

000 001 002 003 004 005 SELF-SUPERVISED EVOLUTION OPERATOR LEARNING 006 FOR HIGH-DIMENSIONAL DYNAMICAL SYSTEMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 We introduce an end-to-end approach to learn the evolution operators of large-
025 scale non-linear dynamical systems, such as those describing complex natural
026 phenomena. Evolution operators are particularly well-suited for analyzing systems
027 that exhibit spatio-temporal patterns and have become a key analytical tool across
028 various scientific communities. As terabyte-scale weather datasets and simulation
029 tools capable of running millions of molecular dynamics steps per day are becoming
030 commodities, our approach provides an effective tool to make sense of them from a
031 data-driven perspective. The core of it lies in a remarkable connection between self-
032 supervised representation learning methods and the recently established learning
033 theory of evolution operators. We deploy our approach across multiple scientific
034 domains: explaining the folding dynamics of small proteins, the binding process
035 of drug-like molecules in host sites, and autonomously finding patterns in climate
036 data. Our code is available open-source at: <https://anonymous.4open.science/r/encoderops-5F67>.
037
038

1 INTRODUCTION

039 Dynamical systems are fundamental to understanding phenomena across a vast range of scientific
040 disciplines, from physics and biology to climate science and engineering. Traditionally, scientists
041 have modeled these systems by formulating differential equations from first principles. However,
042 as systems grow in scale and complexity, this approach quickly becomes computationally burden-
043 some and difficult to interpret (Anderson, 1972), hindering the study of large-scale phenomena.
044 Simultaneously, advancements in data collection techniques and computational power have led to
045 an explosion of available data from experiments (Hersbach et al., 2020; Chanussot et al., 2021) and
046 high-fidelity simulations (Harvey et al., 2009; Abraham et al., 2015; Eastman et al., 2017; Bauer
047 et al., 2015). This abundance of data makes data-driven approaches increasingly appealing for
048 studying complex dynamics, with machine learning (Shalev-Shwartz & Ben-David, 2014) becoming
049 a dominant paradigm for learning dynamical systems, largely focusing on predictive tasks such as
050 forecasting. The recent revolution in data-driven weather modeling (Pathak et al., 2022; Bi et al.,
051 2022; Lam et al., 2023; Kochkov et al., 2024) stands as a paradigmatic example of ML’s power in
052 handling complex spatio-temporal dynamics. Similarly, reinforcement learning (Sutton & Barto,
053 1998) has reimagined control theory by leveraging data-driven strategies to optimize system behavior.
054 While these data-driven methods excel at prediction and simulation, there remains a significant gap
055 in approaches that offer interpretability. In scientific contexts, merely predicting system behavior is
056 often insufficient; understanding why a system evolves in a certain way is paramount. For instance,
057 comprehending the dynamical shortcuts and bottlenecks happening through atomistic interaction is
058 crucial for understanding why a drug binds to a specific target or fails to do so, a level of insight not
059 typically provided by black-box predictive models.

060 A modeling paradigm particularly well-suited for interpretability is that of *evolution operators* (Lasota
061 & Mackey, 1994; Applebaum, 2009). Under mild assumptions, dynamical systems and stochastic
062 processes can be represented by a linear operator — a mathematical entity that maps functions to other
063 functions. This operator-based approach offers multiple advantages. First, it linearizes the dynamics,
064 greatly simplifying tasks like forecasting and controller design. Second, these operators possess a
065 spectral decomposition¹ (Reed & Simon, 1972), which expresses the system’s complex dynamics as
066

067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1

054 a linear combination of fundamental, coherent spatio-temporal modes (Molgedey & Schuster, 1994).
 055 Each mode represents a distinct, intrinsic pattern associated with a unique spatio-temporal structure
 056 defined in terms of growth or decay rates and oscillation frequencies. By identifying and analyzing
 057 these principal modes, researchers gain deep insights into the underlying mechanisms driving the
 058 system’s macroscopic behavior, offering a structured, physically meaningful understanding.

059 Building on the understanding that evolution operators provide a powerful framework for interpre-
 060 tative analysis, significant effort has been directed towards learning these operators directly from
 061 data Kovachki et al. (2023). Data-driven approaches for this task emerged already in the early
 062 2000s, including pioneering work utilizing transfer operators for analyzing stochastic processes in
 063 computational biophysics (Schütte et al., 2001), as well as the dynamic mode decomposition family
 064 of methods (Schmid, 2010b) for deterministic systems via the Koopman operator. In the ensuing
 065 years, there has been a significant acceleration in machine learning methods for evolution operator
 066 learning, encompassing theoretical advances through kernel methods and powerful end-to-end deep
 067 learning approaches.

068 **Contributions.** In this work, we build upon these recent foundations, showing how evolution
 069 operator learning can be scaled to structured and high-dimensional dynamical systems. We formalize
 070 a principled end-to-end protocol that is amenable to GPU training and prove its equivalence to a
 071 self-supervised representation learning problem. Leveraging this link, we also show the transferability
 072 of our trained models in both molecular dynamics and climate settings. Code, data, and weights are
 073 made available open-source.

075 2 EVOLUTION OPERATORS AND HOW TO LEARN THEM

077 Evolution operator learning is a data-driven approach to characterizing dynamical systems, either
 078 stochastic, $x_{t+1} \sim p(\cdot|x_t)$, or deterministic, $x_{t+1} \sim \delta(\cdot - F(x_t))$. Throughout, we assume the
 079 dynamics to be Markovian, so that the evolution of x_t depends on x_t alone and not on the states at
 080 times $s < t$. If this assumption is not satisfied by x_t , a standard trick is to re-define the state as a
 081 context $c_t^H = f(x_t, x_{t-1}, \dots, x_{t-H})$ with history length H , where f can be a simple concatenation,
 082 or a learned sequence model (e.g., a recurrent neural network or transformer).

083 *Evolution operators* are defined as follows: for every function f of the state of the system, $(\mathbb{E}f)(x_t)$
 084 is the expected value of f one step ahead in the future, given that at time t the system was found in x_t

$$085 \quad (\mathbb{E}f)(x_t) = \int p(dy|x_t) f(y) = \mathbb{E}_{y \sim X_{t+1}|X_t} [f(y)|x_t]. \quad (1)$$

087 Notice that \mathbb{E} is an operator because it maps any function f to another function, $x_t \mapsto (\mathbb{E}f)(x_t)$,
 088 and is *linear* because $\mathbb{E}(f + \alpha g) = \mathbb{E}f + \alpha \mathbb{E}g$. When the dynamics is deterministic, \mathbb{E} is known as
 089 the *Koopman operator* (Koopman, 1931), while in the stochastic case it is known as the *transfer*
 090 *operator* (Applebaum, 2009).

091 Evolution operators fully characterize the dynamical system because knowing \mathbb{E} allows us to recon-
 092 struct the dynamical law $p(\cdot|x_t)$. Indeed, for any subset of the state space $B \subseteq \mathcal{X}$, applying \mathbb{E} to the
 093 indicator function of B , we have

$$095 \quad (\mathbb{E}1_B)(x_t) = \int_B p(dy|x_t) = \mathbb{P}[X_{t+1} \in B|x_t].$$

097 An advantage of the operator approach over dealing directly with the conditional probability $p(\cdot|x_t)$ is
 098 that \mathbb{E} acts linearly on the objects to which it is applied. This means that operators unlock an arsenal
 099 of tools from linear algebra and functional analysis, which would be unavailable otherwise. Arguably
 100 the most important of them is the spectral decomposition, allowing us to decompose \mathbb{E} , and hence the
 101 dynamics, into a linear superposition of dynamical modes. These ideas lie at the core of the celebrated
 102 Time-lagged Independent Component Analysis (Molgedey & Schuster, 1994; Pérez-Hernández et al.,
 103 2013), and Dynamical Mode Decomposition (Schmid, 2010a; Kutz et al., 2016).

104 2.1 LEARNING \mathbb{E} AND ITS SPECTRAL DECOMPOSITION FROM DATA

106 We now review the main approaches to learn the evolution operator and its spec-
 107 tral decomposition from a finite dataset of observations, with an emphasis on the
 least squares approach, which is essential to understand every other method as well.

108 A core idea of operator learning
 109 is that operators are defined by
 110 how they act *on a suitable linear space of functions*, similarly
 111 to how matrices are defined by
 112 their action on a basis of vectors.
 113 Of course, not every function f
 114 is interesting, and this nicely par-
 115 allels with the matrix example,
 116 where the most "interesting" di-
 117 rections are those that recover
 118 most of the variance in the data.
 119 Learning E , therefore, is usually cast as the following problem:
 120

121 Letting $\varphi(x) \in \mathbb{R}^d$ be a — learned or fixed — encoder of the state, find the best approximation of E
 122 *restricted* to the d -dimensional linear space of functions generated by φ , given the data.
 123

124 In practice, the data is usually a collection of transitions $\mathcal{D} = (x_i, y_i)_{i=1}^N$, where it is intended that
 125 $x_i \sim \mathbb{P}[X_t]$ are sampled from a distribution of initial states, while $y_i \sim p(\cdot|x_i)$.

126 **Least squares.** In this approach the encoder φ is a frozen, that is non-learnable, dictionary of
 127 functions, and we are interested in approximating the action of E on functions of the form $f(x) =$
 128 $\langle w, \varphi(x) \rangle$ for every $w \in \mathbb{R}^d$. To this end, one minimizes the empirical error between the true
 129 conditional expectation $\mathbb{E}_{y \sim X_{t+1}|X_t} [\langle w, \varphi(y) \rangle | x]$, and a linear model $\langle Ew, \varphi(x) \rangle$, where the matrix
 130 $E \in \mathbb{R}^{d \times d}$ identifies the restriction of the evolution operator to the linear span of the dictionary:

$$131 \quad \frac{1}{N} \sum_{i=1}^N (\langle w, \varphi(y_i) \rangle - \langle Ew, \varphi(x_i) \rangle)^2 \leq \frac{1}{N} \sum_{i=1}^N \|\varphi(y_i) - E^\top \varphi(x_i)\|^2 + \lambda \|E\|^2. \quad (2)$$

132 On the right-hand side, we assumed $\|w\| \leq 1$, used the Cauchy–Schwarz inequality, and added a
 133 ridge penalty. The minimizer of (2) can be computed in closed form (Korda & Mezić, 2018; Kostic
 134 et al., 2022, and references therein) as

$$135 \quad E_\varphi = (C_X + \lambda \text{Id})^{-1} C_{XY}, \quad \text{with } C_{XY} = \frac{1}{N} \sum_{i=1}^N \varphi(x_i) \varphi(y_i)^\top \text{ and } C_X = C_{XX}. \quad (3)$$

136 In the limit of infinite data, $N \rightarrow \infty$, and infinitely dimensional encoders, $d \rightarrow \infty$, the least squares
 137 estimator converges (Korda & Mezić, 2018) in the strong operator topology to the evolution operator
 138 E , and similar (but weaker) asymptotic convergence results are proved for its spectrum.

139 **Mode decomposition.** The spectral decomposition of E is approximated by expressing the least-
 140 squares estimator in its eigenvectors' basis $E_\varphi = Q \Lambda Q^{-1}$, where the columns of $Q = [q_1, \dots, q_d]$
 141 are the eigenvectors of E_φ , and Λ is a diagonal matrix of eigenvalues. In this basis, the expected
 142 value in the future for a function $f(x) = \langle w, \varphi(x) \rangle$ is expressed as

$$143 \quad \mathbb{E}_{y \sim X_{t+1}|X_t} [f(y) | x] \approx \langle E_\varphi w, \varphi(x) \rangle = \langle Q \Lambda Q^{-1} w, \varphi(x) \rangle = \sum_{i=1}^d \lambda_i \langle q_i, \varphi(x) \rangle (Q^{-1} w)_i. \quad (4)$$

144 The spectral decomposition expresses the transition $x_t \rightarrow x_{t+1}$ as a sum of *modes* of the form
 145 $\lambda_i \langle q_i, \varphi(x) \rangle (Q^{-1} w)_i$, each of which can be broken down into three components:

- 146 1. The eigenvalues λ_i determine the time scales of the transition. Indeed, applying the evolution
 147 operator s times to analyze the transition $x_t \rightarrow x_{t+s}$ leaves (4) unchanged, except that each
 148 λ_i becomes λ_i^s . Writing $\lambda_i^s = \rho_i^s e^{is\omega_i}$ in polar coordinates, reveals that the modes decay
 149 exponentially over time with rate ρ_i , while oscillating at frequency ω_i .
- 150 2. The initial state x influences the decomposition through the factor $\Psi_i(x) = \langle q_i, \varphi(x) \rangle$. This
 151 coefficient captures how strongly the state x aligns with the i -th mode. When q_i corresponds
 152 to an eigenvalue with slow decay, i.e., $|\lambda_i| \approx 1$, the term $\Psi_i(x)$ serves as a natural quantity
 153 for clustering states into *coherent* or *metastable* sets.

162 3. The coefficient $(Q^{-1}w)_i$, in turn, indicates how the function represented by the vector w
 163 relates to the i -th mode. This connection makes it possible to link the dynamical patterns to
 164 specific functions — or *observables* — thereby deepening our understanding of the system.
 165

166 **Kernel methods.** Leveraging the kernel trick, one can learn evolution operators by deriving a
 167 closed-form solution of (2) in terms of kernel matrices whose elements are of the form $k(x_i, x_j) =$
 168 $\langle \varphi(x_i), \varphi(x_j) \rangle$, with $k(\cdot, \cdot)$ a suitable kernel function. Thanks to the theory of reproducing kernel
 169 Hilbert spaces, this class of methods is backed up by statistical learning guarantees, such as the ones
 170 derived in (Kostic et al., 2022; 2023a; Nüske et al., 2023). Similarly to the least-squares approach,
 171 one also approximates the spectral decomposition of E via kernel methods, and this task captured
 172 quite a lot of attention from researchers in this area, see (Williams et al., 2014; Kawahara, 2016; Klus
 173 et al., 2019; Das & Giannakis, 2020; Alexander & Giannakis, 2020; Meanti et al., 2023).

174 **Deep learning.** In contrast to the previous approaches, where the encoder φ is prescribed, a number
 175 of methods proposed to approximate E from data with end-to-end schemes including φ as a learnable
 176 neural network. Since learning E ultimately entails learning its action on the linear space spanned
 177 by φ , it is appealing to choose an encoder capturing the most salient features of the dynamics. To
 178 this end, one can train φ via an *encoder-decoder* scheme as proposed in (Takeishi et al., 2017; Lusch
 179 et al., 2018; Otto & Rowley, 2019; Azencot et al., 2020; Wehmeyer & Noé, 2018; Frion et al., 2024)
 180 or with *encoder-only* approaches as in (Li et al., 2017; Mardt et al., 2018; Yeung et al., 2019; Kostic
 181 et al., 2023b; Federici et al., 2023; Jeong et al., 2025).

182 In encoder-decoder schemes, φ is trained alongside a decoder network, minimizing a combination
 183 of prediction and reconstruction errors². Yet, while minimizing a reconstruction loss biases the
 184 model towards accurate forecasts of the near future, recent work on model-based reinforcement
 185 learning, where one is instead interested in long-term behaviours, suggests that the presence of a
 186 decoder is detrimental (Lyu et al., 2023; Schwarzer et al., 2020; Hansen et al., 2023) to control tasks.
 187 Similarly, (Balestrieri & LeCun, 2024) showed how features learned by reconstruction are both
 188 uninformative for perception and hardly transferable.

189 On the other hand, the competitive advantage of evolution operators over techniques such as (Pathak
 190 et al., 2022; Lam et al., 2023; Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020; Li et al., 2020) lies in
 191 their spectral decomposition, useful for interpretability, reduced order modeling, and control tasks.
 192 Encoder-only approaches follow this intuition and prioritize approximating the spectral decomposition
 193 of E over the raw forecasting performances. Concretely, this is accomplished via loss functions that
 194 are minimized when φ spans the leading singular space of E . Clearly, once an encoder has been
 195 trained, it can be transferred to similar dynamical systems, as we demonstrate in 4.2 and 4.3.

196 In this work, we propose an encoder-only method based on a loss function originally designed for
 197 self-supervised representation learning. **Our approach is numerically stable, scales efficiently, enables
 198 transfer across related systems, and can incorporate structural priors, e.g., graph-based encoders,
 199 beyond the reach of classical DMD approaches.** Though our approach is broadly applicable, we
 200 mainly focus on applications involving interpretability and model reduction of scientific dynamical
 201 systems, highlighting how ML evolution operators can help in advancing fundamental science. Recent
 202 works in RL (Lyu et al., 2023; Schwarzer et al., 2020; Rozwood et al., 2024; Novelli et al., 2024)
 203 suggest that our approach can be relevant for control tasks, but we leave this for future work.

204 3 LEARNING EVOLUTION OPERATORS VIA SELF-SUPERVISION

205 As discussed above, we are interested in the evolution operator

$$206 (Ef)(x_t) = \mathbb{E}_{y \sim X_{t+1} | X_t} [f(y) | x_t] = \mathbb{E}_{y \sim X_{t+1}} \left[\frac{p(y | x_t)}{p(y)} f(y) \right], \quad (5)$$

207 where in the last equality we expressed the expectation in the form of an importance sampling
 208 estimator with respect to the probability of the future state $\mathbb{P}(X_{t+1})$. In so doing, we link the
 209 evolution operator E to the density ratio

$$210 r(x_t, x_{t+1}) = \frac{p(x_{t+1} | x_t)}{p(x_{t+1})}. \quad (6)$$

211 ²Notice that trying to minimize the prediction error (2) alone immediately leads to a *representation collapse*
 212 with φ mapping every input to 0 to obtain a prediction error of 0.

The core of our operator-learning scheme, Alg. 1, is to optimize a model for the density ratio (6) parametrized as the bilinear form $\langle \varphi(x_t), P\varphi(x_{t+1}) \rangle$, similar to Oord et al. (2018). Here, φ is a d -dimensional encoder, while P is a linear *predictor* layer which, as discussed below, equals the action of \mathbf{E} on the linear subspace of functions spanned by φ , up to a known linear transformation.

We minimize the L^2 error between the density ratio and our bilinear model $\langle \varphi(x_t), P\varphi(x_{t+1}) \rangle$:

$$\begin{aligned}\varepsilon(\varphi, P) &= \mathbb{E}_{(x,y) \sim X_t \otimes X_{t+1}} \left[(r(x, y) - \langle \varphi(x), P\varphi(y) \rangle)^2 \right] \\ &= \mathbb{E}_{(x,y) \sim X_t \otimes X_{t+1}} \left[\langle \varphi(x), P\varphi(y) \rangle^2 \right] - 2\mathbb{E}_{(x,y) \sim (X_t, X_{t+1})} [\langle \varphi(x), P\varphi(y) \rangle] + \text{cst.},\end{aligned}\quad (7)$$

where $\mathbb{E}_{X_t \otimes X_{t+1}}$ is the expected value between the product of the marginals X_t and X_{t+1} ³. Estimating the squared term in (7) via U-statistics (Hoeffding, 1992) and foregoing the constant term, we finally get to the empirical loss

$$\hat{\varepsilon}(\varphi, P) = \frac{1}{N(N-1)} \sum_{i \neq j} \langle \varphi(x_i), P\varphi(y_j) \rangle^2 - \frac{2}{N} \sum_{i=1}^N \langle \varphi(x_i), P\varphi(y_i) \rangle. \quad (8)$$

The loss function (8) was originally proposed for self-supervised contrastive learning in HaoChen et al. (2021; 2022). Indeed, noticing that $\langle \varphi(x), P\varphi(y) \rangle$ can be interpreted as a measure of similarity between x and y , the first term of (8) minimizes the similarity between randomly chosen $i \neq j$ (i.e., *negative*) pairs, while the second term maximizes the similarity of consecutive (i.e., *positive*) pairs. The loss (8) has also been applied in reinforcement learning (Ren et al., 2022), causal estimation (Sun et al., 2024), and recently Lu et al. (2024) showed that it belongs to a wide class of contrastive learning losses defined by Csiszár f -divergences. Concurrently, Wang et al. (2022); Ryu et al. (2024); Kostic et al. (2024); Jeong et al. (2025) applied it to approximate the SVD of linear operators.

3.1 THEORETICAL PROPERTIES OF OUR APPROACH.

Our model $\langle \varphi(x_t), P\varphi(x_{t+1}) \rangle$ is characterized by the presence of a linear predictor P , and by a shared encoder between x_t and x_{t+1} , in contrast to the more agnostic choice $\langle \varphi(x_t), \psi(x_{t+1}) \rangle$ adopted by HaoChen et al. (2021); Wang et al. (2022); Ryu et al. (2024); Kostic et al. (2024); Jeong et al. (2025). Our choice is deliberate, and we now prove a number of theoretical results highlighting how our parametrization is particularly apt for evolution operator learning, with the predictor layer P having a key role. Every lemma in this section is proved in Appendix A. The first observation was already noticed in Wang et al. (2022), and provides a direct link between (7) and the evolution operator regression formalism developed in Kostic et al. (2022).

Lemma 1. *Let $\varphi : \mathcal{X} \rightarrow \mathbb{R}^d$ be an encoder whose components are square-integrable with respect to both μ and ν , and let \mathbf{E} be a Hilbert-Schmidt evolution operator. Then, the loss function (7) is equivalent to the following operator learning loss:*

$$\varepsilon(\varphi, P) = \|\mathbf{E} - \sum_{i,j} \varphi_i \otimes P_{ij} \varphi_j\|_{\text{HS}}^2.$$

We highlight that when the operator \mathbf{E} is not Hilbert-Schmidt, the loss function (8) can still be linked to operator learning. In this more general scenario, the loss promotes encoders φ displaying both a strong dynamical response $\mathbf{E}\varphi$, and a good approximation of the true dynamics, see Appendix A.1.

Plugging our model back into (5), the evolution operator gets parametrized as $(\mathbf{E}f)(x_t) \approx \mathbb{E}_{y \sim X_{t+1}} [\langle \varphi(x_t), P\varphi(y) \rangle f(y)]$, and if the function f is in the linear span generated by the encoder $f(y) = \langle \varphi(y), w \rangle$, we can simplify the expression above as

$$(\mathbf{E}f)(x_t) = \langle \varphi(x_t), P(\mathbb{E}_{y \sim X_{t+1}} [\varphi(y)\varphi(y)^\top]) w \rangle = \langle \varphi(x), PC_Y w \rangle,$$

where we introduced the covariance of the futures $C_Y = \mathbb{E}_{y \sim X_{t+1}} [\varphi(y)\varphi(y)^\top]$. Thus, the linear predictor P parametrizes the approximation of the evolution operator \mathbf{E} over the finite-dimensional space generated by the state representation φ . We remark that to be sure that a prescribed function f lies in the span of the encoder, one can add it as a non-trainable component of the architecture

³That is, the product measure $\mathbb{P}[X_t] \otimes \mathbb{P}[X_{t+1}]$

270 $\varphi(x) = [\text{NN}(x), f(x)]$, as done in Appendix B.1. Alternatively, one can compute its least-squares
 271 approximation \hat{f}_φ on the features spanned by φ , and use that in place of f . The following Lemma
 272 shows that when the predictor P is optimal, one recovers the least squares estimator (3).
 273

274 **Lemma 2.** *For any fixed φ , the predictor P minimizing (7) can be computed in closed form $P_* =$
 275 $C_X^{-1} C_{XY} C_Y^{-1}$, and the model for the evolution operator is given by*

$$276 \quad E_\varphi = P_* C_Y = C_X^{-1} C_{XY} = \text{Eq. (3) with } \lambda \rightarrow 0, \quad (9)$$

277 *coinciding with the least-squares estimator (3).*

279 The final interesting fact about (7) is its relation to the VAMP score (Wu & Noé, 2020), originally
 280 introduced for representation learning of molecular kinetics. In particular, the VAMP-2 score can be
 281 defined in terms of covariances as

$$282 \quad \text{VAMP}_2(\varphi) = \|C_X^{-1/2} C_{XY} C_Y^{-1/2}\|_{\text{HS}}^2. \quad (10)$$

284 **Lemma 3.** *For any fixed φ , let P_* the optimal predictor of $\varepsilon(\varphi, P)$, as in Lemma 2. Then, the
 285 following holds true:*

$$287 \quad \varepsilon(\varphi, P_*) = -\|C_X^{-1/2} C_{XY} C_Y^{-1/2}\|_{\text{HS}}^2 = -\text{VAMP}_2(\varphi).$$

289 Our loss function, therefore, matches the negative VAMP-2 score when P is optimal. Compared to
 290 methods that directly maximize the VAMP score, such as (Mardt et al., 2018), however, our approach
 291 does not require matrix inversions in the computation of the loss (Wu & Noé, 2020), an operation
 292 which is unwieldy and prone to instabilities⁴ in large-scale applications. Instead, the loss function (8)
 293 is written in terms of simple matrix multiplications, making it perfect for GPU-based training.

294 3.2 PRACTICAL IMPLEMENTATION

```
296 for  $k = 1$  to  $\text{num\_steps}$  do
297    $\mathcal{B} \leftarrow \{(x_i, y_i) \sim \mathcal{D}\}_{i=1}^B$  forall  $i$  do
298      $| z_i \leftarrow \varphi(x_i)$  and  $q_i \leftarrow P\varphi(y_i)$ 
299   end
300    $r_{ij} \leftarrow \langle z_i, q_j \rangle$ 
301    $d\varphi, dP \leftarrow \nabla \left[ \frac{1}{B(B-1)} \sum_{i \neq j} r_{ij}^2 - \frac{2}{B} \sum_i r_{ii} \right]$ 
302    $\varphi, P \leftarrow \text{opt}(\varphi, P, d\varphi, dP)$ 
303 end
```

304 **Algorithm 1:** A pair of consecutive observations (x, y) from a dynamical system are mapped to
 305 representations z and q via an embedding function φ . The representation q is also processed by
 306 a predictor P . The algorithm iteratively optimizes φ and P using the contrastive objective (8)
 307 based on the similarity $\langle z, q \rangle$.

309 The implementation of our method, summarized in Alg. 1, follows standard self-supervised learning
 310 procedures (Chen et al., 2020; Grill et al., 2020; Zbontar et al., 2021; Chen & He, 2021). There, a
 311 *positive pair* of data-points, in our case a pair of consecutive observations of the dynamical system,
 312 are processed through an encoder network φ , and optionally a predictor network, which in our case is
 313 a simple linear layer P . We apply simplicial normalization (Lavoie et al., 2022) to the outputs of the
 314 embedding φ . To keep our implementation as close to the theoretical insights as possible, we didn't
 315 concatenate additional projection heads to the encoder φ , as suggested in (Chen et al., 2020; Grill
 316 et al., 2020; Zbontar et al., 2021; Chen & He, 2021). Furthermore, because of the identity (9) we kept
 317 P linear, but it is worth mentioning that tiny MLPs might be employed as predictors instead.

318 Once a representation φ is learned, we model the evolution operator E via the least-squares estimator
 319 E_φ from (3). To compute it, one can make use of the closed form expression (3) by computing the
 320 covariances at the end of the training of φ , as done in Kostic et al. (2023b); Jeong et al. (2025). This
 321 two-step procedure, however, requires a full forward pass over the full training dataset, which is
 322 impractical for large problems. Another option is to use (9), but this again requires the evaluation

323 ⁴Backpropagation through inversions may lead to gradient explosion (Golub & Pereyra, 1973).

Figure 1: *Trp-Cage folding*. **A**: Implied timescales derived from different baseline methods. Higher implied timescales are associated with more accurate approximations of the slow-modes. **B**: Time series of the leading eigenfunction Ψ_1 (red, left axis) alongside RMSD (gray, right axis), capturing transitions between folded and unfolded states. Representative snapshots of each state are shown. In the folded structure, key hydrogen bonds identified as relevant by the LASSO model are highlighted.

of the covariance, and might be suboptimal whenever P isn't yet converged to the true minimizer P_* . In our implementation, instead, we kept two buffers for C_X and C_{XY} , which are updated online during the training loop via an exponentially moving average of the batch covariances. At the end of the training, we use buffers to compute E_φ as in (3). **In Appendix B.5, we show that covariances updated online during training converge to an accurate approximation of the true covariances, and yield identical (or slightly better) results compared to re-evaluating the covariances from scratch.**

4 EXPERIMENTS

We now put to the test our method on high-dimensional dynamical systems from both molecular dynamics and climate domains. Our focus is on assessing the capability of the method to decompose complex dynamics and to evaluate the generalizability of the learned representations. In Appendix B.1 we also report an additional experiment on the Lorenz '63 system (Lorenz, 1963), illustrating how the method can also be used for small forecasting tasks.

4.1 HIGH-RESOLUTION DYNAMICAL MODELING OF PROTEIN FOLDING

The Trp-Cage miniprotein is a widely studied benchmark for protein folding due to its small size and fast dynamics (Lindorff-Larsen et al., 2011). Previous works, including SRV-based Markov State Models (Sidky et al., 2019) and GraphVAMPNet (Ghorbani et al., 2022), have modeled Trp-Cage dynamics using coarse-grained representations, where the state of the system is defined by the small subset of 20 C_α atoms in the backbone of the protein. Our approach allows us to scale to a more expressive molecular representation based on all 144 heavy atoms, employing the SchNet (Schütt et al., 2017) graph neural network architecture as the encoder φ . After training, we calculate the eigenvalue decomposition of the evolution operator as described in Sec. 2. As shown in Fig. 1B, the leading eigenfunction $\Psi_1(x) = \langle q_1, \varphi(x) \rangle$ correlates strongly with the system's root-mean-square deviation (RMSD) from the folded structure, confirming that Ψ_1 encodes the folding-to-unfolding transition. Clustering the molecular configurations according to the values of Ψ_1 reveals a clear separation between folded and unfolded ensembles (see snapshots in Fig. 1B).

To interpret the nature of this slow mode, we regress Ψ_1 against a library of physically meaningful descriptors—specifically, hydrogen bond interactions across residue pairs—using a sparse LASSO model (Brunton et al., 2016; Zhang et al., 2024; Novelli et al., 2022). This analysis reveals a network of hydrogen bonds stabilizing the folded state, including contributions from side-chain interactions that would be invisible to coarse-grained dynamical models such as (Ghorbani et al., 2022). Finally, we note that the implied timescales⁵ τ_i derived from the leading eigenvalues of the learned operators are influenced by both the choice of representation and learning loss. The LoRA baselines from Jeong et al. (2025) use a similar loss function, but do not share the encoder φ between x_t and x_{t+1} . VAMP,

⁵The implied timescale can be computed from the eigenvalues as $\tau_i = -\Delta t / \log(\lambda_i)$, where Δt is the time lag between two consecutive observations.

Figure 2: *Calixarene binding*. Eigenfunctions Ψ_1 (left) and Ψ_2 (right) capture ligand transitions from unbound (U) to semi-bound (S) and bound (B) states. The model using a representation transferred from other ligands (solid line) closely matches one trained from scratch (dashed).

from Mardt et al. (2018) and DPNETS from Kostic et al. (2023b), on the other hand, minimize different loss functions. According to the variational principle for Markov processes (Wu & Noé, 2020; Noé & Nuske, 2013), higher implied timescales indicate a better approximation of the system’s true slow dynamics (see Fig. 1A).

4.2 LEARNING TRANSFERABLE REPRESENTATIONS FOR THE BINDING OF SMALL MOLECULES

Our second case study focuses on the binding of small molecules to a calixarene-based system (Yin et al., 2017), which is often used as a simplified model to study the dynamical processes relevant, for instance, in drug design. Our baseline is obtained by using Alg. 1 to train an encoder φ on molecular dynamics data describing the binding dynamics of a single molecule (G2) to the host system. As in the previous example, we employ a SchNet architecture for φ . As shown in Fig. 2, the slowest dynamical mode, captured by the dominant eigenfunction Ψ_1 , is associated with a transition between a semi-bound configuration and the fully bound state. Structural inspection reveals that this intermediate state corresponds to a misaligned pose of the guest, caused by the presence of a water molecule occupying the binding pocket. The second eigenfunction Ψ_2 instead resolves the unbound-to-bound transition. Our findings align with previous works (Rizzi et al., 2021), where water occupancy was identified as a key kinetic bottleneck in host–guest interactions.

We now turn to a key question: can a representation trained on one set of molecular systems generalize to others? This capability is essential for scalable modeling in applications like drug discovery, where retraining a model for every new compound is prohibitive. To test the transferability of the representations φ trained with our method, we trained the encoder on molecular dynamics simulations for two molecules (G1 and G3), and used it to analyze the binding dynamics of a *different ligand* (G2). Using the frozen encoder, we compute the evolution operator of (G2) via (3), and examine its dominant eigenfunctions. Remarkably, the transferred representation successfully recovers the key dynamical modes of the binding process of (G2) without having seen it during the representation learning phase. In particular, it recovers both the entry of the guest molecule into the host cavity and its final locked configuration (Fig. 2). This result illustrates that our self-supervised model learns features that are not only informative but also transferable across molecular systems.

4.3 PATTERNS IN GLOBAL CLIMATE

Finally, we test our method on climate data. Specifically, we aim to retrieve El Niño–Southern Oscillation (ENSO), one of the most influential sources of interannual climate variability (Diaz & Markgraf, 2000; Callahan & Mankin, 2023), arising from coupled ocean–atmosphere dynamics in the tropical Pacific (Bjerknes, 1969; Philander, 1983). Characterizing ENSO remains a central goal in climate science, particularly in the context of its potential changes under global warming (McPhaden et al., 2006; Cai et al., 2021). ENSO is conventionally characterized by monthly-averaged sea surface temperature (SST) anomalies, denoted as SST^* , computed following the procedure described in (NCP Center). The SST fields are obtained from the ORAS5 reanalysis (Zuo et al., 2019) and provided through the ChaosBench dataset (Nathaniel et al., 2024). However, the dataset comprises only 540 snapshots, which may hinder effective model training. To overcome this, analogous to the drug design experiment described in Sec. 4.2, we adopt a transfer learning strategy using a longer synthetic trajectory generated by the Community Earth System Model (CESM) (Hurrell et al., 2013), consisting of 12,598 samples. The objectives of this experiment are twofold: (i) to determine whether

Figure 3: ENSO mode retrieved with our method. **A:** Mode associated with the second leading eigenfunction, highlighting dominant activation in the tropical Pacific. Boxes indicate standard ENSO monitoring zones. **B:** Right eigenfunction corresponding to the second leading eigenvalue, compared to the ONI index. The vertical line marks the split between training and validation sets.

our method can retrieve ENSO dynamics, and (ii) to assess whether representations φ learned from simulated data can be effectively transferred to real-world climate observations.

A convolutional neural network-based encoder is trained using the simulated SST* fields, after which the learned representation φ is applied to real data. The transfer operator is then estimated following (3), using the period 1979–2016 for training and 2017–2023 for validation, and subsequently subjected to spectral decomposition to extract the dominant modes. As expected, this procedure recovers modes corresponding to known climate periodicities, such as annual oscillations (see Tab. 2). Remarkably, one of the leading nontrivial modes (second in magnitude) clearly reflects ENSO dynamics. The associated right eigenfunction exhibits a strong Pearson correlation ($r=0.82, p<.001$) with the Oceanic Niño Index (ONI) (Fig. 3B), a widely used metric for ENSO monitoring (Glantz & Ramirez, 2020), while the associated spatial mode shows dominant activation over the tropical Pacific (Fig. 3A). Importantly, our method generalizes effectively to unseen data, successfully detecting the 2023 El Niño event within the validation set. It is worth noting that training the same model directly on observational data also recovers the ENSO mode; however, the correlation between the associated right eigenfunction and ONI is weaker ($r=0.71, p<.001$). Additionally, we compared our method against VAMPNets (Mardt et al., 2018) and DPNets (Kostic et al., 2023b), with results indicating that our approach achieves stronger correlation in capturing the ENSO mode (see Appendix B.4).

This experiment underscores the model’s ability to autonomously identify complex climate phenomena in an unsupervised manner without prior localization (unlike previous approaches (Froyland et al., 2021; Lapo et al., 2025)). Importantly, the transfer learning approach enables the model to leverage knowledge from large, high-quality simulations to mitigate for the scarcity of observational data, thereby enabling a more robust extraction of complex patterns such as ENSO. These findings highlight the ability of our approach to learn a robust and generalizable representation, effectively transferring knowledge from synthetic simulations to real-world observations

5 CONCLUSION

In this work, we proposed an end-to-end framework for learning evolution operators and their spectral decomposition. Our method scales effectively to large and complex systems, making it a practical tool for uncovering physically meaningful patterns in their dynamics. By leveraging a connection between contrastive learning objectives and the spectral properties of evolution operators, we break new ground on the transfer of dynamical representations. Our experiments on atomistic and climate systems demonstrate the versatility of our approach and its generalization capabilities. Looking ahead, this connection opens the door to more expressive learning architectures, robust training strategies, and broader applications in scientific discovery and control.

Limitations. Due to the nature of our experiments, evaluation was more qualitative than typical in ML; benchmarks specifically targeting the accuracy of the spectral decomposition are, to the best of our knowledge, not yet available.

486 REPRODUCIBILITY STATEMENT
487488 **Theory.** Our theoretical claims are supported by complete proofs provided in Appendix A.
489490 **Code.** All code used in this study is available at <https://anonymous.4open.science/r/encoderops-5F67>. Detailed experimental procedures and implementation are described in
491 Appendix B.492 **Datasets.** Instructions for generating, downloading, or requesting the datasets are included in
493 Appendix B.494 REFERENCES
495496 Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C. Smith, Berk Hess, and
497 Erik Lindahl. Gromacs: High performance molecular simulations through multi-level parallelism
498 from laptops to supercomputers. *SoftwareX*, 1–2:19–25, September 2015.500 Romeo Alexander and Dimitrios Giannakis. Operator-theoretic framework for forecasting nonlinear
501 time series with kernel analog techniques. *Physica D: Nonlinear Phenomena*, 409:132520, 2020.502 Philip W Anderson. More is different: broken symmetry and the nature of the hierarchical structure
503 of science. *Science*, 177(4047):393–396, 1972.504 David Applebaum. *Lévy Processes and Stochastic Calculus*. Cambridge University Press, April
505 2009.507 Omri Azencot, N Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
508 data using consistent koopman autoencoders. In *International Conference on Machine Learning*,
509 pp. 475–485. PMLR, 2020.510 Randall Balestrieri and Yann LeCun. How learning by reconstruction produces uninformative
511 features for perception. In *Proceedings of the 41st International Conference on Machine Learning*,
512 ICML’24. JMLR.org, 2024.514 Caitlin C Bannan, Kalistyn H Burley, Michael Chiu, Michael R Shirts, Michael K Gilson, and David L
515 Mobley. Blind prediction of cyclohexane–water distribution coefficients from the samp15 challenge.
516 *Journal of Computer-Aided Molecular Design*, 30:927–944, 2016.517 Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
518 *Nature*, 525(7567):47–55, 2015.520 Christopher I Bayly, Piotr Cieplak, Wendy Cornell, and Peter A Kollman. A well-behaved electrostatic
521 potential based method using charge restraints for deriving atomic charges: the resp model. *The
522 Journal of Physical Chemistry*, 97(40):10269–10280, 1993.523 Soumendranath Bhakat and Pär Söderhjelm. Resolving the problem of trapped water in binding
524 cavities: prediction of host–guest binding free energies in the samp15 challenge by funnel metadynamics.
525 *Journal of Computer-Aided Molecular Design*, 31:119–132, 2017.526 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-weather:
527 A 3d high-resolution model for fast and accurate global weather forecast. *arXiv preprint
528 arXiv:2211.02556*, 2022.530 Jakob Bjerknes. Atmospheric teleconnections from the equatorial pacific. *Monthly Weather Review*,
531 97(3):163–172, 1969.532 Luigi Bonati, Enrico Trizio, Andrea Rizzi, and Michele Parrinello. A unified framework for machine
533 learning collective variables for enhanced sampling simulations: mlcolvar. *The Journal of Chemical
534 Physics*, 159(1), 2023.535 Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
536 by sparse identification of nonlinear dynamical systems. *Proceedings of the national academy of
537 sciences*, 113(15):3932–3937, 2016.539 Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling through velocity
rescaling. *The Journal of Chemical Physics*, 126(1), 2007.

540 Wenju Cai, Agus Santoso, Matthew Collins, Boris Dewitte, Christina Karamperidou, Jong-Seong
 541 Kug, Matthieu Lengaigne, Michael J McPhaden, Malte F Stuecker, Andréa S Taschetto, et al.
 542 Changing el niño–southern oscillation in a warming climate. *Nature Reviews Earth & Environment*,
 543 2(9):628–644, 2021.

544 Christopher W Callahan and Justin S Mankin. Persistent effect of el niño on global economic growth.
 545 *Science*, 380(6649):1064–1069, 2023.

546 Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
 547 Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020
 548 (oc20) dataset and community challenges. *Acs Catalysis*, 11(10):6059–6072, 2021.

549 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 550 contrastive learning of visual representations. In *International Conference on Machine Learning*,
 551 pp. 1597–1607. PMLR, 2020.

552 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of
 553 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15750–15758, 2021.

554 Matthew J Colbrook, Lorna J Ayton, and Máté Szőke. Residual dynamic mode decomposition: robust
 555 and verified koopmanism. *Journal of Fluid Mechanics*, 955:A21, 2023.

556 Sudhahasattwa Das and Dimitrios Giannakis. Koopman spectra in reproducing kernel Hilbert spaces.
 557 *Applied and Computational Harmonic Analysis*, 49(2):573–607, 2020.

558 Henry F Diaz and Vera Markgraf. *El Niño and the Southern Oscillation: multiscale variability and
 559 global and regional impacts*. Cambridge University Press, 2000.

560 Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong Zhao, Kyle A.
 561 Beauchamp, Lee-Ping Wang, Andrew C. Simmonett, Matthew P. Harrigan, Chaya D. Stern,
 562 Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S. Pande. Openmm 7: Rapid development of high
 563 performance algorithms for molecular dynamics. *PLOS Computational Biology*, 13(7):e1005659,
 564 2017.

565 Marco Federici, Patrick Forré, Ryota Tomioka, and Bastiaan S Veeling. Latent representation
 566 and simulation of markov processes via time-lagged information bottleneck. *arXiv preprint
 567 arXiv:2309.07200*, 2023.

568 Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon, and Abdeldjalil Aissa El Bey.
 569 Neural Koopman prior for data assimilation. *IEEE Transactions on Signal Processing*, 2024.

570 Gary Froyland, Dimitrios Giannakis, Benjamin R Lintner, Maxwell Pike, and Joanna Slawinska.
 571 Spectral analysis of climate dynamics with operator-theoretic approaches. *Nature Communications*,
 572 12(1):6570, 2021.

573 Damien Garreau, Wittawat Jitkrittum, and Motonobu Kanagawa. Large sample analysis of the median
 574 heuristic. *arXiv preprint arXiv:1707.07269*, 2017.

575 Mahdi Ghorbani, Samarjeet Prasad, Jeffery B Klauda, and Bernard R Brooks. Graphvampnet, using
 576 graph neural networks and variational approach to markov processes for dynamical modeling of
 577 biomolecules. *The Journal of Chemical Physics*, 156(18), 2022.

578 Michael H Glantz and Ivan J Ramirez. Reviewing the oceanic niño index (oni) to enhance societal
 579 readiness for el niño’s impacts. *International Journal of Disaster Risk Science*, 11:394–403, 2020.

580 G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and nonlinear least squares
 581 problems whose variables separate. *SIAM Journal on Numerical Analysis*, 10(2):413–432, April
 582 1973.

583 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 584 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 585 et al. Bootstrap your own latent-a new approach to self-supervised learning. *Advances in Neural
 586 Information Processing Systems*, 33:21271–21284, 2020.

594 Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
 595 control. *arXiv preprint arXiv:2310.16828*, 2023.

596

597 Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
 598 deep learning with spectral contrastive loss. *Advances in neural information processing systems*,
 599 34:5000–5011, 2021.

600

601 Jeff Z HaoChen, Colin Wei, Ananya Kumar, and Tengyu Ma. Beyond separability: Analyzing the
 602 linear transferability of contrastive representations to related subpopulations. *Advances in Neural
 603 Information Processing Systems*, 35:26889–26902, 2022.

604

605 Matt J Harvey, Giovanni Giupponi, and G De Fabritiis. Acemd: accelerating biomolecular dynamics
 606 in the microsecond time scale. *Journal of Chemical Theory and Computation*, 5(6):1632–1639,
 607 2009.

608

609 Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hihara, András Horányi, Joaquín Muñoz-Sabater,
 610 Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci,
 611 Saleh Abdalla, Xavier Abellán, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati, Jean Bidlot,
 612 Massimo Bonavita, Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Diamantakis, Rossana
 613 Dragani, Johannes Flemming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimberger, Sean
 614 Healy, Robin J. Hogan, Elías Hólm, Marta Janisková, Sarah Keeley, Patrick Laloyaux, Philippe
 615 Lopez, Cristina Lupu, Gabor Radnoti, Patricia de Rosnay, Iryna Rozum, Freja Vamborg, Sébastien
 616 Villaume, and Jean-Noël Thépaut. The era5 global reanalysis. *Quarterly Journal of the Royal
 617 Meteorological Society*, 146(730):1999–2049, June 2020. ISSN 1477-870X. doi: 10.1002/qj.3803.
 618 URL <http://dx.doi.org/10.1002/qj.3803>.

619

620 Wassily Hoeffding. A class of statistics with asymptotically normal distribution. *Breakthroughs in
 621 Statistics: Foundations and Basic Theory*, pp. 308–334, 1992.

622

623 James W Hurrell, Marika M Holland, Peter R Gent, Steven Ghan, Jennifer E Kay, Paul J Kushner,
 624 J-F Lamarque, William G Large, D Lawrence, Keith Lindsay, et al. The community earth system
 625 model: a framework for collaborative research. *Bulletin of the American Meteorological Society*,
 626 94(9):1339–1360, 2013.

627

628 Minchan Jeong, J Jon Ryu, Se-Young Yun, and Gregory W Wornell. Efficient parametric svd of
 629 koopman operator for stochastic dynamical systems. *arXiv preprint arXiv:2507.07222*, 2025.

630

631 William L Jorgensen, Jayaraman Chandrasekhar, Jeffry D Madura, Roger W Impey, and Michael L
 632 Klein. Comparison of simple potential functions for simulating liquid water. *The Journal of
 633 Chemical Physics*, 79(2):926–935, 1983.

634

635 Yoshinobu Kawahara. Dynamic Mode Decomposition with Reproducing Kernels for Koopman
 636 Spectral Analysis. In *Advances in Neural Information Processing Systems*, volume 29, 2016.

637

638 Stefan Klus, Ingmar Schuster, and Krikamol Muandet. Eigendecompositions of transfer operators in
 639 reproducing kernel Hilbert spaces. *Journal of Nonlinear Science*, 30(1):283–315, 2019.

640

641 Dmitrii Kochkov, Janni Yuval, Ian Langmore, Peter Norgaard, Jamie Smith, Griffin Mooers, Milan
 642 Klöwer, James Lottes, Stephan Rasp, Peter Düben, et al. Neural general circulation models for
 643 weather and climate. *Nature*, 632(8027):1060–1066, 2024.

644

645 B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. *Proceedings of the
 646 National Academy of Sciences*, 17(5):315–318, May 1931. ISSN 1091-6490. doi: 10.1073/pnas.
 647 17.5.315. URL <http://dx.doi.org/10.1073/pnas.17.5.315>.

648

649 Milan Korda and Igor Mezić. On convergence of extended dynamic mode decomposition to the
 650 Koopman operator. *Journal of Nonlinear Science*, 28:687–710, 2018.

651

652 Vladimir Kostic, Pietro Novelli, Andreas Maurer, Carlo Ciliberto, Lorenzo Rosasco, and Massimiliano
 653 Pontil. Learning dynamical systems via Koopman operator regression in reproducing kernel Hilbert
 654 spaces. *Advances in Neural Information Processing Systems*, 35:4017–4031, 2022.

648 Vladimir Kostic, Karim Lounici, Pietro Novelli, and Massimiliano Pontil. Sharp spectral rates for
 649 Koopman operator learning. *Advances in Neural Information Processing Systems*, 36:32328–32339,
 650 2023a.

651

652 Vladimir Kostic, Grégoire Pacreau, Giacomo Turri, Pietro Novelli, Karim Lounici, and Massimiliano Pontil. Neural conditional probability for uncertainty quantification. *Advances in Neural*
 653 *Information Processing Systems*, 37:60999–61039, 2024.

654

655 Vladimir R Kostic, Pietro Novelli, Riccardo Grazzi, Karim Lounici, and Massimiliano Pontil.
 656 Learning invariant representations of time-homogeneous stochastic dynamical systems. *arXiv*
 657 *preprint arXiv:2307.09912*, 2023b.

658

659 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 660 Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
 661 applications to pdes. *Journal of Machine Learning Research*, 24(89):1–97, 2023.

662

663 J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. *Dynamic Mode*
 664 *Decomposition*. Society for Industrial and Applied Mathematics, 2016.

665

666 Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran
 667 Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
 668 medium-range global weather forecasting. *Science*, 382(6677):1416–1421, 2023.

669

670 Karl Lapo, Sara M Ichinaga, and J Nathan Kutz. A method for unsupervised learning of coherent
 671 spatiotemporal patterns in multiscale data. *Proceedings of the National Academy of Sciences*, 122
 672 (7):e2415786122, 2025.

673

674 Andrzej Lasota and Michael C. Mackey. *Chaos, Fractals, and Noise*, volume 97 of *Applied Mathe-*
 675 *matical Sciences*. Springer New York, 1994.

676

677 Samuel Lavoie, Christos Tsirigotis, Max Schwarzer, Ankit Vani, Michael Noukhovitch, Kenji
 678 Kawaguchi, and Aaron Courville. Simplicial embeddings in self-supervised learning and down-
 679 stream classification. *arXiv preprint arXiv:2204.00616*, 2022.

680

681 Qianxiao Li, Felix Dietrich, Erik M Boltt, and Ioannis G Kevrekidis. Extended dynamic mode
 682 decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
 683 koopman operator. *Chaos: An Interdisciplinary Journal of Nonlinear Science*, 27(10), 2017.

684

685 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 686 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
 687 *arXiv preprint arXiv:2010.08895*, 2020.

688

689 Vittorio Limongelli, Massimiliano Bonomi, and Michele Parrinello. Funnel metadynamics as accurate
 690 binding free-energy method. *Proceedings of the National Academy of Sciences*, 110(16):6358–
 691 6363, 2013.

692

693 Kresten Lindorff-Larsen, Stefano Piana, Ron O Dror, and David E Shaw. How fast-folding proteins
 694 fold. *Science*, 334(6055):517–520, 2011.

695

696 Edward Lorenz. Deterministic nonperiodic flow. *Journal of Atmospheric Sciences*, 20(2):130–148,
 697 1963.

698

699 Yiwei Lu, Guojun Zhang, Sun Sun, Hongyu Guo, and Yaoliang Yu. f -micl: Understanding and
 700 generalizing infonce-based contrastive learning. *arXiv preprint arXiv:2402.10150*, 2024.

701

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
 702 of nonlinear dynamics. *Nature Communications*, 9(1):4950, 2018.

Xubo Lyu, Hanyang Hu, Seth Siriya, Ye Pu, and Mo Chen. Task-oriented Koopman-based control
 with contrastive encoder. In *7th Annual Conference on Robot Learning*, 2023. URL <https://openreview.net/forum?id=q0VAoefCI2>.

Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. Vampnets for deep learning of molecular
 kinetics. *Nature communications*, 9(1):5, 2018.

702 Michael J McPhaden, Stephen E Zebiak, and Michael H Glantz. Enso as an integrating concept in
 703 earth science. *Science*, 314(5806):1740–1745, 2006.

704

705 Giacomo Meanti, Antoine Chatalic, Vladimir Kostic, Pietro Novelli, Massimiliano Pontil, and
 706 Lorenzo Rosasco. Estimating koopman operators with sketching to provably learn large scale
 707 dynamical systems. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 708 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 77242–77276. Curran
 709 Associates, Inc., 2023.

710

711 Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. *Nonlinear
 712 Dynamics*, 41(1):309–325, 2005.

713

714 Thomas P Minka. Old and new matrix algebra useful for statistics. *See www. stat. cmu.
 715 edu/minka/papers/matrix. html*, 4, 2000.

716

717 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
 718 generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.

719

720 L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals using time delayed
 721 correlations. *Physical Review Letters*, 72(23):3634–3637, June 1994. ISSN 0031-9007. doi:
 722 10.1103/physrevlett.72.3634. URL <http://dx.doi.org/10.1103/PhysRevLett.72.3634>.

723

724 Juan Nathaniel, Yongquan Qu, Tung Nguyen, Sungduk Yu, Julius Busecke, Aditya Grover, and Pierre
 725 Gentine. Chaosbench: A multi-channel, physics-based benchmark for subseasonal-to-seasonal
 726 climate prediction. *arXiv preprint arXiv:2402.00712*, 2024.

727

728 NOAA’s climate prediction center NCP Center. Climate Prediction Center - ONI
 729 — origin.cpc.ncep.noaa.gov. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. [Accessed 09-05-2025].

730

731 Frank Noé and Feliks Nüske. A variational approach to modeling slow processes in stochastic
 732 dynamical systems. *Multiscale Modeling & Simulation*, 11(2):635–655, 2013.

733

734 Pietro Novelli, Luigi Bonati, Massimiliano Pontil, and Michele Parrinello. Characterizing metastable
 735 states with the help of machine learning. *Journal of Chemical Theory and Computation*, 18(9):
 736 5195–5202, 2022.

737

738 Pietro Novelli, Marco Praticò, Massimiliano Pontil, and Carlo Ciliberto. Operator world models for
 739 reinforcement learning. *arXiv preprint arXiv:2406.19861*, 2024.

740

741 Feliks Nüske, Sebastian Peitz, Friedrich Philipp, Manuel Schaller, and Karl Worthmann. Finite-data
 742 error bounds for Koopman-based prediction and control. *Journal of Nonlinear Science*, 33(1):14,
 743 2023.

744

745 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 746 coding. *arXiv preprint arXiv:1807.03748*, 2018.

747

748 Samuel E Otto and Clarence W Rowley. Linearly recurrent autoencoder networks for learning
 749 dynamics. *SIAM Journal on Applied Dynamical Systems*, 18(1):558–593, 2019.

750

751 Bette L Otto-Bliesner, Esther C Brady, John Fasullo, Alexandra Jahn, Laura Landrum, Samantha
 752 Stevenson, Nan Rosenbloom, Andrew Mai, and Gary Strand. Climate variability and change since
 753 850 ce: An ensemble approach with the community earth system model. *Bulletin of the American
 754 Meteorological Society*, 97(5):735–754, 2016.

755

756 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 757 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
 758 net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
 759 *arXiv preprint arXiv:2202.11214*, 2022.

760

761 Guillermo Pérez-Hernández, Fabian Paul, Toni Giorgino, Gianni De Fabritiis, and Frank Noé.
 762 Identification of slow molecular order parameters for markov model construction. *The Journal of
 763 Chemical Physics*, 139(1), 2013.

756 Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
 757 simulation with graph networks. In *International Conference on Learning Representations*, 2020.
 758

759 S George H Philander. El nino southern oscillation phenomena. *Nature*, 302(5906):295–301, 1983.
 760

761 Michael Reed and Barry Simon. *Methods of Modern Mathematical Physics*. Academic Press, 1972.
 762 ISBN 9780125850018.

763 Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E Gonzalez, Dale Schuurmans, and Bo Dai. Spectral
 764 decomposition representation for reinforcement learning. *arXiv preprint arXiv:2208.09515*, 2022.

765 Valerio Rizzi, Luigi Bonati, Narjes Ansari, and Michele Parrinello. The role of water in host-guest
 766 interaction. *Nature Communications*, 12(1):93, 2021.

767

768 Preston Rozwood, Edward Mehrez, Ludger Paehter, Wen Sun, and Steven L Brunton. Koopman-
 769 assisted reinforcement learning. *arXiv preprint arXiv:2403.02290*, 2024.

770 J. Jon Ryu, Xiangxiang Xu, H. S. Melihcan Erol, Yuheng Bu, Lihong Zheng, and Gregory W.
 771 Wornell. Operator svd with neural networks via nested low-rank approximation. In *Proceedings of
 772 the 41st International Conference on Machine Learning*, ICML’24. JMLR.org, 2024.

773

774 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
 775 Battaglia. Learning to simulate complex physics with graph networks. In *International Conference
 776 on Machine Learning*, pp. 8459–8468. PMLR, 2020.

777

778 Peter J. Schmid. Dynamic mode decomposition of numerical and experimental data. *Journal of Fluid
 779 Mechanics*, 656:5–28, July 2010a.

780

781 Peter J Schmid. Dynamic mode decomposition of numerical and experimental data. *Journal of Fluid
 782 Mechanics*, 656:5–28, 2010b.

783

784 Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
 785 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
 for modeling quantum interactions. *Advances in Neural Information Processing Systems*, 30, 2017.

786

787 Ch Schütte, Wilhelm Huisenga, and Peter Deuflhard. *Transfer operator approach to conformational
 788 dynamics in biomolecular systems*. Springer, 2001.

789

790 Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
 791 man. Data-efficient reinforcement learning with self-predictive representations. *arXiv preprint
 792 arXiv:2007.05929*, 2020.

793

794 Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to
 795 Algorithms*. Cambridge University Press, 2014.

796

797 Hythem Sidky, Wei Chen, and Andrew L Ferguson. High-resolution markov state models for the
 798 dynamics of trp-cage miniprotein constructed over slow folding modes identified by state-free
 799 reversible vampsnets. *The Journal of Physical Chemistry B*, 123(38):7999–8009, 2019.

800

801 Haotian Sun, Antoine Moulin, Tongzheng Ren, Arthur Gretton, and Bo Dai. Spectral representation
 802 for causal estimation with hidden confounders. *arXiv preprint arXiv:2407.10448*, 2024.

803

804 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*, volume 1. MIT
 805 Press, 1998.

806

807 Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning Koopman invariant subspaces
 808 for dynamic mode decomposition. *Advances in Neural Information Processing Systems*, 30, 2017.

809

810 Gareth A Tribello, Massimiliano Bonomi, Davide Branduardi, Carlo Camilloni, and Giovanni Bussi.
 811 Plumed 2: New feathers for an old bird. *Computer Physics Communications*, 185(2):604–613,
 812 2014.

813

814 Warwick Tucker. The lorenz attractor exists. *Comptes Rendus de l'Académie des Sciences-Series
 815 I-Mathematics*, 328(12):1197–1202, 1999.

810 Junmei Wang, Romain M Wolf, James W Caldwell, Peter A Kollman, and David A Case. Development
 811 and testing of a general amber force field. *Journal of Computational Chemistry*, 25(9):
 812 1157–1174, 2004.

813

814 Ziyu Wang, Yucen Luo, Yueru Li, Jun Zhu, and Bernhard Schölkopf. Spectral representation learning
 815 for conditional moment models. *arXiv preprint arXiv:2210.16525*, 2022.

816

817 Christoph Wehmeyer and Frank Noé. Time-lagged autoencoders: Deep learning of slow collective
 818 variables for molecular kinetics. *The Journal of Chemical Physics*, 148(24), 2018.

819

820 Matthew O Williams, Clarence W Rowley, and Ioannis G Kevrekidis. A kernel-based approach to
 821 data-driven Koopman spectral analysis. *arXiv preprint arXiv:1411.2260*, 2014.

822

823 Hao Wu and Frank Noé. Variational approach for learning markov processes from time series data.
 824 *Journal of Nonlinear Science*, 30(1):23–66, 2020.

825

826 Enoch Yeung, Soumya Kundu, and Nathan Hudas. Learning deep neural network representations
 827 for Koopman operators of nonlinear dynamical systems. In *2019 American Control Conference
 828 (ACC)*, pp. 4832–4839. IEEE, 2019.

829

830 Jian Yin, Niel M Henriksen, David R Slochower, Michael R Shirts, Michael W Chiu, David L
 831 Mobley, and Michael K Gilson. Overview of the sampl5 host–guest challenge: Are we doing
 832 better? *Journal of Computer-Aided Molecular Design*, 31:1–19, 2017.

833

834 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
 835 learning via redundancy reduction. In *International Conference on Machine Learning*, pp. 12310–
 836 12320. PMLR, 2021.

837

838 Jintu Zhang, Luigi Bonati, Enrico Trizio, Odin Zhang, Yu Kang, TingJun Hou, and Michele Parrinello.
 839 Descriptor-free collective variables from geometric graph neural networks. *Journal of Chemical
 840 Theory and Computation*, 20(24):10787–10797, 2024.

841

842 Jiawei Zhuang, raphael dussin, David Huard, Pascal Bourgault, Anderson Banihirwe, Stephane
 843 Raynaud, Brewster Malevich, Martin Schupfner, Filipe, Charles Gauthier, Sam Levang, André
 844 Jüling, Mattia Almansi, RichardScottOZ, RondeauG, Stephan Rasp, Trevor James Smith, Ben
 845 Mares, Jemma Stachelek, Matthew Plough, Pierre, Ray Bell, Romain Caneill, and Xianxiang
 846 Li. pangeo-data/xesmf: v0.8.10, April 2025. URL <https://doi.org/10.5281/zenodo.15304267>.

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **Concurrent work.** During the preparation of this submission (September 2025), we were made aware
 865 of a concurrent preprint (Jeong et al., 2025)⁶ proposing a similar methodology to learn the evolution
 866 operators of stochastic dynamical systems. In particular, Jeong et al. (2025) proposes a variation of the
 867 loss (7) with the more agnostic choice $\langle \varphi(x_t), \psi(x_{t+1}) \rangle$ with both φ, ψ trainable. Our work, however,
 868 differs from Jeong et al. (2025) on two key aspects. First, as proved in Sec. 3.1, our parametrization
 869 $\langle \varphi(x_t), P\varphi(x_{t+1}) \rangle$ recovers the least-squares evolution operator learning framework (Lemma 1),
 870 for which both approximation (Korda & Mezić, 2018) and statistical learning Kostic et al. (2022);
 871 Nüske et al. (2023) results have been proved. Furthermore, as discussed in Experiment Sec. 4.1, our
 872 parametrization results in higher-implied timescales which, according to the variational principle (Noé
 873 & Nüske, 2013; Wu & Noé, 2020), are associated with an improved accuracy in the estimation of the
 874 evolution operator. Our parametrization is also directly linked to the VAMP score through Lemma 3.
 875

876 As a second point of departure from Jeong et al. (2025), our experiments in Sec. 4 focus on high-
 877 dimensional dynamical systems, and to the best of our knowledge demonstrate evolution operator
 878 learning at scales never reached so far. Further, drawing on the connection of (7) to self-supervised
 879 learning – which is not acknowledged in Jeong et al. (2025) despite the prior work Wang et al. (2022)
 880 – our experiments Sec. 4.2 and Sec. 4.3, demonstrate that representations learned via (7) can be
 881 successfully transferred to new and unseen dynamical systems.

882 A PROOFS OF THE THEORETICAL CLAIMS.

883 Define $\nu = \mathbb{P}[X_t]$, the distribution of the initial states in our dataset, and $\mu = \mathbb{E}_{x \sim \nu}[p(\cdot|x)] =$
 884 $\mathbb{P}[X_{t+1}]$ the distribution of the evolved states. In practice, ν can be the following:

- 885 • If a simulator is available, ν can be *any* distribution of initial states, and μ is obtained by a
 886 single step of the simulator on data from ν .
- 887 • If one samples trajectories of length T from an initial distribution $\mathbb{P}[X_1]$, then $\nu =$
 888 $\frac{1}{T} \sum_{i=1}^{T-1} \mathbb{P}[X_i]$.
- 889 • If — as in molecular dynamics, or the Lorenz 63 example below — one samples from an
 890 *invariant* distribution π such that $\mathbb{P}[X_t] = \pi \implies \mathbb{P}[X_{t+1}] = \pi$, one has $\nu = \mu = \pi$.

891 The evolution operator E maps functions from $L^2(\mu)$ into $L^2(\nu)$, that is $\mathsf{E} : L^2(\mu) \rightarrow L^2(\nu)$. Notice
 892 that since we allow for general initial and evolved distributions, respectively ν and μ , our method
 893 does *not* require E to be associated to a stationary, nor ergodic dynamical system, as often the case
 894 in the theoretical literature, see e.g. (Mezić, 2005, Section 2.3) or Kostic et al. (2022). We will now
 895 show this simple equivalence:

896 **Lemma 1.** *Let $\varphi : \mathcal{X} \rightarrow \mathbb{R}^d$ be an encoder whose components are square-integrable with respect
 897 to both μ and ν , and let E be a Hilbert-Schmidt evolution operator. Then, the loss function (7) is
 898 equivalent to the following operator learning loss:*

$$901 \quad \varepsilon(\varphi, P) = \|\mathsf{E} - \sum_{i,j} \varphi_i \otimes P_{ij} \varphi_j\|_{\text{HS}}^2.$$

902 *Proof.* The Lemma was already proved in Wang et al. (2022, Lemma 4.1), or Kostic et al. (2024,
 903 Theorem 1). Here we provide a self-contained proof. Since the encoder is square-integrable in both μ
 904 and ν — $\varphi_i \in L^2(\mu)$ and $L^2(\nu)$ — we can define the linear operators

$$905 \quad \Phi_\mu : L^2(\mu) \rightarrow \mathbb{R}^d \quad f \mapsto f = (\langle f, \varphi_i \rangle_{L^2(\mu)})_{i=1}^d.$$

$$906 \quad \Phi_\nu^* : \mathbb{R}^d \rightarrow L^2(\nu) \quad z \mapsto \sum_{i=1}^d \varphi_i(\cdot) z_i.$$

907 By direct substitution of the definition above, it follows that

$$908 \quad \|\mathsf{E} - \Phi_\nu^* P \Phi_\mu\|_{\text{HS}}^2 = \|\mathsf{E} - \sum_{i,j} \varphi_i \otimes P_{ij} \varphi_j\|_{\text{HS}}^2.$$

910 ⁶Version 1 of Jul 9, 2025.

918 Now, let's notice that by direct calculation one obtains
 919

$$\Phi_\nu \Phi_\nu^* = \mathbb{E}_\nu [\varphi(x) \varphi(x)^\top] \quad \Phi_\nu \mathbb{E} \Phi_\mu^* = \mathbb{E}_\rho [\varphi(x) \varphi(y)^\top],$$

920 where $\rho(dx, dy) = p(dy|x)\nu(dx)$ is the joint distribution of (X_t, X_{t+1}) .
 921

922 By the definition of the Hilbert-Schmidt norm, we have
 923

$$\begin{aligned} \|\mathbb{E} - \Phi^* P \Phi\|_{\text{HS}}^2 &= \|\mathbb{E}\|_{\text{HS}}^2 - 2\text{Tr} [\mathbb{E}^* \Phi_\nu^* P \Phi_\mu] + \text{Tr} [\Phi_\mu^* P^\top \Phi_\nu \Phi_\nu^* P \Phi_\mu] \\ &= \|\mathbb{E}\|_{\text{HS}}^2 - 2\text{Tr} [\Phi_\mu \mathbb{E}^* \Phi_\nu^* P] + \text{Tr} [\Phi_\mu \Phi_\mu^* P^\top \Phi_\nu \Phi_\nu^* P] \\ &= \|\mathbb{E}\|_{\text{HS}}^2 - 2\mathbb{E}_{(x,y) \sim \rho} [\text{Tr} [\varphi(y) \varphi(x)^\top P]] + \mathbb{E}_{(x,y) \sim \mu \otimes \nu} [\text{Tr} [\varphi(y) \varphi(y)^\top P^\top \varphi(x) \varphi(x)^\top P]] \\ &= \|\mathbb{E}\|_{\text{HS}}^2 - 2\mathbb{E}_{(x,y) \sim \rho} [\langle \varphi(x), P \varphi(y) \rangle] + \mathbb{E}_{(x,y) \sim \mu \otimes \nu} [\langle \varphi(x), P \varphi(y) \rangle^2], \end{aligned}$$

931 where we repeatedly used the cyclic property of the trace. \square
 932

933 The following Lemma shows that when P is optimal with respect to (7), then it recovers the least
 934 squares estimator (3).
 935

936 **Lemma 2.** *For any fixed φ , the predictor P minimizing (7) can be computed in closed form $P_* =$
 937 $C_X^{-1} C_{XY} C_Y^{-1}$, and the model for the evolution operator is given by*
 938

$$939 \quad E_\varphi = P_* C_Y = C_X^{-1} C_{XY} = \text{Eq. (3) with } \lambda \rightarrow 0, \quad (9)$$

940 coinciding with the least-squares estimator (3).
 941

942 *Proof.* The proof follows by noticing that $\varepsilon(\varphi, P)$ is convex in P . Taking the gradient (see, for
 943 example (Minka, 2000)) one has:
 944

$$\begin{aligned} 945 \quad \nabla_P \varepsilon(\varphi, P) &= -2\mathbb{E}_{(x,y) \sim \rho} [\varphi(y) \varphi(x)^\top] + 2\mathbb{E}_{(x,y) \sim \mu \otimes \nu} [\varphi(y) \varphi(y)^\top P^\top \varphi(x) \varphi(x)^\top] \\ 946 &= -2C_{YX} + 2C_Y P^\top C_X \\ 947 \end{aligned}$$

948 As the problem is convex, the global minimum P_* is attained when $\nabla_P \varepsilon(\varphi, P_*) = 0$. This condition
 949 is equivalent to solve the equation
 950

$$951 \quad -2C_{YX} + 2C_Y P_*^\top C_X = 0.$$

952 By multiplying the expression above by C_X^{-1} on the right and C_Y^{-1} on the left, re-arranging it, and
 953 taking the transpose of everything, we finally get
 954

$$955 \quad P_* = C_X^{-1} C_{XY} C_Y^{-1}.$$

956 \square

957 The following Lemma shows the equivalence of (7) and the VAMP-2 loss of Wu & Noé (2020);
 958 Mardt et al. (2018)
 959

960 **Lemma 3.** *For any fixed φ , let P_* the optimal predictor of $\varepsilon(\varphi, P)$, as in Lemma 2. Then, the
 961 following holds true:*

$$962 \quad \varepsilon(\varphi, P_*) = -\|C_X^{-1/2} C_{XY} C_Y^{-1/2}\|_{\text{HS}}^2 = -\text{VAMP}_2(\varphi).$$

963 *Proof.* By noticing that the loss function (7) can be equivalently rewritten as
 964

$$965 \quad \varepsilon(\varphi, P) = \text{Tr}[P^\top C_X P C_Y - 2P C_{YX}],$$

966 and substituting the optimal predictor $P_* = C_X^{-1} C_{XY} C_Y^{-1}$ from Lemma 2 inside this expression, we
 967 immediately obtain the identity. \square
 968

972 A.1 ON THE HILBERT-SCHMIDT ASSUMPTION, AND BEYOND
973974 In the main text, we assumed the evolution operator \mathbf{E} to be Hilbert-Schmidt, which immediately
975 guarantees the well-posedness of the proposed loss function (7). Lemma 1, indeed, implies that for
976 any Hilbert-Schmidt \mathbf{E} it holds

977
$$\varepsilon(\varphi, P) = \|\mathbf{E} - \sum_{i,j} \varphi_i \otimes P_{ij} \varphi_j\|_{\text{HS}}^2 < \infty.$$

978
979

The Hilbert-Schmidt assumption is valid in a broad class of stochastic systems, particularly when the
980 transition kernel exhibits smoothing properties. In atomistic simulations, for instance, the presence of
981 a finite temperature results in a Gaussian smoothing that makes \mathbf{E} Hilbert-Schmidt. As an illustrative
982 example, consider the overdamped Langevin dynamics
983

984
$$X_{t+1} = X_t - \nabla V(X_t) \Delta t + \mathcal{N}(0, \sigma) \sqrt{\Delta t},$$

985

986 where V is a potential function, and $\mathcal{N}(0, \sigma)$ denotes an isotropic Gaussian with mean 0 and variance
987 σ proportional to the system’s temperature. Assuming that the data is sampled from the equilibrium
988 distribution $\pi(x)dx \propto e^{-\beta V(x)}dx$, we compute

989
$$\begin{aligned} \|\mathbf{E}\|_{\text{HS}}^2 &= \sum_i \|\mathbf{E}e_i\|_2^2 = \sum_i \int \left| \int p(y | x) e_i(y) \pi(dy) \right|^2 \pi(dx) \\ 990 &= \int p(y | x)^2 \pi(y) \pi(x) dy dx \propto \int \left| \exp\left(-\frac{\|y - \nabla V(x)\|}{2\sigma^2}\right) \right|^2 \pi(y) \pi(x) dy dx < \infty \end{aligned}$$

991
992

993 where e_i are elements of an orthonormal basis of $L^2(\pi)$, and the third equality follows from Parseval’s
994 identity.995 The Hilbert-Schmidt assumption, however, is violated in important deterministic dynamical systems,
996 such as those governed by fluid dynamics equations Mezić (2005). Remarkably, the empirical loss (8)
997 still admits a precise operator-theoretic interpretation when \mathbf{E} is merely a bounded operator. Indeed,
998 let $\mathbf{P}_\varphi : L^2(\mu) \rightarrow L^2(\mu)$ denote the orthogonal projector onto the subspace spanned by the encoder
999 φ . By definition, $\mathbf{P}_\varphi = \Phi_\mu^\dagger \Phi_\mu$, where Φ_μ is as in Lemma 1. With a slight abuse of the notation in
1000 (7), we define the abstract loss

1001
$$\varepsilon(\varphi, P) = -2 \text{Tr}[\mathbf{E}^* \Phi_\nu^* \mathbf{P} \Phi_\mu] + \left\| \sum_{i,j} \varphi_i \otimes P_{ij} \varphi_j \right\|_{\text{HS}}^2,$$

1002
1003

1004 whose empirical estimator exactly coincides with (8), the loss which we *actually* optimized in our
1005 experiments. Now, since φ spans a finite-dimensional subspace, both \mathbf{P}_φ and \mathbf{EP}_φ are finite rank,
1006 hence Hilbert-Schmidt. In particular, \mathbf{EP}_φ is the restriction of \mathbf{E} to the subspace generated by φ . An
1007 immediate calculation shows that

1008
$$\varepsilon(\varphi, P) = \|\mathbf{EP}_\varphi - \sum_{i,j} \varphi_i \otimes P_{ij} \varphi_j\|_{\text{HS}}^2 - \|\mathbf{EP}_\varphi\|_{\text{HS}}^2, \quad (11)$$

1009

1010 where besides basic algebraic manipulations the result is obtained using the cyclicity of the trace, and
1011 the relation $\Phi_\mu \mathbf{P}_\varphi = \Phi_\mu (\Phi_\mu^\dagger \Phi_\mu) = \Phi_\mu$.1012 The first term on the right-hand side of (11) is familiar, and represents the error incurred by the model
1013 $\sum_{i,j} \varphi_i \otimes P_{ij} \varphi_j$ in approximating the restriction of \mathbf{E} to the subspace spanned by φ . This error
1014 can be linked to the least-squares approach discussed in Sec. 2, see, for example Korda & Mezić
1015 (2018, Theorem 1). Minimizing it with respect to φ leads to representation collapse, since $\varphi(x) = 0$
1016 for all x trivially minimizes it. Our learning objective (11), instead, avoids collapse through the
1017 second term, $-\|\mathbf{EP}_\varphi\|_{\text{HS}}^2$, which can be interpreted as follows. Without loss of generality, write
1018 $\mathbf{P}_\varphi = \sum_{i=1}^d e_i \otimes e_i$, where e_i form an orthonormal basis of $\text{span}(\varphi_1, \dots, \varphi_d)$. By definition of
1019 Hilbert-Schmidt norm one has

1020
$$\|\mathbf{EP}_\varphi\|_{\text{HS}}^2 = \sum_{i=1}^d \|\mathbf{E}e_i\|_2^2 = \sum_{i=1}^d \mathbb{E}_{x \sim \nu}[(\mathbf{E}e_i)(x)^2].$$

1021
1022

1023 Now notice that interpreting e_i as a probe we have at our disposal to observe the system⁷, the term
1024 $(\mathbf{E}e_i)(x)$ quantifies the “dynamical response” read by our probe, given that the system was prepared
1025⁷Functions of the state of the systems are commonly referred to as *observables*, too.

1026 Table 1: Forecasting errors and training times for the Lorenz '63 example (20 independent runs).
 1027 Note that for LinLS and KRR is reported the total fitting time while for the other methods the epoch
 1028 time is reported. Best results are highlighted in bold.

	Ours	LinLS	KRR	VAMPNets	DPNets	DAE	CAE
RMSE ($\times 10^{-2}$)	0.49±0.24	1.29±0.00	2.10±0.00	0.78±0.12	0.58±0.11	0.77±0.12	2.58±0.19
MAE ($\times 10^{-2}$)	0.32±0.24	0.84±0.00	1.27±0.00	0.46±0.08	0.36±0.08	0.55±0.08	1.95±0.14
Time (ms)	181.1±40.1	.4±1	(25.3±0.2) 10^3	165.5±10.8	190.7±41.5	166.8±9.10	408.5±41.9

1034
 1035
 1036 to be in state x . The quantity $\|\mathbf{EP}_\varphi\|_{\mathbf{HS}}^2$, therefore, measures the average strength of such responses,
 1037 implying that the second term in the loss promotes encoders φ whose span captures observables with
 1038 the highest possible dynamical variability. To close the discussion, we highlight that for Hilbert-
 1039 Schmidt operators, the observables with the highest dynamical response are precisely the leading
 1040 singular functions, and the loss function (7) is indeed minimized when φ spans the leading singular
 1041 space of the evolution operator \mathbf{E} , see (Kostic et al., 2024, Theorem 1).

B EXPERIMENTAL DETAILS

1045 The experiments have been performed on the following hardware:

- 1047 • 1 Node with 32 cores Ice Lake at 2.60 GHz, 4 × NVIDIA Ampere A100 GPUs, 64 GB and
 1048 512 GB RAM.
- 1049 • 1 Node with 20 cores Xeon Silver 4210 at 2.20 GHz, 4 × NVIDIA Tesla V100 GPUs, 16
 1050 GB and 384 GB RAM.
- 1051 • A workstation equipped with a i7-5930K CPU at 3.50 GHz, 2 × NVIDIA GeForce GTX
 1052 TITAN X GPUs, 12 GB and 32 GB of RAM.

B.1 ADDITIONAL EXPERIMENT: LORENZ '63

1054
 1055 We evaluated our method on the Lorenz '63 system (Lorenz, 1963), a classical example of a chaotic
 1056 dynamical system governed by three coupled ordinary differential equations. To validate the per-
 1057 formance of our approach, we tested it on a one-step-ahead forecasting task, and we analyzed the
 1058 learned dynamical modes. Because of the low-dimensionality of the state x_t , we appended it as a
 1059 non-learnable feature of the encoder $\varphi(x_t) = [\text{MLP}(x_t), x_t]$ to ensure that the forecasting target—the
 1060 state itself—lies in the linear space of functions spanned by φ by design. The learnable part of the
 1061 encoder consisted of a small multi-layer perceptron (MLP).

1062
 1063 In Tab. 1, we compare the performance of the estimator E_φ from (3), with an encoder φ trained
 1064 according to Alg. 1, against several baseline models. These include Linear Least Squares (LinLS),
 1065 Kernel Ridge Regression (Kostic et al., 2022) (KRR) with a Gaussian kernel, VAMPNets (Mardt
 1066 et al., 2018), DPNets (Kostic et al., 2023b), Dynamic Autoencoder (Lusch et al., 2018) (DAE), and
 1067 Consistent Autoencoder (Azencot et al., 2020) (CAE). To ensure a fair comparison, we matched the
 1068 encoder architecture for VAMPNets, DPNets, DAE and CAE, while decoders of DAE and CAE were
 1069 defined as MLPs symmetric to their respective encoders. For KRR, the rank was set equal to the
 1070 latent dimensionality used in the deep learning models.

1071 The results on the forecasting task demonstrate that, although our model is not specifically designed
 1072 for prediction, it achieves the best performance among all considered methods. Finally, we verified
 1073 that the leading eigenfunctions obtained by our approach correctly identify coherent sets on the stable
 1074 attractor (see Fig. 4).

1075 **Training details.** We generated a single long trajectory of 15,000 time steps using the `kooplearn`
 1076 1.1.3 implementation of Lorenz '63 dynamical system, with default parameters. To ensure conver-
 1077 gence to a system's attractor (Tucker, 1999), we discarded the first 1,000 time steps. Also, to obtain
 1078 approximately time-independent segments for training, validation and testing, we further discarded
 1079 1,000 time steps between each split. In total, 10,000 time steps were used for training, and 1,000 time
 steps each for validation and testing.

Figure 4: Leading eigenfunctions computed by our and baseline approaches. Each row corresponds to a different method, and each column shows an eigenfunction ordered by decreasing eigenvalue magnitude.

Our encoder consisted of an MLP with an input layer of size 3, two hidden layers with 16 units each, and an 8-dimensional latent space, using ReLU activation functions. The model was trained for 100 epochs using the AdamW optimizer, with an initial learning rate of 10^{-3} decayed to 10^{-4} via a cosine schedule, a batch size of 512, and a lag time of 10 time steps.

Baseline methods. We compared our approach against the following baseline models:

- **Linear Least Squares (LinLS).** A linear regression model trained directly on the raw input features without any nonlinear transformation or latent representation.
- **Kernel Ridge Regression (KRR) (Kostic et al., 2022).** We trained a KRR model with a Gaussian kernel, using the bandwidth estimated via the median heuristic (Garreau et al., 2017). The model was trained with a rank of 8, a Tikhonov regularization parameter of 10^{-6} , and using Arnoldi iterations.
- **VAMPNets (Mardt et al., 2018).** Trained using the same MLP encoder as ours, with the VAMP-2 loss loss and centered covariances.
- **DPNets (Kostic et al., 2023b).** Trained using the same MLP encoder as ours, with the relaxed DP loss and centered covariances.

- **Dynamic Autoencoder (DAE) (Lusch et al., 2018).** Trained with the same MLP encoder architecture as in our approach; the decoder was defined symmetrically. The loss components for reconstruction, prediction, and linear evolution were equally weighted (all set to 1).
- **Consistent Autoencoder (Azencot et al., 2020).** Trained with the same MLP encoder architecture as in our approach; the decoder was defined symmetrically. The CAE loss weights for reconstruction, prediction, backward prediction, linear evolution, and consistency were all set to 1.

For all deep learning-based baselines (VAMPNets, DPNets, DAE, and CAE), models were trained for 100 epochs using a batch size of 512, and a lag time of 10 time steps. VAMPNets and DPNets used the AdamW optimizer with a learning rate of 10^{-4} and 10^{-2} , respectively; DAE and CAE used the Adam optimizer with a learning rate of 10^{-3} . All baselines were implemented using `kooplearn` 1.1.3.

Additional analysis. In Fig. 4, we show the leading eigenfunctions of the transfer operators computed using our method and the baseline approaches. These visualizations highlight qualitative differences in the learned spectral structures, offering insight into the dynamics captured by each method. The leading eigenfunction of KRR, VAMPNets, DPNets, and DAE is constant and associated with the stable attractor. Our method, LinLS, and KRR, find an eigenfunction with eigenvalue $\approx .996$ which clearly separates the two lobes of the attractor.

B.2 PROTEIN FOLDING

Training details. We used data from (Lindorff-Larsen et al., 2011), which can be requested directly to De Shaw Research and are available without charge for academic usage. Our encoder consisted of a SchNet (Schütt et al., 2017) graph neural network with 3 interaction blocks, 16 RBF functions and an hidden dimension of 64. The model was trained with an AdamW optimizer with starting learning rate of 10^{-2} decaying to 10^{-4} with a cosine schedule, using the `mlcolvar` (Bonati et al., 2023) library.

Additional analysis. To understand to what mode is associated the leading eigenfunction Ψ_1 , in Fig. 5 we correlated it with two physical quantities associated with the folding, which are the Root-Mean-Square-Deviation (RMSD) and the Radius of Gyration, see Fig. 5. Furthermore, to obtain a finer understanding, we used sparse linear models to approximate the CVs via LASSO regression. This yields a surrogate model which is a linear combination of a few physical descriptors, hence interpretable. To choose the regularization strength, we computed the Mean Square Error of the surrogate model versus the number of features, see Fig. 6.

We performed LASSO regression on a set of contact functions determining the presence of hydrogen bonds. The features selected by this procedure, as well as a snapshot of the protein where these features are highlighted, are reported in Fig. 7. Interestingly, some of the selected features pertain to side-chain interactions, a piece of information that would have been impossible to get using only C_α atoms to train the encoder.

B.3 LIGAND BINDING

Simulations details. We selected a subset of host-guest systems for the SAMPL5 challenge (Bannan et al., 2016; Yin et al., 2017) to evaluate our method’s performance, including three ligands (G1, G2, G3) and the octa-acid calixarane host (OAMe). Simulations were run in GROMACS 2024.5 (Abraham et al., 2015) patched with PLUMED 2.9.3 (Tribello et al., 2014). Systems were built using the GAFF (Wang et al., 2004) force field with RESP (Bayly et al., 1993) charges, solvated in a cubic TIP3P (Jorgensen et al., 1983) water box 40.27 Å length, containing 2100 water molecules. System charge balanced with Na^+ ions. Our timestep is 2 fs and the temperature is set to 300 K via a velocity rescale thermostat (Bussi et al., 2007) with a coupling time of 0.1 ps. All simulations aligned the host’s vertical axis h with the box axis and centered coordinates on virtual atom V1. All production simulations were initiated from the dissociated state of each ligand. Trajectories were terminated when the ligand fully rebounded into the binding pocket (defined as host-guest distance $h < 6$ Å). For each ligand, we performed 10 independent production trajectories, with coordinates saved every 500 steps.

Figure 5: The value of the leading eigenfunction Ψ_1 of the evolution operator is highly correlated with the RMSD and Radius of Gyration of the Trp-cage protein.

Figure 6: MSE of approximating Ψ_1 by LASSO regression on meaningful physical descriptors. For Trp-cage we constructed a library of hydrogen-bond contact functions. The selected descriptors are reported in Fig. 7

Physical descriptors (H-bonds)	Normalized Coefficient
GLY10-O – SER13-N	0.307
GLY11-O – ARG16-N	0.294
TRP6-O – GLY11-N	0.170
TRP6-NE1s (sidechain) – ARG16-O	0.109
GLN5-O – ASP9-N	0.073
TRP6-NE1s (sidechain) – PRO17-O	0.044
TRP6-NE1s (sidechain) – PRO18-N	0.002

Figure 7: Normalized hydrogen-bond coefficients selected by the LASSO model (left) and representative structural snapshot (right) with the features highlighted.

In our simulations, we applied a funnel restraint (Limongelli et al., 2013) to limit the conformational space explored by the ligand in the unbound state, in turn accelerating the binding process. The parameters are identical to those used in previous studies (Rizzi et al., 2021). We define h as the projection of each ligand along the binding axis, treated as its radial component. For $h \geq 10 \text{ \AA}$, the funnel surface is a cylinder with radius $R_{\text{cyl}} = 2 \text{ \AA}$ along the vertical axis. For $h < 10 \text{ \AA}$, the funnel opens into a conical shape with a 45° angle, defined by $r = 12 - h$. The force acting on a displacement x from the funnel surface is harmonic:

$$F_{\text{funnel}} = -k_F x \quad \text{with} \quad k_F = 20 \text{ kJ mol}^{-1} \text{ \AA}^{-2}$$

An additional harmonic restraint prevents the ligand from escaping too far from the host, enforcing an upper boundary:

$$F_{\text{upper}} = -k_U(h - 18) \quad \text{for} \quad h > 18 \text{ \AA}, \quad \text{with} \quad k_U = 40 \text{ kJ mol}^{-1} \text{ \AA}^{-2}$$

The data will be released to ensure the reproducibility of the experiment.

Training details. Our encoder consisted of a SchNet (Schütt et al., 2017) graph neural network with 3 interaction blocks, 16 RBF functions, and a hidden dimension of 64 with an AdamW optimizer with starting learning rate of 10^{-2} decaying to 10^{-4} with a cosine schedule.

Additional analysis. In Fig. 8 we inspect the two leading eigenfunctions of the evolution operator by correlating them with two physical descriptors connected to the binding: the distance along the

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

Figure 8: Analysis of the leading eigenfunctions in the space of the host-guest distance z and the ligand orientation θ for Ψ_1 (left) and Ψ_2 (right). The first row contains the results obtained from training from scratch the representation, while the second row contains the case in which it is transferred from other systems.

z direction between the center of mass of the host and the guest and the angle of the ligand with respect to the z axis (see figure in the inset). These results allow us to correlate the Ψ_1 eigenfunction to the transition between the semi-bound pose to the native one, which is due to the presence of trapped water molecules inside the pocket (Rizzi et al., 2021; Bhakat & Söderhjelm, 2017). The second eigenfunction Ψ_2 is instead associated with the binding process. Furthermore, we compared the eigenfunctions obtained by training the representation from scratch on the G2 ligand with the case in which this is transferred from other ligands (G1 and G3), obtaining a remarkable agreement. The ligands G1, G2, and G3 are represented in Fig. 9

Figure 9: The three different molecules studied in the ligand-binding experiment.

B.4 CLIMATE MODELING

Datasets. Following the methodology outlined in (NCP Center), we compute SST* from sea surface temperature (SST) data provided by the ORAS5 reanalysis (Zuo et al., 2019), as made available through the ChaosBench dataset (Nathaniel et al., 2024). The dataset spans a 45-year period

(1979–2023) at a spatial resolution of 1.5° , resulting in a time series of 540 monthly snapshots, each with dimensions 121×240 . Data from 1979 to 2016 was used for training, while the 2017–2023 period was reserved for validation.

For the transfer learning task, we employed simulations from the CESM Last Millennium Ensemble project (Otto-Bliesner et al., 2016), spanning the years 850–2006 (files `b.e11.BLMTRC5CN.f19_g16.001.pop.h.SST.085001-089912.nc` to `b.e11.BLMTRC5CN.f19_g16.001.pop.h.SST.185001-200512.nc` available here: <https://gdex.ucar.edu/datasets/d651058/#>). To ensure spatial compatibility between synthetic and observational data, the CESM SST fields were regridded onto the same $1.5^\circ \times 1.5^\circ$ regular latitude–longitude grid of ORAS5 using the xESMF (Zhuang et al., 2025) python package.

Training details. Both models trained with CESM and ORAS5 data use a lightweight CNN encoder with four convolutional layers, batch normalization, and max pooling. A masked global average pooling layer, leveraging a binary land–ocean mask, ensures only ocean data contribute to the output representation. The pooled features are mapped through a final linear embedding layer.

For the CESM model, the linear layer P maps to a 128-dimensional latent space. Training included simplicial normalization (Lavoie et al., 2022) (dimension 2), spectral normalization (Miyato et al., 2018) on the linear layer P , gradient clipping (max norm 0.2), a lag time of one month, 100 epochs, AdamW optimizer, and a cosine-decayed learning rate from 10^{-3} to 10^{-5} with a batch size of 64. Leading eigenvalues of the transfer operator are reported in Tab. 2.

Table 2: Leading eigenvalues of the transfer operator learned on ORAS5 data with φ trained on CESM data. Each eigenvalue is expressed in terms of its real (Re), imaginary (Im), and absolute (Abs) components. The associated decorrelation times and oscillation frequencies (in years) are also reported. Eigenvalues are listed in descending order with respect to their absolute value, and those with a decorrelation time shorter than 1/12 years, i.e., the sampling frequency, were discarded.

Idx	Re	Im	Abs	Decor (yr)	Freq (yr)	Idx	Re	Im	Abs	Decor (yr)	Freq (yr)
6	0.92	0.00	0.92	1.01	0.00	13	0.60	0.11	0.61	0.17	3.01
4	0.88	0.09	0.89	0.70	5.23	15	0.58	0.13	0.59	0.16	2.37
5	0.88	-0.09	0.89	0.70	-5.23	16	0.58	-0.13	0.59	0.16	-2.37
2	0.76	0.40	0.86	0.54	1.09	17	0.58	0.03	0.58	0.15	9.78
3	0.76	-0.40	0.86	0.54	-1.09	18	0.58	-0.03	0.58	0.15	-9.78
7	0.85	0.00	0.85	0.50	0.00	19	0.52	0.12	0.53	0.13	2.34
8	0.79	0.00	0.79	0.35	0.00	20	0.52	-0.12	0.53	0.13	-2.34
0	0.41	0.67	0.78	0.34	0.52	21	0.47	0.15	0.49	0.12	1.68
1	0.41	-0.67	0.78	0.34	-0.52	22	0.47	-0.15	0.49	0.12	-1.68
9	0.74	0.12	0.75	0.29	3.26	23	0.47	0.03	0.47	0.11	9.27
10	0.74	-0.12	0.75	0.29	-3.26	24	0.47	-0.03	0.47	0.11	-9.27
11	0.71	0.00	0.71	0.24	0.00	31	0.39	0.00	0.39	0.09	0.00
12	0.64	0.00	0.64	0.19	0.00	27	0.35	0.16	0.38	0.09	1.19
14	0.60	-0.11	0.61	0.17	-3.01	28	0.35	-0.16	0.38	0.09	-1.19

For the ORAS5 model, the linear layer P maps to a 256-dimensional latent space. Training details were otherwise identical, except a 12-month input history was used.

The hyperparameters reported above were selected via grid search; Tab. 3 summarizes the ranges explored.

Comparisons. We further compared our method to VAMPNets (Mardt et al., 2018), DPNets (Kostic et al., 2023b), Linear Least Squares (LinLS), and Kernel Ridge Regression (KRR) with a Gaussian kernel. For the deep-learning methods, we used identical training parameters across models. For the classical approaches applied to the raw inputs, we selected the best model via a grid search over regularization strengths $\alpha \in [10^{-7}, 10^{-3}]$ and, for KRR, kernel coefficients $\gamma \in [10^{-5}, 10^{-2}]$. We also varied the estimator rank in the set $\{5, 8, 10, 16, 32, 50, 64, 128\}$ to assess if low-rank approximations in the raw space could recover the dynamics. As shown in Tab. 6 and Fig. 13, our method outperforms both baselines on the evaluated tasks.

1350

Table 3: Hyperparameter ranges explored during grid search for the climate modeling task.

1351

1352

Hyperparameter	Search Range
Latent dimensions	[32, 64, 128, ..., 1024]
Max gradient clipping norm	[None, 0.1, 0.2, 0.5]
Normalization of linear layer	[False, True]
Regularization	[0, 1e-5, ..., 1e-2]
Simplicial normalization dimensions	[0, 2, ..., 16]
History length	[0, 1, 2, 3, 6, 12]

1353

1354

1355

1356

1357

1358

1359

1360

1361

B.5 ABLATIONS

1362

1363

1364

1365

In our first set of ablations, we investigated the dependence of our self-supervised scheme on the encoder’s architecture. Specifically, we studied the scaling of the loss function with respect to (i) the latent dimension and (ii) the overall parameter count of the encoder.

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

Scaling laws: Graph-NN encoder. We retrained the SchNet architecture Schütt et al. (2017) on the data from the protein folding experiment Sec. 4.1 for three different sizes of the encoder, summarized in Tab. 4, and values of the latent dimension from 4 to 256. The results of this comprehensive ablation study are reported in Fig. 10. We observed monotonically improving losses with respect to both an increasing number of training dimensions (panel A) and an increasing model size (panel B). This result provides robust confirmation of the good scalability properties of the loss function (8) studied in this work. As a test-time metric, we evaluated the eigenvalue residuals, as defined in (Colbrook et al., 2023, Algorithm 1), see panel C of Fig. 10. This metric assesses the extent to which the eigenvalues obtained from our model satisfy the eigenvalue equation $Eg = \lambda g$. The leading eigenvalue λ_1 is the one enjoying the overall best approximation. Larger architectures are associated with smaller residuals across all the leading eigenvalues.

1377

1378

Table 4: Architectural configuration of the three SchNet model sizes used in the ablation study.

1379

1380

1381

1382

1383

Model	Layers	Filters	Hidden Channels	Params
SchNet-S	2	16	32	6,480
SchNet-M	3	32	64	33,088
SchNet-L	3	64	128	125,536

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure 10: Scaling laws for the protein folding experiment in 4.1. **A** Training loss dynamics as a function of the number of latent dimensions d . **B** Final training loss for three different model sizes, as a function of the number of latent dimensions. **C** Eigenvalue residuals (lower is better), defined in (Colbrook et al., 2023, Algorithm 1) for three different model sizes.

Scaling laws: CNN encoder. The same set of ablations for the climate experiment Sec. 4.3 with a convolutional NN encoder, are reported in Fig. 11. The overall qualitative behavior exactly matches what was already observed for the Graph NN encoder: increasing latent dimensions and/or model size

(see Tab. 5) is associated with higher performance. To rule out the possibility that these improvements are linked to overfitting, in Fig. 11, we report the validation loss, instead of the training loss of Fig. 10.

Obtaining the same qualitative results across such distinct physical domains provides strong empirical evidence for the generality of the self-supervised method we propose.

Table 5: Architectural configuration of the three CNN model sizes used in the ablation study.

Model	Layers	Hidden Channels	Params
CNN-S	4	[8, 16, 24, 32]	12,888
CNN-M	4	[16, 32, 64, 128]	101,760
CNN-L	4	[32, 64, 128, 256]	397,024

Figure 11: Scaling laws for the climate experiment in 4.3. **A** Validation loss dynamics as a function of the number of latent dimensions d . **B** Final validation loss for three different model sizes, as a function of the number of latent dimensions. **C** Eigenvalue residuals (lower is better), defined in (Colbrook et al., 2023, Algorithm 1) for three different model sizes.

Online versus offline covariances. We conducted an ablation study to assess the effect of using covariances C_X, C_{XY} computed either online during training via EMA or offline from the full training set when estimating the evolution operator E_φ .

In the Lorenz '63 experiment, we trained the models as in the main Lorenz-63 experiment (see Appendix B.1) except for lag time set to 1 to enable a direct comparison between covariance estimation methods. The results show that online covariances yielded better performance, with RMSE and MAE of 0.51 ± 0.11 and 0.30 ± 0.06 , respectively, compared to 0.63 ± 0.21 and 0.45 ± 0.19 for offline covariances.

In the climate experiment, the ENSO mode is easily recovered with both approaches. Specifically, for the model trained on ORAS5, the Pearson correlation between the right eigenfunction of E_φ and the ONI was 0.72 with online covariances and 0.71 with offline covariances, indicating comparable performance. The associated eigenvalues were also very similar: $\lambda_{\text{ENSO}} = 0.9531 \pm 0.1206i$ (online) and $\lambda_{\text{ENSO}} = 0.9527 \pm 0.1277i$ (offline).

Stability of EMA covariance. To assess how EMA-based covariances converge toward their offline counterparts, computed via a full-pass over the entire training set, we measured their discrepancy in terms of Frobenius norm, i.e., $\|C_{\text{EMA}} - C_{\text{full-pass}}\|_F$, during training on the Lorenz '63 data. As shown in Fig. 12, this difference peaks in correspondence with the step-like drop in the validation loss, which we interpret as the encoder discovering new representational directions. For a sufficiently large number of epochs, as the network converges and settles into a stable representation, the discrepancy steadily decreases and approaches zero. These observations demonstrate how EMA offers a robust and practical online approximation of the offline, full-pass covariance, offering a clear advantage when dealing with large-scale datasets where computing full-pass covariances may be computationally infeasible.

Figure 12: Stability of EMA-based covariance during training on Lorenz '63. The blue curve (left y-axis) shows the discrepancy between EMA and full-pass covariances, while the red curve (right y-axis) shows the validation loss.

Table 6: Performance comparison in terms of Pearson correlation between the right eigenfunction associated with the ENSO mode and ONI, alongside the time per training epoch. Best results are highlighted in bold.

Transfer learning task (model trained on CESM, evaluated on ORAS5).					
	Ours	VAMPNets	DPNets	LinLS	KRR
Pearson correlation (r)	0.81	0.56	0.77	N/A	N/A
Model trained and evaluated on ORAS5 data.					
	Ours	VAMPNets	DPNets	LinLS	KRR
Pearson correlation (r)	0.72	0.56	0.62	0.60	0.63
Time per epoch (s)	25.27 ± 0.74	28.44 ± 0.79	29.17 ± 0.79	N/A	N/A

Figure 13: Comparison of ENSO modes retrieved using transfer learning by our method, VAMPNets, and DPNNets.