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Advancing 3D Object Grounding Beyond a Single 3D Scene
Anonymous Author(s)

ABSTRACT
As a widely explored multi-modal task, 3D object grounding en-
deavors to localize a unique pre-existing object within a single 3D
scene given a natural language description. However, such a strict
setting is unnatural as it is not always possible to know whether
a target object actually exists in a specific 3D scene. In real-world
scenarios, a collection of 3D scenes is generally available, some of
which may not contain the described object while some potentially
contain multiple target objects. To this end, we introduce a more
realistic setting, named Group-wise 3D Object Grounding, to simul-
taneously process a group of related 3D scenes, allowing a flexible
number of target objects to exist in each scene. Instead of localizing
target objects in each scene individually, we argue that ignoring
the rich visual information contained in other related 3D scenes
within the same group may lead to sub-optimal results. To achieve
more accurate localization, we propose a baseline method named
GNL3D, a Grouped Neural Listener for 3D grounding in the group-
wise setting, which extends the traditional 3D object grounding
pipeline with a novel language-guided consensus aggregation and
distribution mechanism to explicitly exploit the intra-group visual
connections. Specifically, based on context-aware spatial-semantic
alignment, a Language-guided Consensus Aggregation Module
(LCAM) is developed to aggregate the visual features of target ob-
jects in each 3D scene to form a visual consensus representation,
which is then distributed and injected into a consensus-modulated
feature refinement module for refining visual features, thus ben-
efiting the subsequent multi-modal reasoning. Furthermore, we
design a curriculum strategy to promote the LCAM to learn step by
step how to extract effective visual consensus with the existence of
negative 3D scenes where no target object exists. To validate the
effectiveness of the proposed method, we reorganize and enhance
the ReferIt3D dataset and propose evaluation metrics to bench-
mark prior work and GNL3D. Extensive experiments demonstrate
GNL3D achieves state-of-the-art results on both the group-wise
setting and the traditional 3D object grounding task.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision tasks.

KEYWORDS
3D object grounding, group-wise learning, curriculum learning
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Query: Find the monitor that is on top of a desk.

Single Target Multiple Targets

Single TargetZero Target

Figure 1: Group-wise 3D Object Grounding, where a flexible
number of target objects (zero, single or multiple) should be
localized in a group of 3D scenes for a given description.
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1 INTRODUCTION
Grounding target objects described by users in 3D environments is
a fundamental capability that facilitates various multimedia applica-
tions, such as intelligent robot service, smart home, and metaverse.
Following this demand, 3D object grounding [2, 6] has recently be-
come a research hotspot, attracting wide attention from researchers
in various fields [5, 10, 18, 21, 26, 46, 49, 61, 63]. Despite the sig-
nificant advancements made in this field, the existing 3D object
grounding task is overly idealistic, which aims to localize a unique
target object that has been known to exist in a single 3D scene. This
setting limits the applicability of 3D object grounding in real-world
scenarios. In general, a group of related 3D scenes is available (e.g.,
a house comprises several rooms), some of which may not contain
the described object while some may potentially contain multiple
target objects (as illustrated in Fig. 1).

To address this limitation, in this paper, we introduce a new
realistic setting, namely Group-wise 3D Object Grounding, where
a flexible number of target objects should be localized in a group of
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related 3D scenes given a referring sentence. The proposed group-
wise 3D object grounding setting generalizes the traditional 3D
object grounding task in the following two aspects: (1) Compared
with the traditional single target assumption, our setting allows
for the existence of zero or multiple target objects in a specific 3D
scene. (2) The proposed setting requires querying a group of related
3D scenes simultaneously with a single referring expression. Note
that the application scope of group-wise 3D object grounding is
the superset of the traditional task, which means (1) or (2) can be
omitted based on the actual situations, and thus our setting is more
natural and practical in broader real-world scenarios.

Recently, Multi3DRefer [59] has proposed an effective approach
to localize a flexible number of objects in a single 3D scene given a
text description. It formulates the problem as a multi-label task and
adapts existing 3D single object grounding methods by replacing
the loss function with a binary cross-entropy loss. Based on this
method, a straightforward solution to further address group-wise
3D object grounding is to simply apply the adapted models to
each individual 3D scene in a group and integrate these results
for group-wise grounding. However, such a direct solution would
result in inferior performance, as it localizes target objects in each
scene individually based solely on the linguistic expression, failing
to capture the rich visual information contained in other related
3D scenes within the same group. In comparison to the linguistic
description, the visual clues of target objects can bridge themodality
gap and provide a more precise concept about the described object’s
properties and its spatial relations to anchor objects. Ignoring such
intra-group visual connections may lead to sub-optimal results.
Nevertheless, it is challenging to capture effective visual clues of
target objects from a group of 3D scenes. Firstly, in addition to
the common properties described by the same referring sentence,
target objects in each scene also have their own unique attributes
and diverse context objects. Without proper architecture design,
these unique visual characteristics that are not mentioned in text
can mislead the grounding results of other scenes and limit the
overall performance. Moreover, there might be negative 3D scenes
in a group where no target object exists. These negative scenes
cannot provide direct visual clues about the described object, which
makes it even more challenging to extract valid intra-group visual
information to form an accurate target concept.

To tackle the aforementioned issues, we propose a baseline
method named GNL3D, a Grouped Neural Listener for 3D ground-
ing in the group-wise setting, which facilitates a simultaneous pro-
cessing of multiple input 3D scenes with a language description and
generates localization results for all target objects. GNL3D adapts
the typical 3D object grounding pipeline [63] with a Language-
guided Consensus Aggregation and Distribution (LCAD) mecha-
nism to explicitly leverage language and intra-group visual infor-
mation. In our proposed Language-guided Consensus Aggregation
Module (LCAM), the visual features of target objects in each 3D
scene are adaptively aggregated to form a visual consensus represen-
tation under the guidance of the language description. Specifically,
we employ the language-objects cross-attention mechanism to se-
lect language-relevant visual information and consider both the
semantic-level and spatial contextual visual features to assemble a
comprehensive representation of the described object’s common
properties, thus avoiding the ambiguity and incompleteness caused

by irrelevant or partial information. In addition, we apply a curricu-
lum learning strategy to train our model, which gradually shifts
the input contextual visual features from the subgroup that only
contains positive scenes to the entire group, thus promoting the
LCAM to learn how to extract effective visual consensus with the
existence of negative 3D scenes step by step. After the visual consen-
sus extraction, we further devise a Consensus-modulated Feature
Refinement Module (CFRM), which can dynamically adjust the
behavior of a spatial transformer encoder by distributing and in-
jecting the homo-modal visual consensus information to produce
consensus-relevant visual features. In the proposed CFRM, we first
situate the consensus features within the specific context of each
3D scene and then develop a consensus-aware dynamic spatial
attention mechanism to refine the visual features, which benefits
the subsequent multi-modal alignment between the text and the
relevant region to make a correct prediction. Besides, we design two
types of prediction heads for GNL3D to perform 3D grounding at
both scene-level and object-level to better adapt to the group-wise
setting. To facilitate a systematic evaluation, we reorganize and
enhance the ReferIt3D [2] dataset and propose evaluation metrics
to benchmark prior work and GNL3D.

Our main contributions can be summarized as follows:
• We formalize a novel Group-wise 3D Object Grounding setting

to explore the flexible number object grounding in a group of
3D scenes, which advances user-specified 3D object grounding
towards more practical applications.

• We propose GNL3D as a strong research baseline for the chal-
lenging setting. It uses a new language-guided consensus aggre-
gation and distribution mechanism to explicitly exploit language
and intra-group visual connections for better performance.

• We develop a language-guided consensus aggregation module
with curriculum learning to effectively extract visual consen-
sus features and overcome the challenges caused by irrelevant
information and negative scenes. A consensus-modulated fea-
ture refinement module is also devised to fully leverage the
homo-modal visual consensus for refining visual features.

• Extensive experiments validate the effectiveness of our proposed
baseline method GNL3D, which achieves state-of-the-art results
not only on the group-wise setting, but also on the traditional
3D object grounding task.

2 RELATEDWORK
2.1 3D Object Grounding
Grounding natural language in 3D environments is a fundamental
task in the vision-language understanding field, which may enable
wide-ranging multimedia applications, such as embodied intelli-
gence [13], smart home [62], and AR/VR/metaverse [12, 37]. As
the pioneer works, Scanrefer [6] and Referit3D [2] propose two
datasets consisting of language descriptions of 3D objects from the
real-world dataset ScanNet [11] and introduce the 3D object ground-
ing task, aiming to localize a unique target object in a single 3D
scene using language. In detail, the ReferIt3D [2] dataset contains
both template-based descriptions generated based on spatial rela-
tions between objects (Sr3D) and human-annotated fine-grained
descriptions (Nr3D). Different approaches have been proposed to
tackle this task [1, 4, 19, 23, 32, 33, 36, 46, 49, 52]. The prevalent
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methods solve 3D object grounding with a two-stage pipeline: they
leverage off-the-shelf 3D object detectors [34, 38] or segmentors
[9, 24, 44] to obtain the object proposals, utilize text and point cloud
encoders [39, 40] to extract features, and then employ various cross-
modal fusion or matching mechanisms to select the target object.
Early works [2, 16, 20, 53] use graph representations to model the
relations among objects. With the development of transformers
[43], recent works [3, 5, 7, 10, 17, 18, 21, 26, 41, 50, 61, 63] have
adopted transformers for multi-modal feature fusion. Among them,
3DVG-Transformer [61] and ViL3DRel [10] focus on improving 3D
spatial relation modeling. SAT [50], MVT [21], LAR [3] and ViewRe-
fer [17] leverage multi-view images and 2D semantics for better
performance. 3DJCG [5], D3Net [8], UniT3D [7], and 3D-VisTA
[63] are unified frameworks that can address both 3D grounding
and captioning. Recently, [22] proposes a method named 3DOGS-
Former to explore paragraph-level dense object grounding in a 3D
scene. [59] introduces a new task called Multi3DRefer, which gen-
eralizes the traditional 3D object grounding to a flexible number
of target objects given sentence descriptions. In contrast to prior
works that only localize target objects in a single 3D scene, our
approach focuses on querying a group of related 3D scenes simul-
taneously, advancing user-specified 3D object grounding towards
more practical applications.

2.2 Group-wise 2D Object Localization
Localizing objects of interest within a group of 2D images has been
widely studied for a long time. Early works focus on image co-
localization [27, 31, 42, 45], which aims to localize objects of the
same class emerging in a set of distinct images with bounding boxes.
Co-Salient Object Detection (Co-SOD) is a more recent research
focus [14, 15, 25, 29, 47, 48, 51, 54–58, 60, 64], where the common
salient objects across a group of relevant images should be detected
with segmentation maps. In Co-SOD, the target object does not
need to be specified by a language description, but it is required
to appear commonly in all images. Many impressive Co-SOD ap-
proaches follow a unified aggregation-and-distribution paradigm,
which first aggregate all image features in the group to form a con-
sensus representation and then distributing it back to each image
feature. For instance, [60] sums up all features for aggregation and
utilizes a gradient feedback mechanism for distribution. [15] gener-
ates a consensus attention map with an group affinity module and
multiplies it back to the individual image features. [25] uses a pair-
wise similarity map to form the intra-group consensus information
and conducts the distribution via a dense correlation module. [51]
first obtains consensus seeds via affinity maps and then propagated
the seeds using normalized convolution operations. [57] applies
convolution and self-attention operations to encode the consen-
sus cues into a series of kernels and implements the distribution
process by dynamic convolution. [48] utilizes transformer-based
modules to perform aggregation at the semantic level, and proposes
image-specific distribution while maintaining a consistent consen-
sus representation. However, existing aggregation-and-distribution
methods designed for Co-SOD cannot be directly applied to the
group-wise 3D object grounding task. Firstly, unlike the semantic-
level consensus aggregation using pure visual modality in Co-SOD,
target objects in a group of 3D scenes are described by natural

language and possess complex contextual relationships with other
objects in the same scene. Secondly, while Co-SOD requires every
image in a group to contain the target object, there can be nega-
tive 3D scenes in group-wise 3D object grounding, making it even
harder to explore the intra-group visual connections in our setting.

3 METHOD
3.1 Problem Formulation
Given a group of related 3D scenes and an utterance that describes
an object, the goal of group-wise 3D object grounding is to simul-
taneously localize all corresponding target objects in each scene.
Following the setup of ReferIt3D [2], we assume access to a set of
𝑀𝑘 objects for each 3D scene S𝑘 = {𝑂𝑘1, · · · ,𝑂𝑘𝑀𝑘 } in the group
(𝑘 = 1, · · · , 𝐾), where each object is represented as a point cloud
𝑂 ∈ R𝑁×(3+𝐶 ) of 𝑁 points with their 3D coordinates and 𝐶-dim
auxiliary feature such as color and normal vectors. We denote the
word-tokenized utterance asU = {𝑤𝑖 }𝑇𝑖=1, where𝑤𝑖 represents the
𝑖-th word and 𝑇 is the total number of words in the sentence. The
expected output for the 𝑘-th 3D scene is the set of target referred
objects T𝑘 ⊂ S𝑘 . In particular, the number of target objects in each
scene is flexible, i.e., there can be not only positive 3D scenes con-
taining one or multiple objects that match the description but also
negative ones where no referred object exists.

3.2 Overview
In this section, we introduce the overall architecture of our pro-
posed GNL3D, a Grouped Neural Listener for 3D grounding in
the group-wise setting. As illustrated in Fig. 2, there are five main
components in GNL3D, including text encoding, scene encoding,
a Language-guided Consensus Aggregation Module (LCAM), a
Consensus-modulated Feature Refinement Module (CFRM) and a
multi-modal fusion decoder.
Scene-Text Encoding. We follow 3D-VisTA [63] to perform 3D
scene and text encoding. For each 3D scene, a collection of object
point clouds S𝑘 = {𝑂𝑘1, · · · ,𝑂𝑘𝑀𝑘 } is given. For each 3D object
point cloud 𝑂𝑘𝑖 ∈ S𝑘 , the scene embedding layer first extracts the
semantic-level object feature vector 𝐹𝑆

𝑘𝑖
∈ R𝐷 and its semantic

class through a PointNet++ backbone [40], where 𝐷 is the dimen-
sionality of the feature. Then, we feed the semantic-level object
features 𝐹𝑆

𝑘
= {𝐹𝑆

𝑘1, · · · , 𝐹
𝑆
𝑘𝑀𝑘

} into a spatial transformer encoder
[10, 63] to enhance the contextual relationships between objects
in each 3D scene and obtain the spatial contextual object features
𝐹𝐶
𝑘

∈ R𝑀𝑘×𝐷 . As for the text encoding, we encode the input tex-
tual utterance U with 𝑇 word tokens via a four-layer transformer
encoder, which is initialized by the first four layers of a pre-trained
BERT [28]. The resulting linguistic features can be represented
as 𝐿 = {𝑙cls, 𝑙1, · · · , 𝑙𝑇 } ∈ R(𝑇+1)×𝐷 , where 𝑙cls is the output of a
special classification token ([CLS]).
LCAM & CFRM. Our model utilizes a novel Language-guided
Consensus Aggregation and Distribution (LCAD) mechanism to ex-
plicitly exploit the intra-group visual connections. Specifically, the
proposed LCAD mechanism comprises two steps. Firstly, under the
guidance of the linguistic features, the encoded semantic-level and
spatial contextual object features in all 3D scenes are fed into LCAM
(Sec. 3.3) to extract visual consensus features, which capture the
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Figure 2: The overall architecture of our GNL3D framework, which includes scene-text encoding, language-guided consensus
aggregation, consensus-modulated feature refinement and multi-modal fusion modules. With the help of the language-guided
consensus aggregation and distribution mechanism, the intra-group visual connections can be explicitly exploited.

described object’s common visual and relational properties to form
a precise target concept. Subsequently, these visual consensus fea-
tures are distributed back to the spatial contextual object features in
each 3D scene via CFRM (Sec. 3.4) for discriminability enhancement,
which benefits the subsequent multi-modal reasoning.
Multi-modal Fusion. For each 3D scene, we simply concatenate its
refined contextual object features 𝐹𝑅

𝑘
∈ R𝑀𝑘×𝐷 with the linguistic

features 𝐿 to form a joint sequence {𝑙cls, 𝑙1, · · · , 𝑙𝑇 , 𝐹𝑅𝑘1, · · · , 𝐹
𝑅
𝑘𝑀𝑘

}.
We add learnable type embeddings to these tokens to differentiate
text and visual modalities. Next, a multi-layer unified transformer
[43, 63] is applied to perform multi-modal fusion and reasoning
on the joint sequence. Finally, we develop two types of prediction
heads to perform 3D grounding at both scene- and object-level.
More details about decoding will be introduced in Sec. 3.5.

3.3 Language-guided Consensus Aggregation
Due to the inherent modality gap, directly localizing target ob-
jects in each 3D scene individually based solely on the linguistic
features often results in inferior performance. We resort to intra-
group homo-modal visual consensus features to bridge the modality
gap and provide a more precise concept about the described ob-
ject’s common visual and relational properties. Different from the
semantic-level consensus aggregation using pure visual modality
in the traditional 2D group-wise learning, it is more challenging
to extract effective intra-group visual clues in the proposed group-
wise 3D object grounding task: (1) the visual consensus features

should capture comprehensive common characteristics of target
objects that are mentioned in natural language in all positive 3D
scenes, which requires fine-grained cross-modality alignment and
interaction considering the complex spatial contextual relation-
ships between objects in each 3D scene; (2) there can be negative
3D scenes in a group that are not known in advance and cannot
provide direct visual information about the described object, which
require to be handled properly in the aggregation process. To ad-
dress the above challenges, we first devise the LCAM to adaptively
aggregate visual consensus features from both semantic and con-
textual perspectives under the guidance of the linguistic features
based on a dual-stream transformer decoder. Then, we develop a
Curriculum Learning (CL) strategy to facilitate the training process
of the LCAM in the presence of negative 3D scenes step by step, as
illustrated in Fig. 3.
Semantic-level Consensus Aggregation.We directly concate-
nate the encoded semantic-level object features in all 3D scenes and
take the resulting sequence 𝐹𝑆 = {𝐹𝑆1 , · · · , 𝐹

𝑆
𝐾
} ∈ R(𝑀1+···+𝑀𝐾 )×𝐷

together with the linguistic features 𝐿 ∈ R(𝑇+1)×𝐷 as input to the
semantic branch of LCAM. In practice, each branch of LCAM is
based on a 𝑁𝐿-layer standard Transformer decoder [43], each layer
of which includes self-attention and cross-attention blocks followed
by a feed-forward neural network. In LCAM, the linguistic features
serve as initial queries, which adaptively aggregate relevant visual
information through language-objects cross-attention blocks and
gradually update themselves layer by layer to produce the final
visual consensus features. At this branch, the final representation
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Figure 3: Illustration of LCAM that aggregates visual consen-
sus features from both semantic and contextual perspectives.
The CL strategy facilitates its training process progressively.

of each word token aggregates visual features of the corresponding
category of objects in all 3D scenes. The output features can be de-
noted as semantic-level visual consensus features 𝑍𝑆 ∈ R(𝑇+1)×𝐷 ,
which only capture non-contextual intra-group visual information,
since the input object features are from the scene embedding layer
before attending to surrounding objects.
Contextual Consensus Aggregation. To capture the described
object’s common relational visual properties, we further feed the
concatenation of all contextual object features 𝐹𝐶 = {𝐹𝐶1 , · · · , 𝐹

𝐶
𝐾
}

into the contextual branch of LCAM and utilize linguistic queries
𝐿 to adaptively aggregate relevant information from the sequence.
The process is similar to the semantic-level aggregation, however,
while it is very likely that every 3D scene in the group contains
objects of the same category as the object being described, not all
scenes are positive scenes that can provide valid contextual visual
clues of target objects. To facilitate the training process of LCAM,
we develop a CL strategy based on amaskmechanism for the contex-
tual branch. Specifically, for each layer of the transformer decoder,
the multi-head cross-attention takes the hidden representations
𝐻 from the previous self-attention block as the query 𝑄 = 𝐻𝑊𝑞 ,
and the concatenated contextual object features 𝐹𝐶 are used as
both the key 𝐾 = 𝐹𝐶𝑊𝑘 and the value 𝑉 = 𝐹𝐶𝑊𝑣 . The output of a
cross-attention head 𝐴 is computed as:

𝐴 = softmax(𝑄𝐾T/
√
𝑑 +𝑀 (𝑡))𝑉 (1)

𝑀 (𝑡)𝑖 𝑗 =
{
0, allow to attend
−∞, prevent from attending

(2)

where 𝑑 is the dimension of the embedding space,𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈
R𝐷×𝑑 are projection matrices, and 𝑀 (𝑡) ∈ R(𝑇+1)×(𝑀1+···+𝑀𝐾 ) is
the mask matrix at the training step 𝑡 that determines whether a
pair of tokens can be attended to each other.

𝑓(𝑄;𝑊!) 𝑓(𝐾;𝑊") 𝑓(𝑉;𝑊#)

Softmax

FC

Q K V

CDSA

Scene-specific
Consensus Adaptation

Layer-specific
Attentive Pooling

O W0

P

FC

Consensus-adaptive
Weight Generation

Z

M$
spatial matrix

Φ

F%
&

Figure 4: The detailed architecture of CDSA. The left part
shows the adapted attention block in the CFRM, and the right
part shows the process of dynamic weight generation.

Curriculum Learning Strategies. In the initial training stage,
only the elements corresponding to positive 3D scenes in the mask
matrix are 0s, indicating that the contextual branch only focuses on
the critical part of the input group at this stage. With the training
step 𝑡 increasing, what the queries can attend to gradually shifts
from the part only containing positive scenes to the entire sequence.
Concretely, we divide the training process into 𝜅 stages, and define
three different pacing functions (linear, exponential or logarithmic)
to control how the training step 𝑡 ∈ (0, 𝜅) increases. At the training
step 𝑡 , 𝑡/𝜅 negative scenes in the group can be attended to, and
newly added negative scenes are randomly selected.

After obtaining the contextual visual consensus features 𝑍𝐶 , the
output features of the two branches of LCAM are added together
to get the final visual consensus features 𝑍 = 𝑍𝑆 +𝑍𝐶 ∈ R(𝑇+1)×𝐷 ,
which assemble a comprehensive representation of the intra-group
visual connections.

3.4 Consensus-modulated Feature Refinement
In order to fully exploit the extracted visual consensus features, we
distribute them back to the contextual object features in each 3D
scene for feature enhancement. There are many methods for con-
sensus distribution, such as direct concatenation, linear addition,
cross-attention, etc. However, we empirically find that the dynamic
attention-based consensus distribution is more effective. Our CFRM
extends a spatial transformer encoder [63] by replacing the tradi-
tional self-attention with a Consensus-aware Dynamic Spatial
Attention (CDSA) mechanism, as shown in Fig. 4. Specifically,
we generate consensus-adaptive weights to produce the query 𝑄 ,
key 𝐾 , and value 𝑉 in CDSA conditioned on the visual consensus
features 𝑍 , which can be represented as:

𝑄 = 𝑓 (𝑋 ;𝑊𝑄 ), 𝐾 = 𝑓 (𝑋 ;𝑊𝐾 ),𝑉 = 𝑓 (𝑋 ;𝑊𝑉 ), (3)

where 𝑓 (·;𝑊 ) indicates linear projection parameterized by𝑊 , 𝑋
represents the input visual features, and𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝐷in×𝐷out

are the dynamic projection weights. Besides, we guide the atten-
tion calculate in CDSA by adding a spatial proximity matrix [61]
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to enhance the 3D spatial relation understanding. The process of
generating the dynamic weights comprises three steps, i.e., the
scene-specific consensus adaptation, the layer-specific attentive
pooling, and the consensus-adaptive weight generation.
Scene-specific Consensus Adaptation. To better cope with the
variation of context objects in different 3D scenes, we first situate
the visual consensus features 𝑍 within the specific context of each
3D scene via a plain multi-head cross-attention layer [43], as 𝑍𝑘 =

CrossAttn(𝑍, 𝐹𝐶
𝑘
, 𝐹𝐶
𝑘
) + 𝑍 , where 𝐹𝐶

𝑘
∈ R𝑀𝑘×𝐷 is the contextual

object features and 𝑍𝑘 ∈ R(𝑇+1)×𝐷 is the output scene-specific
visual consensus features for the 𝑘-th scene.
Layer-specific Attentive Pooling. Considering the visual consen-
sus features correspond to a different number of tokens and each
layer of the CFRM may prefer different tokens, we subsequently in-
troduce a learnable layer-specific embedding 𝑒𝑖 ∈ R𝐷 for each layer
𝑖 of the CFRM to extract layer-specific visual consensus features
𝑍𝑘,𝑖 ∈ R𝐷 dynamically, which can improve the model flexibility at
negligible cost. In practice, the attentive pooling is based on a multi-
head cross-attention layer [43], as 𝑍𝑘,𝑖 = CrossAttn(𝑒𝑖 , 𝑍𝑘 , 𝑍𝑘 ).
Consensus-adaptive Weight Generation. Considering that the
dynamic weights are in a high-dimensional space of 𝐷in × 𝐷out,
directly generating them using fully-connected layers is unafford-
able. Motivated by the dynamic channel fusion [30], we generate
dynamic weights following the matrix decomposition paradigm.
Taking the 𝑖-th layer of CFRM for the 𝑘-th 3D scene as an exam-
ple, the proposed consensus-adaptive weight generation can be
formulated as:

[𝑊 𝑖
𝑄 ,𝑊

𝑖
𝐾 ,𝑊

𝑖
𝑉 ] =𝑊

𝑖
0 +𝑂Φ(𝑍𝑘,𝑖 )𝑃T, (4)

where𝑊 𝑖
0 ∈ R𝐷in×𝐷out is the layer-specific static learnable weights.

𝑂 ∈ R𝐷in×𝑑w and 𝑃 ∈ R𝑑w×𝐷out are also static learnableweights, but
sharable across all CFRM layers to reduce the parameter numbers
and prevent the model from overfitting. Φ(𝑍𝑘,𝑖 ) is a fully-connected
layer, which produces a dynamic matrix of shape 𝑑w × 𝑑w with the
dimension reduction ratio 𝑟 = 𝐷/𝑑w.

3.5 Training and Inference
Given the output of the multi-modal fusion module for each 3D
scene, which can be denoted as {𝑓 𝑤cls, 𝑓

𝑤
1:𝑇 , 𝑓

𝑜
1:𝑀𝑘

} for [CLS], text
tokens, and 3D object tokens, respectively, we develop two types of
prediction heads based on two-layerMLPs to perform 3D grounding
at both scene- and object-level.
Scene-level Grounding. The scene-level grounding head takes
the 𝑓 𝑤cls as the global representation to generate a scalar score and
applies a sigmoid function to obtain a probability 𝑝𝑠

𝑘
indicating

whether the 𝑘-th 3D scene contains the described object. We super-
vise this head with a binary cross-entropy loss Lscn.
Object-level Grounding. Similarly, given the output embeddings
of the object tokens 𝑓 𝑜1:𝑀𝑘 , the object-level grounding head generates
a scalar score for each object proposal 𝑂𝑘𝑖 . In the original single-
target setting where only one target object can exist in a positive
scene, a softmax function is adopted to calculate the probability 𝑝𝑜

𝑘𝑖
and a cross-entropy lossLref is used for training. In the multi-target
setting, we use a sigmoid function to obtain the score and adopt a
binary cross-entropy loss for Lref.

Inference. At inference time, we first take all 3D scenes with the
predicted scene-level scores 𝑝𝑠

𝑘
above a threshold 𝜏𝑠 as positive

scenes. We then make object-level predictions for each positive
3D scene. In the single-target setting, we take the object proposal
with the maximum probability as the target object. In the multi-
target setting, all object proposals with predicted scores 𝑝𝑜

𝑘𝑖
above

a threshold 𝜏𝑜 are predicted as target objects.

4 EXPERIMENTS
4.1 Datasets
Sr3D. We evaluate GNL3D and compare it to prior work on the
ReferIt3D benchmark [2] for the traditional 3D object grounding
task. We specifically focus on the Sr3D dataset, which is constructed
using “target-relation-anchor” templates to automatically generate
sentences. The sentences utilize spatial relations to distinguish
objects of the same class. Sr3D is split into “easy” and “hard” subsets
in evaluation. The “view-dep.” and “view-indep.” subsets depend on
whether the description is related to the speaker’s view.
G-Sr3D-ST. Given that there exists some repeated “target-relation-
anchor” sentences in different 3D scenes, we reconstruct Sr3D to
the form of “one sentence vs. a group of referred 3D scenes”, named
as G-Sr3D-ST, where each positive scene in a group only contains a
Single Target object. For each group, we randomly sample negative
3D scenes from other groups, and verify the validity by ensuring
that the semantic class of the target object or anchor objects for
the description do not appear in these negative scenes. The re-
built dataset has 65200 sentence-scene group pairs, and each scene
group includes up to 8 positive scenes. We also include some groups
containing only one scene. For multi-scene groups, the positive to
negative sample ratio is 1 : 1 in evaluation.
G-Sr3D-MT. To comprehensively evaluate GNL3D’s performance,
we also introduce the G-Sr3D-MT dataset as a supplement, where
each positive scene can contain Multiple Target objects. We pro-
pose two approaches to construct G-Sr3D-MT. Firstly, we extend
G-Sr3D-ST to the multi-target setting by randomly concatenating
multiple (up to 4) positive 3D scenes in each sentence-scene group
pair and removing unnecessary objects to form a multi-target scene
of appropriate size. Secondly, we enhance Sr3D by synthesizing ad-
ditional multi-target utterances using the following compositional
template: “number-target-relation-anchor”, e.g., “find two chairs
closest to the door”. Negative scenes are collected in the same way
as G-Sr3D-ST. Detailed statistics can be found in Tab. 2.

4.2 Experimental Settings
Evaluation Metrics. We evaluate models for these three datasets
under different evaluation metrics. In the default setting of Sr3D,
ground-truth object proposals are provided and there is only one
target object in a single 3D scene. The metric is the accuracy of
selecting the target bounding box among the proposals. For the
G-Sr3D-ST setting, we adopt the metric of mean accuracy (mAcc)
of a 3D scene group. As for the G-Sr3D-MT setting where each
scene contains a flexible number of target objects, we measure the
F1 score for each scene in a group following the previous work
[59] and report the average score as the mean F1 (mF1) metric. To
investigate model performance for different group-wise scenarios,
we consider the following 4 cases: a) single target (ST) w/o negative
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Table 1: Comparison results on the group-wise setting. We report mAcc and mF1 for G-Sr3D-ST and -MT respectively.

Method Type ST w/o Negatives ST w/ Negatives MT w/o Negatives MT w/ Negatives

Single Multiple All Single Multiple All Single Multiple All Single Multiple All

3DVG-Trans [61]

Individual

48.2 53.3 51.1 51.0 55.2 53.4 48.8 49.0 48.9 44.3 47.5 46.3
TransRefer3D [18] 52.9 60.0 56.9 55.4 61.0 58.5 55.4 53.7 54.3 52.7 50.6 51.4
MVT [21] 58.4 67.9 63.9 62.9 68.7 66.2 60.8 60.3 60.5 57.1 55.6 56.1
3D-VisTA [63] 65.7 72.6 69.7 67.9 73.8 71.0 63.9 65.6 64.9 59.7 59.4 59.5
3D-VisTA + GSA Grouped 65.6 70.5 68.4 68.4 72.9 70.9 63.4 64.1 63.8 58.5 58.0 58.2
GNL3D (Ours) 69.9 78.2 74.6 72.8 79.1 76.4 68.8 69.5 69.1 63.1 63.6 63.4

Table 2: Statistical results of different datasets. NS and MT
denote Negative Scenes and Multiple Targets, respectively.

Dataset Single Scene Multiple Scenes Grouped NS MT

Sr3D [2] 83572 - ✗ ✗ ✗

G-Sr3D-ST 21784 43416 ✓ ✓ ✗

G-Sr3D-MT 16758 33518 ✓ ✓ ✓

scenes; b) ST w/ negatives; c) multiple targets (MT) w/o negatives;
d) MT w/ negatives. Note that b) and d) correspond to the original
G-Sr3D-ST/MT datasets where negative scenes can exist in a group,
while a) and c) are simpler cases where we remove the negative
scenes in these datasets. For each case, we divide the dataset into
“single” and “multiple” subsets, depending on whether there are
multiple 3D scenes in a group.
ImplementationDetails.We set the number of transformer layers
to 4 for scene-text encoding and multi-modal fusion, and 2 for
LCAM and CFRM. For all modules, the hidden size 𝐷 is set to 768
and the number of attention heads is set to 12. The number of points
𝑁 in object proposals is set to 1024. The threshold 𝜏𝑠 and 𝜏𝑜 are set
to 0.2 and 0.1, respectively. The reduction ratio 𝑟 is set to 16. For
curriculum learning, the default pacing function is linear function,
and 𝜅 = 8. Following [63], we use the AdamW [35] optimizer to
optimize the model with the initial learning rate of 1𝑒−4. The model
is trained for 80 epochs with batch size of 8.

4.3 Comparison with SOTA Methods
Results on the group-wise setting. We first compare GNL3D
with existing 3D object grounding models on the re-built G-Sr3D-
ST/MT datasets in different cases (see Tab. 1). We focus on four
two-stage methods that perform well on Sr3D. These methods are
adapted to our task and applied to each scene in a group individu-
ally. To better understand our GNL3D’s performance, we further
extend the SOTA method 3D-VisTA [63] to the group-wise setting
as a competitive baseline. Specifically, inspired by CoADNet [58] (a
2D group-wise learning method), we insert Global Self-Attention
[43] (GSA) layers between the scene encoding and multi-modal fu-
sion modules in 3D-VisTA, which take object features of all scenes
in a group as input to learn inter-scene visual correspondences
for group-wise relationship modeling. The results reveal some in-
teresting points. 1) Our GNL3D significantly outperforms existing
single-scene 3D groundingmethods in all cases, due to the proposed
LCAD mechanism, which explicitly exploits the intra-group visual

Table 3: Comparison of different methods on Sr3D val set.

Method Easy Hard View-Dep View-Indep All

3DVG-Trans [61] 54.2 44.9 44.6 51.7 51.4
LanguageRefer [41] 58.9 49.3 49.2 56.3 56.0
TransRefer3D [18] 60.5 50.2 49.9 57.7 57.4
SAT [50] 61.2 50.0 49.2 58.3 57.9
LAR [3] 63.0 51.2 50.0 59.1 59.4
3D-SPS [36] 56.2 65.4 49.2 63.2 62.6
MVT [21] 66.9 58.8 58.4 64.7 64.5
BUTD-DETR [23] - - 53.0 - 67.0
ViL3DRel [10] 74.9 67.9 63.8 73.2 72.8
NS3D [19] - - 62.0 - 62.7
ViewRefer [17] 69.7 61.7 56.9 67.8 67.2
EDA [46] 70.3 62.9 54.1 68.7 68.1
3D-VisTA †[63] 72.1 63.6 57.9 70.1 69.6
GNL3D (Sr3D) 72.8 64.0 58.0 70.6 70.1
GNL3D (+G-Sr3D-ST) 75.4 68.0 58.2 73.8 73.2
Δ +2.6 +4.0 +0.2 +3.2 +3.1

connections. 2) 3D-VisTA + GSA achieves clearly inferior results
than GNL3D and is even worse than its base model, which suggests
that without language as a guide, it is hard to effectively exploit the
intra-group visual information, further verifying the superiority
of our method. 3) GNL3D achieves SOTA results on both “single”
and “multiple” subsets, indicating that our LCAD mechanism can
boost performance not only in the multi-scene case but also in the
conventional single-scene case.
Results on the traditional setting. To further study the effec-
tiveness of our method on the traditional 3D object grounding task,
we compare our GNL3D with recent models on Sr3D (see Tab. 3). †
denotes that 3D-VisTA is trained from scratch without pre-training
on additional data. We report results of GNL3D trained on Sr3D
from scratch or pre-trained on the G-Sr3D-ST dataset without nega-
tive scenes. The main observations are as follows: 1) GNL3D (Sr3D)
only achieves slightly better results than the base model 3D-VisTA.
2) Pre-training on the reorganized G-Sr3D-ST dataset significantly
improves the performance of GNL3D, which sets a new record on
the Sr3D benchmark without additional training data. The perfor-
mance gap suggests that with group-wise training, the proposed
LCAM learns to extract effective visual features even from a sin-
gle 3D scene to form a precise target concept, and the CFRM can
exploit these homo-modal target features to enhance the feature
discriminability and bridge the modality gap.
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Table 4: Ablation studies of main designs in GNL3D.

LCAM CFRM ST w/o Negatives
Single Multiple All

(a) None None 65.7 72.6 69.7
(b) w/o SCA Full 68.8 77.0 73.5
(c) w/o CCA Full 68.1 76.4 72.8
(d) Full w/o CAWG 67.7 75.6 72.2
(e) Full w/o LSAP 69.3 77.4 73.9
(f) Full w/o SSCA 69.1 77.3 73.8
(g) Full Full 69.9 78.2 74.6

Table 5: Ablation studies of the CL strategy in LCAM.

Affected Branch Pacing Function ST w/ Negatives
Single Multiple All

(a) None None 69.8 75.8 73.2
(b) SCA+CCA Linear 71.1 77.2 74.6
(c) CCA Logarithmic 71.7 78.0 75.3
(d) CCA Exponential 72.4 78.6 75.9
(e) CCA Linear 72.8 79.1 76.4

4.4 Ablation Studies
To investigate the effectiveness of our main designs in GNL3D, we
conduct ablation studies on G-Sr3D-ST without negative scenes.
Concretely, the LCAM includes Semantic-level Consensus Aggrega-
tion (SCA) and Contextual Consensus Aggregation (CCA). CFRM
includes Consensus-Adaptive Weight Generation (CAWG), Layer-
Specific Attentive Pooling (LSAP), and Scene-Specific Consensus
Adaptation (SSCA). We selectively discard these designs to con-
struct ablation models and report the results in Tab. 4. From these
results, we can find that the full model outperforms all ablation
models, validating each component is helpful for group-wise 3D
object grounding. The baseline (a) without LCAD degrades to the
base model 3D-VisTA and has the same results. (b) and (c) show
that removing CCA causes worse performance degradation, demon-
strating capturing contextual visual features is essential for con-
sensus aggregation in 3D group-wise learning. In case (d), we re-
move CAWG and conduct consensus distribution based on objects-
consensus cross-attention, which reduces the performance greatly,
showing the effectiveness of our dynamic attention-based CFRM.

To demonstrate the effectiveness of the proposed curriculum
learning strategy, we further conduct detailed ablation studies on
G-Sr3D-ST with negative scenes. Specifically, we compare GNL3D
models trained with the CL strategy applied on different LCAM
branches using different pacing functions. As shown in Tab. 5, (a)
denotes the model trained without any CL strategy, which performs
significantly worse than other models, verifying the CL strategy
can consistently boost performance in the presence of negative
scenes. Comparing (b) to (e), we find that applying CL on SCA leads
to severely decreased performance, which suggests that although
negative scenes cannot provide direct contextual visual clues about
the described object, they may contain useful semantic-level in-
formation. Cases (c)-(e) show that models trained with linear and
exponential pacing functions slightly outperform the model trained
with logarithmic function, indicating that the model should focus

Figure 5: Effect of the number of 3D scenes fed into LCAM.

Query: Looking at the front of the bed, select the nightstand that is to the left of it.

Ground truthGNL3D 3D-VisTA

Figure 6: Group-wise 3D object grounding example results.

more on the positive scenes in the beginning of training to learn
valid consensus patterns.

Besides, we explore the effect of the number of 3D scenes fed
into LCAM in Fig. 5. We evaluate GNL3D on a subset of G-Sr3D-
ST/MT without negatives that only contains groups with more than
5 scenes, and we sample different numbers of scenes in a group as
the input of LCAM. The number 0 denotes the base model without
LCAD. As can be seen, with group-wise training, GNL3D with even
a single randomly sampled 3D scene fed into LCAM can outperform
the base model. When increasing the number of scenes that LCAM
can utilize, our model performances get better.

4.5 Qualitative Results
We qualitatively compare our GNL3D to its basemodel 3D-VisTA on
G-Sr3D-STwithout negatives and display a typical example in Fig. 6.
By capturing the additional intra-group vision-vision connections
via the proposed LCAD mechanism, GNL3D can better understand
the described object and make more accurate predictions.

5 CONCLUSION
In this work, we present a more realistic group-wise setting for the
3D object grounding task, which extends the traditional setting to
a group of related 3D scenes, allowing a flexible number of target
objects to exist in each scene. We propose a baseline method named
GNL3D to tackle this new task, which extends the conventional 3D
object grounding pipeline with a novel language-guided consensus
aggregation and distribution mechanism to explicitly capture the
language-vision and intra-group vision-vision connections for bet-
ter understanding of the described 3D object. To validate the effec-
tiveness of the proposed method, we introduce the G-Sr3D-ST/MT
datasets by reorganizing and enhancing the ReferIt3D benchmark.
Extensive experiments demonstrate that our method achieves state-
of-the-art results on both the group-wise setting and the traditional
3D object grounding task.
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