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Abstract

The design of Artificial Neural Network (ANN) is inspired by the working patterns
of the human brain. Connections in biological neural networks are sparse, as they
only exist between few neurons. Meanwhile, the sparse representation in ANNs
has been shown to possess significant advantages. Activation responses of ANNs
are typically expected to promote sparse representations, where key signals get
activated while irrelevant/redundant signals are suppressed. It can be observed that
samples of each category are only correlated with sparse and specific channels in
ANNs. However, existing activation mechanisms often struggle to suppress signals
from other irrelevant channels entirely, and these signals have been verified to be
detrimental to the network’s final decision. To address the issue of channel noise
interference in ANNs, a novel end-to-end trainable Dual-Perspective Activation
(DPA) mechanism is proposed. DPA efficiently identifies irrelevant channels and
applies channel denoising under the guidance of a joint criterion established on-
line from both forward and backward propagation perspectives while preserving
activation responses from relevant channels. Extensive experiments demonstrate
that DPA successfully denoises channels and facilitates sparser neural representa-
tions. Moreover, DPA is parameter-free, fast, applicable to many mainstream ANN
architectures, and achieves remarkable performance compared to other existing
activation counterparts across multiple tasks and domains. Code is available at
https://github.com/horrible-dong/DPA.

1 Introduction

In recent years, Artificial Neural Networks (ANNs) [1] have achieved notable advancements in a
wide range of computer vision tasks [2] as well as various other tasks and domains [3–6].

The ANN design is inspired by the working patterns of the human brain [7]. Multi-Layer Perceptron
(MLP) [8], a classical artificial neural network that utilizes neurons as its basic unit, closely resembles
biological neural networks. Another significant development in the field is the Convolutional Neural
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Figure 1: The proposed Dual-Perspective Activation
(DPA) consists of three components: Pre-Activation For-
ward Memory (PreA-FM), Threshold Activation Unit
(TAU), and Post-Activation Backward Memory (PostA-
BM). DPA aims to efficiently identify irrelevant chan-
nels and apply channel denoising under the guidance of
a joint criterion established online from both forward
and backward propagation perspectives while preserving
activation responses from relevant channels.

Networks (CNNs) [9], which were designed to
mimic the local perception mechanisms in the
visual cortex. With the availability of more com-
putational power, Vision Transformers (ViTs)
[10] have emerged as a prominent advancement,
combining attention mechanisms and MLPs to
achieve highly effective image recognition.

Connections within biological neural networks
are sparse, as they only exist between a small
number of neurons [11, 12]. Even in a strongly
driven visual cortex, only 1.6% to 4% of neu-
rons are activated simultaneously at any moment
[12]. Meanwhile, the sparse representation in
ANNs has demonstrated notable benefits to net-
work interpretability and generalization [13, 14].
Activation responses [15] of ANNs are typically
intended to encourage sparse representations,
where important signals are expected to get acti-
vated while irrelevant/redundant signals be sup-
pressed during transmission. Rectified Linear
Unit (ReLU) [14] is a commonly used activation
mechanism in the deep learning field, with a re-
sponse threshold of zero, allowing only inputs
greater than zero to pass through while suppress-
ing all other inputs to zero. ReLU is simple and
robust, which enables a network to acquire a certain sparse representation and offers advantages such
as information disentanglement, linear separability, and potential generalization ability [14]. As a
result, ReLU has gained widespread applications across diverse ANN architectures.

However, although the existing activation mechanisms can achieve sparsity to some extent, they
remain inadequate in eliminating irrelevant/redundant features. Firstly, as depicted in Figure 2, both
forward and backward propagation reveal that samples from each category are only correlated with
sparse and specific channels, while a considerable number of channels are redundant, and there are
significant differences in the average activation response to stimuli from different categories (also
known as category specificity [16]). Additionally, as shown in Figure 3(a), the activation response
distributions for each category reveal that the relevant channels mainly maintain positive responses,
and ideally, the responses of irrelevant channels should be suppressed entirely; however, it can be
observed in Figure 3(a) that a considerable number of responses still exist in potential irrelevant
channels (indicated by red arrows). Furthermore, Figure 3(b) verifies the negative impact of the
noise from these potential irrelevant channels on the network. When irrelevant channels are manually
removed by forcing them to zero during training, the training accuracy significantly improves.

To address the observed deficiencies in the previous activation mechanisms regarding their limited
ability to suppress noise from irrelevant channels, we propose a novel end-to-end trainable mechanism
called Dual-Perspective Activation (DPA). This mechanism combines criteria established online
from both forward and backward propagation perspectives to identify irrelevant channels. From
the forward perspective, historical value statistics of pre-activation responses for each category are
tracked online and in real time, establishing a forward criterion for channel relevance based on
the threshold activation principle. From the backward perspective, historical gradient statistics of
post-activation responses for each category are also tracked online and in real time, establishing a
backward criterion for channel relevance based on the gradient attribution principle. The ultimate
criterion is the intersection of the forward and backward criteria. Guided by this joint criterion,
channel-wise denoising is conducted to suppress activation responses from irrelevant channels while
preserving activation responses from relevant channels.

The contributions are summarized as follows:

• The observations on existing activation mechanisms in ANNs concerning their limited ability to
suppress irrelevant features for pure sparsity, and the verification of the negative impact of noise
from irrelevant channels on the network’s final decision.
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• The proposal of a novel end-to-end trainable mechanism, called Dual-Perspective Activation
(DPA), which efficiently identifies irrelevant channels and applies channel denoising by incor-
porating criteria established and updated online from both forward and backward propagation
perspectives while preserving activation responses from relevant channels.

• Extensive experiments have been conducted to assess the effectiveness and generalization of the
proposed DPA mechanism. DPA is parameter-free and fast and achieves remarkable performance
compared to existing activation counterparts across various mainstream ANN architectures and
datasets, as well as multiple tasks and domains.
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Figure 2: Category channel activation values (a) and channel activation gradients (b) are computed on the last
block of ViT-Tiny. The activation layer used is ReLU. Each vector (left) is obtained by taking the average of 100
samples (right) randomly selected from its respective category. The results for five categories in CIFAR-100 are
presented, with the values and gradients of the first 100 channels displayed. The horizontal axis represents the
channel index, and the vertical axis represents the category index (left) / sample index (right). The brightness
reflects the magnitude of the value / gradient. Here, we only focus on the sign of the gradient as the magnitude
of the gradient is unstable. Therefore, the gradient of each sample is binarized to +1 and -1.
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Figure 3: (a) Distributions of channel activation values in ViT-Tiny’s last block are recorded by feeding samples
from a given category in CIFAR-100. The activation layer used is ReLU. The horizontal axis represents the
channel index, the vertical axis represents the channel activation value, and the area represents the value density.
The distributions of the first 50 channels are shown. The red arrows point to potential irrelevant channels. (b) A
confirmatory experiment is conducted on CIFAR-100 to compare the training accuracy between the original
ViT-Tiny (baseline) and the ViT-Tiny with irrelevant channels manually removed for each category.

2 Observations

This section presents the observed phenomena in the activation response of ANNs and explores how
these phenomena affect the network’s final decision. These explorations can offer valuable insights
for addressing imperfections in the activation mechanism of ANNs.

Observation 1: Each category is only correlated with sparse and specific channels in ANNs, while
a considerable number of channels are redundant, and both the activation value and activation
gradient show channel-wise differences between categories.

With threshold activation, relevant features are activated while irrelevant features are suppressed, and
the channel’s average activation value is positively correlated with the importance of that channel.
Regarding gradient attribution, the channel’s average gradient is positively correlated with the
importance of that channel to the prediction. The channel’s activation value and activation gradient of
ANN for given category samples are illustrated in Figure 2. The brighter the channel, the higher the
channel relevance. Whether from the perspective of forward or backward propagation, intra-class
consistency and inter-class differences can be observed. Each category is only highly correlated with
sparse and specific channels, indicating that a significant proportion of channels are redundant and
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ideally should not generate any responses. Additionally, the judgments from these two perspectives
in opposite directions share an overlap that points to some common channels.

Observation 2: Current activation mechanisms cannot entirely eliminate responses from irrelevant
channels, which have a negative impact on the network’s final decision.

As shown in Figure 3(a), potential irrelevant channels are indicated by the red arrows, and it is evident
that the current activation mechanism, such as ReLU, does not entirely suppress irrelevant channels,
as a considerable number of responses still persist in these channels. A confirmatory experiment is
also conducted to investigate the potential impact of responses from irrelevant channels. Figure 3(b)
illustrates the change in training accuracy when we retain only relevant channels for each category
and manually set irrelevant ones to zero. After manually removing the irrelevant channels for each
category, there is a substantial improvement in the training accuracy. This finding suggests that
the responses from irrelevant channels are perceived as noise interference by the network, which
adversely affects the network’s final decision.

3 Dual-Perspective Activation

As shown in Figure 1, the proposed Dual-Perspective Activation (DPA) neuron consists of a Pre-
Activation Forward Memory (PreA-FM), a Threshold Activation Unit (TAU), and a Post-Activation
Backward Memory (PostA-BM). TAU processes the input signals of the network. Meanwhile,
PreA-FM and PostA-BM track the historical response value and gradient before and after TAU,
respectively, for each category in real time. By utilizing the memories from both PreA-FM and
PostA-BM, a joint forward-backward criterion is established and updated online to measure the
relevance of channels. Under the guidance of this real-time updated criterion, channel denoising
is performed to suppress responses from irrelevant channels during training. The proposed DPA is
end-to-end trainable, parameter-free, and fast that does not affect the inference speed.

3.1 Threshold Activation Unit

Threshold Activation Unit (TAU) is a basic part of the proposed DPA, simulating the activation
behavior of pulse neurons [17]. Given a non-negative threshold τ and an input value x, if the input
value x exceeds the threshold τ , it gets activated and propagated to the subsequent layer; otherwise, it
is suppressed to zero. The TAU’s operation on input x can be expressed as

TAU(x) =

{
x , if x ≥ τ

0 , if x < τ
. (1)

Generally, given a pre-activation feature map F ∈ RH×W×C with C channels, A ∈ RH×W×C refers
to the post-activation feature map obtained by passing F through the threshold activation unit TAU:

A = TAU(F). (2)

TAU can achieve a modest level of sparsity, but its ability to further eliminate irrelevant noises is
limited. Subsequently, we will enhance this basic component by introducing a denoising mechanism.

3.2 Joint Forward-Backward Criterion

This section introduces the construction of the criterion for channel relevance from both forward and
backward propagation perspectives, based on the Observation 1 in §2.

From the forward propagation perspective, we introduce a Pre-Activation Forward Memory (PreA-
FM) to store and update historical global feature value statistics.

Define the pre-activation global feature value f ∈ RC to be the globally average pooled output of F:

f = 1
HW

∑H
h=1

∑W
w=1 Fh,w. (3)

Let K denote the number of categories of a given dataset. A PreA-FM contains K forward memories
{µk}Kk=1, respectively for the K categories, where µk ∈ RC stores the historical mean value before
the activation TAU. For input data of each category k, the pre-activation global feature value fk
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within the network is computed and updated in the historical mean µk separately and in real time. To
avoid an increase in space complexity, µk is updated by using a moving mean technique:

µk,t = (1−m) · µk,t−1 +m · fk,t, (4)

where fk,t represents the pre-activation global feature value of a sample of category k at time t.
µk,t−1 and µk,t represent the historical mean value of category k at times t− 1 and t, respectively.
The hyperparameter m is the momentum for updating the moving mean. Therefore, only K memory
vectors {µk}Kk=1 need to be maintained throughout the entire process, whose space complexity is
negligible. The statistical analysis of historical input values allows for the examination of long-term
trends and patterns, providing more reliable evidence for identifying irrelevant channels.

Based on the principle of threshold activation, signals from irrelevant channels learn to be below
the threshold before the activation, resulting in their being suppressed after the activation. The
forward channel relevance criterion of each category denotes {Rk,F }Kk=1, where F denotes the term
"Forward" and Rk,F ∈ RC can be established as

Rk,F
c =

{
0 , if µk

c ≥ τ

1 , if µk
c < τ

, (5)

where the indicator "1" signifies potential irrelevant channels.

From the backward propagation perspective, we introduce a Post-Activation Backward Memory
(PostA-BM) to store and update historical global feature gradient statistics.

Define the post-activation global feature gradient g ∈ RC to be the globally average pooled output of
the gradient of the prediction score ŷ w.r.t. the activated feature map A:

g = 1
HW

∑H
h=1

∑W
w=1

∂ŷ
∂Ah,w

. (6)

Here, we only focus on the sign of gradient as the magnitude of gradient is unstable. So, the gradient
is binarized as follows:

g̃c =

{
+ 1 , if gc ≥ 0

− 1 , if gc < 0
. (7)

A PostA-BM contains K backward memories {ψk}Kk=1, respectively for the K categories, where
ψk ∈ RC stores the historical mean gradient after the activation TAU. For input data of each
category k, the post-activation global feature gradient gk within the network is computed through
back-propagation, then binarized to g̃k and updated in the historical mean ψk separately and in real
time. To minimize space complexity, the update of ψk is also conducted in a moving mean manner,
similar to how PreA-FM updates µk:

ψk,t = (1−m) ·ψk,t−1 +m · g̃k,t. (8)

Based on the principle of gradient attribution, a positive average gradient of an activated channel
indicates that this channel contributes positively to the prediction, whereas a negative average
gradient indicates the opposite. The backward channel relevance criterion of each category denotes
{Rk,B}Kk=1, where B denotes the term "Backward" and Rk,B ∈ RC can be established as

Rk,B
c =

{
0 , if ψk

c ≥ 0

1 , if ψk
c < 0

, (9)

where the indicator "1" signifies potential irrelevant channels.

Combining both the forward and backward propagation perspectives, the final criterion {Rk}Kk=1
for each category’s channel relevance is the intersection (i.e., logical "and") of the forward criterion
and the backward criterion:

{Rk}Kk=1 = {Rk,F ∩Rk,B}Kk=1. (10)

Using a dual-perspective standard is potentially more accurate than making judgments solely from a
single perspective.
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3.3 Channel Denoising

The ultimate step, channel denoising, is conducted online on the activated feature map A under the
guidance of the joint forward-backward criterion {Rk}Kk=1 for channel relevance.

Define the post-activation global feature value a ∈ RC to be the globally average pooled output of A:

a = 1
HW

∑H
h=1

∑W
w=1 Ah,w. (11)

Given an input data of category k, compute its activated feature value ak, then filter out irrelevant
channels by Rk:

ǎk = ak ⊙Rk, (12)
where ⊙ denotes the Hadamard Product. Finally, impose denoising on the filtered irrelevant channels
by constructing a new loss item Lch as follows:

Lch =

∑C
c=1

∥∥ǎkc∥∥2∑C
c=1 R

k
c

. (13)

In this way, only the activation responses from channels with low correlation will be gradually
suppressed, while the ones from other channels with high correlation are getting preserved.

3.4 Neural Network Learning

The proposed Dual-Perspective Activation (DPA) can replace the network’s original ones. The
channel denoising applies to the network’s activated global feature. Networks that extract feature
maps/sequences compute the global feature by taking the global average of the feature maps/sequences
along the channels. Regarding some Transformer models that incorporate a class token, it is also
possible to simply peel off the class token separately as the global feature vector while applying the
corresponding denoising. Additionally, for Transformer models, the DPA is applied to each block,
as Transformers excel in capturing global context throughout, while for CNN models, the proposed
DPA is applied to the last block since high-level semantics only exist in deep representations [18].
The final loss L is expressed as

L = Ltask + λ · 1

N

∑N
n=1 Ln

ch, (14)

where Ltask is the primary loss for the specific task; for example, in the context of a standard
classification task, Ltask represents the cross-entropy loss. N is the number of layers in the network
that have channel denoising applied, and λ is the balanced parameter.

4 Experimental Study

Datasets. We adopt six datasets, including four vision datasets: CIFAR-10 [19], CIFAR-100 [19],
ImageNet-100 [20], and ImageNet-1K [20], and two non-vision datasets: DGraph [21] and 20News
[22], to verify the effectiveness of the proposed DPA.

Compared methods. The proposed DPA is compared with different types of mainstream activation
mechanisms mentioned in Related Work (§5.1), including Softplus [23], ELU [24], SELU [25], SiLU
[26], ReLU [14], GELU [27], and GDN [28].

Experimental settings. The image size of CIFAR-{10,100} remains 32×32, while the images in
ImageNet-{100,1K} are uniformly scaled to 224×224. To ensure the generality of the network, the
activation threshold τ is uniformly set to 0. The momentum m is empirically set to 0.9, and the
balanced parameter λ varies depending on networks and datasets. More detailed discussions on τ , m,
and λ can be found in Appendix §A.1. All experiments use the same data augmentations provided by
timm [29], AdamW optimizer with weight decay of 0.05, drop-path rate of 0.1, gradient clipping
norm of 1.0, and cosine annealing learning rate scheduler with linear warm-up. All experiments are
trained for 300 epochs from scratch. The automatic mixed precision training strategy is adopted to
speed up the training. All other training settings, including batch size, learning rate, warm-up epochs,
and so on, are kept identical throughout each set of comparative experiments. Note that the numerical
results are the average under three different random seeds, and no pre-training is used.
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Table 1: Top-1 accuracy (%) across the CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K datasets using
the proposed DPA on Vision Transformer (ViT) and its variants.

Top-1 Acc / % Softplus ELU SELU SiLU ReLU GELU GDN DPA

CIFAR-10

ViT-Tiny 84.3 82.0 79.4 85.5 89.9 89.2 81.8 91.3
DeiT-Tiny 84.7 81.4 79.9 86.6 89.6 89.2 83.0 91.5
CaiT-XXS 82.5 80.7 78.4 86.6 89.4 88.7 80.0 91.4
PVT-Tiny 90.6 89.3 85.4 92.5 93.0 92.8 82.8 93.8

TNT-Small 88.3 85.4 83.7 90.5 90.8 91.1 85.1 92.4

CIFAR-100

ViT-Tiny 62.4 60.0 57.5 65.5 65.7 65.4 59.4 70.5
DeiT-Tiny 63.4 60.0 58.3 67.1 67.0 67.0 59.8 70.6
CaiT-XXS 60.4 59.3 55.8 63.9 65.8 65.5 56.2 68.5
PVT-Tiny 69.5 69.3 65.7 70.2 70.9 70.6 64.4 75.3

TNT-Small 65.2 63.8 60.9 65.1 65.4 64.4 62.5 72.0

ImageNet-100

ViT-Tiny 74.1 68.9 66.4 74.1 75.4 76.4 67.9 80.4
DeiT-Tiny 75.3 69.4 67.0 75.1 75.6 74.6 66.3 81.0
CaiT-XXS 70.9 69.1 65.9 76.1 76.0 76.7 69.5 80.4
PVT-Tiny 79.5 77.1 76.1 79.5 81.9 81.4 75.8 85.2

TNT-Small 78.9 79.3 76.4 77.6 79.9 77.2 76.9 85.6

ImageNet-1K

ViT-Tiny 70.0 64.2 63.1 66.9 70.9 70.4 65.2 72.2
DeiT-Tiny 71.9 67.9 66.2 72.0 73.2 73.0 66.4 73.4
CaiT-XXS 70.3 68.1 66.7 73.2 74.0 73.6 66.1 75.0
PVT-Tiny 71.5 69.2 68.5 72.8 73.7 73.5 66.5 75.2

TNT-Small 72.0 70.7 70.3 71.5 73.4 73.3 68.2 77.8

Table 2: Top-1 accuracy (%) across the CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K datasets using
the proposed DPA on various CNN architectures.

Top-1 Acc / % Softplus ELU SELU SiLU ReLU GELU GDN DPA

CIFAR-10

AlexNet 85.6 86.1 85.7 86.0 86.0 85.8 85.4 86.4
VGG-11 91.3 92.0 91.5 91.9 92.2 91.9 91.1 92.2

MobileNet 87.4 87.7 87.2 87.8 87.4 87.4 87.0 87.8
ShuffleNet 89.2 89.0 88.9 89.3 89.4 89.3 88.5 89.8
ResNet-18 94.6 94.7 94.6 95.1 95.0 94.9 94.0 95.1

CIFAR-100

AlexNet 57.6 58.4 58.1 58.1 57.2 57.4 56.8 58.5
VGG-11 69.6 69.9 69.7 69.9 70.2 70.0 70.1 70.3

MobileNet 65.4 65.5 65.6 65.2 66.0 65.4 64.8 67.2
ShuffleNet 66.2 66.1 65.9 66.3 66.3 66.2 65.6 66.8
ResNet-18 75.5 75.7 75.6 76.1 75.7 75.6 74.3 76.8

ImageNet-100

AlexNet 75.7 76.0 75.7 76.6 76.3 76.3 75.5 76.9
VGG-11 87.0 87.3 87.6 87.8 87.7 87.5 86.7 88.4

MobileNet 80.6 79.3 79.2 80.1 80.6 80.5 78.7 81.7
ShuffleNet 80.9 80.9 80.4 81.7 81.6 81.6 80.0 81.9
ResNet-18 84.6 84.4 84.1 84.9 84.9 84.7 83.5 85.7

ImageNet-1K

AlexNet 56.1 56.3 56.1 56.4 56.5 56.4 55.6 57.5
VGG-11 68.4 68.2 67.8 69.0 69.0 69.1 68.1 69.7

MobileNet 67.2 66.7 67.1 67.4 68.1 68.2 66.3 68.9
ShuffleNet 68.5 68.3 68.4 69.1 69.0 68.9 68.0 69.5
ResNet-18 69.3 69.4 68.9 69.7 69.7 69.4 68.3 70.3

4.1 DPA on ViTs

The proposed DPA mechanism can be incorporated into popular Vision Transformer (ViT) and its
variants. Table 1 shows the top-1 accuracy (%) across CIFAR-{10,100} and ImageNet-{100,1K}
using the proposed DPA on five different ViT architectures: ViT [30], DeiT [31], CaiT [32] PVT [33],
and TNT [34]. The proposed DPA can replace all the existing activations in each block. The results
consistently illustrate that the proposed DPA mechanism outperforms the baselines.
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Table 3: Ablation study of the proposed DPA on CIFAR-100. DPAF , DPAB , DPAF∪B and DPAF∩B denote
DPA with the channel relevance criterion in the form of forward only, backward only, forward-backward union,
and forward-backward intersection, respectively. DPAall denotes denoising all channels indiscriminately.

Top-1 Acc / % ReLU GELU DPAall DPAF DPAB DPAF∪B DPAF∩B

ViT-Tiny 65.7 65.4 65.8 68.9 67.9 67.6 70.5
ResNet-18 75.7 75.6 75.7 76.5 76.2 76.0 76.8

Table 4: Computational costs during training and inference regarding "GPU Memory (GiB)" and "Latency (s)"
for networks that utilize the proposed DPA, in comparison to networks utilizing other activation counterparts.
The networks were fed 224×224-pixel images with a batch size of 1024 on an NVIDIA A40 GPU. "Latency"
refers to the average time it takes for a network to process a batch of data.

Computational Costs
ViT-Tiny ResNet-18

ReLU GELU DPA ReLU GELU DPA

Training GPU Memory / GiB 33.09 37.14 33.11 27.06 30.38 27.08
Inference GPU Memory / GiB 6.26 6.26 6.26 11.85 11.86 11.85

Training Latency / s 0.71 0.83 0.89 0.57 0.65 0.62
Inference Latency / s 0.39 0.42 0.39 0.39 0.39 0.39

Table 5: The generalization performance of DPA on node classification and text classification tasks.
Node Classification Text Classification

AUC / % GCN GraphSAGE Top-1 Acc / % TextGCN BERT

ReLU 72.5 75.1 ReLU 86.2 86.7
GELU 71.9 74.4 GELU 86.1 86.9

DPA 73.7 76.6 DPA 86.9 87.8

4.2 DPA on CNNs

The proposed DPA is also evaluated on various mainstream CNNs, including AlexNet [35], VGG
[36], MobileNet [37], ShuffleNet(V2) [38], and ResNet [39]. The proposed DPA replaces the original
activations in the last block since previous works have shown that high-level semantics in CNNs only
exist in deep representations [18]. The results in Table 2 highlight the versatility and robustness of
the proposed DPA in handling diverse CNN architectures and datasets.

4.3 Ablation Study

The ablation study mainly focuses on different combinations of the forward and backward criteria. Ta-
ble 3 presents the results, showing that the performance with the dual-perspective criterion (DPAF∩B)
is better than using a single-perspective criterion (DPAF or DPAB). Furthermore, the intersection
of the dual perspectives (DPAF∩B) yields better results than the union of both (DPAF∪B), as the
intersection of multiple perspectives can reduce misjudgments. Additionally, if denoise all channels
indiscriminately (DPAall), there will be no performance improvement.

4.4 Computational Costs

The proposed DPA introduces no extra parameters in any of its components. The two memory units
(PreA-FM and PostA-BM) only work during the training phase, and in the inference phase, only TAU
needs to be involved. The numerical computational costs during training and inference regarding
"GPU Memory (GiB)" and "Latency (s)" (the average time it takes for a network to process a batch of
data) are shown in Table 4. Notably, the activation counterparts used in original networks should be
implemented manually as our DPA does. Utilizing the counterparts directly from pre-made libraries
(like torch.nn) can result in unfair comparisons due to their high optimization at the low level. Table
4 indicates that the GPU overhead required by DPA during training is negligible, and the speed of
DPA is on par with other counterparts during the inference stage.
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Figure 4: Distributions of channel activation values in ViT-Tiny’s last block are recorded by feeding samples
from a given category in CIFAR-100. The proposed DPA is compared with ReLU. The horizontal axis represents
the channel index, the vertical axis represents the channel activation value, and the area represents the value
density. In the figure, each row displays the changes in response distributions for a specific category when
transitioning from ReLU to the proposed DPA. The distributions of the first 50 channels are shown.

4.5 Generalization to Other Tasks

The proposed DPA can also perform various other tasks or domains, including non-vision tasks like
node and text classification. For node classification, the DGraph dataset [21] is employed, and GCN
[40] and GraphSAGE [41] are chosen models. For text classification, the 20News dataset [22] is
employed, and BERT [42] and TextGCN [43] are chosen models. The results are shown in Table 5.

4.6 Activation Response Visualization

Figure 4 displays the change in channel-wise activation distributions of a specific category in the
last block of ViT-Tiny after using ReLU and the proposed DPA. With the typical ReLU activation,
the presented responses are active on almost every channel. Some irrelevant channels that should
not be activated are mistakenly activated. After using the proposed DPA, the activation responses
become sparser, implying that most irrelevant channels are suppressed. Moreover, the suppression of
irrelevant channels leads to enhanced focus in the responses from other channels. These phenomena
imply that the DPA facilitates the extraction of key features from input data with higher precision,
which reduces the network’s learning difficulty and improves its interpretability.

5 Related Work

5.1 Forward Activation Mechanism

The activation mechanism [15] plays a pivotal role in artificial neural networks as it defines how
neurons respond to input signals, convert them into output signals, and transmit them to the subsequent
layer. Each activation mechanism varies in mathematical properties and nonlinear forms, allowing
neurons to simulate different neural phenomena, including excitation, inhibition, and modulation.
Mathematically, activation mechanisms are categorized into different types, including logistic Sigmoid
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and Tanh variants [9], Rectified Linear Unit variants [14], Exponential Linear Unit variants [24],
Softplus variants [23], probabilistic variants [27], and others [26, 28].

In the widely used form of activation [9, 14, 23, 24, 27], irrelevant features are suppressed, and
relevant features gain amplified influence according to the response rule of the neuron. Furthermore,
some activation mechanisms [9, 14, 23] can effectively achieve data sparsity, diminish redundant
information, and enable better feature distinction. Additionally, the activation mechanisms, such
as ELU [24] and SiLU [26] mentioned above, and others [44, 45], contain learnable parameters.
Parameters in [44] can adapt to various data distributions, avoiding gradient vanishing and explosion,
thereby enhancing the convergence speed and precision of ANNs. However, these extra parameters
can only uniformly influence the response strength for all inputs. Parameters in [45] allow the original
activation to adjust its response condition according to different external inputs. The inclusion of
these extra parameters offer potential for the activation to eliminate irrelevant noise. Nevertheless,
it is important to note that this is not a targeted design, since these extra parameters are completely
adaptively learned without supervision signals, rather than specifically identifying irrelevant channels
and selectively applying channel denoising.

5.2 Backward Gradient Attribution

The gradient attribution [46] includes a set of methods utilized to explain the predictions made by
ANNs. It is generally believed that the gradient of the neural network output w.r.t. the input can
indicate the importance or relevance of the input.

Baehrens et al. [47] were pioneers in using the first-order derivative of the predicted class w.r.t.
the input to elucidate the local decisions made by nonlinear classification algorithms. Simonyan
et al. [48] employed the gradient to compute a class saliency map that is specific to a given image
and class. Bach et al. [49] further developed the Layer-wise Relevance Propagation (LRP), which
attributes by propagating gradients layer by layer. Shrikumar et al. [50] proposed DeepLIFT, which
uses backpropagation to identify each neuron’s contribution in a neural network toward the output
prediction. Sundararajan et al. [51] introduced the Integrated Gradients algorithm to counter gradient
saturation, which calculates gradient computation as the path integral of the first-order derivative of
the output w.r.t. the input features along a straight path from a baseline to the input.

Additionally, the gradient-based Class Activation Mapping (CAM) family [52–54] has become widely
popular for its computational efficiency, requiring no structural changes or re-training. The most
classical one is Grad-CAM [52], which can be used to explain activations in any layer of a deep
network by computing the importance (relevance score) for each channel of the activated feature map
and performing a weighted sum. The relevance score of a channel is derived by taking the average
gradient of the predicted class score w.r.t. the activated feature map in that channel, which motivates
us to utilize similar principles when designing criteria for channel relevance in our study.

6 Conclusion

It is observed in Artificial Neural Networks (ANNs) that each category is only associated with sparse
and specific channels, however, current activation mechanisms often struggle to suppress the signals
from other irrelevant channels, which negatively impacts the network’s final decision. To alleviate
such noise interference, a novel end-to-end trainable Dual-Perspective Activation (DPA) mechanism
is proposed. DPA is guided by a joint criterion established online from both forward and backward
propagation perspectives, aiming to efficiently identify irrelevant channels and apply channel denois-
ing while preserving activation responses from relevant channels. Extensive experiments showcase
that DPA is compatible with various mainstream ANN architectures, can achieve sparser neural
representations and outperform other activation counterparts, demonstrating its effectiveness and
versatility. Additionally, DPA is parameter-free and offers fast inference speed on par with other
activation counterparts, indicating its potential for practical application in real-world scenarios.
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A Appendix

A.1 Hyperparameter Impact Analysis

Momentum m for updating the moving mean µ. Theoretically, a high value of m risks making
the mean value unstable, and conversely, a low value of m smoothens the mean value update, but it
may cause the mean value to lag behind. As illustrated in Figure 5, the network’s performance is not
sensitive to the m between around 0.2 and 0.99, from which m=0.9 performs the best, and extremely
small m values lead to negative effects. Therefore, for the rest of the experiments presented in the
paper, we empirically set the m to 0.9 without too much consideration.

Balanced parameter λ for the channel loss Lch. The optimal balanced parameter λ for Lch is
specific to individual tasks. The relationship between λ and the accuracy on CIFAR-100 with the
ViT-Tiny model is depicted in Figure 6. In this case, the optimal λ is roughly 5, and too large λ
can result in negative side effects. For other trials, we found the optimal λ to be 5 when training
DeiT-Tiny and TNT-Small on CIFAR-100 and the optimal λ to be 1 when training ViT-Tiny on
CIFAR-10. Searching the optimal parameters for each task can be time-consuming, but one thing is
for sure: smaller λ values do not hurt accuracy. Therefore, for the majority of our experiments, we
set the default value of λ to 1.

Activation threshold τ for the Threshold Activation Unit (TAU). To achieve preliminary sparsity,
only input signals that exceed the threshold τ are activated, while those below the threshold are
suppressed to zero. Therefore, τ is a non-negative value. Figure 7 demonstrates that as τ increases,
the performance decreases. Possible reasons could be the influence of weight initialization and
feature normalization operations. Typically, weights are initialized using a distribution with a mean
of zero, and normalization techniques such as layer normalization and batch normalization are
used to make the feature distribution centered around zero (by subtracting the feature mean) to
eliminate shifts in data covariates. Under this circumstance, τ = 0 becomes the optimal activation
threshold. Additionally, it may be feasible to modify the strategy for weight initialization and feature
normalization to achieve optimal effects when considering a positive τ .
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Figure 5: Top-1 accuracy (%) w.r.t. the momentum
m for updating the moving mean µ when training on
CIFAR-100 with ViT-Tiny.
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Figure 6: Top-1 accuracy (%) w.r.t. the balanced
parameter λ for the channel loss Lch when training
on CIFAR-100 with ViT-Tiny.
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Figure 7: Top-1 accuracy (%) w.r.t. the activation threshold τ for the Threshold Activation Unit (TAU) when
training on CIFAR-100 with ViT-Tiny.

A.2 Overfitting Test

Deep neural networks are susceptible to overfitting when the available data is insufficient. Therefore,
the network requires robust support from data augmentations as illustrated in this study. We assess
the performance of ViT-Tiny with ReLU and the proposed DPA on the CIFAR-10 dataset when using
weak data augmentations consisting solely of "random horizontal flipping" and "normalization".
Figure 8 showcases the loss and accuracy curves. Specifically, the "val" loss curve provides further
evidence that DPA effectively mitigates overfitting by reducing noise interference from irrelevant
channels and promoting sparsity on the representation level.
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Figure 8: The performance of ViT-Tiny with ReLU and the proposed DPA on the CIFAR-10 dataset using weak
data augmentations comprising only "random horizontal flipping" and "normalization".

A.3 Differences between Channel Denoising and Channel Pruning

(a) Explanation of "channel denoising": i) We regard the responses from potential irrelevant channels
as channel noise (see Figure 3(a)). ii) Also, each channel tends to exhibit response distributions with
high variance, which is also a symbol of channel noise (see Figure 3(a)). Therefore, the proposed
DPA aims to denoise these channels (i & ii), thus achieving sparser representations and remarkable
accuracy improvements. Figure 4 shows the denoising effect where the responses (not the weights)
from irrelevant channels are suppressed (not forcibly set to zero), and the ones from relevant channels
become more focused.

(b) The proposed channel denoising differs from the channel pruning as:

• The target of channel pruning is the channel weights {Wc}Cc=1, while the target of channel
denoising is the channel responses f(x; {Wc}Cc=1). Specifically, for the c-th channel, given an
input sample x and the channel weight Wc, it generates a channel response f(x;Wc). Channel
pruning operates by setting the weights of certain channels to zero, resulting in no responses
on pruned channels for samples of any category (This is why channel pruning typically leads
to a decrease in model accuracy.). In contrast, channel denoising operates by suppressing the
responses of certain channels to zero, in which case, the channel weights are not necessarily
zero, and the suppressed channels can vary for samples of different categories.

• Channel pruning needs post-processing to remove irrelevant channel weights and some need
further fine-tuning, while channel denoising is conveniently trained end-to-end from scratch and
does not require any post-processing or fine-tuning.

• The objective of channel pruning is trying to reduce computation and storage requirements
without sacrificing accuracy, while the objective of channel denoising is trying to improve
accuracy without increasing computational overhead.

A.4 Limitation and Discussion

Performance. The proposed DPA still has a gap to achieve the ideal performance as Observation 2
shows. This limitation can be attributed to several factors. Firstly, the confirmatory experiment in
Observation 2 assumes the category label is always known, but in applications, the category label
is unknown during the testing phase. Therefore, to address this challenge, we introduced channel
denoising during training, allowing the network to learn how to reduce the response from irrelevant
channels in the testing stage when the category label is unknown. Through this approach, we expect
to approximate the way of manually removing irrelevant channels in Observation 2 as much as
possible. However, the joint criterion devised for identifying irrelevant channels is not always precise,
highly depending on the historical context of each training moment, and some categories that share
similarities at the representation level could add to the difficulty of precise denoising while still
preserving category discrimination. At present, we are actively researching these areas and are
confident that it will achieve more promising results.

Tasks. In certain scenarios, e.g., the box regression part of object detection, the proposed DPA may
not be applicable. This is because DPA is associated with categories, whereas box regression is not.
Despite this, the generalization ability of DPA is already commendable, as it can perform various
other tasks or domains, including image classification and non-vision tasks like node classification
and text classification, whose generalization has been verified in the presented experiments.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: §1 - "Introduction"

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: §A.4 - "Limitation and Discussion"

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: §3 - "Dual-Perspective Activation" & §4 - "Experimental Study" & The source
code provided in the supplementary materials
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The source code has been provided in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/gu

ides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: §4 - "Experimental Study - Experimental settings" & §A.1 - "Hyperparameter
Selection"

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The numerical results are the average under three different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18



• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: §4.4 - "Computational Costs"

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The source code & The citations in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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