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ABSTRACT

We introduce an end-to-end approach to learn the evolution operators of large-
scale non-linear dynamical systems, such as those describing complex natural
phenomena. Evolution operators are particularly well-suited for analyzing systems
that exhibit spatio-temporal patterns and have become a key analytical tool across
various scientific communities. As terabyte-scale weather datasets and simulation
tools capable of running millions of molecular dynamics steps per day are becoming
commodities, our approach provides an effective tool to make sense of them from a
data-driven perspective. The core of it lies in a remarkable connection between self-
supervised representation learning methods and the recently established learning
theory of evolution operators. We deploy our approach across multiple scientific
domains: explaining the folding dynamics of small proteins, the binding process
of drug-like molecules in host sites, and autonomously finding patterns in climate
data. Our code is available open-source at: https://anonymous.4open.
science/r/encoderops-5F67.

1 INTRODUCTION

Dynamical systems are fundamental to understanding phenomena across a vast range of scientific
disciplines, from physics and biology to climate science and engineering. Traditionally, scientists
have modeled these systems by formulating differential equations from first principles. However,
as systems grow in scale and complexity, this approach quickly becomes computationally burden-
some and difficult to interpret (Anderson, 1972), hindering the study of large-scale phenomena.
Simultaneously, advancements in data collection techniques and computational power have led to
an explosion of available data from experiments (Hersbach et al., 2020; Chanussot et al., 2021) and
high-fidelity simulations (Harvey et al., 2009; Abraham et al., 2015; Eastman et al., 2017; Bauer
et al., 2015). This abundance of data makes data-driven approaches increasingly appealing for
studying complex dynamics, with machine learning (Shalev-Shwartz & Ben-David, 2014) becoming
a dominant paradigm for learning dynamical systems, largely focusing on predictive tasks such as
forecasting. The recent revolution in data-driven weather modeling (Pathak et al., 2022; Bi et al.,
2022; Lam et al., 2023; Kochkov et al., 2024) stands as a paradigmatic example of ML’s power in
handling complex spatio-temporal dynamics. Similarly, reinforcement learning (Sutton & Barto,
1998) has reimagined control theory by leveraging data-driven strategies to optimize system behavior.
While these data-driven methods excel at prediction and simulation, there remains a significant gap
in approaches that offer interpretability. In scientific contexts, merely predicting system behavior is
often insufficient; understanding why a system evolves in a certain way is paramount. For instance,
comprehending the dynamical shortcuts and bottlenecks happening through atomistic interaction is
crucial for understanding why a drug binds to a specific target or fails to do so, a level of insight not
typically provided by black-box predictive models.

A modeling paradigm particularly well-suited for interpretability is that of evolution operators (Lasota
& Mackey, 1994; Applebaum, 2009). Under mild assumptions, dynamical systems and stochastic
processes can be represented by a linear operator — a mathematical entity that maps functions to other
functions. This operator-based approach offers multiple advantages. First, it linearizes the dynamics,
greatly simplifying tasks like forecasting and controller design. Second, these operators possess a
spectral decomposition1 (Reed & Simon, 1972), which expresses the system’s complex dynamics as

1A generalization of the eigenvalue decomposition of a matrix.
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a linear combination of fundamental, coherent spatio-temporal modes (Molgedey & Schuster, 1994).
Each mode represents a distinct, intrinsic pattern associated with a unique spatio-temporal structure
defined in terms of growth or decay rates and oscillation frequencies. By identifying and analyzing
these principal modes, researchers gain deep insights into the underlying mechanisms driving the
system’s macroscopic behavior, offering a structured, physically meaningful understanding.

Building on the understanding that evolution operators provide a powerful framework for inter-
pretable analysis, significant effort has been directed towards learning these operators directly from
data Kovachki et al. (2023). Data-driven approaches for this task emerged already in the early
2000s, including pioneering work utilizing transfer operators for analyzing stochastic processes in
computational biophysics (Schütte et al., 2001), as well as the dynamic mode decomposition family
of methods (Schmid, 2010b) for deterministic systems via the Koopman operator. In the ensuing
years, there has been a significant acceleration in machine learning methods for evolution operator
learning, encompassing theoretical advances through kernel methods and powerful end-to-end deep
learning approaches.

Contributions. In this work, we build upon these recent foundations, showing how evolution
operator learning can be scaled to structured and high-dimensional dynamical systems. We formalize
a principled end-to-end protocol that is amenable to GPU training and prove its equivalence to a
self-supervised representation learning problem. Leveraging this link, we also show the transferability
of our trained models in both molecular dynamics and climate settings. Code, data, and weights are
made available open-source.

2 EVOLUTION OPERATORS AND HOW TO LEARN THEM

Evolution operator learning is a data-driven approach to characterizing dynamical systems, either
stochastic, xt+1 ∼ p(·|xt), or deterministic, xt+1 ∼ δ(· − F (xt)). Throughout, we assume the
dynamics to be Markovian, so that the evolution of xt depends on xt alone and not on the states at
times s < t. If this assumption is not satisfied by xt, a standard trick is to re-define the state as a
context cHt = f(xt, xt−1, . . . , xt−H) with history length H , where f can be a simple concatenation,
or a learned sequence model (e.g., a recurrent neural network or transformer).

Evolution operators are defined as follows: for every function f of the state of the system, (Ef)(xt)
is the expected value of f one step ahead in the future, given that at time t the system was found in xt

(Ef)(xt) =

∫
p(dy|xt)f(y) = Ey∼Xt+1|Xt

[f(y)|xt]. (1)

Notice that E is an operator because it maps any function f to another function, xt 7→ (Ef)(xt),
and is linear because E(f + αg) = Ef + αEg. When the dynamics is deterministic, E is known as
the Koopman operator (Koopman, 1931), while in the stochastic case it is known as the transfer
operator (Applebaum, 2009).

Evolution operators fully characterize the dynamical system because knowing E allows us to recon-
struct the dynamical law p(·|xt). Indeed, for any subset of the state space B ⊆ X , applying E to the
indicator function of B, we have

(E1B)(xt) =

∫
B

p(dy|xt) = P [Xt+1 ∈ B|xt] .

An advantage of the operator approach over dealing directly with the conditional probability p(·|xt) is
that E acts linearly on the objects to which it is applied. This means that operators unlock an arsenal
of tools from linear algebra and functional analysis, which would be unavailable otherwise. Arguably
the most important of them is the spectral decomposition, allowing us to decompose E, and hence the
dynamics, into a linear superposition of dynamical modes. These ideas lie at the core of the celebrated
Time-lagged Independent Component Analysis (Molgedey & Schuster, 1994; Pérez-Hernández et al.,
2013), and Dynamical Mode Decomposition (Schmid, 2010a; Kutz et al., 2016).

2.1 LEARNING E AND ITS SPECTRAL DECOMPOSITION FROM DATA

We now review the main approaches to learn the evolution operator and its spec-
tral decomposition from a finite dataset of observations, with an emphasis on the
least squares approach, which is essential to understand every other method as well.

2
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A core idea of operator learning
is that operators are defined by
how they act on a suitable lin-
ear space of functions, similarly
to how matrices are defined by
their action on a basis of vectors.
Of course, not every function f
is interesting, and this nicely par-
allels with the matrix example,
where the most "interesting" di-
rections are those that recover
most of the variance in the data.
Learning E, therefore, is usually cast as the following problem:

Letting φ(x) ∈ Rd be a — learned or fixed — encoder of the state, find the best approximation of E
restricted to the d-dimensional linear space of functions generated by φ, given the data.

In practice, the data is usually a collection of transitions D = (xi, yi)
N
i=1, where it is intended that

xi ∼ P[Xt] are sampled from a distribution of initial states, while yi ∼ p(·|xi).
Least squares. In this approach the encoder φ is a frozen, that is non-learnable, dictionary of
functions, and we are interested in approximating the action of E on functions of the form f(x) =
⟨w,φ(x)⟩ for every w ∈ Rd. To this end, one minimizes the empirical error between the true
conditional expectation Ey∼Xt+1|Xt

[⟨w,φ(y)⟩ |x], and a linear model ⟨Ew,φ(x)⟩, where the matrix
E ∈ Rd×d identifies the restriction of the evolution operator to the linear span of the dictionary:

1

N

N∑
i=1

(⟨w,φ(yi)⟩ − ⟨Ew,φ(xi)⟩)2 ≤
1

N

N∑
i=1

∥φ(yi)− E⊤φ(xi)∥2 + λ∥E∥2. (2)

On the right-hand side, we assumed ∥w∥ ≤ 1, used the Cauchy–Schwarz inequality, and added a
ridge penalty. The minimizer of (2) can be computed in closed form (Korda & Mezić, 2018; Kostic
et al., 2022, and references therein) as

Eφ = (CX + λId)−1CXY , with CXY =
1

N

N∑
i=1

φ(xi)φ(yi)
⊤ and CX = CXX . (3)

In the limit of infinite data, N →∞, and infinitely dimensional encoders, d→∞, the least squares
estimator converges (Korda & Mezić, 2018) in the strong operator topology to the evolution operator
E, and similar (but weaker) asymptotic convergence results are proved for its spectrum.

Mode decomposition. The spectral decomposition of E is approximated by expressing the least-
squares estimator in its eigenvectors’ basis Eφ = QΛQ−1, where the columns of Q = [q1, · · · , qd]
are the eigenvectors of Eφ, and Λ is a diagonal matrix of eigenvalues. In this basis, the expected
value in the future for a function f(x) = ⟨w,φ(x)⟩ is expressed as

Ey∼Xt+1|Xt
[f(y)|x] ≈ ⟨Eφw,φ(x)⟩ =

〈
QΛQ−1w,φ(x)

〉
=

d∑
i=1

λi ⟨qi, φ(x)⟩ (Q−1w)i. (4)

The spectral decomposition expresses the transition xt → xt+1 as a sum of modes of the form
λi ⟨qi, φ(x)⟩ (Q−1w)i, each of which can be broken down into three components:

1. The eigenvalues λi determine the time scales of the transition. Indeed, applying the evolution
operator s times to analyze the transition xt → xt+s leaves (4) unchanged, except that each
λi becomes λsi . Writing λsi = ρsi e

isωi in polar coordinates, reveals that the modes decay
exponentially over time with rate ρi, while oscillating at frequency ωi.

2. The initial state x influences the decomposition through the factor Ψi(x) = ⟨qi, φ(x)⟩. This
coefficient captures how strongly the state x aligns with the i-th mode. When qi corresponds
to an eigenvalue with slow decay, i.e., |λi| ≈ 1, the term Ψi(x) serves as a natural quantity
for clustering states into coherent or metastable sets.

3
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3. The coefficient (Q−1w)i, in turn, indicates how the function represented by the vector w
relates to the i-th mode. This connection makes it possible to link the dynamical patterns to
specific functions — or observables – thereby deepening our understanding of the system.

Kernel methods. Leveraging the kernel trick, one can learn evolution operators by deriving a
closed-form solution of (2) in terms of kernel matrices whose elements are of the form k(xi, xj) =
⟨φ(xi), φ(xj)⟩, with k(·, ·) a suitable kernel function. Thanks to the theory of reproducing kernel
Hilbert spaces, this class of methods is backed up by statistical learning guarantees, such as the ones
derived in (Kostic et al., 2022; 2023a; Nüske et al., 2023). Similarly to the least-squares approach,
one also approximates the spectral decomposition of E via kernel methods, and this task captured
quite a lot of attention from researchers in this area, see (Williams et al., 2014; Kawahara, 2016; Klus
et al., 2019; Das & Giannakis, 2020; Alexander & Giannakis, 2020; Meanti et al., 2023).

Deep learning. In contrast to the previous approaches, where the encoder φ is prescribed, a number
of methods proposed to approximate E from data with end-to-end schemes including φ as a learnable
neural network. Since learning E ultimately entails learning its action on the linear space spanned
by φ, it is appealing to choose an encoder capturing the most salient features of the dynamics. To
this end, one can train φ via an encoder-decoder scheme as proposed in (Takeishi et al., 2017; Lusch
et al., 2018; Otto & Rowley, 2019; Azencot et al., 2020; Wehmeyer & Noé, 2018; Frion et al., 2024)
or with encoder-only approaches as in (Li et al., 2017; Mardt et al., 2018; Yeung et al., 2019; Kostic
et al., 2023b; Federici et al., 2023; Jeong et al., 2025).

In encoder-decoder schemes, φ is trained alongside a decoder network, minimizing a combination
of prediction and reconstruction errors2. Yet, while minimizing a reconstruction loss biases the
model towards accurate forecasts of the near future, recent work on model-based reinforcement
learning, where one is instead interested in long-term behaviours, suggests that the presence of a
decoder is detrimental (Lyu et al., 2023; Schwarzer et al., 2020; Hansen et al., 2023) to control tasks.
Similarly, (Balestriero & LeCun, 2024) showed how features learned by reconstruction are both
uninformative for perception and hardly transferable.

On the other hand, the competitive advantage of evolution operators over techniques such as (Pathak
et al., 2022; Lam et al., 2023; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Li et al., 2020) lies in
their spectral decomposition, useful for interpretability, reduced order modeling, and control tasks.
Encoder-only approaches follow this intuition and prioritize approximating the spectral decomposition
of E over the raw forecasting performances. Concretely, this is accomplished via loss functions that
are minimized when φ spans the leading singular space of E. Clearly, once an encoder has been
trained, it can be transferred to similar dynamical systems, as we demonstrate in 4.2 and 4.3.

In this work, we propose an encoder-only method based on a loss function originally designed for
self-supervised representation learning. Our approach is numerically stable, scales efficiently, enables
transfer across related systems, and can incorporate structural priors, e.g., graph-based encoders,
beyond the reach of classical DMD approaches. Though our approach is broadly applicable, we
mainly focus on applications involving interpretability and model reduction of scientific dynamical
systems, highlighting how ML evolution operators can help in advancing fundamental science. Recent
works in RL (Lyu et al., 2023; Schwarzer et al., 2020; Rozwood et al., 2024; Novelli et al., 2024)
suggest that our approach can be relevant for control tasks, but we leave this for future work.

3 LEARNING EVOLUTION OPERATORS VIA SELF-SUPERVISION

As discussed above, we are interested in the evolution operator

(Ef)(xt) = Ey∼Xt+1|Xt
[f(y)|xt] = Ey∼Xt+1

[
p(y|xt)
p(y)

f(y)

]
, (5)

where in the last equality we expressed the expectation in the form of an importance sampling
estimator with respect to the probability of the future state P(Xt+1). In so doing, we link the
evolution operator E to the density ratio

r(xt, xt+1) =
p(xt+1|xt)
p(xt+1)

. (6)

2Notice that trying to minimize the prediction error (2) alone immediately leads to a representation collapse
with φ mapping every input to 0 to obtain a prediction error of 0.

4
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The core of our operator-learning scheme, Alg. 1, is to optimize a model for the density ratio (6)
parametrized as the bilinear form ⟨φ(xt), Pφ(xt+1)⟩, similar to Oord et al. (2018). Here, φ is a
d-dimensional encoder, while P is a linear predictor layer which, as discussed below, equals the
action of E on the linear subspace of functions spanned by φ, up to a known linear transformation.

We minimize the L2 error between the density ratio and our bilinear model ⟨φ(xt), Pφ(xt+1)⟩:

ε(φ, P ) =E(x,y)∼Xt⊗Xt+1

[
(r(x, y)− ⟨φ(x), Pφ(y)⟩)2

]
=E(x,y)∼Xt⊗Xt+1

[
⟨φ(x), Pφ(y)⟩2

]
− 2E(x,y)∼(Xt,Xt+1) [⟨φ(x), Pφ(y)⟩] + cst., (7)

where EXt⊗Xt+1 is the expected value between the product of the marginalsXt andXt+1
3.Estimating

the squared term in (7) via U-statistics (Hoeffding, 1992) and foregoing the constant term, we finally
get to the empirical loss

ε̂(φ, P ) =
1

N(N − 1)

∑
i ̸=j

⟨φ(xi), Pφ(yj)⟩2 −
2

N

N∑
i=1

⟨φ(xi), Pφ(yi)⟩ . (8)

The loss function (8) was originally proposed for self-supervised contrastive learning in HaoChen
et al. (2021; 2022). Indeed, noticing that ⟨φ(x), Pφ(y)⟩ can be interpreted as a measure of similarity
between x and y, the first term of (8) minimizes the similarity between randomly chosen i ̸= j (i.e.,
negative) pairs, while the second term maximizes the similarity of consecutive (i.e., positive) pairs.
The loss (8) has also been applied in reinforcement learning (Ren et al., 2022), causal estimation (Sun
et al., 2024), and recently Lu et al. (2024) showed that it belongs to a wide class of contrastive
learning losses defined by Csiszár f -divergences. Concurrently,Wang et al. (2022); Ryu et al. (2024);
Kostic et al. (2024); Jeong et al. (2025) applied it to approximate the SVD of linear operators.

3.1 THEORETICAL PROPERTIES OF OUR APPROACH.

Our model ⟨φ(xt), Pφ(xt+1)⟩ is characterized by the presence of a linear predictor P , and by a
shared encoder between xt and xt+1, in contrast to the more agnostic choice ⟨φ(xt), ψ(xt+1)⟩
adopted by HaoChen et al. (2021); Wang et al. (2022); Ryu et al. (2024); Kostic et al. (2024); Jeong
et al. (2025). Our choice is deliberate, and we now prove a number of theoretical results highlighting
how our parametrization is particularly apt for evolution operator learning, with the predictor layer
P having a key role. Every lemma in this section is proved in Appendix A. The first observation
was already noticed in Wang et al. (2022), and provides a direct link between (7) and the evolution
operator regression formalism developed in Kostic et al. (2022).
Lemma 1. Let φ : X → Rd be an encoder whose components are square-integrable with respect
to both µ and ν, and let E be a Hilbert-Schmidt evolution operator. Then, the loss function (7) is
equivalent to the following operator learning loss:

ε(φ, P ) = ∥E−
∑
i,j

φi ⊗ Pijφj∥2HS.

We highlight that when the operator E is not Hilbert-Schmidt, the loss function (8) can still be linked
to operator learning. In this more general scenario, the loss promotes encoders φ displaying both a
strong dynamical response Eφ, and a good approximation of the true dynamics, see Appendix A.1.

Plugging our model back into (5), the evolution operator gets parametrized as (Ef)(xt) ≈
Ey∼Xt+1

[⟨φ(xt), Pφ(y)⟩ f(y)], and if the function f is in the linear span generated by the encoder
f(y) = ⟨φ(y), w⟩, we can simplify the expression above as

(Ef)(xt) =
〈
φ(xt), P

(
Ey∼Xt+1

[
φ(y)φ(y)⊤

])
w
〉
= ⟨φ(x), PCY w⟩ ,

where we introduced the covariance of the futures CY = Ey∼Xt+1
[φ(y)φ(y)⊤]. Thus, the linear

predictor P parametrizes the approximation of the evolution operator E over the finite-dimensional
space generated by the state representation φ. We remark that to be sure that a prescribed function
f lies in the span of the encoder, one can add it as a non-trainable component of the architecture

3That is, the product measure P[Xt]⊗ P[Xt+1]

5
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φ(x) = [NN(x), f(x)], as done in Appendix B.1. Alternatively, one can compute its least-squares
approximation f̂φ on the features spanned by φ, and use that in place of f . The following Lemma
shows that when the predictor P is optimal, one recovers the least squares estimator (3).
Lemma 2. For any fixed φ, the predictor P minimizing (7) can be computed in closed form P∗ =
C−1

X CXY C
−1
Y , and the model for the evolution operator is given by

Eφ = P∗CY = C−1
X CXY = Eq. (3) with λ→ 0, (9)

coinciding with the least-squares estimator (3).

The final interesting fact about (7) is its relation to the VAMP score (Wu & Noé, 2020), originally
introduced for representation learning of molecular kinetics. In particular, the VAMP-2 score can be
defined in terms of covariances as

VAMP2(φ) = ∥C−1/2
X CXY C

−1/2
Y ∥2HS. (10)

Lemma 3. For any fixed φ, let P∗ the optimal predictor of ε(φ, P ), as in Lemma 2. Then, the
following holds true:

ε(φ, P∗) = −∥C−1/2
X CXY C

−1/2
Y ∥2HS = −VAMP2(φ).

Our loss function, therefore, matches the negative VAMP-2 score when P is optimal. Compared to
methods that directly maximize the VAMP score, such as (Mardt et al., 2018), however, our approach
does not require matrix inversions in the computation of the loss (Wu & Noé, 2020), an operation
which is unwieldy and prone to instabilities4 in large-scale applications. Instead, the loss function (8)
is written in terms of simple matrix multiplications, making it perfect for GPU-based training.

3.2 PRACTICAL IMPLEMENTATION

for k = 1 to num_steps do
B ← {(xi, yi) ∼ D}Bi=1 forall i do

zi ← φ(xi) and qi ← Pφ(yi)
end
rij ← ⟨zi, qj⟩
dφ, dP ← ∇

[
1

B(B−1)

∑
i ̸=j r

2
ij − 2

B

∑
i rii

]
φ, P ← opt(φ, P, dφ, dP )

end
Algorithm 1: A pair of consecutive observations (x, y) from a dynamical system are mapped to
representations z and q via an embedding function φ. The representation q is also processed by
a predictor P . The algorithm iteratively optimizes φ and P using the contrastive objective (8)
based on the similarity ⟨z, q⟩.

The implementation of our method, summarized in Alg. 1, follows standard self-supervised learning
procedures (Chen et al., 2020; Grill et al., 2020; Zbontar et al., 2021; Chen & He, 2021). There, a
positive pair of data-points, in our case a pair of consecutive observations of the dynamical system,
are processed through an encoder network φ, and optionally a predictor network, which in our case is
a simple linear layer P . We apply simplicial normalization (Lavoie et al., 2022) to the outputs of the
embedding φ. To keep our implementation as close to the theoretical insights as possible, we didn’t
concatenate additional projection heads to the encoder φ, as suggested in (Chen et al., 2020; Grill
et al., 2020; Zbontar et al., 2021; Chen & He, 2021). Furthermore, because of the identity (9) we kept
P linear, but it is worth mentioning that tiny MLPs might be employed as predictors instead.

Once a representation φ is learned, we model the evolution operator E via the least-squares estimator
Eφ from (3). To compute it, one can make use of the closed form expression (3) by computing the
covariances at the end of the training of φ, as done in Kostic et al. (2023b); Jeong et al. (2025). This
two-step procedure, however, requires a full forward pass over the full training dataset, which is
impractical for large problems. Another option is to use (9), but this again requires the evaluation

4Backpropagation through inversions may lead to gradient explosion (Golub & Pereyra, 1973).
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Figure 1: Trp-Cage folding. A: Implied timescales derived from different baseline methods. Higher
implied timescales are associated with more accurate approximations of the slow-modes. B: Time
series of the leading eigenfunction Ψ1 (red, left axis) alongside RMSD (gray, right axis), capturing
transitions between folded and unfolded states. Representative snapshots of each state are shown. In
the folded structure, key hydrogen bonds identified as relevant by the LASSO model are highlighted.

of the covariance, and might be suboptimal whenever P isn’t yet converged to the true minimizer
P∗. In our implementation, instead, we kept two buffers for CX and CXY , which are updated online
during the training loop via an exponentially moving average of the batch covariances. At the end of
the training, we use buffers to compute Eφ as in (3). In Appendix B.5, we show that covariances
updated online during training converge to an accurate approximation of the true covariances, and
yield identical (or slightly better) results compared to re-evaluating the covariances from scratch.

4 EXPERIMENTS

We now put to the test our method on high-dimensional dynamical systems from both molecular
dynamics and climate domains. Our focus is on assessing the capability of the method to decompose
complex dynamics and to evaluate the generalizability of the learned representations. In Appendix B.1
we also report an additional experiment on the Lorenz ’63 system (Lorenz, 1963), illustrating how
the method can also be used for small forecasting tasks.

4.1 HIGH-RESOLUTION DYNAMICAL MODELING OF PROTEIN FOLDING

The Trp-Cage miniprotein is a widely studied benchmark for protein folding due to its small size and
fast dynamics (Lindorff-Larsen et al., 2011). Previous works, including SRV-based Markov State
Models (Sidky et al., 2019) and GraphVAMPNet (Ghorbani et al., 2022), have modeled Trp-Cage
dynamics using coarse-grained representations, where the state of the system is defined by the small
subset of 20 Cα atoms in the backbone of the protein. Our approach allows us to scale to a more
expressive molecular representation based on all 144 heavy atoms, employing the SchNet (Schütt
et al., 2017) graph neural network architecture as the encoder φ. After training, we calculate the
eigenvalue decomposition of the evolution operator as described in Sec. 2. As shown in Fig. 1B, the
leading eigenfunction Ψ1(x) = ⟨q1, φ(x)⟩ correlates strongly with the system’s root-mean-square
deviation (RMSD) from the folded structure, confirming that Ψ1 encodes the folding-to-unfolding
transition. Clustering the molecular configurations according to the values of Ψ1 reveals a clear
separation between folded and unfolded ensembles (see snapshots in Fig. 1B).

To interpret the nature of this slow mode, we regress Ψ1 against a library of physically meaningful
descriptors—specifically, hydrogen bond interactions across residue pairs—using a sparse LASSO
model (Brunton et al., 2016; Zhang et al., 2024; Novelli et al., 2022). This analysis reveals a network
of hydrogen bonds stabilizing the folded state, including contributions from side-chain interactions
that would be invisible to coarse-grained dynamical models such as (Ghorbani et al., 2022). Finally,
we note that the implied timescales5 τi derived from the leading eigenvalues of the learned operators
are influenced by both the choice of representation and learning loss. The LoRA baselines from Jeong
et al. (2025) use a similar loss function, but do not share the encoder φ between xt and xt+1. VAMP,

5The implied timescale can be computed from the eigenvalues as τi = −∆t/ log(λi), where ∆t is the time
lag between two consecutive observations.
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Figure 2: Calixarene binding. Eigenfunctions Ψ1 (left) and Ψ2 (right) capture ligand transitions from
unbound (U) to semi-bound (S) and bound (B) states. The model using a representation transferred
from other ligands (solid line) closely matches one trained from scratch (dashed).

from Mardt et al. (2018) and DPNETS from Kostic et al. (2023b), on the other hand, minimize
different loss functions. According to the variational principle for Markov processes (Wu & Noé,
2020; Noé & Nuske, 2013), higher implied timescales indicate a better approximation of the system’s
true slow dynamics (see Fig. 1A).

4.2 LEARNING TRANSFERABLE REPRESENTATIONS FOR THE BINDING OF SMALL MOLECULES

Our second case study focuses on the binding of small molecules to a calixarene-based system (Yin
et al., 2017), which is often used as a simplified model to study the dynamical processes relevant,
for instance, in drug design. Our baseline is obtained by using Alg. 1 to train an encoder φ on
molecular dynamics data describing the binding dynamics of a single molecule (G2) to the host
system. As in the previous example, we employ a SchNet architecture for φ. As shown in Fig. 2, the
slowest dynamical mode, captured by the dominant eigenfunction Ψ1, is associated with a transition
between a semi-bound configuration and the fully bound state. Structural inspection reveals that
this intermediate state corresponds to a misaligned pose of the guest, caused by the presence of a
water molecule occupying the binding pocket. The second eigenfunction Ψ2 instead resolves the
unbound-to-bound transition. Our findings align with previous works (Rizzi et al., 2021), where
water occupancy was identified as a key kinetic bottleneck in host–guest interactions.

We now turn to a key question: can a representation trained on one set of molecular systems
generalize to others? This capability is essential for scalable modeling in applications like drug
discovery, where retraining a model for every new compound is prohibitive. To test the transferability
of the representations φ trained with our method, we trained the encoder on molecular dynamics
simulations for two molecules (G1 and G3), and used it to analyze the binding dynamics of a
different ligand (G2). Using the frozen encoder, we compute the evolution operator of (G2) via (3),
and examine its dominant eigenfunctions. Remarkably, the transferred representation successfully
recovers the key dynamical modes of the binding process of (G2) without having seen it during the
representation learning phase. In particular, it recovers both the entry of the guest molecule into the
host cavity and its final locked configuration ( Fig. 2). This result illustrates that our self-supervised
model learns features that are not only informative but also transferable across molecular systems.

4.3 PATTERNS IN GLOBAL CLIMATE

Finally, we test our method on climate data. Specifically, we aim to retrieve El Niño–Southern
Oscillation (ENSO), one of the most influential sources of interannual climate variability (Diaz &
Markgraf, 2000; Callahan & Mankin, 2023), arising from coupled ocean–atmosphere dynamics
in the tropical Pacific (Bjerknes, 1969; Philander, 1983). Characterizing ENSO remains a central
goal in climate science, particularly in the context of its potential changes under global warming
(McPhaden et al., 2006; Cai et al., 2021).ENSO is conventionally characterized by monthly-averaged
sea surface temperature (SST) anomalies, denoted as SST*, computed following the procedure
described in (NCP Center). The SST fields are obtained from the ORAS5 reanalysis (Zuo et al., 2019)
and provided through the ChaosBench dataset (Nathaniel et al., 2024). However, the dataset comprises
only 540 snapshots, which may hinder effective model training. To overcome this, analogous to the
drug design experiment described in Sec. 4.2, we adopt a transfer learning strategy using a longer
synthetic trajectory generated by the Community Earth System Model (CESM) (Hurrell et al., 2013),
consisting of 12,598 samples. The objectives of this experiment are twofold: (i) to determine whether
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Figure 3: ENSO mode retrieved with our method. A: Mode associated with the second leading
eigenfunction, highlighting dominant activation in the tropical Pacific. Boxes indicate standard ENSO
monitoring zones. B: Right eigenfunction corresponding to the second leading eigenvalue, compared
to the ONI index. The vertical line marks the split between training and validation sets.

our method can retrieve ENSO dynamics, and (ii) to assess whether representations φ learned from
simulated data can be effectively transferred to real-world climate observations.

A convolutional neural network-based encoder is trained using the simulated SST* fields, after
which the learned representation φ is applied to real data. The transfer operator is then estimated
following (3), using the period 1979–2016 for training and 2017–2023 for validation, and subsequently
subjected to spectral decomposition to extract the dominant modes. As expected, this procedure
recovers modes corresponding to known climate periodicities, such as annual oscillations (see Tab. 2).
Remarkably, one of the leading nontrivial modes (second in magnitude) clearly reflects ENSO
dynamics. The associated right eigenfunction exhibits a strong Pearson correlation (r=0.82, p<.001)
with the Oceanic Niño Index (ONI) (Fig. 3B), a widely used metric for ENSO monitoring (Glantz &
Ramirez, 2020), while the associated spatial mode shows dominant activation over the tropical Pacific
(Fig. 3A). Importantly, our method generalizes effectively to unseen data, successfully detecting the
2023 El Niño event within the validation set. It is worth noting that training the same model directly
on observational data also recovers the ENSO mode; however, the correlation between the associated
right eigenfunction and ONI is weaker (r=0.71, p<.001). Additionally, we compared our method
against VAMPNets (Mardt et al., 2018) and DPNets (Kostic et al., 2023b), with results indicating that
our approach achieves stronger correlation in capturing the ENSO mode (see Appendix B.4).

This experiment underscores the model’s ability to autonomously identify complex climate phenom-
ena in an unsupervised manner without prior localization (unlike previous approaches (Froyland
et al., 2021; Lapo et al., 2025)). Importantly, the transfer learning approach enables the model to
leverage knowledge from large, high-quality simulations to mitigate for the scarcity of observational
data, thereby enabling a more robust extraction of complex patterns such as ENSO. These findings
highlight the ability of our approach to learn a robust and generalizable representation, effectively
transferring knowledge from synthetic simulations to real-world observations

5 CONCLUSION

In this work, we proposed an end-to-end framework for learning evolution operators and their spectral
decomposition. Our method scales effectively to large and complex systems, making it a practical
tool for uncovering physically meaningful patterns in their dynamics. By leveraging a connection
between contrastive learning objectives and the spectral properties of evolution operators, we break
new ground on the transfer of dynamical representations. Our experiments on atomistic and climate
systems demonstrate the versatility of our approach and its generalization capabilities. Looking ahead,
this connection opens the door to more expressive learning architectures, robust training strategies,
and broader applications in scientific discovery and control.

Limitations. Due to the nature of our experiments, evaluation was more qualitative than typical in
ML; benchmarks specifically targeting the accuracy of the spectral decomposition are, to the best of
our knowledge, not yet available.
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REPRODUCIBILITY STATEMENT

Theory. Our theoretical claims are supported by complete proofs provided in Appendix A.
Code. All code used in this study is available at https://anonymous.4open.science/
r/encoderops-5F67. Detailed experimental procedures and implementation are described in
Appendix B.
Datasets. Instructions for generating, downloading, or requesting the datasets are included in
Appendix B.

REFERENCES

Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C. Smith, Berk Hess, and
Erik Lindahl. Gromacs: High performance molecular simulations through multi-level parallelism
from laptops to supercomputers. SoftwareX, 1–2:19–25, September 2015.

Romeo Alexander and Dimitrios Giannakis. Operator-theoretic framework for forecasting nonlinear
time series with kernel analog techniques. Physica D: Nonlinear Phenomena, 409:132520, 2020.

Philip W Anderson. More is different: broken symmetry and the nature of the hierarchical structure
of science. Science, 177(4047):393–396, 1972.

David Applebaum. Lévy Processes and Stochastic Calculus. Cambridge University Press, April
2009.

Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
data using consistent koopman autoencoders. In International Conference on Machine Learning,
pp. 475–485. PMLR, 2020.

Randall Balestriero and Yann LeCun. How learning by reconstruction produces uninformative
features for perception. In Proceedings of the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

Caitlin C Bannan, Kalistyn H Burley, Michael Chiu, Michael R Shirts, Michael K Gilson, and David L
Mobley. Blind prediction of cyclohexane–water distribution coefficients from the sampl5 challenge.
Journal of Computer-Aided Molecular Design, 30:927–944, 2016.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47–55, 2015.

Christopher I Bayly, Piotr Cieplak, Wendy Cornell, and Peter A Kollman. A well-behaved electrostatic
potential based method using charge restraints for deriving atomic charges: the resp model. The
Journal of Physical Chemistry, 97(40):10269–10280, 1993.

Soumendranath Bhakat and Pär Söderhjelm. Resolving the problem of trapped water in binding
cavities: prediction of host–guest binding free energies in the sampl5 challenge by funnel metady-
namics. Journal of Computer-Aided Molecular Design, 31:119–132, 2017.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather:
A 3d high-resolution model for fast and accurate global weather forecast. arXiv preprint
arXiv:2211.02556, 2022.

Jakob Bjerknes. Atmospheric teleconnections from the equatorial pacific. Monthly Weather Review,
97(3):163–172, 1969.

Luigi Bonati, Enrico Trizio, Andrea Rizzi, and Michele Parrinello. A unified framework for machine
learning collective variables for enhanced sampling simulations: mlcolvar. The Journal of Chemical
Physics, 159(1), 2023.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling through velocity
rescaling. The Journal of Chemical Physics, 126(1), 2007.

10

https://anonymous.4open.science/r/encoderops-5F67
https://anonymous.4open.science/r/encoderops-5F67


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wenju Cai, Agus Santoso, Matthew Collins, Boris Dewitte, Christina Karamperidou, Jong-Seong
Kug, Matthieu Lengaigne, Michael J McPhaden, Malte F Stuecker, Andréa S Taschetto, et al.
Changing el niño–southern oscillation in a warming climate. Nature Reviews Earth & Environment,
2(9):628–644, 2021.

Christopher W Callahan and Justin S Mankin. Persistent effect of el niño on global economic growth.
Science, 380(6649):1064–1069, 2023.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020
(oc20) dataset and community challenges. Acs Catalysis, 11(10):6059–6072, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
pp. 1597–1607. PmLR, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758, 2021.

Matthew J Colbrook, Lorna J Ayton, and Máté Szőke. Residual dynamic mode decomposition: robust
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Concurrent work. During the preparation of this submission (September 2025), we were made aware
of a concurrent preprint (Jeong et al., 2025)6 proposing a similar methodology to learn the evolution
operators of stochastic dynamical systems. In particular, Jeong et al. (2025) proposes a variation of the
loss (7) with the more agnostic choice ⟨φ(xt), ψ(xt+1)⟩ with both φ,ψ trainable. Our work, however,
differs from Jeong et al. (2025) on two key aspects. First, as proved in Sec. 3.1, our parametrization
⟨φ(xt), Pφ(xt+1)⟩ recovers the least-squares evolution operator learning framework (Lemma 1),
for which both approximation (Korda & Mezić, 2018) and statistical learning Kostic et al. (2022);
Nüske et al. (2023) results have been proved. Furthermore, as discussed in Experiment Sec. 4.1, our
parametrization results in higher-implied timescales which, according to the variational principle (Noé
& Nuske, 2013; Wu & Noé, 2020), are associated with an improved accuracy in the estimation of the
evolution operator. Our parametrization is also directly linked to the VAMP score through Lemma 3.

As a second point of departure from Jeong et al. (2025), our experiments in Sec. 4 focus on high-
dimensional dynamical systems, and to the best of our knowledge demonstrate evolution operator
learning at scales never reached so far. Further, drawing on the connection of (7) to self-supervised
learning – which is not acknowledged in Jeong et al. (2025) despite the prior work Wang et al. (2022)
– our experiments Sec. 4.2 and Sec. 4.3, demonstrate that representations learned via (7) can be
successfully transferred to new and unseen dynamical systems.

A PROOFS OF THE THEORETICAL CLAIMS.

Define ν = P[Xt], the distribution of the initial states in our dataset, and µ = Ex∼ν [p(·|x)] =
P[Xt+1] the distribution of the evolved states. In practice, ν can be the following:

• If a simulator is available, ν can be any distribution of initial states, and µ is obtained by a
single step of the simulator on data from ν.

• If one samples trajectories of length T from an initial distribution P[X1], then ν =
1
T

∑T−1
i=1 P[Xi].

• If — as in molecular dynamics, or the Lorenz 63 example below — one samples from an
invariant distribution π such that P[Xt] = π =⇒ P[Xt+1] = π, one has ν = µ = π.

The evolution operator E maps functions from L2(µ) into L2(ν), that is E : L2(µ)→ L2(ν). Notice
that since we allow for general initial and evolved distributions, respectively ν and µ, our method
does not require E to be associated to a stationary, nor ergodic dynamical system, as often the case
in the theoretical literature, see e.g. (Mezić, 2005, Section 2.3) or Kostic et al. (2022). We will now
show this simple equivalence:
Lemma 1. Let φ : X → Rd be an encoder whose components are square-integrable with respect
to both µ and ν, and let E be a Hilbert-Schmidt evolution operator. Then, the loss function (7) is
equivalent to the following operator learning loss:

ε(φ, P ) = ∥E−
∑
i,j

φi ⊗ Pijφj∥2HS.

Proof. The Lemma was already proved in Wang et al. (2022, Lemma 4.1), or Kostic et al. (2024,
Theorem 1). Here we provide a self-contained proof. Since the encoder is square-integrable in both µ
and ν — φi ∈ L2(µ) and L2(ν) — we can define the linear operators

Φµ : L2(µ)→ Rd f 7→ f = (⟨f, φi⟩L2(µ))
d
i=1.

Φ∗
ν : Rd → L2(ν) z 7→

d∑
i=1

φi(·)zi.

By direct substitution of the definition above, it follows that

∥E− Φ∗
νPΦµ∥2HS = ∥E−

∑
i,j

φi ⊗ Pijφj∥2HS.

6Version 1 of Jul 9, 2025.
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Now, let’s notice that by direct calculation one obtains

ΦνΦ
∗
ν = Eν

[
φ(x)φ(x)⊤

]
ΦνEΦ

∗
µ = Eρ

[
φ(x)φ(y)⊤

]
,

where ρ(dx, dy) = p(dy|x)ν(dx) is the joint distribution of (Xt, Xt+1).

By the definition of the Hilbert-Schmidt norm, we have

∥E− Φ∗PΦ∥2HS = ∥E∥2HS − 2Tr [E∗Φ∗
νPΦµ] + Tr

[
Φ∗

µP
⊤ΦνΦ

∗
νPΦµ

]
= ∥E∥2HS − 2Tr [ΦµE

∗Φ∗
νP ] + Tr

[
ΦµΦ

∗
µP

⊤ΦνΦ
∗
νP

]
= ∥E∥2HS − 2E(x,y)∼ρ

[
Tr

[
φ(y)φ(x)⊤P

]]
+ E(x,y)∼µ⊗ν

[
Tr

[
φ(y)φ(y)⊤P⊤φ(x)φ(x)⊤P

]]
= ∥E∥2HS − 2E(x,y)∼ρ [⟨φ(x), Pφ(y)⟩] + E(x,y)∼µ⊗ν

[
⟨φ(x), Pφ(y)⟩2

]
,

where we repeatedly used the cyclic property of the trace.

The following Lemma shows that when P is optimal with respect to (7), then it recovers the least
squares estimator (3).

Lemma 2. For any fixed φ, the predictor P minimizing (7) can be computed in closed form P∗ =
C−1

X CXY C
−1
Y , and the model for the evolution operator is given by

Eφ = P∗CY = C−1
X CXY = Eq. (3) with λ→ 0, (9)

coinciding with the least-squares estimator (3).

Proof. The proof follows by noticing that ε(φ, P ) is convex in P . Taking the gradient (see, for
example (Minka, 2000)) one has:

∇P ε(φ, P ) = −2E(x,y)∼ρ

[
φ(y)φ(x)⊤

]
+ 2E(x,y)∼µ⊗ν

[
φ(y)φ(y)⊤P⊤φ(x)φ(x)⊤

]
= −2CY X + 2CY P

⊤CX

As the problem is convex, the global minimum P∗ is attained when∇P ε(φ, P∗) = 0. This condition
is equivalent to solve the equation

−2CY X + 2CY P
⊤
∗ CX = 0.

By multiplying the expression above by C−1
X on the right and C−1

Y on the left, re-arranging it, and
taking the transpose of everything, we finally get

P∗ = C−1
X CXY C

−1
Y .

The following Lemma shows the equivalence of (7) and the VAMP-2 loss of Wu & Noé (2020);
Mardt et al. (2018)

Lemma 3. For any fixed φ, let P∗ the optimal predictor of ε(φ, P ), as in Lemma 2. Then, the
following holds true:

ε(φ, P∗) = −∥C−1/2
X CXY C

−1/2
Y ∥2HS = −VAMP2(φ).

Proof. By noticing that the loss function (7) can be equivalently rewritten as

ε(φ, P ) = Tr[P⊤CXPCY − 2PCY X ],

and substituting the optimal predictor P∗ = C−1
X CXY C

−1
Y from Lemma 2 inside this expression, we

immediately obtain the identity.
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A.1 ON THE HILBERT-SCHMIDT ASSUMPTION, AND BEYOND

In the main text, we assumed the evolution operator E to be Hilbert-Schmidt, which immediately
guarantees the well-posedness of the proposed loss function (7). Lemma 1, indeed, implies that for
any Hilbert–Schmidt E it holds

ε(φ, P ) = ∥E−
∑
i,j

φi ⊗ Pijφj∥2HS <∞.

The Hilbert-Schmidt assumption is valid in a broad class of stochastic systems, particularly when the
transition kernel exhibits smoothing properties. In atomistic simulations, for instance, the presence of
a finite temperature results in a Gaussian smoothing that makes E Hilbert-Schmidt. As an illustrative
example, consider the overdamped Langevin dynamics

Xt+1 = Xt −∇V (Xt)∆t+N (0, σ)
√
∆t,

where V is a potential function, andN (0, σ) denotes an isotropic Gaussian with mean 0 and variance
σ proportional to the system’s temperature. Assuming that the data is sampled from the equilibrium
distribution π(x)dx ∝ e−βV (x)dx, we compute

∥E∥2HS =
∑
i

∥Eei∥22 =
∑
i

∫ ∣∣∣ ∫ p(y | x) ei(y)π(dy)
∣∣∣2π(dx)

=

∫
p(y | x)2 π(y)π(x) dy dx ∝

∫ ∣∣∣ exp(− ∥y −∇V (x)∥
2σ2

)∣∣∣2π(y)π(x) dy dx <∞
where ei are elements of an orthonormal basis of L2(π), and the third equality follows from Parseval’s
identity.

The Hilbert-Schmidt assumption, however, is violated in important deterministic dynamical systems,
such as those governed by fluid dynamics equations Mezić (2005). Remarkably, the empirical loss (8)
still admits a precise operator-theoretic interpretation when E is merely a bounded operator. Indeed,
let Pφ : L2(µ)→ L2(µ) denote the orthogonal projector onto the subspace spanned by the encoder
φ. By definition, Pφ = Φ†

µΦµ, where Φµ is as in Lemma 1. With a slight abuse of the notation in
(7), we define the abstract loss

ε(φ, P ) = −2Tr[E∗Φ∗
νPΦµ] + ∥

∑
i,j

φi ⊗ Pijφj∥2HS,

whose empirical estimator exactly coincides with (8), the loss which we actually optimized in our
experiments. Now, since φ spans a finite-dimensional subspace, both Pφ and EPφ are finite rank,
hence Hilbert–Schmidt. In particular, EPφ is the restriction of E to the subspace generated by φ. An
immediate calculation shows that

ε(φ, P ) = ∥EPφ −
∑
i,j

φi ⊗ Pijφj∥2HS − ∥EPφ∥2HS, (11)

where besides basic algebraic manipulations the result is obtained using the ciclicity of the trace, and
the relation ΦµPφ = Φµ(Φ

†
µΦµ) = Φµ.

The first term on the right-hand side of (11) is familiar, and represents the error incurred by the model∑
i,j φi ⊗ Pijφj in approximating the restriction of E to the subspace spanned by φ. This error

can be linked to the least-squares approach discussed in Sec. 2, see, for example Korda & Mezić
(2018, Theorem 1). Minimizing it with respect to φ leads to representation collapse, since φ(x) = 0
for all x trivially minimizes it. Our learning objective (11), instead, avoids collapse through the
second term, −∥EPφ∥2HS, which can be interpreted as follows. Without loss of generality, write
Pφ =

∑d
i=1 ei ⊗ ei, where ei form an orthonormal basis of span(φ1, . . . , φd). By definition of

Hilbert-Schmidt norm one has

∥EPφ∥2HS =

d∑
i=1

∥Eei∥22 =

d∑
i=1

Ex∼ν

[
(Eei)(x)

2
]
.

Now notice that interpreting ei as a probe we have at our disposal to observe the system7, the term
(Eei)(x) quantifies the “dynamical response” read by our probe, given that the system was prepared

7Functions of the state of the systems are commonly referred to as observables, too.
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Table 1: Forecasting errors and training times for the Lorenz ’63 example (20 independent runs).
Note that for LinLS and KRR is reported the total fitting time while for the other methods the epoch
time is reported. Best results are highlighted in bold.

Ours LinLS KRR VAMPNets DPNets DAE CAE

RMSE (×10−2) 0.49±0.24 1.29±0.00 2.10±0.00 0.78±0.12 0.58±0.11 0.77±0.12 2.58±0.19

MAE (×10−2) 0.32±0.24 0.84±0.00 1.27±0.00 0.46±0.08 0.36±0.08 0.55±0.08 1.95±0.14

Time (ms) 181.1±40.1 .4±.1 (25.3±0.2)103 165.5±10.8 190.7±41.5 166.8±9.10 408.5±41.9

to be in state x. The quantity ∥EPφ∥2HS, therefore, measures the average strength of such responses,
implying that the second term in the loss promotes encoders φ whose span captures observables with
the highest possible dynamical variability. To close the discussion, we highlight that for Hilbert-
Schmidt operators, the observables with the highest dynamical response are precisely the leading
singular functions, and the loss function (7) is indeed minimized when φ spans the leading singular
space of the evolution operator E, see (Kostic et al., 2024, Theorem 1).

B EXPERIMENTAL DETAILS

The experiments have been performed on the following hardware:

• 1 Node with 32 cores Ice Lake at 2.60 GHz, 4 × NVIDIA Ampere A100 GPUs, 64 GB and
512 GB RAM.

• 1 Node with 20 cores Xeon Silver 4210 at 2.20 GHz, 4 × NVIDIA Tesla V100 GPUs, 16
GB and 384 GB RAM.

• A workstation equipped with a i7-5930K CPU at 3.50 GHz, 2 × NVIDIA GeForce GTX
TITAN X GPUs, 12 GB and 32 GB of RAM.

B.1 ADDITIONAL EXPERIMENT: LORENZ ’63

We evaluated our method on the Lorenz ’63 system (Lorenz, 1963), a classical example of a chaotic
dynamical system governed by three coupled ordinary differential equations. To validate the per-
formance of our approach, we tested it on a one-step-ahead forecasting task, and we analyzed the
learned dynamical modes. Because of the low-dimensionality of the state xt, we appended it as a
non-learnable feature of the encoder φ(xt) = [MLP(xt), xt] to ensure that the forecasting target–the
state itself–lies in the linear space of functions spanned by φ by design. The learnable part of the
encoder consisted of a small multi-layer perceptron (MLP).

In Tab. 1, we compare the performance of the estimator Eφ from (3), with an encoder φ trained
according to Alg. 1, against several baseline models. These include Linear Least Squares (LinLS),
Kernel Ridge Regression (Kostic et al., 2022) (KRR) with a Gaussian kernel, VAMPNets (Mardt
et al., 2018), DPNets (Kostic et al., 2023b), Dynamic Autoencoder (Lusch et al., 2018) (DAE), and
Consistent Autoencoder (Azencot et al., 2020) (CAE). To ensure a fair comparison, we matched the
encoder architecture for VAMPNets, DPNets, DAE and CAE, while decoders of DAE and CAE were
defined as MLPs symmetric to their respective encoders. For KRR, the rank was set equal to the
latent dimensionality used in the deep learning models.

The results on the forecasting task demonstrate that, although our model is not specifically designed
for prediction, it achieves the best performance among all considered methods. Finally, we verified
that the leading eigenfunctions obtained by our approach correctly identify coherent sets on the stable
attractor (see Fig. 4).

Training details. We generated a single long trajectory of 15,000 time steps using the kooplearn
1.1.3 implementation of Lorenz ’63 dynamical system, with default parameters. To ensure conver-
gence to a system’s attractor (Tucker, 1999), we discarded the first 1,000 time steps. Also, to obtain
approximately time-independent segments for training, validation and testing, we further discarded
1,000 time steps between each split. In total, 10,000 time steps were used for training, and 1,000 time
steps each for validation and testing.
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Figure 4: Leading eigenfunctions computed by our and baseline approaches. Each row corresponds
to a different method, and each column shows an eigenfunction ordered by decreasing eigenvalue
magnitude.

Our encoder consisted of an MLP with an input layer of size 3, two hidden layers with 16 units
each, and an 8-dimensional latent space, using ReLU activation functions. The model was trained for
100 epochs using the AdamW optimizer, with an initial learning rate of 10−3 decayed to 10−4 via a
cosine schedule, a batch size of 512, and a lag time of 10 time steps.

Baseline methods. We compared our approach against the following baseline models:

• Linear Least Squares (LinLS). A linear regression model trained directly on the raw input
features without any nonlinear transformation or latent representation.

• Kernel Ridge Regression (KRR) (Kostic et al., 2022). We trained a KRR model with a
Gaussian kernel, using the bandwidth estimated via the median heuristic (Garreau et al.,
2017). The model was trained with a rank of 8, a Tikhonov regularization parameter of
10−6, and using Arnoldi iterations.

• VAMPNets (Mardt et al., 2018). Trained using the same MLP encoder as ours, with the
VAMP-2 loss loss and centered covariances.

• DPNets (Kostic et al., 2023b). Trained using the same MLP encoder as ours, with the
relaxed DP loss and centered covariances.
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• Dynamic Autoencoder (DAE) (Lusch et al., 2018). Trained with the same MLP encoder
architecture as in our approach; the decoder was defined symmetrically. The loss components
for reconstruction, prediction, and linear evolution were equally weighted (all set to 1).

• Consistent Autoencoder (Azencot et al., 2020). Trained with the same MLP encoder
architecture as in our approach; the decoder was defined symmetrically. The CAE loss
weights for reconstruction, prediction, backward prediction, linear evolution, and consistency
were all set to 1.

For all deep learning-based baselines (VAMPNets, DPNets, DAE, and CAE), models were trained for
100 epochs using a batch size of 512, and a lag time of 10 time steps. VAMPNets and DPNets used
the AdamW optimizer with a learning rate of 10−4 and 10−2, respectively; DAE and CAE used the
Adam optimizer with a learning rate of 10−3. All baselines were implemented using kooplearn
1.1.3.

Additional analysis. In Fig. 4, we show the leading eigenfunctions of the transfer operators computed
using our method and the baseline approaches. These visualizations highlight qualitative differences
in the learned spectral structures, offering insight into the dynamics captured by each method. The
leading eigenfunction of KRR, VAMPNets, DPNets, and DAE is constant and associated with the
stable attractor. Our method, LinLS, and KRR, find an eigenfunction with eigenvalue ≈ .996 which
clearly separates the two lobes of the attractor.

B.2 PROTEIN FOLDING

Training details. We used data from (Lindorff-Larsen et al., 2011), which can be requested directly
to De Shaw Research and are available without charge for academic usage. Our encoder consisted of
a SchNet (Schütt et al., 2017) graph neural network with 3 interaction blocks, 16 RBF functions and
an hidden dimension of 64. The model was trained with an AdamW optimizer with starting learning
rate of 10−2 decaying to 10−4 with a cosine schedule, using the mlcolvar (Bonati et al., 2023)
library.

Additional analysis. To understand to what mode is associated the leading eigenfunction Ψ1, in
Fig. 5 we correlated it with two physical quantities associated with the folding, which are the Root-
Mean-Square-Deviation (RMSD) and the Radius of Gyration, see Fig. 5. Furthermore, to obtain a
finer understanding, we used sparse linear models to approximate the CVs via LASSO regression.
This yields a surrogate model which is a linear combination of a few physical descriptors, hence
interpretable. To choose the regularization strength, we computed the Mean Square Error of the
surrogate model versus the number of features, see Fig. 6.

We performed LASSO regression on a set of contact functions determining the presence of hydrogen
bonds. The features selected by this procedure, as well as a snapshot of the protein where these
features are highlighted, are reported in Fig. 7. Interestingly, some of the selected features pertain to
side-chain interactions, a piece of information that would have been impossible to get using only Cα

atoms to train the encoder.

B.3 LIGAND BINDING

Simulations details. We selected a subset of host-guest systems for the SAMPL5 challenge (Bannan
et al., 2016; Yin et al., 2017) to evaluate our method’s performance, including three ligands (G1,
G2, G3) and the octa-acid calixarane host (OAMe). Simulations were run in GROMACS 2024.5
(Abraham et al., 2015) patched with PLUMED 2.9.3 (Tribello et al., 2014). Systems were built using
the GAFF (Wang et al., 2004) force field with RESP (Bayly et al., 1993) charges, solvated in a cubic
TIP3P (Jorgensen et al., 1983) water box 40.27Å length, containing 2100 water molecules. System
charge balanced with Na+ ions. Our timestep is 2 fs and the temperature is set to 300K via a velocity
rescale thermostat (Bussi et al., 2007) with a coupling time of 0.1 ps. All simulations aligned the
host’s vertical axis h with the box axis and centered coordinates on virtual atom V1. All production
simulations were initiated from the dissociated state of each ligand. Trajectories were terminated
when the ligand fully rebounded into the binding pocket (defined as host-guest distance h < 6Å).
For each ligand, we performed 10 independent production trajectories, with coordinates saved every
500 steps.
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Figure 5: The value of the leading eigenfunction
Ψ1 of the evolution operator is highly correlated
with the RMSD and Radius of Gyration of the
Trp-cage protein.

Figure 6: MSE of approximating Ψ1 by
LASSO regression on meaningful physical de-
scriptors. For Trp-cage we constructed a library
of hydrogen-bond contact functions. The selected
descriptors are reported in Fig. 7

Physical descriptors (H-bonds) Normalized Coefficient

GLY10-O – SER13-N 0.307
GLY11-O – ARG16-N 0.294
TRP6-O – GLY11-N 0.170
TRP6-NE1s (sidechain) – ARG16-O 0.109
GLN5-O – ASP9-N 0.073
TRP6-NE1s (sidechain) – PRO17-O 0.044
TRP6-NE1s (sidechain) – PRO18-N 0.002

Figure 7: Normalized hydrogen-bond coefficients selected by the LASSO model (left) and represen-
tative structural snapshot (right) with the features highlighted.

In our simulations, we applied a funnel restraint (Limongelli et al., 2013) to limit the conformational
space explored by the ligand in the unbound state, in turn accelerating the binding process. The
parameters are identical to those used in previous studies (Rizzi et al., 2021). We define h as the
projection of each ligand along the binding axis, treated as its radial component. For h ≥ 10Å,
the funnel surface is a cylinder with radius Rcyl = 2Å along the vertical axis. For h < 10Å, the
funnel opens into a conical shape with a 45◦ angle, defined by r = 12 − h. The force acting on a
displacement x from the funnel surface is harmonic:

Ffunnel = −kFx with kF = 20 kJmol−1 Å
−2

An additional harmonic restraint prevents the ligand from escaping too far from the host, enforcing
an upper boundary:

Fupper = −kU (h− 18) for h > 18Å, with kU = 40 kJmol−1 Å
−2

The data will be released to ensure the reproducibility of the experiment.

Training details. Our encoder consisted of a SchNet (Schütt et al., 2017) graph neural network with
3 interaction blocks, 16 RBF functions, and a hidden dimension of 64 with an AdamW optimizer
with starting learning rate of 10−2 decaying to 10−4 with a cosine schedule.

Additional analysis. In Fig. 8 we inspect the two leading eigenfunctions of the evolution operator
by correlating them with two physical descriptors connected to the binding: the distance along the
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Figure 8: Analysis of the leading eigenfunctions in the space of the host-guest distance z and the
ligand orientation θ for Ψ1 (left) and Ψ2 (right). The first row contains the results obtained from
training from scratch the representation, while the second row contains the case in which it is
transferred from other systems.

z direction between the center of mass of the host and the guest and the angle of the ligand with
respect to the z axis (see figure in the inset). These results allow us to correlate the Ψ1 eigenfunction
to the transition between the semi-bound pose to the native one, which is due to the presence of
trapped water molecules inside the pocket (Rizzi et al., 2021; Bhakat & Söderhjelm, 2017). The
second eigenfunction Ψ2 is instead associated with the binding process. Furthermore, we compared
the eigenfunctions obtained by training the representation from scratch on the G2 ligand with the
case in which this is transferred from other ligands (G1 and G3), obtaining a remarkable agreement.
The ligands G1, G2, and G3 are represented in Fig. 9

Figure 9: The three different molecules studied in the ligand-binding experiment.

B.4 CLIMATE MODELING

Datasets. Following the methodology outlined in (NCP Center), we compute SST* from sea
surface temperature (SST) data provided by the ORAS5 reanalysis (Zuo et al., 2019), as made
available through the ChaosBench dataset (Nathaniel et al., 2024). The dataset spans a 45-year period
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(1979–2023) at a spatial resolution of 1.5°, resulting in a time series of 540 monthly snapshots, each
with dimensions 121 × 240. Data from 1979 to 2016 was used for training, while the 2017–2023
period was reserved for validation.

For the transfer learning task, we employed simulations from the CESM Last Mil-
lennium Ensemble project (Otto-Bliesner et al., 2016), spanning the years 850–2006
(files b.e11.BLMTRC5CN.f19_g16.001.pop.h.SST.085001-089912.nc to
b.e11.BLMTRC5CN.f19_g16.001.pop.h.SST.185001-200512.nc available here:
https://gdex.ucar.edu/datasets/d651058/#). To ensure spatial compatibility
between synthetic and observational data, the CESM SST fields were regridded onto the same
1.5◦ × 1.5◦ regular latitude–longitude grid of ORAS5 using the xESMF (Zhuang et al., 2025) python
package.

Training details. Both models trained with CESM and ORAS5 data use a lightweight CNN encoder
with four convolutional layers, batch normalization, and max pooling. A masked global average
pooling layer, leveraging a binary land–ocean mask, ensures only ocean data contribute to the output
representation. The pooled features are mapped through a final linear embedding layer.

For the CESM model, the linear layer P maps to a 128-dimensional latent space. Training included
simplicial normalization (Lavoie et al., 2022) (dimension 2), spectral normalization (Miyato et al.,
2018) on the linear layer P , gradient clipping (max norm 0.2), a lag time of one month, 100 epochs,
AdamW optimizer, and a cosine-decayed learning rate from 10−3 to 10−5 with a batch size of 64.
Leading eigenvalues of the transfer operator are reported in Tab. 2.

Table 2: Leading eigenvalues of the transfer operator learned on ORAS5 data with φ trained on
CESM data. Each eigenvalue is expressed in terms of its real (Re), imaginary (Im), and absolute
(Abs) components. The associated decorrelation times and oscillation frequencies (in years) are also
reported. Eigenvalues are listed in descending order with respect to their absolute value, and those
with a decorrelation time shorter than 1/12 years, i.e., the sampling frequency, were discarded.

Idx Re Im Abs Decor (yr) Freq (yr)

6 0.92 0.00 0.92 1.01 0.00
4 0.88 0.09 0.89 0.70 5.23
5 0.88 -0.09 0.89 0.70 -5.23
2 0.76 0.40 0.86 0.54 1.09
3 0.76 -0.40 0.86 0.54 -1.09
7 0.85 0.00 0.85 0.50 0.00
8 0.79 0.00 0.79 0.35 0.00
0 0.41 0.67 0.78 0.34 0.52
1 0.41 -0.67 0.78 0.34 -0.52
9 0.74 0.12 0.75 0.29 3.26

10 0.74 -0.12 0.75 0.29 -3.26
11 0.71 0.00 0.71 0.24 0.00
12 0.64 0.00 0.64 0.19 0.00
14 0.60 -0.11 0.61 0.17 -3.01

Idx Re Im Abs Decor (yr) Freq (yr)

13 0.60 0.11 0.61 0.17 3.01
15 0.58 0.13 0.59 0.16 2.37
16 0.58 -0.13 0.59 0.16 -2.37
17 0.58 0.03 0.58 0.15 9.78
18 0.58 -0.03 0.58 0.15 -9.78
19 0.52 0.12 0.53 0.13 2.34
20 0.52 -0.12 0.53 0.13 -2.34
21 0.47 0.15 0.49 0.12 1.68
22 0.47 -0.15 0.49 0.12 -1.68
23 0.47 0.03 0.47 0.11 9.27
24 0.47 -0.03 0.47 0.11 -9.27
31 0.39 0.00 0.39 0.09 0.00
27 0.35 0.16 0.38 0.09 1.19
28 0.35 -0.16 0.38 0.09 -1.19

For the ORAS5 model, the linear layer P maps to a 256-dimensional latent space. Training details
were otherwise identical, except a 12-month input history was used.

The hyperparameters reported above were selected via grid search; Tab. 3 summarizes the ranges
explored.

Comparisons. We further compared our method to VAMPNets (Mardt et al., 2018), DPNets (Kostic
et al., 2023b), Linear Least Squares (LinLS), and Kernel Ridge Regression (KRR) with a Gaussian
kernel. For the deep-learning methods, we used identical training parameters across models. For
the classical approaches applied to the raw inputs, we selected the best model via a grid search
over regularization strengths α ∈ [10−7, 10−3] and, for KRR, kernel coefficients γ ∈ [10−5, 10−2].
We also varied the estimator rank in the set {5, 8, 10, 16, 32, 50, 64, 128} to assess if low-rank
approximations in the raw space could recover the dynamics. As shown in Tab. 6 and Fig. 13, our
method outperforms both baselines on the evaluated tasks.
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Table 3: Hyperparameter ranges explored during grid search for the climate modeling task.

Hyperparameter Search Range
Latent dimensions [32, 64, 128, ..., 1024]
Max gradient clipping norm [None, 0.1, 0.2, 0.5]
Normalization of linear layer [False, True]
Regularization [0, 1e-5, ..., 1e-2]
Simplicial normalization dimensions [0, 2, ..., 16]
History length [0, 1, 2, 3, 6, 12]

B.5 ABLATIONS

In our first set of ablations, we investigated the dependence of our self-supervised scheme on the
encoder’s architecture. Specifically, we studied the scaling of the loss function with respect to (i) the
latent dimension and (ii) the overall parameter count of the encoder.

Scaling laws: Graph-NN encoder. We retrained the SchNet architecture Schütt et al. (2017) on the
data from the protein folding experiment Sec. 4.1 for three different sizes of the encoder, summarized
in Tab. 4, and values of the latent dimension from 4 to 256. The results of this comprehensive ablation
study are reported in Fig. 10. We observed monotonically improving losses with respect to both an
increasing number of training dimensions (panel A) and an increasing model size (panel B). This
result provides robust confirmation of the good scalability properties of the loss function (8) studied in
this work. As a test-time metric, we evaluated the eigenvalue residuals, as defined in (Colbrook et al.,
2023, Algorithm 1), see panel C of Fig. 10. This metric assesses the extent to which the eigenvalues
obtained from our model satisfy the eigenvalue equation Eg = λg. The leading eigenvalue λ1 is
the one enjoying the overall best approximation. Larger architectures are associated with smaller
residuals across all the leading eigenvalues.

Table 4: Architectural configuration of the three SchNet model sizes used in the ablation study.

Model Layers Filters Hidden Channels Params
SchNet-S 2 16 32 6,480
SchNet-M 3 32 64 33,088
SchNet-L 3 64 128 125,536

CBA

Figure 10: Scaling laws for the protein folding experiment in 4.1. A Training loss dynamics as a
function of the number of latent dimensions d. B Final training loss for three different model sizes,
as a function of the number of latent dimensions. C Eigenvalue residuals (lower is better), defined
in (Colbrook et al., 2023, Algorithm 1) for three different model sizes.

Scaling laws: CNN encoder. The same set of ablations for the climate experiment Sec. 4.3 with a
convolutional NN encoder, are reported in Fig. 11. The overall qualitative behavior exactly matches
what was already observed for the Graph NN encoder: increasing latent dimensions and/or model size
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(see Tab. 5) is associated with higher performance. To rule out the possibility that these improvements
are linked to overfitting, in Fig. 11, we report the validation loss, instead of the training loss of Fig. 10.

Obtaining the same qualitative results across such distinct physical domains provides strong empirical
evidence for the generality of the self-supervised method we propose.

Table 5: Architectural configuration of the three CNN model sizes used in the ablation study.

Model Layers Hidden Channels Params
CNN-S 4 [8, 16, 24, 32] 12,888
CNN-M 4 [16, 32, 64, 128] 101,760
CNN-L 4 [32, 64, 128, 256] 397,024

CBA

Figure 11: Scaling laws for the climate experiment in 4.3. A Validation loss dynamics as a function
of the number of latent dimensions d. B Final validation loss for three different model sizes, as
a function of the number of latent dimensions. C Eigenvalue residuals (lower is better), defined
in (Colbrook et al., 2023, Algorithm 1) for three different model sizes.

Online versus offline covariances. We conducted an ablation study to assess the effect of using
covariances CX , CXY computed either online during training via EMA or offline from the full
training set when estimating the evolution operator Eφ.

In the Lorenz ’63 experiment, we trained the models as in the main Lorenz-63 experiment (see Ap-
pendix B.1) except for lag time set to 1 to enable a direct comparison between covariance estimation
methods. The results show that online covariances yielded better performance, with RMSE and MAE
of 0.51± 0.11 and 0.30± 0.06, respectively, compared to 0.63± 0.21 and 0.45± 0.19 for offline
covariances.

In the climate experiment, the ENSO mode is easily recovered with both approaches. Specifically,
for the model trained on ORAS5, the Pearson correlation between the right eigenfunction of Eφ and
the ONI was 0.72 with online covariances and 0.71 with offline covariances, indicating comparable
performance. The associated eigenvalues were also very similar: λENSO = 0.9531±0.1206i (online)
and λENSO = 0.9527± 0.1277i (offline).

Stability of EMA covariance. To assess how EMA-based covariances converge toward their offline
counterparts, computed via a full-pass over the entire training set, we measured their discrepancy
in terms of Frobenius norm, i.e., ∥CEMA − Cfull-pass∥F , during training on the Lorenz ’63 data. As
shown in Fig. 12, this difference peaks in correspondence with the step-like drop in the validation loss,
which we interpret as the encoder discovering new representational directions. For a sufficiently large
number of epochs, as the network converges and settles into a stable representation, the discrepancy
steadily decreases and approaches zero. These observations demonstrate how EMA offers a robust and
practical online approximation of the offline, full-pass covariance, offering a clear advantage when
dealing with large-scale datasets where computing full-pass covariances may be computationally
infeasible.
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Figure 12: Stability of EMA-based covariance during training on Lorenz ’63. The blue curve (left
y-axis) shows the discrepancy between EMA and full-pass covariances, while the red curve (right
y-axis) shows the validation loss.

Table 6: Performance comparison in terms of Pearson correlation between the right eigenfunction
associated with the ENSO mode and ONI, alongside the time per training epoch. Best results are
highlighted in bold.

Transfer learning task (model trained on CESM, evaluated on ORAS5).
Ours VAMPNets DPNets LinLS KRR

Pearson correlation (r) 0.81 0.56 0.77 N/A N/A
Time per epoch (s) 25.27 ± 0.74 28.44 ± 0.79 29.17 ± 0.79 N/A N/A

Model trained and evaluated on ORAS5 data.
Ours VAMPNets DPNets LinLS KRR

Pearson correlation (r) 0.72 0.56 0.62 0.60 0.63
Time per epoch (s) 1.91 ± 0.17 2.03 ± 0.15 2.05 ± 0.15 N/A N/A
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Figure 13: Comparison of ENSO modes retrieved using transfer learning by our method, VAMPNets,
and DPNets.
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