrast, the proposed method directly applies the positional encoding defined on the original image to the cropped views.

2022; Lebailly & Tuytelaars, 2023), and hybrid approaches
that balance these two criteria (Bardes et al., 2022; Lebailly
et al., 2024; Stegmüller et al., 2023).

Another line of research focuses on Masked Image Model-
ing (MIM) (Bao et al., 2022; He et al., 2022; Zhou et al.,
2022a), a distinctly different approach. This method, de-
signed to use with Vision Transformers (ViT) (Dosovitskiy
et al., 2021), partitions an image into patches and randomly
masking a subset of them. The model is trained to recon-
struct the masked patches based on the context provided
by the unmasked ones. Masked patches as reconstruction
targets can be pixels as in MAE (He et al., 2022) or patch-
level latent features as in iBOT (Zhou et al., 2022a). MIM is
regarded as an effective way to learn feature representations
that seamlessly combine both the content information and
positional information of each patch.

In this paper, we propose a novel SSL method specifically
designed for OD and IS as downstream tasks, building on
the contrastive learning framework. These tasks demand
both content information and positional information to ac-
curately classify object instances while distinguishing them
from one another. Our method focuses on extracting feature
representations that seamlessly integrate these two types
of information. Although our motivation is similar to re-
cent works such as DropPos (Wang et al., 2023) and LOCA
(Caron et al., 2024), our approach introduces two novel
components that fundamentally redefine how positional in-
formation is utilized during training.

The first is the use of positional encoding tied to the cropping
process in contrastive learning; see Figure 1. In conven-
tional SSL (Caron et al., 2021; Chen et al., 2021; Caron et al.,
2024), the position encoding is not aligned with the crop-
ping, meaning the same position embeddings are applied
whether processing the full image or a cropped sub-image.
We propose representing positional encoding as a vector
field with the same dimensions as the input image, which is
then cropped in the same manner as the image and sampled

on a regular grid, yielding a set of position embeddings
of the patches. They are subsequently combined with the
content embeddings of their corresponding image patches.

The second component is that, unlike previous MIM (Bao
et al., 2022; Peng et al., 2022; He et al., 2022), which apply
masking only to the image content embeddings of patches,
our method also applies it to position embeddings. In our
approach, after the input image is patchified into a set of
patches before being fed into the ViT, masking and pre-
diction are performed independently on both their content
embeddings and the position embeddings. The underly-
ing expectation is that by predicting the masked positional
information from the remaining positional and content infor-
mation, and vice versa, the model can extract features that
intertwine both the image content and positional informa-
tion. It is important to note that this specialized treatment
of positional embeddings is applied only during training,
allowing the standard positional embedding method of ViT
to be seamlessly employed during inference.

We experimentally compare the proposed method with ex-
isting state-of-the-art approaches on the COCO detection
dataset (Lin et al., 2014) in the standard setting, i.e., pre-
training on ImageNet-1K (Deng et al., 2009) and fine-tuning
on COCO. The results show that the proposed method
achieves significant performance improvements in the down-
stream tasks of OD and IS, demonstrating the effectiveness
of our approach.

2. Preliminaries
Contrastive self-supervised learning In SSL, a feature
extraction model is trained on a pretext task, and a key is
in the design of the task (Doersch et al., 2015; Zhang et al.,
2016; Gidaris et al., 2018; Oord et al., 2018; Vincent et al.,
2008). Contrastive methods (Oord et al., 2018; Chen et al.,
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2020; He et al., 2020)1 have proven particularly effective,
maximizing the similarity of representations from different
views of the same image—created through random crops
and other diverse image augmentations. These methods
ensure that the learned representations are invariant to these
augmentations, and they mostly focus on learning image-
level representations.

Self-distillation Self-distillation (Caron et al., 2021) is a
widely used approach in contrastive SSL. It transfers knowl-
edge from a teacher model to a student model, with both
models being updated simultaneously. The student is up-
dated via gradient descent, while the teacher is updated as a
momentum copy of the student. Both models, parameterized
by θ and θ′ respectively, share the same network architec-
ture. Given an image x and its two views, u and v, which
are randomly cropped from x and undergo random aug-
mentations, knowledge is distilled through a cross-entropy
loss:

Limage = −P [CLS]
θ′ (v)T log P [CLS]

θ (u), (1)

where P [CLS]
θ (·) and P [CLS]

θ′ (·) project [CLS] tokens in
the VIT’s input to a probability distribution over K dimen-
sions. This can also be interpreted as an assignment to K
learnable prototypes, with the student learning these assign-
ments from the teacher.

iBOT (Zhou et al., 2022a) and DINOv2 (Oquab et al.,
2024) Masked image modeling (MIM) (Bao et al., 2022;
He et al., 2022) is an SSL method based on a different
principle. Using ViT as the backbone, it divides the in-
put image u into N patches and applies a linear mapping
to each, resulting in N vectors {ui}Ni=1. MIM randomly
masks a subset of these vectors and trains a model to pre-
dict the masked vectors from the unmasked ones. Specif-
ically, let {mi ∈ {0, 1}}Ni=1 be a random mask sampled
according to a ratio ρ ∈ [0, 1]. A special token e[MASK] is
introduced, replacing the patch embedding vector ui with
ûi = (1−mi) · ui +mi · e[MASK] for i = 1, . . . , N . Posi-
tion embeddings {pi}Ni=1 are then added to û to obtain the
integrated embeddings {ûi + pi}Ni=1. iBOT (Zhou et al.,
2022a) and DINOv2 (Oquab et al., 2024) implement MIM
within a self-distillation framework. The student model
P patch
θ (·) and the teacher model P patch

θ′ (·) project the in-
tegrated embeddings into a probability distribution of K ′

dimensions. The patch-level self-distillation is formulated

1The term “contrastive methods” in its narrow sense refers to
methods that use both positive and negative samples. However, for
simplicity in this paper, we also refer to ‘non-contrastive methods,’
which use only positive pairs, as contrastive.

as the following loss:

Lpatch = −
N∑
i=1

mi ·P patch
θ′ (ui+ pi)

T logP patch
θ (ûi+ pi),

(2)
where P patch

θ (·) and P patch
θ′ (·) share the same network ar-

chitecture and θ is updated by gradient descent while θ′ is
updated by the exponential moving average of θ. MIM has
demonstrated strong performance in dense prediction tasks.

Combining Eq. (1) and Eq. (2), the losses of iBOT (Zhou
et al., 2022a) and DINOv2 (Oquab et al., 2024) can be
summarized as follows:

LDINOv2 = Limage + Lpatch︸ ︷︷ ︸
iBOT

+λKoLeoLKoLeo, (3)

where LKoLeo is defined as in (Sablayrolles et al., 2019)
to increase feature diversity. These methods have demon-
strated strong performance in both classification and dense
prediction tasks.

3. Proposed Method
3.1. Outline

The objective is to develop a SSL method tailored for ob-
ject detection (OD) and instance segmentation (IS). Models
pre-trained using this method are expected to efficiently
extract the necessary features for these downstream tasks
and deliver high accuracy with minimal fine-tuning. Fol-
lowing recent studies on SSL methods, we adopt ViT as the
backbone for image feature extraction.

As discussed in Section 1, OD and IS require isolating
object instances in an image, making it essential to have fea-
ture representations that effectively integrate both content
and positional information. To address this, the proposed
method builds on existing approaches while introducing
mechanisms to improve the treatment of positional informa-
tion in feature learning. Specifically, two key components
are introduced. The first is a positional encoding method
that aligns with cropping in image-level contrastive (or joint-
embedding) techniques. The second is a patch-level mask-
ing approach that masks not only image content but also
positional information, incorporating both into the predic-
tion target. Each of these components is detailed below.

3.2. Position Encoding Linked with Image Cropping

3.2.1. BASIC METHOD

In conventional contrastive methods, two cropped regions
from the input image are treated as if they were complete,
independent images, and positional embeddings are applied
as such (Figure 1). Consequently, the positional and size
information of the cropped regions within the original image
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(a) (b)

Figure 2. Illustration of the proposed method. (a) The proposed method defines positional encoding directly on the input image. The
position embedding for each view is determined in relation to its crop. Additionally, we introduce a virtual larger image, where the input
image is assumed to occupy a random scale and position. Positional embeddings are then calculated within this virtual image. The content
embeddings of the image are obtained using standard methods from the original image and are added to the corresponding position
embeddings. (b) Using these position embeddings, our method performs image-level feature alignment between views (Limage) and
independently executes masking and prediction for both position embeddings and content embeddings (Lpos, Lcontent).

is completely discarded, which can hinder the accurate iden-
tification of object instances. To overcome this limitation,
we propose a method that crops the positional information
embedded in the original image alongside its RGB content.

The details are as follows. ViT divides the input image x into
a fixed number (N ) of patches, which are then embedded via
a linear transformation into a sequence of vectors {xi}Ni=1.
The position of each patch within the image is encoded by a
positional vector pi, which is added to the patch embedding
xi to form xi + pi. The resulting sequence {xi + pi}Ni=1 is
then fed into the input layer of ViT.

Conventional contrastive methods (Chen et al., 2021) extract
two cropped views, u = tu(x) and v = tv(x), from an
input image x, and process each view independently in
the same way. Specifically, u is divided into patches and
embedded as {ui}Ni=1, which are combined with the fixed
positional encodings {pi}Ni=1, resulting in {ui + pi}Ni=1.
The same process is applied to v, yielding {vi + pi}Ni=1.
Thus, while the cropped views u and v can vary in positions
and sizes, the positional encodings pi remain unchanged
independently of tu and tv .

The proposed method introduces an alternative approach to
positional encoding. Let P denote a smooth vector field,
with its four corners aligned to those of the input image x.
While x provides an RGB vector for each pixel, P encodes
the spatial location of each pixel as a vector. Similar to
conventional methods, two views, u = tu(x) and v =
tv(x), are cropped from x and divided into patches, yielding
{ui}Ni=1 and {vi}Ni=1. The same cropping transformations,
tu and tv , are then applied to P , generating cropped vector
fields pu = tu(P) and pv = tv(P).

Subsequently, pu and pv are sampled on a regular grid corre-
sponding to the patches, and their values are combined with
ui and vi. The resulting inputs to the Vision Transformer
(ViT) are {ui+pu,i}Ni=1 and {vi+pv,i}Ni=1, where pu,i and
pv,i represent the sampled positional vectors for each patch.

In practice, P is represented as a 2D array of size w × h
consisting of d-dimensional vectors, i.e., P ∈ Rw×h×d.
The size w × h are independent of the input image size and
are treated as hyperparameters. Due to the arbitrary nature
of the crop operations tu and tv , we interpolate the array P
to obtain {pu,i}Ni=1 and {pv,i}Ni=1.

3.2.2. POSITION AND SCALE AUGMENTATION

By adopting the above approach, it becomes possible to
integrate the position and size of cropped views within the
image into the feature representation. However, this method
raises two concerns. First, while the approach encodes
absolute positional information, the identification of object
instances should typically rely only on the relative positional
information between the two views; see Figure 1. Learning
absolute positions directly and becoming overly dependent
on them may lead to unintended consequences.

Second, there is a notable difference in the spatial distri-
bution and size of objects between ImageNet (Deng et al.,
2009) images and those used in OD/IS tasks (e.g., COCO).
In ImageNet, objects generally occupy a large, centralized
region of the image, whereas in COCO, multiple objects of
varying sizes appear across different parts of the image. Ne-
glecting this distinction could result in performance issues.

To address these issues, we apply data augmentation over
pu and pv, by randomly shifting and scaling them together
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within P; see Figure 2(a). Specifically, let A represent
the smallest bounding rectangle that encloses pu and pv,
as shown in Figure 2(a). A coordinate transformation ts,
consisting of scaling and translation, is applied to A. The
scaling factor is

√
s/|A|, where |A| denotes the area of the

region. The parameter s is randomly sampled from a Beta
distribution, as will be discussed in Section 4.3. The trans-
lation (displacement) is randomly sampled from a uniform
distribution, ensuring that the new cropped regions remain
within the hypothesized input image. With the application
of ts, the positional encodings undergo combined transfor-
mations, with the cropped fields becoming pu ← ts(tu(P))
and pv ← ts(tv(P)).

This position and scale augmentation is expected to reduce
excessive reliance on absolute positional information within
the image and alleviate biases associated with the object
scale distribution in ImageNet.

3.3. Masked Position Prediction

The introduction of the above positional encoding method
broadens the range of options for designing ‘pretext tasks’
(i.e., loss functions) during training. In particular, we pro-
pose utilizing positional information as a target for Masked
Image Modeling (MIM) (Bao et al., 2022; Zhou et al., 2022a;
He et al., 2022). Specifically, we extend the approach em-
ployed in methods like iBOT and DINOv2—which is tra-
ditionally applied exclusively to content embeddings—to
include positional embeddings. This extension aims to en-
hance feature representation learning, with a particular focus
on fostering a more effective integration of content and po-
sitional information.

The details are as follows. Recall that in our method, the in-
put vector sequence is represented as {ui + pu,i}Ni=1, where
the positional encoding depends on the cropping of the view
u. Our masked position prediction works as follows: as in
MIM, vectors from the input sequence {ui + pu,i}Ni=1 are
randomly selected, and the position codes of the selected
vectors are masked. Specifically, if ui+pu,i is selected, it is
modified as ui + e[POSMASK] using a newly introduced special
token e[POSMASK]. The resulting masked sequence is then fed
into the ViT. Through preliminary experiments, we observed
that when masking position embeddings, selecting patches
in a cross-shaped pattern produces better results compared
to the box-wise selection used in iBOT and DINOv2 for
Masked Image Modeling (MIM) with content embeddings.
In those methods, patches are randomly selected in rectan-
gular boxes, and all patches within each box are masked
until the designated mask ratio ρ is achieved2. For further

2We follow previous studies (Bao et al., 2022; Zhou et al.,
2022a; Oquab et al., 2024) in determining ρ for both masked
content and positional predictions, where ρ is randomly selected
from the range [0.1, 0.5].

details, refer to Section 4.3.

We retain the original content masking and prediction from
MIM—specifically, the selected vector ui + pu,i is modi-
fied to e[MASK] + pu,i—but it is performed independently of
the position masking and prediction described above; see
Figure 2(b) 3 . Thus, masking and prediction are applied
symmetrically to both content and position codes. As il-
lustrated in Figure 2(b), this process is applied only to the
student side (i.e., only for the view u) in the teacher-student
framework, similar to the hybrid models introduced after
iBOT (Zhou et al., 2022a).

In summary, the position and content masking and predic-
tion are implemented through the following loss functions:

Lpos = −
N∑
i=1

P pos
θ′ (ui + pu,i)

T logP pos
θ (

ui +mpe[POSMASK] + (1−mp)pu,i), (4)

Lcontent = −
N∑
i=1

P content
θ′ (ui + pu,i)

T logP content
θ (

mce[MASK] + (1−mc)ui + pu,i), (5)

where mp
i ∈ {0, 1}N and mc

i ∈ {0, 1}N are the sampled
masks with a mask ratio ρ ∈ [0, 1].

It is worth noting that some existing methods also incorpo-
rate position prediction; however, they predict precise po-
sitions using location indicators (Wang et al., 2023; Caron
et al., 2024) or at the pixel level (He et al., 2022). In con-
trast, our method predicts positional information within the
feature (embedding) space, representing a fundamentally
different approach.

3.4. Adaptation to DINOv2

While the proposed method can be adapted to other SSL
methods, we focus on integrating it with DINOv2 due to its
popularity and performance. The modification to the loss
function is straightforward: we add the position masking
and prediction loss from Eq. (4) to the original DINOv2 loss
as follows:

Lours =

DINOv2︷ ︸︸ ︷
Limage + Lcontent︸ ︷︷ ︸

iBOT

+λKoLeoLKoLeo +Lpos, (6)

where LKoLeo (Sablayrolles et al., 2019) enhances the diver-
sity of image-level representations, and its weight λKoLeo is
set to 1.

3In our implementation, for each image in a batch, we randomly
applied either content or position masking and prediction, each
with a 50% probability. These applications are mutually exclusive,
meaning both types of masking are never applied to the same
image simultaneously.
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Table 1. COCO object detection and instance segmentation and
ADE20K semantic segmentation We report the results using both
ViT-B/16 and ViT-S/16 backbones. The pre-trained weights for all
other methods are sourced from their official repositories, except
for DINOv2†, which is our reproduction on ImageNet-1K. The
highest score is highlighted in bold, while the second-highest is
underlined.

COCO ADE20K

Method Eff. Ep. 4 APBox APMask mIoU

ViT-Small/16
DINO (2021) 3200 42.0 38.0 42.9
iBOT (2022a) 3200 43.8 39.1 44.8
Mugs (2022b) 3200 41.3 37.2 45.3
CrIBo (2024) 1600 42.6 38.3 44.9
SelfPatch (2022) 1050 40.4 36.7 42.5
FLSL 700 45.5 40.5 41.4
CrOC (2023) 600 40.2 36.2 43.4
LOCA (2024) 600 40.1 36.0 44.8
DINOv2† (2024) 350 41.9 37.7 44.7
Ours 350 44.8 39.8 44.8

ViT-Base/16
DINO (2021) 1600 45.5 40.8 44.7
MAE (2022) 1600 48.1 43.2 46.2
iBOT (2022a) 1600 47.6 42.4 47.7
Mugs (2022b) 1600 47.0 42.0 47.7
DropPos (2023) 800 47.0 42.2 45.3
CrIBo (2024) 800 45.4 40.5 45.6
LOCA (2024) 600 48.3 43.0 48.5
DINOv2† (2024) 350 47.7 42.4 47.5
Ours 350 49.2 43.8 48.4

From an implementation perspective, only minor extensions
to the existing DINOv2 code are necessary. Specifically, we
compute the additional loss mentioned above. In DINOv2,
content masking and prediction were originally applied to
50% of the images in each batch. We now compute the addi-
tional position loss for the remaining images. Additionally,
the position augmentation described in Section 3.2.2 can
be seamlessly integrated into DINOv2’s data augmentation
pipeline, without requiring any further modifications.

4. Experiments
4.1. Experimental Configuration

Pre-training on ImageNet-1K We pre-train our model
on ImageNet-1K (Deng et al., 2009) using the AdamW
(Loshchilov, 2017) optimizer for 100 epochs. The multi-
crop augmentation is employed following the DINO series
(Caron et al., 2021; Zhou et al., 2022a; Oquab et al., 2024),
specifically utilizing two global crops and eight local crops.
The proposed position encoding method (Section 3.2.2) is

4Following iBOT (Zhou et al., 2022a), we calculate the effec-
tive number of epochs for each method.

applied to both global and local crops, while masked con-
tent/position prediction (Section 3.3) is applied only to the
global crops. Our training setup is largely based on DINOv2
(Oquab et al., 2024), with several modifications detailed in
Appendix B.1. For baseline comparisons, we use a ViT-B
backbone, while ablation studies are performed using a ViT-
S backbone. The weights for the comparison methods are
sourced from their public repositories, except for DINOv2.
Since DINOv2 was pre-trained on a much larger dataset of
142M samples (Oquab et al., 2024), we conduct its training
on ImageNet-1K, referring to it as DINOv2†.

Evaluation on COCO and ADE20K We evaluate the
transferability of the features learned by our method on
object detection and instance segmentation tasks using the
COCO dataset (Lin et al., 2014). We also report perfor-
mance on ADE20K (Zhou et al., 2017), in line with recent
SSL studies (Locatello et al., 2020; Wang et al., 2023). We
fine-tune the pre-trained models on COCO and ADE20K
as follows. For the COCO dataset, we follow the evalua-
tion methodology from DropPos (Wang et al., 2023), using
ViTDet (Li et al., 2022b) as our detection framework while
removing window attention and relative position encodings
from the backbone. For the ADE20K dataset, we adhere
to the evaluation protocol from LOCA (Caron et al., 2024),
using the linear decoder approach from Segmenter (Strudel
et al., 2021), which utilizes a minimal number of adapter
layers. Additional implementation details are provided in
Appendix B.

Compared methods We compare our method with state-
of-the-art SSL approaches. For general-purpose SSL meth-
ods, we include DINO (Caron et al., 2021), MAE (He et al.,
2022), iBOT (Zhou et al., 2022a), and DINOv2 (Oquab et al.,
2024). For SSL methods specifically designed for dense
prediction tasks, we evaluate Mugs (Zhou et al., 2022b),
DropPos (Wang et al., 2023), CrIBo (Lebailly et al., 2024),
SelfPatch (Yun et al., 2022), FLSL (Su et al., 2024), and
CrOC (Stegmüller et al., 2023). Explanations for these
methods are provided in Section 5. For all methods, we use
the implementations and pre-trained weights available from
their official repositories. Depending on the availability of
configurations, we report results for only one of the two
backbones (ViT-B/16 or ViT-S/16) for some methods.

4.2. Main Results

Object detection on COCO In Table 1, we compare the
performance of various SSL methods on the COCO dataset
using ViT-S/16 and ViT-B/16 as the backbone.

With one exception, our method outperforms others, includ-
ing OD/IS-specific SSL methods. The exception is FLSL
(Su et al., 2024) with the ViT-S backbone. Although the
performance of FLSL is consistent with the results reported
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Figure 3. Distributions
of scaling factor s

Table 2. Effectiveness of position em-
bedding sampling and masked posi-
tion prediction Lpos

Pos. Sampling Lpos APBox APMask

41.3 . 37.2
✓ 43.2 38.6

✓ 43.7 39.1
✓ ✓ 44.8 39.8

in the original paper, we have identified several issues5 in
its official code6.

The comparison with other methods is as follows. Our
method outperforms all the compared methods in this set-
ting, including OD/IS-specific SSL methods. While Drop-
Pos shows some improvement over its base model, DINO,
it remains inferior to certain general-purpose methods. We
hypothesize that this is due to its high position mask ratio
of 94%, which likely hinders the learning of complex vi-
sual patterns. With a ViT-B/16 backbone, LOCA performs
only on par with the general-purpose MAE, whereas our
method surpasses both by +0.9 APBox and +0.8 APMask. In-
terestingly, DINOv2† achieves performance comparable to
iBOT while requiring only about one-fourth of the effective
training epochs, likely benefiting from its broader design
exploration.

Semantic segmentation on ADE20K In Table 1, we also
report the performance of SSL methods on ADE20K. We
observe that the top-performing methods, including iBOT,
Mugs, DINOv2†, LOCA, and ours, show similar results,
with our method not demonstrating a significant improve-
ment in semantic segmentation. This could be because
semantic segmentation is primarily a pixel-level classifica-
tion task. Notably, MAE and DropPos perform worse, likely
due to the absence of augmentation invariance in contrastive
learning, which may be critical for classification tasks. It is
also worth mentioning that the performance of the compared
methods is higher than previously reported in LOCA (Caron
et al., 2024), likely due to the use of the AdamW optimizer
and learning rate scheduler, as recommended by (Lebailly
et al., 2024).

4.3. Ablation Study

We then examine the design choices in our method by eval-
uating object detection performance on the COCO dataset.
We use a ViT-S backbone here. Starting with the default

5We attempted to reproduce the SSL pre-training part based
on their code. However, we discovered several bugs in the official
repo and were unable to reproduce it, as of this writing.

6https://github.com/QingSuML

Table 3. Effects of hyper-parameters with the proposed position
encoding method

(a) Distributions of scaling factor s

Dist. APBox APMask

Const. 43.0 38.6
Uniform 43.7 39.0
Beta(2, 5) 44.8 39.8

(b) Resolutions of P

Pos. Size APBox APMask

19× 19 44.4 39.7
50× 50 44.8 39.8

settings of our method, we systematically ablate each com-
ponent or hyperparameter. In all tables, the default configu-
ration is highlighted with a blue background.

Effectiveness of individual components Table 2 shows
an ablation study of the two proposed components: the po-
sition encoding method and the masked position prediction.
Individually, they contribute improvements of +1.9 APBox

and +2.4 APBox, respectively. When combined, these modi-
fications further boost performance by at least +1.1 APBox.
These results underscore the effectiveness of each com-
ponent and indicate their complementary contributions to
overall performance.

Scaling factor s As described in Section 3.2.2, the pro-
posed positional encoding method simulates feature extrac-
tion from small objects within an image by applying random
scaling and translation transformations to the crop of the po-
sition encoding field. The scaling factor s is sampled from
a beta distribution. This approach aligns with the statistical
distribution of object sizes in the input images during object
detection. To evaluate the impact of different s distributions,
we tested three scenarios: s = 1.0 (referred to as ‘Const.’),
a uniform distribution in the range [0.2, 1.0], and Beta(2, 5)
as shown in Figure 3. Note that s = 1.0 indicates no scaling,
meaning the object scale from the original ImageNet image
is preserved. The results, shown in Table 3a, indicate that
accuracy improves progressively with s = 1.0 (‘Const’),
uniform, and beta distributions, in that order, verifying the
proposed sampling method.

Resolution of position encoding field As described in
Section 3.2.2, the position-encoding vectors for each patch
(e.g., pu,i) are obtained by sampling at regular grid points
with interpolation from a field P , represented as a tensor
of size wp × hp × d. We evaluated the impact of varying
the spatial resolution wp × hp, a hyperparameter in this
representation. The results, shown in Table 3b, indicate
that the method is not overly sensitive to resolution as a
hyperparameter.

Position mask sampling strategy Through a preliminary
study, we found that a cross-wise mask sampling strategy,
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Figure 4. Position masking: Box-wise
vs. Cross-wise

Table 4. Ablating different position mask settings

(a) Position masking

Pos. Mask APBox APMask

Box-wise 44.4 39.7
Cross-wise 44.8 39.8

(b) Image ratio in a batch w/ position or content masking

Content vs. Pos. APBox APMask

100% w/ Masked Cont. Pred. 43.4 38.9
100% w/ Masked Pos. Pred. 21.7 20.7
50% each 44.8 39.8

as shown in Figure 4, works effectively for masked position
prediction. Table 4a compares this approach with the pop-
ular box-wise sampling strategy used for MIM in previous
studies, showing that cross-wise sampling performs slightly
better. We retain the box-wise sampling scheme for masking
content vectors.

Content masking vs. position masking Our method
applies either content masking and prediction or position
masking and prediction to each image in a batch in a mu-
tually exclusive manner. The selection is random, with a
default ratio of 50:50. For a sanity check, we also eval-
uate the configurations of 100:0 and 0:100. The results,
shown in Table 4b, indicate that the 50:50 mix achieves
the best performance, while applying position masking and
prediction alone leads to a significant performance drop.
These findings confirm the effectiveness of combining both
approaches.

5. Related Work
Dense contrastive learning Dense contrastive learn-
ing (O Pinheiro et al., 2020; Wang et al., 2021; Xie et al.,
2021; Bardes et al., 2022) focuses on learning pixel-level
representations rather than image-level ones (Oord et al.,
2018; Chen et al., 2020; He et al., 2020), with the goal of im-
proving performance on dense prediction downstream tasks
such as segmentation and detection. The challenge in pixel-
level SSL (Yun et al., 2022; Li et al., 2022a; Lebailly et al.,
2024; Bardes et al., 2022; Stegmüller et al., 2023; Lebailly
& Tuytelaars, 2023) is positive samples matching problem.
Their approaches can be summarized as either similarity-
based or position-based, or both. Although (Lebailly et al.,
2024; Stegmüller et al., 2023) also track the positions of
cropped views in the original image, they still use the con-
ventional position encoding. Therefore, they do not predict
relative positions between views and focus only on visual
content.

Self-supervised learning with position prediction Re-
cently, several studies (Wang et al., 2023; Caron et al., 2024),
have aimed to improve performance on dense prediction
tasks by incorporating position prediction tasks, which have

long been known as pretext tasks in SSL (Noroozi & Favaro,
2016), into the SSL methods mentioned above. One such
method in this line of work is DropPos (Wang et al., 2023),
an extension of MAE. In addition to the core principle of
MAE, which masks and predicts the content embedding of
image patches, DropPos introduces a task where the posi-
tional embedding of the patches is ‘dropped’ and predicted.
Specifically, 75% of the tokens (ui + pi) are removed, and
MAE is applied to the remaining 25%. Among these, 75%
(i.e., 18.75% of the total tokens) have their positional em-
beddings pi dropped, leaving only ui as input. The task is
to predict the dropped pi in this configuration. LOCA is an
SSL method that processes two views of the input image
(a reference view and a smaller query view with overlap)
and aims to predict the query view position in the reference
view coordinate by a single cross-attention layer. Within
the cross-attention layer, it has to identify the overlap parts
and predict their positions correctly. In these work, position
prediction is formulated as an 1D classification problem:

Lloc = one hot(i)T log P loc(xi), (7)

where one hot(i) is a location indicator, and P loc(·)
projects patch tokens (or masked tokens in DropPos) to
a probability distribution over N dimensions.

6. Summary
We presented a novel self-supervised learning method that
learns pre-trained weights optimized for object detection
and instance segmentation. The method introduces two
key components. The first is a position encoding aligned
with cropped views in a contrastive learning setting. This
is achieved using a position embedding field, where embed-
ding vectors are sampled on a regular grid corresponding
to the geometry of the cropped view in the input image.
Combined with the proposed position encoding augmenta-
tion, which can be seamlessly integrated into existing SSL
data augmentation pipelines, this approach leads to signifi-
cant improvements on the COCO benchmark compared to
DINOv2 (reproduced by us on ImageNet-1K). The second
component is the simultaneous masking and prediction of
position and content embeddings, further enhancing perfor-
mance on the COCO benchmark. Our method also performs
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comparably to the state-of-the-art LOCA on the ADE20K
dataset, where LOCA is specially tuned for this task. We
hope this study sheds light on the potential of positional
encoding in contrastive learning, an area that remains under-
explored in the research community.
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Figure 5. Statistical differences in attention maps across layers of ViT models pre-trained with the compared SSL methods. Input
images are sourced from the COCO dataset. Normalized mutual information (NMI) and mean attention distance (MAD) are used as
metrics, following Park et al. (2023). See the text for more details.

A. Analyses of Attention Maps in Pre-trained Models
Existing SSL methods, including ours, incorporate positional information into feature learning in various ways. Beyond
evaluating performance on downstream tasks, we can analyze how attention to patches (tokesn) is spatially distributed within
the layers of the ViT, providing insights into the differences between methods. We refer to this spatial distribution as “patch
attention” here. In the following, we use pre-trained models from each method, prepared using the same approach as in the
previous experiments, and evaluate them. All experiments are conducted using a ViT-B/16 backbone, with input images
standardized to 480× 480.

A.1. Patch attention diversity

Following Park et al. (2023), we first examine the diversity of attention maps and the effective receptive field size. It should
be noted that while Park et al.’s analysis uses ImageNet-1K images, we use COCO images as described above. There are
two metrics involved (for details, refer to Park et al. (2023)): normalized mutual information (NMI) (Strehl & Ghosh, 2002)
and mean average distance (MAD) (Dosovitskiy et al., 2021). NMI is the mutual information between a query token q and a
key token k, based on the joint distribution p(q, k) = π(k | q)p(q), where π(k | q) is the softmax-normalized attention from
q to k, and p(q) is assumed to be uniformly distributed across the image. Intuitively, this measures the diversity of attention
maps. MAD measures the average distance between patch positions within an image, weighted by attention, representing
the effective receptive field size in the ViT. The two metrics are computed by averaging over the heads in the attention
computation in each layer. The results are shown in Figure 5.

First, it is clear that both metrics vary significantly across methods and layers within the same method. Dividing the methods
into four categories—image-level learning (DINO), patch-level learning (MAE and DropPos), hybrid methods (iBOT and
DINOv2), and methods incorporating positional learning (LOCA and our method)—the behavior is similar to what was
reported in Park et al. (2023). Specifically, higher patch attention diversity is desirable, but it is smaller in image-level
methods (DINO) and relatively larger in methods that incorporate patch-level learning. The three methods that showed
strong performance on COCO—LOCA, MAE, and our method—exhibit similar behavior in both metrics, particularly in the
last three layers.

A.2. Visualization of patch attention in the final layer

Figure 6 visualizes the attention to all patches (tokens) in the image in the final layer, where a single point (i.e., a patch) in
the input image is selected as the query. The attention is averaged across all heads. In the leftmost column of the figure, the
position of the query patch is indicated by a red dot in the input image. Across all methods, it appears that patches “close” to
the query patch—though in different senses—receive greater attention. However, the interpretation of “closeness” varies
across methods. To be specific, MAE can look widely but be biased to textures or colors easily, not enough to identify the
instance. Moreover, if the query point is in the background but close to the boundary of a foreground object, attention is
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Input MAE DropPos LOCA iBOT Ours

Figure 6. Patch attention maps with sampled reference points as queries. We visualize the patch attention maps from the final layer,
using the sampled reference points (indicated in red) as queries.

focused more on the foreground than the background, as shown in the fourth row. DropPos produces an attention map too
locally without recognizing wider patterns. LOCA exhibits cross-shaped artifacts in its attention map. iBOT displays more
focused attention than the above methods, but it seems to attend to the entirety of objects in the image without instance
discrimination. This is especially evident in the bottom example, where the distinction between trees and the traffic sign is
unclear. On the other hand, in the attention maps produced by our method, when the query is on the foreground, the object
instance indicated by the query is clearly delineated. When the query is in the background, the background regions can be
highlighted more accurately without mixing with the foreground. This behavior suggests that our method is most suitable
for object detection and instance segmentation, demonstrating that the proposed approach effectively achieves its goal.

B. Implementation details
B.1. Pre-training on ImageNet-1K

We follow the implementation of DINOv2 (Oquab et al., 2024) and adopt some settings from iBOT (Zhou et al., 2022a) due
to the significantly smaller scale of training data, i.e., from 142M dataset to ImageNet-1K. We use the same hyperparameters
for both the ViT-B and ViT-S backbones, except for the number of GPUs: 8 and 4, respectively. The details are provided in
Table 5.
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We pre-train ViT-S on a single node with 4 A6000 GPUs and ViT-B on 2 nodes with the same setup. For training time
comparison, we compare our method with DINOv2† in our implementation on a single node. Our method requires 1.3×
longer training per epoch.

Table 5. Implementation details of pre-training on ImageNet-1K

Config

#Epochs 100
Optimizer AdamW
Base learning rate 2e-3
Warmup (#epochs) 10
Layerwise lr decay False
Patch emb. lr decay False
Weight decay (cosine) 0.04 to 0.4
Drop path rate (linear) [0, 0.1]
Teacher temp. 0.04 const.
Teacher momentum init. 0.992
Patch mask prob. [0.1, 0.5]
Pos mask prob. [0.1, 0.5]
Patch mask box-wise
Pos. mask cross-wise
Patch/pos mask ratio 50% vs. 50%
Output dim. (all heads) 65,536
Separate heads True
Norm. last layer True
Dist. of s Beta(2,5)
smin, smax (|P| = 1) 0.2, 1.0
P 50×50
Total batch size 512

B.2. Object detection on COCO with fine-tuning.

Following DropPos (Wang et al., 2023), we adopt ViTDet (Li et al., 2022b) as our object detection framework, fine-tuning
the entire model on the COCO object detection benchmark with 22,128 iterations and a total batch size of 64 (12 epochs).
We use a 3e-4 learning rate for ViT-B backbone and 1e-4 learning rate for ViT-S backbone. Both learning rate decay at
the 19,667-th and 21,306-th iterations by a factor of 10. To preserve the integrity of the pre-trained weights, we remove
relative position encodings and window attentions from ViTDet, ensuring that the backbone remains as close as possible to
its original pre-trained configuration. We also employ checkpointing and efficient attention kernels (Lefaudeux et al., 2022)
to optimize GPU memory usage.

B.3. Semantic segmentation on ADE20K with fine-tuning

For the ADE20K dataset, we follow LOCA (Caron et al., 2024), adopting the linear decoder protocol in Segmenter (Strudel
et al., 2021) and training for 127 epochs with a batch size of 16 (resulting in a total of 160k iterations). We consider the
optimizer and learning rate settings from Lebailly et al. (2024), and employ the AdamW optimizer, and sweep the weight
decay (wd) across {1e-2, 1e-4} and the learning rate (lr) across {8e-5, 3e-5, 1e-5, 8e-6} with a min lr of 0.1× lr. We report
results in single scale, averagd over 2 runs. This largely improves the performances reported in LOCA. The codebase is
based on Segmenter (Strudel et al., 2021) and built using MMSegmentation (Contributors, 2020).

C. Qualitative studies of position masking: Box-wise vs. Cross-wise
We visualize that vertical line artifacts occur with the box-wise strategy but are absent with the cross-wise strategy; see
Figure 7. Furthermore, the superiority of the cross-wise strategy is quantitatively validated in Table 4a.
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Input Box-wise Cross-wise

Figure 7. Artifact comparison in attention maps: Box-wise vs. Cross-wise. Vertical line artifacts occur with the box-wise strategy but
are absent with the cross-wise strategy

D. Comparison with Official DINOv2 and DINOv2-reg Backbones
We augment the results in the main paper with evaluations using pre-trained weights from DINOv2 (Oquab et al., 2024) and
DINOv2-reg (Darcet et al., 2024), which were pre-trained on the large-scale LVD-142M dataset. We adopt them in our
fine-tuning experiments on COCO and ADE20K, as shown in Table 6. It is important to note that their ViT-S/B models are
distilled from a larger pre-trained model, ViT-g, and refined with a larger resolution fine-tuning. Since they use a patch size
of 14×14, we interpolate the patchifier kernel from 14×14 to 16×16 before fine-tuning to ensure a fair comparison.

DINOv2-reg and DINOv2 achieve 52.2 APBox on the ViT-B/16 backbone and a 47.4 APBox on the ViT-S/16 backbone
respectively, which are at least +2 APBox higher than the other methods. Interestingly, we find that DINOv2-reg significantly
outperforms DINOv2 with ViT-B but not with ViT-S.
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Table 6. Augmented results with official DINOv2/-reg (Oquab et al., 2024; Darcet et al., 2024) backbones.

(a) ViT-B/16 backbone.

COCO ADE20K

Method Eff. Ep. APBox APMask mIoU

DINO 1600 45.5 40.8 44.7
MAE 1600 48.1 43.2 46.2
iBOT 1600 47.6 42.4 47.7
Mugs 1600 47.0 42.0 47.7
DropPos 800 47.0 42.2 45.3
CrIBo 800 45.4 40.5 45.6
LOCA 600 48.3 43.0 48.5
DINOv2† 350 47.7 42.4 47.5
Ours 350 49.2 43.8 48.4

On LVD-142M
DINOv2 - 51.1 45.3 52.5
DINOv2-reg - 52.2 46.3 54.3

(b) ViT-S/16 backbone.

COCO ADE20K

Method Eff. Ep. APBox APMask mIoU

DINO 3200 42.0 38.0 42.9
iBOT 3200 43.8 39.1 44.8
Mugs 3200 41.3 37.2 45.3
CrIBo 1600 42.6 38.3 44.9
SelfPatch 1050 40.4 36.7 42.5
CrOC 600 40.2 36.2 43.4
LOCA 600 40.1 36.0 44.8
DINOv2† 350 41.9 37.7 44.7
Ours 350 44.8 39.8 44.8

On LVD-142M
DINOv2 - 47.4 42.2 49.7
DINOv2-reg - 46.5 41.5 49.7
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