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Abstract

Neural Architecture Search (NAS) for Trans-
former has shown its growing capabilities in
exploiting the benefits of various Transformer
architecture configurations. Recent studies en-
vision the diverse potential of introducing un-
precedented Transformer operators (OPs, such
as Convolution) to its structure, yet the existing
methods of doing so are all time-consuming.
Traditionally, Single-Path One-Shot (SPOS)
models enable efficient search over a vast set
of OPs. However, existing SPOS methods
on Transformer focus only on dimensional
configurations of the vanilla Transformer OP
(e.g., Multi-head Attention), and did not con-
sider introducing other OPs. This paper ex-
plores the possibility of including OPs in the
Transformer-based SPOS architecture search
to discover better Transformer structures with
the high efficiency facilitated in the SPOS cat-
egory. To achieve that, we propose Dynamic
Space Shrinking (DSS), a novel method that
resolves problems brought from newly added
OPs by dynamically keeping the current sam-
ple space containing subnets with good config-
urations and performance. We implemented
DSS in ShrinkNAS, the first SPOS one-shot
inter-OP model for Transformer. Our evalua-
tion shows that ShrinkNAS is of much higher
elasticity by finding a better structure beating
the human-designed ones under tight constraint
(<10M parameters), while existing intra-OP
SPOS methods are not even close.

1 Introduction

Transformer (Vaswani et al., 2017) has been widely
applied in modern Neural Language Processing
(NLP) tasks. Although being powerful enough,
neural architectures derived from Transformer, ei-
ther human-designed (Devlin et al., 2018; Dai et al.,
2019) or discovered by Neural Architecture Search
(NAS, Zoph and Le, 2016) (So et al., 2019; Fan
et al., 2020), prove that further altering the structure
of Transformer is necessary to fully exploit its po-
tential. Among NAS methods for further exploring

potential structures of Transformer, the single-path
one-shot (SPOS) NAS (Guo et al., 2020) is popular
for its efficiency and simplicity. It only requires
designing a one-shot model (the supernet) contain-
ing all possible candidate networks (the subnets)
with shared weights for their common operators
(OPs) in the same layer. Only one subnet (single-
path) is sampled for every forward-backward pass
to train the supernet. Eventually, subnets are eval-
uated with inherited weights from the converged
supernet to discover the optimal structure. Previous
works on SPOS NAS for Transformer (Wang et al.,
2020; Chen et al., 2021) have all set up new SOTA
on their respective tasks.

Surprisingly, unlike many SPOS NAS studies
for convolutional networks that perform both intra-
OP search (e.g., the number of output channels or
strides in convolutional OPs) and inter-OP search
(e.g., replacement of OPs or introducing new OPs)
(Guo et al., 2020), recent SPOS NAS studies for
Transformer focus solely on intra-OP search while
keeping the vanilla Transformer OP (e.g., self-
attention) unchanged. They succeeded in exploring
intra-OP structures (e.g., the number of attention
heads), but failed to take newly designed, promis-
ing OPs for Transformer (e.g., Lightweight Con-
volution, Dynamic Convolution (Wu et al., 2019a)
and LSRA (Wu et al., 2019b)) into consideration.
The potential of the inter-OP search for Trans-
former has been proved by many non-SPOS studies,
showing a higher elasticity on different scales (So
et al., 2019) and better performance on many tasks
(Fan et al., 2020), compared to intra-OP methods.
However, these non-SPOS studies are highly time-
consuming, as they essentially need to train thou-
sands of subnets searched out even with early stop-
ping, sometimes costing 10 GPU Hours, while
SPOS costs only 10> GPU Hours, as it only needs
to train one supernet by sharing weights.

In this paper, we explore the possibility of involv-
ing inter-OP search in Transformer-based SPOS



NAS to discover a better neural structure with the
high efficiency facilitated by the one-shot method.
An intuitive way is to extend the supernet with
more types of Transformer OPs. However, sev-
eral problems raised from here and the first is the
training step amortization. Precious training oppor-
tunities are amortized by the increasing number of
candidate subnets, causing good structures under-
estimated due to insufficient train. What is worse,
the structural characteristics of Transformer cause
supernets like this almost untrainable. Instability
from intra-OP and inter-OP altering at the same
time is propagated and amplified layer-by-layer
in Transformer’s stacked structure, as observed in
(Liu et al., 2020). According to our evaluation,
output instability will increase by up to 50% if we
naively include more OPs in the supernet, which
significantly raises the training difficulty and affect
the supernet’s ability to identify promising subnets.

We believe the root reason for this severe diver-
gence in the naive SPOS method is assigning equal
training opportunities to all subnets. This is funda-
mentally controversial to the fact that good struc-
tures are rare in the search space. Our insight is that
good structures usually share common character-
istics, like good-performing OPs usually show up
more frequently, while bad structures show more
randomness and arbitrariness. We believe that bad
structures are a major cause of divergence for their
randomness. If we can locate a smaller sample
space containing more promising subnets, we can
solve the above two problems together.

Based on the insights, we present Dynamic
Space Shrinking (DSS), a novel method that can
dynamically evaluate and adjust the sampling space
to make sure it contains more promising potential-
good subnets, instead of the random and bad ones.
This method helps the potential-good structures get
more training while train-time divergence is also
reduced. To realize the method, we encounter sev-
eral challenges and embed an abundant bunch of
unique solutions.

First, how to identify potential-good subnets
with low cost? We identified that subnet perfor-
mance at the early stage of training serves as a good
indicator of its final performance. Therefore, we
can adaptively filter over the search space by simply
using the current supernet and collecting potential-
good subnets by their current performance, forming
a good search space for the next stage of training.
The evaluation is lightweight as it only requires a

forward batch for each subnet.

Second, how to efficiently explore as much
search space as possible to reveal deeply covered ar-
chitectures that do not appear during training? We
utilize an iteratively evolutionary filtering process
that explores the sampled subnets during train time
and promising new subnets that were not sampled
before by mutation and crossover on the collected
good subnets.

Based on DSS, we perform SPOS with both

inter-OP and intra-OP enabled and successfully
find new structures that outperform the dedicat-
edly designed SOTA Lite Transformer (Wu et al.,
2019b) under tight mobile constraints (<10M pa-
rameter size). We focus on small-scale models be-
cause small models are more sensitive to structural
variation, therefore, serve as a better metric for
comparing structures. In contrast, large models are
more likely to be affected by hyperparameters or
even initialization (Huang et al., 2020). Besides, it
can also demonstrate extra elasticity empowered by
inter-OP search. Our structure achieves at most 1.0
higher IWSLT’ 14 De-En BLEU score than SOTA
under the same parameter size. To compare, no pre-
vious SPOS method can beat the human-designed
SOTA under this constraint. Our contributions are:
(1) To our best knowledge, we are the first to iden-
tify and quantify the difficulties of inter-OP SPOS
for Transformer. We attribute the previous limita-
tions on achieving inter-OP SPOS to not addressing
the increased subnet divergence during training.
(2) We propose DSS, a novel method that can
greatly mitigate the supernet convergence difficul-
ties. Our evaluation shows that DSS reduces sub-
net divergence during inter-OP supernet training by
60%, reaching the same magnitude as the intra-OP
ones. Hence, DSS provides higher training stability
and enables inter-OP SPOS search on Transformer;
DSS takes the first step to realize the potential en-
visioned in recent works (So et al., 2019).
(3) Our inter-OP SPOS model, ShrinkNAS, shows
much better searching results in tight constraints
than the readily highly-optimized intra-OP SPOS
works. Our evaluation justified that extending
search space in inter-OPs can create higher search-
ing elasticity for future Transformer NAS works.
Moreover, DSS can be extended to other NAS ar-
eas, serving as a good search space filter for locat-
ing good search spaces at the early stage of train-
ing. Our source code and results are released on
github.com/acl22p2484/shrinknas.


github.com/acl22p2484/shrinknas

2 Background

Single-Path One-Shot NAS. Among many novel
NAS algorithms, the one-shot NAS (Liu et al.,
2020) is popular for its efficiency as well as rel-
atively good accuracy.

We denote the search space containing all po-
tential structures as A. Typically, SPOS method
trains a supernet A/ (A, W) containing all potential
subnets «; as paths on it. The optimization target
for the supernet is:

W4 = arg minLyain (N (A, W))
w

To reach the target, SPOS will sample o € A at
each training step, and perform a normal forward-
backward pass to optimize the parameters of its OP
on the sampled path. After the supernet is trained,
the next target is to find the optimal subnet from the
superneta* with weights of its OP inherited from
the supernet:

o = arg max Accyq (N (a, w))
acA

After the two steps, o* is the searched structure.

3 Difficulties of Inter-OP SPOS Search on
Transformer

In this section we will discuss why the naive inter-
OP SPOS method (i.e. simply add more OPs to
the supernet) is impractical for Transformer. We
breakdown the problem to two factors: amortized
training step for new OPs, and training instability
from OP switching.

3.1 Expansion of the supernet amortize
training steps for subnets

While SPOS is popular for its simplicity, requir-
ing only one subnet to be sampled and trained ev-
ery time, it’s intuitive that adding more choices to
each layer will amortize training steps for subnets
and OPs. Good structures that don’t get enough
training steps could be underrated, which lead to
sub-optimal searching results.

Weight Entanglement proposed in (Chen et al.,
2021) can mitigate this problem in intra-OP search
by merging the weights of OPs of same type in a
layer together. However, it’s not useful in the inter-
OP SPOS case, as OPs of different types can’t be
merged together. Therefore, the amortization prob-
lem will still exist if we take the naive uniform sam-
pling method in inter-OP SPOS for Transformer.

Self-Attn
4 heads - 2 heads Self-Attn - DynaConv
30 30} |I 5
1
20 20 i
L | r 0

f -,
0 0

0 10 20 30 0 10 20

|
“%

Figure 1: Visualization of module output divergence
after normalization. The darker the color, the higher
training instability it will cause. left (it is not empty):
output divergence of intra-OP substitution (4-heads to 2-
heads); right: output divergence of inter-OP substitution
(self-attention to dynamic convolution).

3.2 OP switching causes fluctuation of
network outputs

(Liu et al., 2020) discussed the difficulty of initial-
izing weights for Transformer, showing that Trans-
former is sensitive to small weight perturbations.
We use a simplified case of their proved theorem
to show why inter-OP SPOS brings higher subnet
divergence and how it affects training stability.

We refer the normalized output of each Trans-
former sub-layer (i.e. self-attention, attend-to-
encoder attention or feed foward network (FFN))
as a; = G; (X;—1, W;) where X;_1 is the input of
the i-th layer. Given residual connections in Trans-
former, the final output of a Transformer model is
X = F (x0, W) = >,y Bn,ja; where f3; ; is the
layer normalized scaling factor of the j-th output
in the i-th layer. We put the star (*) mark on the
variable to indicate it’s change because of modifi-
cation. (Liu et al., 2020) proves that, the variance
of output change due to modification is:

Var [F (x9, W) — F* (x0, W")] =

N
Zﬂfz Var[G; (ﬁf—la WZ) - g7 (Q;kfla Wz*)]
i=1

(D

This indicates that effects of modification on lay-
ers will get propagated and aggregated at the model
output due to residual connection and stacked struc-
ture in Transformer. With the same input (xg), out-
put differs dramatically with each other on each
run, which will for sure make the training unsta-
ble. Figure 1 visualizes the high divergence of OP
output (G; (i;k_l, Wl) - Gr (ﬁf_l, Wi*)) in intra-
OP search comparing to inter-OP search. There-
fore, uniform sampling that is effective in intra-OP



SPOS for Transformer does not apply to inter-OP
any more.

Previous techniques that help stabilize Trans-
former training, like pre-layer normalization
(Xiong et al., 2020) and Adam (Kingma and Ba,
2014) is to a extent still effective. For example, pre-
layer normalization reduces f3; ; in eq 1 comparing
to post-layer normalization, the normal practice
(Liu et al., 2020), but it is not enough for the higher
magnitude of divergence. Adam, on the other hand,
provides high stability at the early stage of training
where different OPs may hold common optimiza-
tion target. But when the target of optimization
diverges, i.e., gradients do not share a common
direction at each step any more, Adam won’t be
effective either. In a word, previous techniques are
helpful at mitigating training instability in inter-OP
SPOS, but they don’t resolve the root cause, i.e.,
the subnet divergence.

4 ShrinkNAS with DSS

In this section, we will first illustrate and explain
DSS, the core strategy we propose to cope with the
problems in the last section. Then we will demon-
strate how the whole searching process works for
ShrinkNAS, the inter-OP SPOS search for Trans-
former enabled by DSS. ShrinkNAS includes three
components: (a)An inter-OP Supernet (b)A subnet
validator and (c)A evolutionary subnet generator
and sampler. An overview of ShrinkNAS is shown
in Figure 2.

4.1 Overview of DSS

DSS is able to solve the training step amortization
and subnet divergence problem together with two
underlying techniques: Train-time Sample Space
Shrinking helps reduce the divergence, gradually
driving the sample space from big and random to
relatively small but accurate, containing promis-
ing potential-good subnets. Evolutionary Explo-
ration helps maintain a large space for structure
search and exploration, and make the search more
thorough and accurate. With these two techniques
combined, we are able to reduce the divergence in
sample space while give the promising structures
more training opportunities.

4.2 Train-time Sample Space Shrinking

It’s commonly believed that good-performing struc-
tures are rare in the whole sample space, especially
when we further enlarge it with inter-OP search.

Also, they should share some common characteris-
tics, which also serves as the underlying guidance
for human researchers to design new network struc-
tures. Therefore, most of the train-time divergence
actually comes from the bad, random structures
in stead of new good structures added when we
extend the search space.

Ideally, if we let the supernet trains only on the
subset of the training space that contains good struc-
tures, we will be able to reduce the divergence
while evaluate thoroughly over potential-good sub-
nets. To formalize the idea, we let Ay,0q C A to
represent the set of globally good-performing struc-
tures, the ideal sample space we are looking for.
Then the ideal training process can be formalized
as:

WA = arg minﬁtrain (N(-Agooda W))
w

However, we don’t have accurate a priori knowl-
edge on Agyoq. The best we can get is finding out
a estimation of A4, the /lgood. How to find an
accurate flgood during train time at a low cost?

It’s a widely used and evaluated assumption that
structures being able to perform well in the early
stage of training is likely to be good structures glob-
ally. Many previous works (So et al., 2019; You
et al., 2020; Hu et al., 2021) take advantage of this
idea to reduce their training cost. Simply extending
the idea, we assume that structures perform well in
any stage of training are also more likely to be good
eventually. To formalize the idea, A; 4504 C A de-
notes structures performing good in training stage
i. Then the above assumption can be described as:
P(a S Agoodla € Ai_good) > P(Oz S Agood\a ¢
Ai Jood)-

Moreover, A; 4004 converge in probability to
Agood- As the training goes on, the supernet can
give more accurate evaluation for the subnets, and
its target is to be able to distinguish good subnets
from bad ones, i.e.:

Va € Agoodu nlggo P(a ¢ An_good) =0

Therefore, A; 4004 serves as a good estimation
of Agooq for its growing accuracy. Following the
theory, space shrinking is as simple as keeping the
set of subnets that’s currently performing well as
the sample space for the supernet in the next stage,
N (A;_good; W). In that way, we shrink the sample
space from A to A;_go0d-
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Figure 2: Overview of ShrinkNAS. At the training stage, ShrinkNAS samples subnets from the current sample
space stored in subnet sampler. At the shrinking stage, a iterative evolutionary subnet search is performed based on
the current sample space to find out a smaller space containing more potential-good structures.

4.3 Evolutionary Exploration

Taking A;_j00q as the .,Zlgood has been proved to
be an accurate estimation. However, the accurate
A;i_good 1s still not available for it involves too much
cost for validating every subnet. During the train
time, only a subset, AY ; C Ai_good 18 practi-
cally available. Therefore in practice, we are only
able to keep a portion of subnets with high ranks we
sampled for validation as the A7 . to shrink to.

1_goo:
. . ES
This raises a challenge on the accuracy of A7 ;.

What’s more, as the ranking accuracy of the
supernet is not high enough before converging,
promising structures may be dropped at the early
stage of training. We need to not only keep the
good-performing subnets at the current stage but
also find subnets with good potential, i.e. likely to
perform well after more training.

To cope with the above dual requirements on
both accuracy and depth, we introduce the evolu-
tionary exploration method. An evolutionary ex-
ploration containing the following steps: First, we
collect the sample subnets from the last training
stage as the seed. Then we evaluate and rank the
subnets according to their validation scores, keep-
ing only the top k subnets. Then two operations
are performed to supplement the sample space to
its original size: For crossover, we sample 2 sub-

nets from the top k and generate a new subnet by
crossing the two parent subnets. For mutation,
we sample a subnet and randomly change some
of its components to other available choices by a
pre-defined probability. We iteratively perform the
above steps till reaching the designated iterations.
Algorithm 1 shows the process of our evolutionary
exploration.

The reason we choose the evolutionary method
is two-fold: On the one hand, comparing to random
sampling, the evolutionary method is proved to be
more efficient to search for good subnets, and thus
is a standard practice in the search stage of SPOS
works (Guo et al., 2020). On the other hand, based
on the previous insight on the distribution of good
subnets, the evolutionary method is also capable of
finding the subnets with good potential by slightly
modifying the current good structures. Therefore,
it reaches both requirements on accuracy and depth,
and can generate a good sample space A for
the next stage of training.

*
i_good

4.4 Training and Searching Pipeline for
ShrinkNAS

After introducing the process of DSS, we can now
illustrate the training and searching pipeline for
ShrinkNAS. During the train time, ShrinkNAS in-



Algorithm 1 Evolutionary Exploration for Sample
Space Shrinking

Require: n: the target sample size;
A7 _good: the current sampled subnets;
1: the amount of iterations;
p: ratio of good subnets to keep;
m: ratio of subnets geterated by mutation;
c: ratio of subnets generated by crossover;
Ensure: p+m+c=1.0

14— 1—1
Ay = EVAL_SORTED(A;‘_ 900 Dlp x n]
Ay, = MUTATION(A,, m x n)
A, =CROSSOVER(A, ¢ x n)
A;.*_good — Ay + Ay + A
end while

*
return A T good

volves an iterative two-phased training process:

Phase I: Given a sample space A, we uniformly
sample a subnet o; € A and perform normal
forward-backward pass to update its correspond-
ing weights w; in the supernet N’ (Agood, W). This
phase is similar to other SPOS methods, but the A
will be adaptively adjusted in the next phase.

When the training steps in phase 1 reach a pre-
defined threshold, it will switch to phase 2 and
performs sample space shrinking.

Phase 2: When the training reaches a pre-defined
step n, Given a sample space .A* containing all
the sampled subnets in phase 1, we perform the
evolutionary exploration algorithm (Algorithm 1
on it to shrink our current sample space to the new
one.

After phase 2, a new sample space is generated
for the next stage of training, and the process goes
back to phase 1. Following the alternate two phases,
the training process goes on till it reaches the max-
imum training step.

We then perform the standard evolutionary
search over the supernet to find the optimal struc-
ture. The searching process can involve extra penal-
ties or constraints that guide the searching process
towards a desired scope or follow a preset con-
straint. The evolutionary search process is similar
to our evolutionary exploration, except for after
the iterations, we return the best subnet with the
highest score instead of a new search space.

S Experiments

5.1 Dataset

We conduct experiments on the IWSLT’ 14 De-En
Machine Translation Dataset. We follow the set-
tings in (Wu et al., 2019b) for fair comparison and
preprocess the dataset with 10K joint byte pair split-
ting (BPE) (Sennrich et al., 2016), splitting it into
around 160K/7K/7K sentences for train/valid/test.
The vocabulary size for German is 8848 while 6632
for English.

5.2 Baselines and setups

The human-designed baselines include the vanilla
Transformer (Vaswani et al., 2017) and two mod-
ified Transformers with new substitutions for the
self-attention operator: Lightweight/Dynamic Con-
volutions (Wu et al., 2019a) and Long-Short Range
Attentions (LSRA) (Wu et al., 2019b). The NAS
baselines includeHardware Aware Transformer
(Wang et al., 2020). Following (Wu et al., 2019b),
we set a 10M parameter size constraint for all
human-designed models. For evaluation, following
(Wang et al., 2020), we use beam 5 for sequence
generation and use case-sensitive tokenized BLEU
! to calculate the BLEU scores.

5.3 Implementation Details

Search Space Setups. Our supernet is heteroge-
neous and configurations can be different among
cells. We have [160, 240, 320] for embedding
dim, [1, 1.5, 2] for dimension expansion ratio
of FFN (e.g., for a embedding dim of 160 and
a expansion ratio of 1.5, FFN will raise the di-
mension to 160 x 1.5 = 240 and reduce back
to 240), [2, 4] for head number in self-attention
OPs and [1, 2, 3, 4, 5, 6] for decoder cell num-
ber. We also support the same arbitrary attend-
to-encoder connection between encoder cell out-
puts and decoder’s attend-to-encoder attentions in
(Wang et al., 2020). For search space for the OPs,
we support substitution of self-attention OPs and
activation functions of FFNs. Candidates of self-
attention OPs include: the vanilla self-attention
(Vaswani et al., 2017), the lightweight convolution
and dynamic convolution (Wu et al., 2019a) and the
LSRA with lightweight/dynamic convolution (Wu
et al., 2019b). Candidates of activation functions
include: ReLU (Nair and Hinton, 2010), Leaky
ReLU (Maas et al., 2013) and Swish (Ramachan-
dran et al., 2017).

"https://github.com/moses-smt/mosesdecoder



Validator Setups. For the validator, we use vali-
dation batch size of 30,720 and validate each sub-
net with a single forward pass. Different sampling
seeds are generated each validation run to avoid the
sample space getting overfitted to a specific subset
of the validation set. The validator returns the sum
of validation loss and other score penalties as the
final loss for a subnet.

Evolutionary Subnet Generator Setups. For
the evolutionary subnet generator, we use a mu-
tation rate of 0.4 to better explore the extended
search space. At each iteration of the search, we
keep the top 30% subnets according to their ranks
in validation loss as the parents, then generate 40%
of the original population with mutation and the re-
maining 30% with crossover to restore the original
population and perform the next search iteration.

Training Settings. The hyperparameter settings
are similar with (Wang et al., 2020) and (Wu et al.,
2019b). We train the supernet for 50K steps with
inverse square root LR scheduler. The LR grows
linearly to 5e — 4 in the first 10,000 warm-up steps
and then square-root annealed. The batch size for
training is 4096 with no gradient aggregation. After
training, the searched subnet inherits its weight
from the supernet and continues to fine-tune for
another 30k steps.

We perform DSS every 10 epochs for 5 times,
and for the last time, we take the first subnet (with
the lowest loss so far) of the returned subnets as
the searched subnet. We report the score of the se-
lected subnet after fine-tuning instead of retraining.
We will discuss fine-tuning and retraining in the
ablation study section.

6 Analysis and Discussion

In this section, we will analyze the final results
and perform ablation study on important factors we
propose in this paper.

6.1 Result Analysis

The final results of our proposed method are shown
in Table 2. As is shown, our proposed method
outperforms the previous state-of-the-art human-
designed structure in both BLEU scores and the
size of parameters. We are able to push the SOTA
forward for at most 1.0 BLEU scores under the
same parameter constraints or gain 22.1% parame-
ter size reduction in exchange for a mere 0.1 BLEU
score drop. Please note that we have chosen the
tightest baselines, the Lite Transformer that has

Model Search Type Time Cost (h)
HAT intra-OP 34
RankNAS intra-OP* 2.3
Ours inter-OP 3.2
Lite Trans. Not applicable 2.6

Table 1: Search and retrain (fine-tuning) time costs for
different NAS Models on IWSLT’ 14 De-En. * indicates
RankNAS is a intra-OP method but doesn’t involve train-
ing a supernet. All costs are normalized in RTX3090
GPU Hours. We list Lite Transformer’s training cost for
80k steps for reference.

already been optimized for small parameter sizes
to compare. Yet, ShrinkNAS still helps further
optimize the structure of Transformer under this
lightweight constraint.

Compared with other NAS methods in Ta-
ble 1, except for consistent better performance,
ShrinkNAS is also capable of providing end-to-end
structure search and training pipeline. To compare,
training a model with the same amount of steps
costs only 0.6 hours less, while with the extra 0.6
hours, ShrinkNAS can explore the inter-OP search
space containing 10%° combinations, find a better
structure and fully train it. For other NAS mod-
els for Transformer, a retrain is usually required
for optimal performance. This helps ShrinkNAS
save at least 20% GPU Hours compared to intra-
OP methods. What’s more, ShrinkNAS provides
a much larger search space with inter-OP search,
while other methods for comparison are all intra-
OP. This indicates our method is able to explore
the larger search space with even less search time,
thus achieves higher exploration efficiency. Even
compared to the recent SOTA, RankNAS (Hu et al.,
2021), which dramatically reduces the search time,
our method still achieving a comparable cost with
it for RankNAS requires retraining as it doesn’t
involve training a one-shot supernet.

6.2 Ablation Study

In this part, we will empirically evaluate the claims
we make in this paper. We will also evaluate the
two techniques proposed in DSS.

Reduction of Subnet Divergence. Figure 4
shows the distribution of subnet divergence before
and after our sample space shrinking. We quantify
subnet divergence in the same way as the analysis
in Section 3, i.e. the variance of model output with
the same input. We randomly sample 200 subnets
each in the sample space before and after shrinking.



Model #Parameters BLEU A BLEU
Transformer (Vaswani et al., 2017)  2.8M (1.8M)* 27.8 -
LightConv (Wu et al., 2019a) 2.5M (1.5M) 28.5 +0.7
Lite Transformer (Wu et al., 2019b)  2.8M (1.8M) 30.9 +3.1
ShrinkNAS (Ours) 1.8M 319 +4.1
Transformer 5.7M (4.1M) 31.3 -
LightConv 5.1IM (3.5M) 31.6 +0.3
Lite Transformer 5.4M (3.9M) 32.9 +1.6
ShrinkNAS (Ours) 3.60M 33.3 +1.9
Transformer 8.5M (6.4M) 32.7 -
LightConv 8.4M (6.3M) 329 +0.2
Lite Transformer 8.9M (6.8M) 33.6 +0.9
ShrinkNAS (Ours) 5.9M 33.8 +1.1
HAT (Wang et al., 2020) 16.8M 334 -

Table 2: Results on IWSLT’ 14 De-En. Our model (ShrinkNAS) outperforms both Lite Transformer, the human-
designed SOTA and HAT, the NAS-Searched SOTA in comparable #Parameters ranges. Performance of the three
baselines comes from (Wu et al., 2019b). I indicates we find a flaw about parameter size in their paper, but we
faithfully cite the original data and put the correct data in the parentheses

To serve as a baseline, we also sample 200 subnets
from the intra-OP supernet. Naive inter-OP SPOS
will on average have 2x divergence than intra-OP
methods. While through an iteration of DSS, it can
be reduced by up to 40%.

7 7
Naive Inter-OP Naive Inter-OP

6 Random 6 Evol. with Reduction
Evolutionary Evolutionary

20k 40k 60k 80k 20k 40k 60k 80k

(a) Evolutionary exploration (b) Space reduction

Figure 3: The average training losses in different exper-
iment setups. “Evolutionary” (green in a, b) and “Evol.
with Reduction” (red in b) are DSS’s results. Apply-
ing techniques including evolutionary exploration and
space reduction can significantly improve training con-
vergence.

Effects of Evolutionary Exploration. Fig-
ure 3(a) shows the effect of evolutionary explo-
ration. Although shrinking to the top 5,000 subnets
from the initially sampled subnets does help the
training process get closer to convergence, adding
iteratively evolutionary exploration to the shrink-
ing process significantly boosts up the training and
eventually lets the supernet converge. We can claim
that evolutionary exploration help locates better
sample space that contains good structures.

Effects of Space Reduction Figure 3(b) shows
the effect of the Space Reduction, a variant of DSS.
Space reduction keeps only the top subnets returned
from evolutionary search as the next training sam-

30|| M Before shrink
W After shrink
B Intra-OP
_ 20
c
>
I}
(5]
10
0!
200 400 600 800 1000

distance
Figure 4: Distribution of subnet divergence before and
after the first shrinking process. The left (lower distance
between output feature maps) is better, indicating less
subnet divergence in the supernet training, therefore
easier to train. Different distributions between the red
and blue are DSS’s outcome.

ple space, showing higher stability than DSS. This
proves the potential of further extending DSS.

7 Conclusion

In this paper, we present Dynamic Space Shrink-
ing, a novel method to cope with the training step
amortization and subnet divergence problems in
inter-OP SPOS NAS by locating a smaller sam-
ple space containing promising structures. En-
abled by DSS, we design the first inter-OP SPOS
model for Transformer that efficiently finds net-
work structures outperforming the human-designed
SOTA model while no previous intra-OP method
managed to do so. In the future, DSS can be
extended to other fields of NAS search and em-
powering searching in larger spaces. Our source
code and results are released on github.com/
acl22p2484/shrinknas.


github.com/acl22p2484/shrinknas
github.com/acl22p2484/shrinknas
github.com/acl22p2484/shrinknas
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