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Abstract
Neural Architecture Search (NAS) for Trans-001
former has shown its growing capabilities in002
exploiting the benefits of various Transformer003
architecture configurations. Recent studies en-004
vision the diverse potential of introducing un-005
precedented Transformer operators (OPs, such006
as Convolution) to its structure, yet the existing007
methods of doing so are all time-consuming.008
Traditionally, Single-Path One-Shot (SPOS)009
models enable efficient search over a vast set010
of OPs. However, existing SPOS methods011
on Transformer focus only on dimensional012
configurations of the vanilla Transformer OP013
(e.g., Multi-head Attention), and did not con-014
sider introducing other OPs. This paper ex-015
plores the possibility of including OPs in the016
Transformer-based SPOS architecture search017
to discover better Transformer structures with018
the high efficiency facilitated in the SPOS cat-019
egory. To achieve that, we propose Dynamic020
Space Shrinking (DSS), a novel method that021
resolves problems brought from newly added022
OPs by dynamically keeping the current sam-023
ple space containing subnets with good config-024
urations and performance. We implemented025
DSS in ShrinkNAS, the first SPOS one-shot026
inter-OP model for Transformer. Our evalua-027
tion shows that ShrinkNAS is of much higher028
elasticity by finding a better structure beating029
the human-designed ones under tight constraint030
(<10M parameters), while existing intra-OP031
SPOS methods are not even close.032

1 Introduction033

Transformer (Vaswani et al., 2017) has been widely034

applied in modern Neural Language Processing035

(NLP) tasks. Although being powerful enough,036

neural architectures derived from Transformer, ei-037

ther human-designed (Devlin et al., 2018; Dai et al.,038

2019) or discovered by Neural Architecture Search039

(NAS, Zoph and Le, 2016) (So et al., 2019; Fan040

et al., 2020), prove that further altering the structure041

of Transformer is necessary to fully exploit its po-042

tential. Among NAS methods for further exploring043

potential structures of Transformer, the single-path 044

one-shot (SPOS) NAS (Guo et al., 2020) is popular 045

for its efficiency and simplicity. It only requires 046

designing a one-shot model (the supernet) contain- 047

ing all possible candidate networks (the subnets) 048

with shared weights for their common operators 049

(OPs) in the same layer. Only one subnet (single- 050

path) is sampled for every forward-backward pass 051

to train the supernet. Eventually, subnets are eval- 052

uated with inherited weights from the converged 053

supernet to discover the optimal structure. Previous 054

works on SPOS NAS for Transformer (Wang et al., 055

2020; Chen et al., 2021) have all set up new SOTA 056

on their respective tasks. 057

Surprisingly, unlike many SPOS NAS studies 058

for convolutional networks that perform both intra- 059

OP search (e.g., the number of output channels or 060

strides in convolutional OPs) and inter-OP search 061

(e.g., replacement of OPs or introducing new OPs) 062

(Guo et al., 2020), recent SPOS NAS studies for 063

Transformer focus solely on intra-OP search while 064

keeping the vanilla Transformer OP (e.g., self- 065

attention) unchanged. They succeeded in exploring 066

intra-OP structures (e.g., the number of attention 067

heads), but failed to take newly designed, promis- 068

ing OPs for Transformer (e.g., Lightweight Con- 069

volution, Dynamic Convolution (Wu et al., 2019a) 070

and LSRA (Wu et al., 2019b)) into consideration. 071

The potential of the inter-OP search for Trans- 072

former has been proved by many non-SPOS studies, 073

showing a higher elasticity on different scales (So 074

et al., 2019) and better performance on many tasks 075

(Fan et al., 2020), compared to intra-OP methods. 076

However, these non-SPOS studies are highly time- 077

consuming, as they essentially need to train thou- 078

sands of subnets searched out even with early stop- 079

ping, sometimes costing 106 GPU Hours, while 080

SPOS costs only 102 GPU Hours, as it only needs 081

to train one supernet by sharing weights. 082

In this paper, we explore the possibility of involv- 083

ing inter-OP search in Transformer-based SPOS 084
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NAS to discover a better neural structure with the085

high efficiency facilitated by the one-shot method.086

An intuitive way is to extend the supernet with087

more types of Transformer OPs. However, sev-088

eral problems raised from here and the first is the089

training step amortization. Precious training oppor-090

tunities are amortized by the increasing number of091

candidate subnets, causing good structures under-092

estimated due to insufficient train. What is worse,093

the structural characteristics of Transformer cause094

supernets like this almost untrainable. Instability095

from intra-OP and inter-OP altering at the same096

time is propagated and amplified layer-by-layer097

in Transformer’s stacked structure, as observed in098

(Liu et al., 2020). According to our evaluation,099

output instability will increase by up to 50% if we100

naively include more OPs in the supernet, which101

significantly raises the training difficulty and affect102

the supernet’s ability to identify promising subnets.103

We believe the root reason for this severe diver-104

gence in the naive SPOS method is assigning equal105

training opportunities to all subnets. This is funda-106

mentally controversial to the fact that good struc-107

tures are rare in the search space. Our insight is that108

good structures usually share common character-109

istics, like good-performing OPs usually show up110

more frequently, while bad structures show more111

randomness and arbitrariness. We believe that bad112

structures are a major cause of divergence for their113

randomness. If we can locate a smaller sample114

space containing more promising subnets, we can115

solve the above two problems together.116

Based on the insights, we present Dynamic117

Space Shrinking (DSS), a novel method that can118

dynamically evaluate and adjust the sampling space119

to make sure it contains more promising potential-120

good subnets, instead of the random and bad ones.121

This method helps the potential-good structures get122

more training while train-time divergence is also123

reduced. To realize the method, we encounter sev-124

eral challenges and embed an abundant bunch of125

unique solutions.126

First, how to identify potential-good subnets127

with low cost? We identified that subnet perfor-128

mance at the early stage of training serves as a good129

indicator of its final performance. Therefore, we130

can adaptively filter over the search space by simply131

using the current supernet and collecting potential-132

good subnets by their current performance, forming133

a good search space for the next stage of training.134

The evaluation is lightweight as it only requires a135

forward batch for each subnet. 136

Second, how to efficiently explore as much 137

search space as possible to reveal deeply covered ar- 138

chitectures that do not appear during training? We 139

utilize an iteratively evolutionary filtering process 140

that explores the sampled subnets during train time 141

and promising new subnets that were not sampled 142

before by mutation and crossover on the collected 143

good subnets. 144

Based on DSS, we perform SPOS with both 145

inter-OP and intra-OP enabled and successfully 146

find new structures that outperform the dedicat- 147

edly designed SOTA Lite Transformer (Wu et al., 148

2019b) under tight mobile constraints (<10M pa- 149

rameter size). We focus on small-scale models be- 150

cause small models are more sensitive to structural 151

variation, therefore, serve as a better metric for 152

comparing structures. In contrast, large models are 153

more likely to be affected by hyperparameters or 154

even initialization (Huang et al., 2020). Besides, it 155

can also demonstrate extra elasticity empowered by 156

inter-OP search. Our structure achieves at most 1.0 157

higher IWSLT’14 De-En BLEU score than SOTA 158

under the same parameter size. To compare, no pre- 159

vious SPOS method can beat the human-designed 160

SOTA under this constraint. Our contributions are: 161

(1) To our best knowledge, we are the first to iden- 162

tify and quantify the difficulties of inter-OP SPOS 163

for Transformer. We attribute the previous limita- 164

tions on achieving inter-OP SPOS to not addressing 165

the increased subnet divergence during training. 166

(2) We propose DSS, a novel method that can 167

greatly mitigate the supernet convergence difficul- 168

ties. Our evaluation shows that DSS reduces sub- 169

net divergence during inter-OP supernet training by 170

60%, reaching the same magnitude as the intra-OP 171

ones. Hence, DSS provides higher training stability 172

and enables inter-OP SPOS search on Transformer; 173

DSS takes the first step to realize the potential en- 174

visioned in recent works (So et al., 2019). 175

(3) Our inter-OP SPOS model, ShrinkNAS, shows 176

much better searching results in tight constraints 177

than the readily highly-optimized intra-OP SPOS 178

works. Our evaluation justified that extending 179

search space in inter-OPs can create higher search- 180

ing elasticity for future Transformer NAS works. 181

Moreover, DSS can be extended to other NAS ar- 182

eas, serving as a good search space filter for locat- 183

ing good search spaces at the early stage of train- 184

ing. Our source code and results are released on 185

github.com/acl22p2484/shrinknas. 186
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2 Background187

Single-Path One-Shot NAS. Among many novel188

NAS algorithms, the one-shot NAS (Liu et al.,189

2020) is popular for its efficiency as well as rel-190

atively good accuracy.191

We denote the search space containing all po-
tential structures as A. Typically, SPOS method
trains a supernetN (A,W ) containing all potential
subnets αi as paths on it. The optimization target
for the supernet is:

WA = argmin
W

Ltrain (N (A,W ))

To reach the target, SPOS will sample α ∈ A at
each training step, and perform a normal forward-
backward pass to optimize the parameters of its OP
on the sampled path. After the supernet is trained,
the next target is to find the optimal subnet from the
supernetα⋆ with weights of its OP inherited from
the supernet:

α⋆ = argmax
α∈A

Accval(N (α,w))

After the two steps, α⋆ is the searched structure.192

3 Difficulties of Inter-OP SPOS Search on193

Transformer194

In this section we will discuss why the naive inter-195

OP SPOS method (i.e. simply add more OPs to196

the supernet) is impractical for Transformer. We197

breakdown the problem to two factors: amortized198

training step for new OPs, and training instability199

from OP switching.200

3.1 Expansion of the supernet amortize201

training steps for subnets202

While SPOS is popular for its simplicity, requir-203

ing only one subnet to be sampled and trained ev-204

ery time, it’s intuitive that adding more choices to205

each layer will amortize training steps for subnets206

and OPs. Good structures that don’t get enough207

training steps could be underrated, which lead to208

sub-optimal searching results.209

Weight Entanglement proposed in (Chen et al.,210

2021) can mitigate this problem in intra-OP search211

by merging the weights of OPs of same type in a212

layer together. However, it’s not useful in the inter-213

OP SPOS case, as OPs of different types can’t be214

merged together. Therefore, the amortization prob-215

lem will still exist if we take the naive uniform sam-216

pling method in inter-OP SPOS for Transformer.217
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Figure 1: Visualization of module output divergence
after normalization. The darker the color, the higher
training instability it will cause. left (it is not empty):
output divergence of intra-OP substitution (4-heads to 2-
heads); right: output divergence of inter-OP substitution
(self-attention to dynamic convolution).

3.2 OP switching causes fluctuation of 218

network outputs 219

(Liu et al., 2020) discussed the difficulty of initial- 220

izing weights for Transformer, showing that Trans- 221

former is sensitive to small weight perturbations. 222

We use a simplified case of their proved theorem 223

to show why inter-OP SPOS brings higher subnet 224

divergence and how it affects training stability. 225

We refer the normalized output of each Trans- 226

former sub-layer (i.e. self-attention, attend-to- 227

encoder attention or feed foward network (FFN)) 228

as âi = Gi (x̂i−1,Wi) where x̂i−1 is the input of 229

the i-th layer. Given residual connections in Trans- 230

former, the final output of a Transformer model is 231

x̂ = F (x0,W ) =
∑

j≤N βN,j âj where βi,j is the 232

layer normalized scaling factor of the j-th output 233

in the i-th layer. We put the star (*) mark on the 234

variable to indicate it’s change because of modifi- 235

cation. (Liu et al., 2020) proves that, the variance 236

of output change due to modification is: 237

Var [F (x0,W )−F∗ (x0,W
∗)] ≈

N∑
i=1

β2
i,iVar[Gi

(
x̂∗
i−1,Wi

)
− G∗i

(
x̂∗
i−1,W

∗
i

)
].

(1) 238

This indicates that effects of modification on lay- 239

ers will get propagated and aggregated at the model 240

output due to residual connection and stacked struc- 241

ture in Transformer. With the same input (x0), out- 242

put differs dramatically with each other on each 243

run, which will for sure make the training unsta- 244

ble. Figure 1 visualizes the high divergence of OP 245

output (Gi
(
x̂∗
i−1,Wi

)
− G∗i

(
x̂∗
i−1,W

∗
i

)
) in intra- 246

OP search comparing to inter-OP search. There- 247

fore, uniform sampling that is effective in intra-OP 248
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SPOS for Transformer does not apply to inter-OP249

any more.250

Previous techniques that help stabilize Trans-251

former training, like pre-layer normalization252

(Xiong et al., 2020) and Adam (Kingma and Ba,253

2014) is to a extent still effective. For example, pre-254

layer normalization reduces βi,i in eq 1 comparing255

to post-layer normalization, the normal practice256

(Liu et al., 2020), but it is not enough for the higher257

magnitude of divergence. Adam, on the other hand,258

provides high stability at the early stage of training259

where different OPs may hold common optimiza-260

tion target. But when the target of optimization261

diverges, i.e., gradients do not share a common262

direction at each step any more, Adam won’t be263

effective either. In a word, previous techniques are264

helpful at mitigating training instability in inter-OP265

SPOS, but they don’t resolve the root cause, i.e.,266

the subnet divergence.267

4 ShrinkNAS with DSS268

In this section, we will first illustrate and explain269

DSS, the core strategy we propose to cope with the270

problems in the last section. Then we will demon-271

strate how the whole searching process works for272

ShrinkNAS, the inter-OP SPOS search for Trans-273

former enabled by DSS. ShrinkNAS includes three274

components: (a)An inter-OP Supernet (b)A subnet275

validator and (c)A evolutionary subnet generator276

and sampler. An overview of ShrinkNAS is shown277

in Figure 2.278

4.1 Overview of DSS279

DSS is able to solve the training step amortization280

and subnet divergence problem together with two281

underlying techniques: Train-time Sample Space282

Shrinking helps reduce the divergence, gradually283

driving the sample space from big and random to284

relatively small but accurate, containing promis-285

ing potential-good subnets. Evolutionary Explo-286

ration helps maintain a large space for structure287

search and exploration, and make the search more288

thorough and accurate. With these two techniques289

combined, we are able to reduce the divergence in290

sample space while give the promising structures291

more training opportunities.292

4.2 Train-time Sample Space Shrinking293

It’s commonly believed that good-performing struc-294

tures are rare in the whole sample space, especially295

when we further enlarge it with inter-OP search.296

Also, they should share some common characteris- 297

tics, which also serves as the underlying guidance 298

for human researchers to design new network struc- 299

tures. Therefore, most of the train-time divergence 300

actually comes from the bad, random structures 301

in stead of new good structures added when we 302

extend the search space. 303

Ideally, if we let the supernet trains only on the
subset of the training space that contains good struc-
tures, we will be able to reduce the divergence
while evaluate thoroughly over potential-good sub-
nets. To formalize the idea, we let Agood ⊂ A to
represent the set of globally good-performing struc-
tures, the ideal sample space we are looking for.
Then the ideal training process can be formalized
as:

WA = argmin
W

Ltrain (N (Agood,W ))

However, we don’t have accurate a priori knowl- 304

edge on Agood. The best we can get is finding out 305

a estimation of Agood, the Âgood. How to find an 306

accurate Âgood during train time at a low cost? 307

It’s a widely used and evaluated assumption that 308

structures being able to perform well in the early 309

stage of training is likely to be good structures glob- 310

ally. Many previous works (So et al., 2019; You 311

et al., 2020; Hu et al., 2021) take advantage of this 312

idea to reduce their training cost. Simply extending 313

the idea, we assume that structures perform well in 314

any stage of training are also more likely to be good 315

eventually. To formalize the idea, Ai_good ⊂ A de- 316

notes structures performing good in training stage 317

i. Then the above assumption can be described as: 318

P (α ∈ Agood|α ∈ Ai_good) > P (α ∈ Agood|α /∈ 319

Ai_good). 320

Moreover, Ai_good converge in probability to
Agood. As the training goes on, the supernet can
give more accurate evaluation for the subnets, and
its target is to be able to distinguish good subnets
from bad ones, i.e.:

∀α ∈ Agood, lim
n→∞

P (α /∈ An_good) = 0

Therefore, Ai_good serves as a good estimation 321

of Agood for its growing accuracy. Following the 322

theory, space shrinking is as simple as keeping the 323

set of subnets that’s currently performing well as 324

the sample space for the supernet in the next stage, 325

N (Ai_good,W ). In that way, we shrink the sample 326

space from A to Ai_good. 327
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Figure 2: Overview of ShrinkNAS. At the training stage, ShrinkNAS samples subnets from the current sample
space stored in subnet sampler. At the shrinking stage, a iterative evolutionary subnet search is performed based on
the current sample space to find out a smaller space containing more potential-good structures.

4.3 Evolutionary Exploration328

Taking Ai_good as the Âgood has been proved to329

be an accurate estimation. However, the accurate330

Ai_good is still not available for it involves too much331

cost for validating every subnet. During the train332

time, only a subset, A∗
i_good ⊂ Ai_good is practi-333

cally available. Therefore in practice, we are only334

able to keep a portion of subnets with high ranks we335

sampled for validation as the A∗
i_good to shrink to.336

This raises a challenge on the accuracy of A∗
i_good.337

What’s more, as the ranking accuracy of the338

supernet is not high enough before converging,339

promising structures may be dropped at the early340

stage of training. We need to not only keep the341

good-performing subnets at the current stage but342

also find subnets with good potential, i.e. likely to343

perform well after more training.344

To cope with the above dual requirements on345

both accuracy and depth, we introduce the evolu-346

tionary exploration method. An evolutionary ex-347

ploration containing the following steps: First, we348

collect the sample subnets from the last training349

stage as the seed. Then we evaluate and rank the350

subnets according to their validation scores, keep-351

ing only the top k subnets. Then two operations352

are performed to supplement the sample space to353

its original size: For crossover, we sample 2 sub-354

nets from the top k and generate a new subnet by 355

crossing the two parent subnets. For mutation, 356

we sample a subnet and randomly change some 357

of its components to other available choices by a 358

pre-defined probability. We iteratively perform the 359

above steps till reaching the designated iterations. 360

Algorithm 1 shows the process of our evolutionary 361

exploration. 362

The reason we choose the evolutionary method 363

is two-fold: On the one hand, comparing to random 364

sampling, the evolutionary method is proved to be 365

more efficient to search for good subnets, and thus 366

is a standard practice in the search stage of SPOS 367

works (Guo et al., 2020). On the other hand, based 368

on the previous insight on the distribution of good 369

subnets, the evolutionary method is also capable of 370

finding the subnets with good potential by slightly 371

modifying the current good structures. Therefore, 372

it reaches both requirements on accuracy and depth, 373

and can generate a good sample space A∗
i_good for 374

the next stage of training. 375

4.4 Training and Searching Pipeline for 376

ShrinkNAS 377

After introducing the process of DSS, we can now 378

illustrate the training and searching pipeline for 379

ShrinkNAS. During the train time, ShrinkNAS in- 380
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Algorithm 1 Evolutionary Exploration for Sample
Space Shrinking

Require: n: the target sample size;
A∗

i−1_good: the current sampled subnets;
i: the amount of iterations;
p: ratio of good subnets to keep;
m: ratio of subnets geterated by mutation;
c: ratio of subnets generated by crossover;

Ensure: p+m+ c = 1.0
A∗

i_good ← A∗
i−1_good

while i ̸= 0 do
i← i− 1
Ag = EVAL_SORTED(A∗

i_good)[:p× n]
Am = MUTATION(Ag, m× n)
Ac = CROSSOVER(Ag, c× n)
A∗

i_good ← Ag +Am +Ac

end while
return A∗

i_good

volves an iterative two-phased training process:381

Phase 1: Given a sample space A, we uniformly382

sample a subnet αi ∈ A and perform normal383

forward-backward pass to update its correspond-384

ing weights ωi in the supernet N (Agood,W ). This385

phase is similar to other SPOS methods, but the A386

will be adaptively adjusted in the next phase.387

When the training steps in phase 1 reach a pre-388

defined threshold, it will switch to phase 2 and389

performs sample space shrinking.390

Phase 2: When the training reaches a pre-defined391

step n, Given a sample space A∗ containing all392

the sampled subnets in phase 1, we perform the393

evolutionary exploration algorithm (Algorithm 1394

on it to shrink our current sample space to the new395

one.396

After phase 2, a new sample space is generated397

for the next stage of training, and the process goes398

back to phase 1. Following the alternate two phases,399

the training process goes on till it reaches the max-400

imum training step.401

We then perform the standard evolutionary402

search over the supernet to find the optimal struc-403

ture. The searching process can involve extra penal-404

ties or constraints that guide the searching process405

towards a desired scope or follow a preset con-406

straint. The evolutionary search process is similar407

to our evolutionary exploration, except for after408

the iterations, we return the best subnet with the409

highest score instead of a new search space.410

5 Experiments 411

5.1 Dataset 412

We conduct experiments on the IWSLT’14 De-En 413

Machine Translation Dataset. We follow the set- 414

tings in (Wu et al., 2019b) for fair comparison and 415

preprocess the dataset with 10K joint byte pair split- 416

ting (BPE) (Sennrich et al., 2016), splitting it into 417

around 160K/7K/7K sentences for train/valid/test. 418

The vocabulary size for German is 8848 while 6632 419

for English. 420

5.2 Baselines and setups 421

The human-designed baselines include the vanilla 422

Transformer (Vaswani et al., 2017) and two mod- 423

ified Transformers with new substitutions for the 424

self-attention operator: Lightweight/Dynamic Con- 425

volutions (Wu et al., 2019a) and Long-Short Range 426

Attentions (LSRA) (Wu et al., 2019b). The NAS 427

baselines includeHardware Aware Transformer 428

(Wang et al., 2020). Following (Wu et al., 2019b), 429

we set a 10M parameter size constraint for all 430

human-designed models. For evaluation, following 431

(Wang et al., 2020), we use beam 5 for sequence 432

generation and use case-sensitive tokenized BLEU 433
1 to calculate the BLEU scores. 434

5.3 Implementation Details 435

Search Space Setups. Our supernet is heteroge- 436

neous and configurations can be different among 437

cells. We have [160, 240, 320] for embedding 438

dim, [1, 1.5, 2] for dimension expansion ratio 439

of FFN (e.g., for a embedding dim of 160 and 440

a expansion ratio of 1.5, FFN will raise the di- 441

mension to 160 × 1.5 = 240 and reduce back 442

to 240), [2, 4] for head number in self-attention 443

OPs and [1, 2, 3, 4, 5, 6] for decoder cell num- 444

ber. We also support the same arbitrary attend- 445

to-encoder connection between encoder cell out- 446

puts and decoder’s attend-to-encoder attentions in 447

(Wang et al., 2020). For search space for the OPs, 448

we support substitution of self-attention OPs and 449

activation functions of FFNs. Candidates of self- 450

attention OPs include: the vanilla self-attention 451

(Vaswani et al., 2017), the lightweight convolution 452

and dynamic convolution (Wu et al., 2019a) and the 453

LSRA with lightweight/dynamic convolution (Wu 454

et al., 2019b). Candidates of activation functions 455

include: ReLU (Nair and Hinton, 2010), Leaky 456

ReLU (Maas et al., 2013) and Swish (Ramachan- 457

dran et al., 2017). 458

1https://github.com/moses-smt/mosesdecoder
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Validator Setups. For the validator, we use vali-459

dation batch size of 30,720 and validate each sub-460

net with a single forward pass. Different sampling461

seeds are generated each validation run to avoid the462

sample space getting overfitted to a specific subset463

of the validation set. The validator returns the sum464

of validation loss and other score penalties as the465

final loss for a subnet.466

Evolutionary Subnet Generator Setups. For467

the evolutionary subnet generator, we use a mu-468

tation rate of 0.4 to better explore the extended469

search space. At each iteration of the search, we470

keep the top 30% subnets according to their ranks471

in validation loss as the parents, then generate 40%472

of the original population with mutation and the re-473

maining 30% with crossover to restore the original474

population and perform the next search iteration.475

Training Settings. The hyperparameter settings476

are similar with (Wang et al., 2020) and (Wu et al.,477

2019b). We train the supernet for 50K steps with478

inverse square root LR scheduler. The LR grows479

linearly to 5e− 4 in the first 10,000 warm-up steps480

and then square-root annealed. The batch size for481

training is 4096 with no gradient aggregation. After482

training, the searched subnet inherits its weight483

from the supernet and continues to fine-tune for484

another 30k steps.485

We perform DSS every 10 epochs for 5 times,486

and for the last time, we take the first subnet (with487

the lowest loss so far) of the returned subnets as488

the searched subnet. We report the score of the se-489

lected subnet after fine-tuning instead of retraining.490

We will discuss fine-tuning and retraining in the491

ablation study section.492

6 Analysis and Discussion493

In this section, we will analyze the final results494

and perform ablation study on important factors we495

propose in this paper.496

6.1 Result Analysis497

The final results of our proposed method are shown498

in Table 2. As is shown, our proposed method499

outperforms the previous state-of-the-art human-500

designed structure in both BLEU scores and the501

size of parameters. We are able to push the SOTA502

forward for at most 1.0 BLEU scores under the503

same parameter constraints or gain 22.1% parame-504

ter size reduction in exchange for a mere 0.1 BLEU505

score drop. Please note that we have chosen the506

tightest baselines, the Lite Transformer that has507

Model Search Type Time Cost (h)
HAT intra-OP 3.4

RankNAS intra-OP⋆ 2.3
Ours inter-OP 3.2

Lite Trans. Not applicable 2.6

Table 1: Search and retrain (fine-tuning) time costs for
different NAS Models on IWSLT’14 De-En. ⋆ indicates
RankNAS is a intra-OP method but doesn’t involve train-
ing a supernet. All costs are normalized in RTX3090
GPU Hours. We list Lite Transformer’s training cost for
80k steps for reference.

already been optimized for small parameter sizes 508

to compare. Yet, ShrinkNAS still helps further 509

optimize the structure of Transformer under this 510

lightweight constraint. 511

Compared with other NAS methods in Ta- 512

ble 1, except for consistent better performance, 513

ShrinkNAS is also capable of providing end-to-end 514

structure search and training pipeline. To compare, 515

training a model with the same amount of steps 516

costs only 0.6 hours less, while with the extra 0.6 517

hours, ShrinkNAS can explore the inter-OP search 518

space containing 1030 combinations, find a better 519

structure and fully train it. For other NAS mod- 520

els for Transformer, a retrain is usually required 521

for optimal performance. This helps ShrinkNAS 522

save at least 20% GPU Hours compared to intra- 523

OP methods. What’s more, ShrinkNAS provides 524

a much larger search space with inter-OP search, 525

while other methods for comparison are all intra- 526

OP. This indicates our method is able to explore 527

the larger search space with even less search time, 528

thus achieves higher exploration efficiency. Even 529

compared to the recent SOTA, RankNAS (Hu et al., 530

2021), which dramatically reduces the search time, 531

our method still achieving a comparable cost with 532

it for RankNAS requires retraining as it doesn’t 533

involve training a one-shot supernet. 534

6.2 Ablation Study 535

In this part, we will empirically evaluate the claims 536

we make in this paper. We will also evaluate the 537

two techniques proposed in DSS. 538

Reduction of Subnet Divergence. Figure 4 539

shows the distribution of subnet divergence before 540

and after our sample space shrinking. We quantify 541

subnet divergence in the same way as the analysis 542

in Section 3, i.e. the variance of model output with 543

the same input. We randomly sample 200 subnets 544

each in the sample space before and after shrinking. 545
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Model #Parameters BLEU ∆ BLEU
Transformer (Vaswani et al., 2017) 2.8M (1.8M)‡ 27.8 -

LightConv (Wu et al., 2019a) 2.5M (1.5M) 28.5 +0.7
Lite Transformer (Wu et al., 2019b) 2.8M (1.8M) 30.9 +3.1

ShrinkNAS (Ours) 1.8M 31.9 +4.1
Transformer 5.7M (4.1M) 31.3 -
LightConv 5.1M (3.5M) 31.6 +0.3

Lite Transformer 5.4M (3.9M) 32.9 +1.6
ShrinkNAS (Ours) 3.6M 33.3 +1.9

Transformer 8.5M (6.4M) 32.7 -
LightConv 8.4M (6.3M) 32.9 +0.2

Lite Transformer 8.9M (6.8M) 33.6 +0.9
ShrinkNAS (Ours) 5.9M 33.8 +1.1

HAT (Wang et al., 2020) 16.8M 33.4 -

Table 2: Results on IWSLT’14 De-En. Our model (ShrinkNAS) outperforms both Lite Transformer, the human-
designed SOTA and HAT, the NAS-Searched SOTA in comparable #Parameters ranges. Performance of the three
baselines comes from (Wu et al., 2019b). ‡ indicates we find a flaw about parameter size in their paper, but we
faithfully cite the original data and put the correct data in the parentheses

To serve as a baseline, we also sample 200 subnets546

from the intra-OP supernet. Naive inter-OP SPOS547

will on average have 2x divergence than intra-OP548

methods. While through an iteration of DSS, it can549

be reduced by up to 40%.550

20k 40k 60k 80k
3

4

5

6

7
Naive Inter-OP

Random

Evolutionary

(a) Evolutionary exploration

20k 40k 60k 80k
3

4

5

6

7
Naive Inter-OP

Evol. with Reduction

Evolutionary

(b) Space reduction

Figure 3: The average training losses in different exper-
iment setups. “Evolutionary” (green in a, b) and “Evol.
with Reduction” (red in b) are DSS’s results. Apply-
ing techniques including evolutionary exploration and
space reduction can significantly improve training con-
vergence.

Effects of Evolutionary Exploration. Fig-551

ure 3(a) shows the effect of evolutionary explo-552

ration. Although shrinking to the top 5,000 subnets553

from the initially sampled subnets does help the554

training process get closer to convergence, adding555

iteratively evolutionary exploration to the shrink-556

ing process significantly boosts up the training and557

eventually lets the supernet converge. We can claim558

that evolutionary exploration help locates better559

sample space that contains good structures.560

Effects of Space Reduction Figure 3(b) shows561

the effect of the Space Reduction, a variant of DSS.562

Space reduction keeps only the top subnets returned563

from evolutionary search as the next training sam-564

200 400 600 800 1000
0

10

20

30 Before shrink

After shrink

Intra-OP

distance

co
un

t

Figure 4: Distribution of subnet divergence before and
after the first shrinking process. The left (lower distance
between output feature maps) is better, indicating less
subnet divergence in the supernet training, therefore
easier to train. Different distributions between the red
and blue are DSS’s outcome.

ple space, showing higher stability than DSS. This 565

proves the potential of further extending DSS. 566

7 Conclusion 567

In this paper, we present Dynamic Space Shrink- 568

ing, a novel method to cope with the training step 569

amortization and subnet divergence problems in 570

inter-OP SPOS NAS by locating a smaller sam- 571

ple space containing promising structures. En- 572

abled by DSS, we design the first inter-OP SPOS 573

model for Transformer that efficiently finds net- 574

work structures outperforming the human-designed 575

SOTA model while no previous intra-OP method 576

managed to do so. In the future, DSS can be 577

extended to other fields of NAS search and em- 578

powering searching in larger spaces. Our source 579

code and results are released on github.com/ 580

acl22p2484/shrinknas. 581
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