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Abstract

Recent advancements in speech synthesis have001
significantly improved the audio quality and002
pronunciation of synthesized speech. To fur-003
ther advance toward human-like conversational004
speech synthesis, this paper presents Filler-005
Speech, a novel speech synthesis framework006
that enables natural filler insertion and control007
over filler style. To address this, we construct008
a filler-inclusive speech data, derived from the009
open-source large-scale speech corpus. This010
data includes fillers with pitch and duration in-011
formation. For the generation and style control012
of natural fillers, we propose a method that to-013
kenizes filler style and utilizes cross-attention014
with the input text. Furthermore, we introduce015
a large language model-based filler prediction016
method that enables natural insertion of fillers017
even when only text input is provided. The018
experimental results demonstrate that the con-019
structed dataset is valid and that our proposed020
methods for filler style control and filler pre-021
diction are effective. Our code and demo are022
available at https://fillerspeech.github.023
io/main.024

1 Introduction025

Text-to-Speech (TTS) synthesis systems (Le et al.,026

2023; Li et al., 2024; Peng et al., 2024; Wang et al.,027

2025) have undergone remarkable advancements in028

recent years, particularly in achieving high-quality029

audio generation (Lee et al., 2025) and natural pro-030

nunciation (Ju et al., 2024). These improvements031

have paved the way for applications in various032

domains, such as virtual assistants, audiobooks,033

and human-computer interaction. Despite these ad-034

vancements, achieving human-like conversational035

speech remains a challenging frontier.036

Fillers, such as ’um’, ’uh’, or ’well’, are an inte-037

gral part of the natural human conversation (Zhu038

et al., 2022; Dinkar et al., 2022). They serve vari-039

ous functions, including signaling hesitation, buy-040

ing time for thought formulation, or maintaining041

the flow of dialogue. When these elements are 042

missing in synthesized speech, it can sound unnat- 043

ural, making it less effective in applications that 044

require natural human interaction. 045

In previous research, there have been attempts to 046

address filler speech synthesis. (Éva Székely et al., 047

2019a) focused on training fillers as separate acous- 048

tic models to generate natural speech, while (Éva 049

Székely et al., 2019b) learned fillers as tokens from 050

a spontaneous conversational speech dataset. How- 051

ever, these models were limited to a narrow range 052

of filler types such as ’uh’ and ’um’, which con- 053

strained their ability to handle diverse styles. (Yan 054

et al., 2021) introduced an adaptive text-to-speech 055

model to capture spontaneous speaking styles but 056

did not explicitly focus on modeling fillers as non- 057

verbal components of speech. (Fernandez et al., 058

2022) proposed a method to incorporate conversa- 059

tional style, including interjections, but struggled 060

to naturally generate and control fillers seamlessly. 061

(Wang et al., 2022) adopted a sampling-based ap- 062

proach for filler insertion but relied heavily on sta- 063

tistical methods, which often lacked coherence with 064

the given textual context. These studies, while pi- 065

oneering, revealed challenges in learning diverse 066

filler styles and enabling precise text-based control 067

for natural synthesis. 068

To tackle this challenge, we propose Filler- 069

Speech, a novel framework for text-to-speech syn- 070

thesis with filler injection and filler style control. 071

We first construct a filler-inclusive speech dataset 072

derived from the large-scale Libriheavy corpus 073

(Kang et al., 2024) using our proposed method 074

to label fillers with pitch and duration information, 075

thereby eliminating the need for manual annotation. 076

To achieve speech synthesis with controllable filler 077

style, we employ tokenization of filler style and 078

utilize cross-attention to effectively leverage word- 079

level filler style tokens. Additionally, a pitch pre- 080

dictor is integrated into the text encoder to enhance 081

the overall quality of the synthesized speech and 082
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the control over filler styles. While filler selection083

can be performed manually, we additionally intro-084

duce a large language model (LLM)-based filler085

prediction method, allowing fillers to be naturally086

inserted based solely on input text. Experimental087

results validate the effectiveness of our method,088

demonstrating that FillerSpeech synthesizes natu-089

ral and controllable speech, enhancing the realism090

of conversational speech applications.091

2 Related Work092

2.1 Flow Matching in Speech Synthesis093

Flow matching has emerged as a powerful tech-094

nique for speech synthesis, offering advantages in095

both quality and efficiency compared to traditional096

diffusion-based approaches (Popov et al., 2021;097

Kim et al., 2022).098

Several recent works have explored the applica-099

tion of flow matching to various aspects of speech100

synthesis. (Velugoti et al., 2023) builds upon the101

flow-matching framework by introducing a recti-102

fied flow approach that improves synthesis effi-103

ciency while maintaining high-quality audio gen-104

eration. (Le et al., 2023) further advances the105

field by adopting a versatile, non-autoregressive106

approach. It not only generates Mel-spectrograms107

but also supports speech inpainting and style trans-108

fer, showcasing robustness in both seen and un-109

seen scenarios. (Kim et al., 2023) proposes a data-110

efficient zero-shot TTS method that leverages a111

speech-prompted text encoder combined with flow112

matching. (Mehta et al., 2024) leverages optimal-113

transport conditional flow matching to generate114

high-quality speech with only a few synthesis steps.115

More recently, (Wu et al., 2024) takes flow-116

matching-based synthesis a step further by incor-117

porating dynamic emotional control, enabling the118

generation of speech with time-varying emotional119

expressions. Similarly, (Kanda et al., 2024) focuses120

on fine-grained emotional control, specifically tar-121

geting laughter synthesis, offering a highly expres-122

sive and adaptable speech synthesis framework.123

Flow matching can generate diverse and natural124

outputs while maintaining computational efficiency.125

By leveraging flow matching, we aim to address the126

challenges of generating expressive filler-inclusive127

speech, ensuring both high quality and controllabil-128

ity in filler generation.129

2.2 Large Language Models 130

Large language models (LLMs) offer transforma- 131

tive advancements in understanding and generating 132

human-like text. GPT-3 (Brown et al., 2020) and 133

PaLM (Chowdhery et al., 2023) have demonstrated 134

remarkable capabilities in zero-shot and few-shot 135

learning, enabling them to excel in tasks ranging 136

from text summarization to complex dialogue gen- 137

eration. 138

LLaMA (Touvron et al., 2023a) has gained sig- 139

nificant attention as an open-source model de- 140

signed to provide high-quality language under- 141

standing while being computationally efficient. Its 142

lightweight architecture and pretraining on diverse 143

datasets have made it a popular choice for re- 144

searchers and practitioners. The LLaMA family 145

of models balances performance and scalability, 146

making it well-suited for applications in conver- 147

sational AI, machine translation, and text-based 148

creative generation. Building on the success of 149

LLaMA, LLaMA 2 (Touvron et al., 2023b) intro- 150

duced several enhancements, including improved 151

training method, expanded datasets, and optimized 152

architectures. These improvements have enabled 153

LLaMA 2 to achieve superior performance across 154

a broader range of tasks while maintaining compu- 155

tational efficiency. 156

Extending LLaMA’s foundation, Vicuna (Chi- 157

ang et al., 2023) focuses on enhancing conversa- 158

tional capabilities by fine-tuning on high-quality 159

dialogue datasets. Vicuna-7B, in particular, op- 160

timizes LLaMA for interactive tasks, delivering 161

context-aware and coherent responses. The re- 162

cent Vicuna-7B further refines these conversational 163

skills, excelling in dialogue-focused applications 164

such as chatbots, virtual assistants, and customer 165

support systems. We leverage the strengths of 166

Vicuna-7B to enhance filler prediction in speech 167

synthesis. 168

3 Dataset Construction 169

3.1 Filler-Inclusive Data Collection 170

To train FillerSpeech, we construct a dataset com- 171

prising speech samples that each contain at least 172

one filler. Fillers can generally be categorized into 173

lexical fillers (e.g., “like,” “you know”) and non- 174

lexical fillers (e.g., “uh,” “um”). In this work, we 175

focus on non-lexical fillers, as they are more uni- 176

versally applicable and less dependent on linguistic 177

context. Based on previous studies (Ward, 2006; 178

Wang et al., 2022), we curate a list of common 179
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Figure 1: Overview of FillerSpeech. During inference, our approach leverages a fine-tuned LLM to predict filler
attributes from the input text, or alternatively, users can manually select the desired filler details.

fillers: "ah", "aha", "eh", "ha", "hm", "huh", "oh",180

"uh", "um", "well", "yeah", "ya". Using a large-181

scale corpus of high-quality speech, we identify182

and extract speech samples that contain these fillers.183

This process enables us to build a comprehensive184

and diverse dataset tailored to the specific needs of185

filler-inclusive speech synthesis.186

3.2 Style Labeling for Fillers187

In addition to collecting filler-inclusive data, we188

also labeled the fillers with style information to189

facilitate controllable generation. The style labels190

focus on two key attributes: pitch (F0) and dura-191

tion. To accurately identify the location of fillers192

within the audio samples, we first align the speech193

with its corresponding text using a external aligner.194

This alignment step provides precise segmentation195

of fillers, which is essential for subsequent style196

labeling.197

For pitch labeling, we first extracted F0 values198

from the audio and then label each filler as high,199

medium, or low based on average pitch values. We200

compute these averages in two ways: one method201

calculates the average pitch for each filler type,202

and the other computes the average pitch of words203

within an utterance. Details are provided in Ap-204

pendix E.1.205

Since pitch characteristics differ significantly by206

gender, we labeled male and female speakers sep-207

arately. To determine the pitch height, we used208

semitone differences as a threshold. Specifically,209

fillers were labeled as high or low if their pitch210

deviated by more than four semitones from the 211

reference. 212

For duration labeling, we calculated the aver- 213

age duration of each filler type and categorized 214

instances as long or short. Fillers in the top 25% 215

of the duration distribution were labeled as long, 216

while those in the bottom 25% were labeled as 217

short. By considering both pitch and duration, the 218

dataset captures the prosodic and temporal charac- 219

teristics of fillers, offering detailed labels for pre- 220

cise control in filler synthesis. 221

4 Method 222

We present a speech synthesis method that inserts 223

fillers and enables control over their style. Our 224

model leverages filler style tokens in conjunction 225

with a pitch predictor and cross-attention to modu- 226

late speech style. In addition to directly manipulat- 227

ing filler style, we propose a fine-tuning approach 228

for LLMs to predict styled fillers, thereby enabling 229

the synthesis of filler-inclusive speech from text 230

alone. Detailed descriptions of each component are 231

provided in the following subsections. 232

4.1 Tokenization of Filler 233

To effectively incorporate fillers into speech syn- 234

thesis, we adopt a phoneme-based tokenization 235

approach for fillers rather than tokenizing each 236

filler as a whole. This is because fillers are gen- 237

erally fewer in number compared to phonemes, 238

and they are ultimately composed of phonemes. 239

Consequently, fillers undergo the same phoneme 240
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conversion process as other text elements. This to-241

kenization approach ensures that fillers and regular242

words blend naturally into synthesized speech.243

For filler style, we tokenize pitch and duration us-244

ing discrete labels. Regular words, which lack pitch245

and duration labels, are assigned null labels. Since246

pitch is strongly correlated with speaker gender, we247

further tokenize pitch labels based on gender.248

4.2 Filler Style Control249

To condition the encoder on pitch of filler at the250

phoneme level, the pitch tokens are first embedded,251

then expanded to match the phoneme-level reso-252

lution, and finally concatenated with the phoneme253

embeddings of the text. To further enhance the in-254

tegration of fillers into synthesized speech, the en-255

coder computes cross-attention between phoneme-256

level text representations and word-level pitch em-257

beddings.258

For duration control, the duration tokens are first259

embedded and then used together with the text260

representations as input to the duration predictor.261

To control filler styles more precisely, we explic-262

itly include pitch information in training. A pitch263

predictor estimates appropriate pitch values from264

the text representation. By explicitly modeling265

pitch during training, the text encoder learns to bet-266

ter capture the prosodic characteristics necessary267

for natural filler generation and style control.268

4.3 Prior Loss for Filler Representation269

We compute a prior loss between the encoder out-270

puts and the target Mel-spectrograms. Unlike con-271

ventional methods (Popov et al., 2021; Mehta et al.,272

2024) that compute prior loss on a sampled subset273

of encoder outputs to improve training efficiency,274

we compute the loss for all encoder outputs. This275

is because fillers constitute a small fraction of the276

text, making it more likely that the sampling pro-277

cess will primarily learn segments without fillers.278

Since style tokens appear only in segments contain-279

ing fillers, the controllability of filler style is con-280

sequently diminished. After computing the prior281

loss, we follow standard practices by sampling a282

subset of encoder outputs for the decoder input to283

improve training efficiency.284

4.4 Flow Matching Decoder285

Our decoder is built on the flow matching frame-286

work, a generative diffusion model that employs287

optimal transport conditional flow matching (OT-288

CFM) for efficient and probabilistic data transfor-289

Figure 2: Overview of the fine-tuning LoRA for the
filler prediction.

mation. The flow matching process models a prob- 290

ability path that connects a simple prior distribu- 291

tion p0 (e.g., Gaussian noise) to a complex data 292

distribution q(x), (e.g., Mel-spectrogram). This 293

is achieved by defining a vector field vt(x) that 294

governs the transformation of samples over time t 295

through an ODE as follows: 296

d
dtϕt(x) = vt(ϕt(x)); ϕ0(x) = x. (1) 297

Here, ϕt(x) represents the trajectory of a sample 298

from the prior distribution to the target distribution. 299

In OT-CFM, the training objective minimizes the 300

difference between the predicted vector field vt(x) 301

and the ideal vector field ut(x) as follows: 302

L(θ) = Et,x0,x1∥uOT
t (ϕOT

t (x)|x1)− vt(ϕ
OT
t (x)|µ; θ)∥2.

(2)
303

This formulation ensures that the decoder learns 304

an efficient and smooth transformation from latent 305

noise to Mel-spectrograms. The simplicity of the 306

vector field ut(x), which changes linearly along 307

the trajectory, reduces the number of required syn- 308

thesis steps compared to traditional diffusion mod- 309

els, significantly improving speed and accuracy. 310

4.5 LLM-based Filler Prediction 311

To insert fillers naturally based on the input text, 312

we propose an LLM-based filler prediction method. 313

To leverage the reasoning capabilities of LLMs 314
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(Wei et al., 2022) while mitigating catastrophic for-315

getting, we fine-tune the LLM using a Low-Rank316

Adaptation (LoRA) adapter (Hu et al., 2022). Our317

method involves predicting both the position and318

type of fillers in the input text. Simultaneously, we319

predict the appropriate duration and pitch for each320

filler, considering the surrounding context within321

the input text.322

To enable the model to perform a variety of filler323

prediction tasks with a single model, we created324

instruction prompts that allow for different levels325

of specification. These prompts include scenarios326

where the filler type is specified, the filler type327

and position are given, a set of potential fillers is328

provided, or only the filler position is specified,329

allowing the model to predict the remaining char-330

acteristics such as duration, pitch, and type.331

The LLM is trained separately from the TTS332

model, and during the speech synthesis inference333

process, LLM filler prediction can be utilized as334

needed. Detailed information on the prompt is335

provided in Appendix C.336

5 Experiments337

5.1 Dataset338

Using the method described in Section 3, we con-339

structed a filler-inclusive speech dataset based on340

the large-scale Libriheavy corpus, which comprises341

50,000 hours of speech data. The resulting dataset342

comprises 4,460 speakers and a total of 2,116 hours343

of speech data. Each sentence contains at least one344

filler, with each filler containing pitch and duration345

information. For the validation and test sets, we346

selected 50 speakers and obtained 2,707 and 2,966347

sentences, respectively.348

5.2 Implementation Details349

5.2.1 Data Construction350

For constructing the filler-inclusive dataset, we351

employed the Montreal Forced Aligner (MFA)352

(McAuliffe et al., 2017) as the external aligner and353

Parselmouth (Jadoul et al., 2018) as the pitch ex-354

tractor.355

5.2.2 Speech Synthesis356

The flow matching decoder in our model was im-357

plemented using a Transformer-based U-Net archi-358

tecture, ensuring efficient and high-quality Mel-359

spectrogram generation. For speaker information360

extraction, we employed the style encoder from361

Meta-StyleSpeech model (Min et al., 2021). We362

integrated the pitch predictor into our framework 363

to achieve accurate and controllable style genera- 364

tion, adopting the structure proposed in (Ren et al., 365

2021). To compute the alignment between the en- 366

coder output and Mel-spectrogram, we employed 367

super monotonic alignment search (Lee and Kim, 368

2024). For training, we used two NVIDIA RTX 369

A6000 GPUs, with a batch size of 32 per GPU. 370

The model was trained for one million steps, which 371

took 83 hours. The overall parameter count of our 372

model is 60.11M, and additional details regarding 373

the hyperparameters are provided in Table 6. As 374

the vocoder, we used BigVGAN (gil Lee et al., 375

2023) for waveform generation. 376

5.3 LLM-based Filler Prediction 377

We employed Vicuna-7B (Chiang et al., 2023) as 378

our LLM model for fine-tuning on the filler pre- 379

diction task using a LoRA adapter. Additionally, 380

to validate the performance of the baseline LLM 381

used for the prompt-based filler prediction task, 382

we froze various instruction-tuned LLMs from the 383

LLaMA (Touvron et al., 2023a) and Qwen (Yang 384

et al., 2024) families and fine-tuned them on the 385

filler prediction task using a LoRA adapter. Their 386

performance is compared in Table 3. In particu- 387

lar, Vicuna w/ sampling-based filler insertion (SFI) 388

(Wang et al., 2022) was fine-tuned by adding an 389

additional output branch to Vicuna-7B, following 390

the approach of SFI , with the LoRA adapter in- 391

tegrated during fine-tuning. This branch consists 392

of a single 13-way softmax prediction layer that 393

estimates the probability of 13 filler words, as well 394

as the probability of no filler insertion. 395

5.4 Evaluation Metrics 396

5.4.1 Speech Synthesis 397

We evaluated the performance of the synthesized 398

speech using both subjective and objective met- 399

rics. To evaluate the naturalness of the synthesized 400

speech and the similarity to the target speaker, we 401

conducted a mean opinion score (MOS) test and 402

a similarity mean opinion score (sMOS) test. In 403

the MOS test, evaluators rated the naturalness of 404

the speech on a 5-point scale (1 to 5), while in 405

the sMOS test, they assessed how similar the syn- 406

thesized speech was to the target speech on the 407

same scale. We employed the UTMOS (Saeki 408

et al., 2022) model to automatically predict MOS 409

scores, providing an objective measure of speech 410

quality. To evaluate the pronunciation accuracy 411

of synthesized speech, we used automatic speech 412
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Table 1: Experimental results of the proposed method. Con, PP, and CA indicate style controllability, pitch predictor,
and cross attention, respectively. The results for both MOS and sMOS are reported with a 95% confidence interval.

Method Con Token PP CA MOS (↑) sMOS (↑) UTMOS (↑) WER (↓) PER (↓) SECS (↑)

GT - - - - 4.02 ± 0.05 4.22 ± 0.05 3.6038 5.64 14.27 0.8809
Vocoded - - - - 3.99 ± 0.05 4.16 ± 0.05 3.4116 5.64 14.48 0.8814

Matcha-TTS ✗ ✗ ✗ ✗ 3.62 ± 0.07 3.47 ± 0.07 3.3536 4.56 11.11 0.7723

✓ ✓ ✗ ✗ 3.21 ± 0.07 3.39 ± 0.07 3.2020 4.60 11.05 0.7698
FillerSpeech ✓ ✓ ✓ ✗ 3.80 ± 0.06 3.53 ± 0.07 3.8307 9.36 14.28 0.7693

✓ ✓ ✓ ✓ 3.84 ± 0.06 3.50 ± 0.07 3.8780 6.33 12.10 0.7736

recognition (ASR) models, specifically Whisper413

(Radford et al., 2023) and Wav2Vec 2.0 (Baevski414

et al., 2020), to calculate word error rate (WER),415

and phoneme error rate (PER). To verify how well416

the synthesized speech matched the target speaker’s417

voice, we extracted speaker embeddings using Re-418

semblyzer1 and computed speaker embedding co-419

sine similarity (SECS).420

5.4.2 Filler Prediction421

To evaluate the performance of the language422

model’s filler prediction, we calculate the accu-423

racy of filler position, type, duration, and pitch by424

comparing the model’s outputs to the ground truth,425

with results reported as percentages. This evalua-426

tion measures the degree of agreement between the427

predicted and ground truth labels for each aspect.428

Note that the accuracy for filler type, duration, and429

pitch is computed only for those instances where430

the predicted filler is inserted at the correct position431

as specified in the ground truth.432

In addition to quantitative accuracy, qualitative433

evaluation is conducted using GPT-4o (OpenAI,434

2024), which assigns scores to the model’s per-435

formance in two filler prediction tasks: position436

(Score-P) and type (Score-T). Scores range from437

one to five, where a score of one indicates poor438

performance and a score of five indicates excel-439

lent performance. Given the inherent variability440

of natural speech, multiple filler placements may441

appear natural within a sentence. Therefore, quali-442

tative evaluation is crucial to capture these nuances,443

which is why we leverage GPT-4o for this assess-444

ment.445

Filler position evaluation assesses how appro-446

priately the model places fillers within sentences,447

focusing on the naturalness and suitability of their448

placement. Filler type evaluation measures the ap-449

propriateness of the specific filler words predicted450

1https://github.com/resemble-ai/Resemblyzer

by the model, ensuring that they align with the 451

context of the sentence. 452

The scoring process for all tasks takes into ac- 453

count factors such as naturalness, contextual rele- 454

vance, fluency, and overall suitability for speech 455

interaction, providing a comprehensive assessment 456

of the model’s performance. For more details on 457

the evaluation process, please refer to Appendix 458

D.3. 459

6 Results 460

6.1 Speech Synthesis with Filler Injection 461

Table 1 shows the results of subjective and objec- 462

tive evaluations. The proposed method success- 463

fully synthesizes speech with natural and contex- 464

tually appropriate filler injection. Through both 465

subjective MOS test and objective metrics such as 466

UTMOS and SECS, the synthesized speech demon- 467

strated high naturalness, even with fillers inserted 468

into various positions in the text. 469

Notably, the inclusion of pitch information led to 470

significant improvement in UTMOS, indicating en- 471

hanced speech naturalness. However, a decline in 472

pronunciation accuracy was observed, as reflected 473

in increased WER and PER values. This suggests 474

that incorporating pitch information into the prior 475

loss computation may cause the text encoder to fo- 476

cus more on acoustic features rather than text-based 477

representations. Consequently, this shift could neg- 478

atively impact the encoder’s ability to accurately 479

represent phonetic information, leading to reduced 480

pronunciation accuracy. Nevertheless, by incor- 481

porating cross-attention, we were able to improve 482

both pronunciation accuracy and speaker similarity. 483

6.2 Filler Style Control 484

Our method provides precise control over filler 485

styles, allowing the pitch and duration of fillers to 486

be modulated as desired. To validate this capabil- 487

ity, we conducted experiments using the same text, 488

6
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(a) FillerSpeech without pitch predictor and cross attention

(b) FillerSpeech without cross attention

(C) FillerSpeech

Figure 3: Pitch track visualization of synthesized speech with different filler styles. The red boxes highlight regions
where filler words occur. The left column shows pitch control, while the right column shows duration control.

where the same filler was synthesized under differ-489

ent style conditions. Figure 3 presents pitch track490

plots, showing that the generated pitch contours491

change according to the specified style tokens. For492

example, when a higher pitch style was applied,493

the filler’s pitch consistently increased compared494

to other conditions, demonstrating the method’s495

robustness in controlling prosodic attributes. This496

highlights the model’s ability to adapt fillers dy-497

namically based on stylistic requirements, a critical498

feature for expressive and context-aware speech499

synthesis.500

Comparisons between FillerSpeech and models501

with removed modules reveal that both the pitch502

predictor and cross-attention significantly affect the503

filler’s pitch control capabilities. Notably, while504

the pitch predictor slightly degrades pronunciation505

accuracy, it markedly improves control over the506

filler’s pitch. Similarly, cross-attention, by incorpo-507

rating word-level pitch conditions, adds stability to508

the control. In contrast, duration control remains509

largely unchanged, indicating that pitch informa-510

tion does not substantially contribute to predicting 511

duration. 512

6.3 LLM-based Filler Prediction 513

Table 2 shows that our proposed method out- 514

performs the baseline models in filler prediction. 515

Specifically, the Vicuna w/o FT model fails to pre- 516

dict fillers accurately. Although the Vicuna w/ SFI 517

model predicts only position and type, its perfor- 518

mance is significantly inferior to that of our model. 519

To verify that the Vicuna-7B model was the opti- 520

mal choice for the LLM component, we compared 521

its performance with that of other instruction-tuned 522

LLMs. All models were trained under identical 523

conditions, with only the LLM component varied. 524

The results are presented in Table 2. Vicuna-7B, 525

fine-tuned on dialogues between GPT and humans, 526

outperforms other models. 527

6.3.1 Accuracy Evaluation 528

For filler position accuracy, the model achieved 529

a high score of 82.56, indicating strong precision 530

in placing fillers correctly within sentences. This 531
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suggests that the model is effective at maintaining532

the natural flow of the sentence, which is crucial533

for realistic filler insertion in spontaneous speech.534

In terms of filler duration, the accuracy was535

52.46. This reflects the difficulty of predicting536

the appropriate duration for filler pauses, as their537

natural length can vary significantly depending on538

the context. Filler durations in spontaneous speech539

are flexible, influenced by factors such as hesita-540

tion, emphasis, and speaker intent. This variability541

points to the need for further refinement of the542

model to better capture these nuances, which are543

vital for replicating natural speech patterns.544

For filler pitch accuracy, the model scored 63.27,545

indicating moderate performance. While this score546

is reasonable, it reveals that predicting pitch for547

fillers is still a challenging task. The gap between548

the model’s performance on pitch and position ac-549

curacy suggests that there is room for improve-550

ment, particularly in understanding and predict-551

ing prosody, which is an essential component for552

natural-sounding filler usage.553

6.3.2 LLM-based Evaluation554

For filler position, the model achieved a score of555

3.31, very close to the ground truth (GT) score556

of 3.25. This minor discrepancy suggests that the557

model is almost as accurate as the ground truth558

when it comes to determining the appropriate po-559

sition of fillers, with only a slight difference in the560

evaluation.561

In terms of filler type, the model scored 3.27,562

slightly lower than the GT score of 3.30. This563

result indicates that the model generally predicts564

appropriate and natural filler types for the given565

context, with only a small deviation from the ex-566

pected outcome.567

Overall, the model demonstrated strong perfor-568

mance across all tasks, particularly excelling in pre-569

dicting filler positions. Although its accuracy for570

filler duration was slightly lower and there is still571

room for improvement in pitch prediction, the qual-572

itative evaluation through GPT scores showed that573

the model predictions were very close to the ground574

truth. In fact, for filler duration and pitch, the model575

even outperformed the ground truth. These results576

highlight the effectiveness of the model in predict-577

ing filler characteristics while also identifying areas578

for further refinement, especially in filler timing579

and pitch.580

Table 2: Comparison of filler prediction performance.
Vicuna w/ SFI model only supports position and type
prediction.

Accuracy GPT Scores
Method Position Type Duration Pitch Position Type

GT - - - - 3.25 3.30

Vicuna w/o FT 1.35 13.33 46.67 24.44 2.44 2.47

Vicuna w/ SFI 59.67 38.14 - - 2.41 2.81
Vicuna w/ LoRA 82.56 78.44 52.46 63.27 3.31 3.27

Table 3: Comparison of LoRA-based fine-tuning results
for filler prediction across instruction-tuned LLMs.

Accuracy GPT Scores
Method Position Type Duration Pitch Position Type

GT - - - - 3.25 3.30

Qwen-1.5B 69.65 60.15 49.87 61.95 3.10 3.13
Qwen-3B 73.59 57.66 49.03 61.19 3.23 3.14
Qwen-7B 75.20 59.76 51.43 62.02 3.23 3.19

LLaMA-1B 81.11 72.85 52.54 62.36 3.25 3.22
LLaMA-3B 80.13 73.78 50.28 62.68 3.27 3.20
LLaMA-8B 81.65 76.43 50.55 63.71 3.29 3.22

Vicuna-7B 82.56 78.44 52.46 63.27 3.31 3.27

7 Conclusion 581

In this paper, we introduced FillerSpeech, a novel 582

speech synthesis framework that integrates filler 583

insertion with style control. We constructed a 584

filler-inclusive speech dataset from the large-scale 585

speech corpus, leveraging an automated method to 586

label fillers with pitch and duration information, 587

thereby eliminating the need for manual annotation. 588

Our approach employs cross-attention mechanisms 589

and a pitch predictor to condition the model on 590

filler style, which enhances the control over pitch. 591

While fillers can be manually adjusted to achieve 592

a desired style, we further propose an LLM-based 593

filler prediction method that enables natural filler 594

insertion based solely on text input. Experimen- 595

tal results demonstrate that cross-attention mech- 596

anisms and pitch predictor substantially improve 597

both speech quality and style control, and the LLM- 598

based filler prediction method effectively predicts 599

filler attributes from text. 600

8 Limitations 601

Our model is trained using three discrete labels 602

for both pitch and duration. While this approach 603

allows for effective control within the predefined la- 604

bel space, it limits the model’s capability to achieve 605

extreme or fine-grained control. In future work, we 606

aim to explore more expressive speech synthesis 607

and investigate control methods based on continu- 608

ous values rather than categorical labels. 609
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Table 4: Inference performance of the CFM decoder
with pitch predictor.

# Steps RTF (↓) UTMOS (↑) WER (↓) SECS (↑)

1 0.0206 3.7519 6.41 0.7507
2 0.0213 3.8945 5.59 0.7600
4 0.0227 3.8780 6.33 0.7736
8 0.0259 3.8260 7.03 0.7779

Table 5: Inference performance of the CFM decoder
without pitch predictor.

# Steps RTF (↓) UTMOS (↑) WER (↓) SECS (↑)

1 0.0201 2.0691 0.0356 0.6925
2 0.0210 2.6805 0.0366 0.7323
4 0.0224 3.0658 0.0418 0.7578
8 0.0255 3.2020 0.0460 0.7698

A Analysis on Sampling Steps 883

In our analysis of the CFM decoder during infer- 884

ence, we evaluated the effect of varying the number 885

of sampling steps by measuring the real time fac- 886

tor (RTF), UTMOS, WER, and SECS. As shown 887

in Tables 4 and 5, our model achieves rapid per- 888

formance improvements even with fewer sampling 889

steps. This improvement is attributed to the use 890

of a pitch predictor, which enables the decoder to 891

condition on encoder outputs that include pitch in- 892

formation. Conversely, as the number of sampling 893

steps increases, we observed a decline in UTMOS 894

and WER, indicating that the pitch information 895

employed for enhanced pitch style control does 896

not necessarily improve pronunciation accuracy. 897

Moreover, with additional sampling steps, SECS 898

increases. This can be explained by the fact that 899

our model’s encoder outputs combine text, filler 900

pitch style, and speaker representations, thereby 901

reducing the relative influence of speaker informa- 902

tion. Since the sampling process further conditions 903

on the speaker information with encoder outputs, 904

speaker similarity improves with more sampling 905

iterations. 906

B Discussion 907

B.1 General Word Style Control 908

Due to our model’s design which applies style con- 909

ditioning at the positions of designated tokens, it is 910

capable of modulating the style not only of these 911

tokens but also of general words. Consequently, we 912

demonstrate that even when only a subset of words 913

in the speech data contains pitch or duration infor- 914

mation, our approach enables fine-grained control 915

over the overall speech style. 916
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Table 6: Hyperparameters of FillerSpeech.

Module Hyperparameter FillerSpeech

Embedding

Text 192
Speaker 64
Pitch 64
Duration 64

Encoder

Prenet Conv. Hidden Dim. 192
Prenet Conv. Layers 3
Prenet Conv. Kernel Size 5
Prenet Dropout 0.5
Transformer Hidden Dim. 320
Transformer FFN Filter Channels 768
Transformer Layers 6
Transformer Kernel Size 3
Transformer Attention Heads 2
Transformer Dropout 0.1
Projection Hidden Dim. 320
Projection Layers 2
Projection Kernel Size 3
Projection Dropout 0.5

Pitch predictor

Conv. Hidden Dim. 192
Conv. Layers 5
Conv. Kernel Size 5
Conv. Dropout 0.5

Duration predictor

Conv. Hidden Dim. 384
Conv. Layers 2
Conv. Kernel Size 3
Conv. Dropout 0.1

CFM decoder

Channels [512, 512]
Dropout 0.05
Blocks 1
Mid Blocks 2
Attention Heads 2
Activation snakebeta
Solver euler
Sigma min 1e-4

Optimizer
Optimizer Adam
Learning Rate 0.0001
Beta [0.9, 0.98]

B.2 Potential Risks917

While the advancements in speech synthesis tech-918

nology offer significant benefits, they also raise919

concerns about potential malicious uses. The abil-920

ity to generate highly realistic synthesized speech921

can be exploited to produce deceptive content, such922

as deepfakes or misleading information, which may923

have harmful societal implications. To address924

these risks, a discussion on synthesized speech de-925

tection and watermarking techniques during syn-926

thesis is necessary to authenticate and trace speech927

outputs.928

B.3 AI asist929

We used GPT-4o for proofreading, including typo930

and sentence correction.931

C Prompt for Filler Prediction932

To train our LLM to predict the appropriate posi-933

tion, type, duration, and pitch of fillers, as shown934

in Figure 4, we employed four different types of935

prompts.936

In the first prompt type, the desired filler type 937

is explicitly specified for prediction. In this case, 938

<TGT_SEN> denotes the sentence into which the 939

filler will be inserted, and <FILLER> indicates 940

the desired filler type. 941

The second prompt type involves specifying both 942

the desired filler type and the insertion position 943

within the sentence. Here, <TGT_SEN> repre- 944

sents the sentence for filler insertion, <FILLER> 945

stands for the desired filler type, and <TGT_POS> 946

indicates the token position within <TGT_SEN> 947

where the filler should be inserted. 948

For the third prompt type, a set of filler type 949

options is provided, and the LLM selects the most 950

appropriate filler from these options to insert into 951

<TGT_SEN>. 952

In the fourth prompt type, similar to the third, a 953

set of filler type options is given. However, in this 954

case, the LLM not only selects the appropriate filler 955

but also inserts it at the specified token position 956

<TGT_POS> within <TGT_SEN>. 957

Across all prompt types, the predicted duration 958

for each filler is classified as either short, medium, 959

or long, while the predicted pitch is categorized as 960

low, medium, or high. 961

D Details of Evaluation Metrics 962

D.1 Mean Opinion Score Test 963

For the subjective evaluation, we conducted both 964

MOS and sMOS tests using Amazon Mechanical 965

Turk, recruiting 20 evaluators for each test. For the 966

evaluations, 50 utterances were randomly sampled 967

from the test set. Additionally, we interspersed 968

fake samples among the test utterances. We filtered 969

out ratings from workers who gave scores to fake 970

samples to exclude unreliable participants. 971

D.2 Automatic Speech Recognition for 972

Filler-inclusive Speech 973

In typical TTS tasks, ASR used for pronunciation 974

evaluation employs a text normalization process 975

that includes the removal of filler words from the 976

ASR output. However, because our approach inten- 977

tionally synthesizes speech with fillers, we delib- 978

erately bypass the removal of filler words during 979

text normalization. This allows us to directly as- 980

sess the performance of our system in generating 981

filler-inclusive speech. 982
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D.3 GPT Score983

Building on the studies (Chiang and Lee, 2023;984

Chiang et al., 2023; Zheng et al., 2023; Fang et al.,985

2025) that use LLM models to evaluate model out-986

puts, we employ GPT-4o (OpenAI, 2024) to as-987

sess the filler prediction ability of our fine-tuned988

LLM. In this evaluation, GPT-4o examines two key989

aspects: the prediction of filler positions and the990

prediction of filler types.991

For the filler position, GPT-4o assigns a score992

ranging from 1 to 5, where a higher score indicates993

better performance (1: Poor, 2: Below Average, 3:994

Neutral, 4: Good, 5: Excellent). The evaluation of995

filler types is carried out in the same manner, with996

GPT-4o using the identical 1 to 5 scoring scale.997

Detailed information on the evaluation prompt can998

be found in Figure 5. Here, the term {sentence}999

refers to the sentence into which the predicted filler1000

is inserted.1001

E Analysis on Constructed Data1002

E.1 Comparison between Pitch labeling1003

Method1004

We employ two complementary strategies for anno-1005

tating filler pitch, each designed to capture different1006

aspects of prosodic variation. First, we extract F01007

values using Parselmouth and identify filler regions1008

with the MFA. Based on these boundaries, we com-1009

pute two sets of average F0 values: one for the filler1010

segments and one for the entire utterance.1011

Our first labeling strategy focuses on comparing1012

F0 values across fillers, independent of their utter-1013

ance context. For each filler type, we calculate the1014

median F0 separately for male and female speakers1015

to reduce the impact of outliers and account for1016

gender-specific pitch differences. We use XLSR-1017

52-based gender recognition model2. Each filler1018

instance is then labeled as low, medium, or high1019

based on whether its F0 is at least four semitones1020

below or above the gender-specific median. The1021

threshold is defined as:1022

threshold± = median × 2±
4
12 . (3)1023

The second strategy normalizes filler pitch rela-1024

tive to the overall utterance. Here, we compare the1025

F0 of filler regions to the average F0 of the entire1026

sentence. Fillers whose F0 deviates by at least four1027

semitones from the utterance average are labeled1028

2https://huggingface.co/alefiury/
wav2vec2-large-xlsr-53-gender-recognition-librispeech

Table 7: Performance comparison of pitch labeling
strategies.

Method UTMOS (↑) WER (↓) SECS (↑)

First Strategy 3.8780 6.33 0.7736
Second Strategy 3.8240 7.55 0.7631

as low or high. If the proportion of fillers labeled 1029

as low or high is below 15% when using a four- 1030

semitone threshold, a three-semitone threshold is 1031

applied instead. As with the first method, these 1032

calculations are performed separately for male and 1033

female speakers to accommodate gender-specific 1034

pitch characteristics. The F0 ratio is computed as: 1035

F0 ratio =
F0_mean

sentence_F0_mean
, (4) 1036

with the threshold given by: 1037

threshold± = 2±
4
12 . (5) 1038

These two methods provide complementary per- 1039

spectives on pitch variation: one capturing filler- 1040

specific deviations across speakers and the other 1041

contextualizing filler pitch within each utterance. 1042

We evaluated both labeling strategies in our exper- 1043

iments and, as shown in Table 7, found that the 1044

first method yields superior performance in speech 1045

synthesis. 1046

Figure 6 shows the F0 distributions for fillers 1047

computed using the first strategy. For most filler 1048

types, the distribution near the median is skewed 1049

toward values below the median. However, in gen- 1050

eral, the proportion of fillers labeled as high tends 1051

to be higher than those labeled as low. 1052
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Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) at target positions <TGT_POS> in the target sentence. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 2: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers to the target sentence. For each filler, also specify its duration 
(short, medium, long) and pitch (low, medium, high) that sound contextually appropriate and natural."
ASSISTANT:

Type 3: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers at target positions <TGT_POS> in the target sentence. For 
each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural."
ASSISTANT:

Type 4: Prompt template for filler prediction

Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) to the target sentence to make it sound more natural. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 1: Prompt template for filler prediction

You are an expert evaluator of filler placement. 
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers at specific positions.
Your task is to rate the model’s response based only on the correctness of filler positions.
Ignore the content of the fillers themselves and focus strictly on whether the placement of the fillers 
aligns with natural speaking patterns.

### Scoring Guidelines (Evaluate only the filler position!)
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Fillers are placed incorrectly, disrupting the sentence’s natural flow. 
- 2: Below Average 
- Some fillers are misplaced, causing minor disruptions. 
- 3: Neutral 
- Fillers are placed in acceptable locations but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-placed, making the sentence sound natural. 
- 5: Excellent 
- Fillers are placed perfectly, improving the conversational tone. 

Important: Focus only on filler position for this evaluation.

After evaluating, output the score only as a number (e.g., `4`).
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Position (Model: GPT-4o)

You are an expert evaluator of filler types in natural speech.
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers of specific types at 
particular positions.

Your task is to rate the model’s response based only on the naturalness and appropriateness of the 
filler types used in the sentence. 
Consider the following aspects:

1. Contextual Suitability: Assess whether the chosen filler types (e.g., "um," "oh," "yeah") fit naturally 
within the conversational context of the sentence, enhancing the flow and coherence.
2. Human-like Selection: Determine if the filler type corresponds to what a human speaker would likely 
use in the given situation, considering the tone, intent, and conversational style of the sentence.

### Scoring Guidelines
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Filler types are unnatural or disrupt the conversational flow. 
- 2: Below Average 
- Some filler types seem out of place or could be improved. 
- 3: Neutral 
- Filler types are acceptable but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-chosen, making the sentence sound natural. 
- 5: Excellent 
- Filler types are perfectly suited, improving the conversational tone. 

Important: Focus only on the filler type selection, not the placement. 
Ignore grammar, word choice, and meaning—evaluate only whether the type of fillers used is what a 
human would naturally say.
After evaluating, output the score only as a number (e.g., `4`). 
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Type (Model: GPT-4o)

Figure 4: Sample templates for filler prediction (Type 1, 2, 3, 4)

14



Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) at target positions <TGT_POS> in the target sentence. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 2: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers to the target sentence. For each filler, also specify its duration 
(short, medium, long) and pitch (low, medium, high) that sound contextually appropriate and natural."
ASSISTANT:

Type 3: Prompt template for filler prediction

Target sentence: <TGT_SEN>
Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well
USER: Add contextually appropriate fillers at target positions <TGT_POS> in the target sentence. For 
each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural."
ASSISTANT:

Type 4: Prompt template for filler prediction

Target sentence: <TGT_SEN>
USER: Add the specified fillers (like <FILLER>) to the target sentence to make it sound more natural. 
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound 
contextually appropriate and natural.
ASSISTANT:

Type 1: Prompt template for filler prediction

You are an expert evaluator of filler placement. 
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers at specific positions.
Your task is to rate the model’s response based only on the correctness of filler positions.
Ignore the content of the fillers themselves and focus strictly on whether the placement of the fillers 
aligns with natural speaking patterns.

### Scoring Guidelines (Evaluate only the filler position!)
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Fillers are placed incorrectly, disrupting the sentence’s natural flow. 
- 2: Below Average 
- Some fillers are misplaced, causing minor disruptions. 
- 3: Neutral 
- Fillers are placed in acceptable locations but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-placed, making the sentence sound natural. 
- 5: Excellent 
- Fillers are placed perfectly, improving the conversational tone. 

Important: Focus only on filler position for this evaluation.

After evaluating, output the score only as a number (e.g., `4`).
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Position (Model: GPT-4o)

You are an expert evaluator of filler types in natural speech.
I need your help to evaluate the performance of a model in a filler prediction scenario. 
The model receives a target sentence and generates a response by inserting fillers of specific types at 
particular positions.

Your task is to rate the model’s response based only on the naturalness and appropriateness of the 
filler types used in the sentence. 
Consider the following aspects:

1. Contextual Suitability: Assess whether the chosen filler types (e.g., "um," "oh," "yeah") fit naturally 
within the conversational context of the sentence, enhancing the flow and coherence.
2. Human-like Selection: Determine if the filler type corresponds to what a human speaker would 
likely use in the given situation, considering the tone, intent, and conversational style of the sentence.

### Scoring Guidelines
Provide a single score on a scale from 1 to 5, where:

- 1: Poor 
- Filler types are unnatural or disrupt the conversational flow. 
- 2: Below Average 
- Some filler types seem out of place or could be improved. 
- 3: Neutral 
- Filler types are acceptable but do not necessarily enhance the sentence. 
- 4: Good 
- Fillers are mostly well-chosen, making the sentence sound natural. 
- 5: Excellent 
- Filler types are perfectly suited, improving the conversational tone. 

Important: Focus only on the filler type selection, not the placement. 
Ignore grammar, word choice, and meaning—evaluate only whether the type of fillers used is what a 
human would naturally say.
After evaluating, output the score only as a number (e.g., `4`). 
Evaluate the following sentence:\n'{sentence}'

Prompt for GPT Scores – Filler Type (Model: GPT-4o)

Figure 5: Prompt templates for GPT-based filler evaluation, using a 1–5 scoring scale.
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Figure 6: F0 distribution for each filler type. Odd-numbered columns correspond to female speakers, while even-
numbered columns correspond to male speakers.
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Figure 7: MOS evaluation interface.

Figure 8: sMOS evaluation interface.
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