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Abstract

Recent advancements in speech synthesis have
significantly improved the audio quality and
pronunciation of synthesized speech. To fur-
ther advance toward human-like conversational
speech synthesis, this paper presents Filler-
Speech, a novel speech synthesis framework
that enables natural filler insertion and control
over filler style. To address this, we construct
a filler-inclusive speech data, derived from the
open-source large-scale speech corpus. This
data includes fillers with pitch and duration in-
formation. For the generation and style control
of natural fillers, we propose a method that to-
kenizes filler style and utilizes cross-attention
with the input text. Furthermore, we introduce
a large language model-based filler prediction
method that enables natural insertion of fillers
even when only text input is provided. The
experimental results demonstrate that the con-
structed dataset is valid and that our proposed
methods for filler style control and filler pre-
diction are effective. Our code and demo are
available at https://fillerspeech.github.
io/main.

1 Introduction

Text-to-Speech (TTS) synthesis systems (Le et al.,
2023; Li et al., 2024; Peng et al., 2024; Wang et al.,
2025) have undergone remarkable advancements in
recent years, particularly in achieving high-quality
audio generation (Lee et al., 2025) and natural pro-
nunciation (Ju et al., 2024). These improvements
have paved the way for applications in various
domains, such as virtual assistants, audiobooks,
and human-computer interaction. Despite these ad-
vancements, achieving human-like conversational
speech remains a challenging frontier.

Fillers, such as 'um’, "uh’, or *well’, are an inte-
gral part of the natural human conversation (Zhu
et al., 2022; Dinkar et al., 2022). They serve vari-
ous functions, including signaling hesitation, buy-
ing time for thought formulation, or maintaining

the flow of dialogue. When these elements are
missing in synthesized speech, it can sound unnat-
ural, making it less effective in applications that
require natural human interaction.

In previous research, there have been attempts to
address filler speech synthesis. (Eva Székely et al.,
2019a) focused on training fillers as separate acous-
tic models to generate natural speech, while (Eva
Székely et al., 2019b) learned fillers as tokens from
a spontaneous conversational speech dataset. How-
ever, these models were limited to a narrow range
of filler types such as 'uh’ and ’um’, which con-
strained their ability to handle diverse styles. (Yan
et al., 2021) introduced an adaptive text-to-speech
model to capture spontaneous speaking styles but
did not explicitly focus on modeling fillers as non-
verbal components of speech. (Fernandez et al.,
2022) proposed a method to incorporate conversa-
tional style, including interjections, but struggled
to naturally generate and control fillers seamlessly.
(Wang et al., 2022) adopted a sampling-based ap-
proach for filler insertion but relied heavily on sta-
tistical methods, which often lacked coherence with
the given textual context. These studies, while pi-
oneering, revealed challenges in learning diverse
filler styles and enabling precise text-based control
for natural synthesis.

To tackle this challenge, we propose Filler-
Speech, a novel framework for text-to-speech syn-
thesis with filler injection and filler style control.
We first construct a filler-inclusive speech dataset
derived from the large-scale Libriheavy corpus
(Kang et al., 2024) using our proposed method
to label fillers with pitch and duration information,
thereby eliminating the need for manual annotation.
To achieve speech synthesis with controllable filler
style, we employ tokenization of filler style and
utilize cross-attention to effectively leverage word-
level filler style tokens. Additionally, a pitch pre-
dictor is integrated into the text encoder to enhance
the overall quality of the synthesized speech and
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the control over filler styles. While filler selection
can be performed manually, we additionally intro-
duce a large language model (LLM)-based filler
prediction method, allowing fillers to be naturally
inserted based solely on input text. Experimental
results validate the effectiveness of our method,
demonstrating that FillerSpeech synthesizes natu-
ral and controllable speech, enhancing the realism
of conversational speech applications.

2 Related Work

2.1 Flow Matching in Speech Synthesis

Flow matching has emerged as a powerful tech-
nique for speech synthesis, offering advantages in
both quality and efficiency compared to traditional
diffusion-based approaches (Popov et al., 2021;
Kim et al., 2022).

Several recent works have explored the applica-
tion of flow matching to various aspects of speech
synthesis. (Velugoti et al., 2023) builds upon the
flow-matching framework by introducing a recti-
fied flow approach that improves synthesis effi-
ciency while maintaining high-quality audio gen-
eration. (Le et al., 2023) further advances the
field by adopting a versatile, non-autoregressive
approach. It not only generates Mel-spectrograms
but also supports speech inpainting and style trans-
fer, showcasing robustness in both seen and un-
seen scenarios. (Kim et al., 2023) proposes a data-
efficient zero-shot TTS method that leverages a
speech-prompted text encoder combined with flow
matching. (Mehta et al., 2024) leverages optimal-
transport conditional flow matching to generate
high-quality speech with only a few synthesis steps.

More recently, (Wu et al., 2024) takes flow-
matching-based synthesis a step further by incor-
porating dynamic emotional control, enabling the
generation of speech with time-varying emotional
expressions. Similarly, (Kanda et al., 2024) focuses
on fine-grained emotional control, specifically tar-
geting laughter synthesis, offering a highly expres-
sive and adaptable speech synthesis framework.

Flow matching can generate diverse and natural
outputs while maintaining computational efficiency.
By leveraging flow matching, we aim to address the
challenges of generating expressive filler-inclusive
speech, ensuring both high quality and controllabil-
ity in filler generation.

2.2 Large Language Models

Large language models (LLMs) offer transforma-
tive advancements in understanding and generating
human-like text. GPT-3 (Brown et al., 2020) and
PalLM (Chowdhery et al., 2023) have demonstrated
remarkable capabilities in zero-shot and few-shot
learning, enabling them to excel in tasks ranging
from text summarization to complex dialogue gen-
eration.

LLaMA (Touvron et al., 2023a) has gained sig-
nificant attention as an open-source model de-
signed to provide high-quality language under-
standing while being computationally efficient. Its
lightweight architecture and pretraining on diverse
datasets have made it a popular choice for re-
searchers and practitioners. The LLaMA family
of models balances performance and scalability,
making it well-suited for applications in conver-
sational Al, machine translation, and text-based
creative generation. Building on the success of
LLaMA, LLaMA 2 (Touvron et al., 2023b) intro-
duced several enhancements, including improved
training method, expanded datasets, and optimized
architectures. These improvements have enabled
LLaMA 2 to achieve superior performance across
a broader range of tasks while maintaining compu-
tational efficiency.

Extending LLaMA’s foundation, Vicuna (Chi-
ang et al., 2023) focuses on enhancing conversa-
tional capabilities by fine-tuning on high-quality
dialogue datasets. Vicuna-7B, in particular, op-
timizes LLaMA for interactive tasks, delivering
context-aware and coherent responses. The re-
cent Vicuna-7B further refines these conversational
skills, excelling in dialogue-focused applications
such as chatbots, virtual assistants, and customer
support systems. We leverage the strengths of
Vicuna-7B to enhance filler prediction in speech
synthesis.

3 Dataset Construction

3.1 Filler-Inclusive Data Collection

To train FillerSpeech, we construct a dataset com-
prising speech samples that each contain at least
one filler. Fillers can generally be categorized into
lexical fillers (e.g., “like,” “you know”) and non-
lexical fillers (e.g., “uh,” “um”). In this work, we
focus on non-lexical fillers, as they are more uni-
versally applicable and less dependent on linguistic
context. Based on previous studies (Ward, 2006;
Wang et al., 2022), we curate a list of common
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Figure 1: Overview of FillerSpeech. During inference, our approach leverages a fine-tuned LLM to predict filler
attributes from the input text, or alternatively, users can manually select the desired filler details.

fillers: "ah", "aha", "eh", "ha", "hm", "huh", "oh",
"uh", "um", "well", "yeah", "ya". Using a large-
scale corpus of high-quality speech, we identify
and extract speech samples that contain these fillers.
This process enables us to build a comprehensive
and diverse dataset tailored to the specific needs of

filler-inclusive speech synthesis.

3.2 Style Labeling for Fillers

In addition to collecting filler-inclusive data, we
also labeled the fillers with style information to
facilitate controllable generation. The style labels
focus on two key attributes: pitch (FO) and dura-
tion. To accurately identify the location of fillers
within the audio samples, we first align the speech
with its corresponding text using a external aligner.
This alignment step provides precise segmentation
of fillers, which is essential for subsequent style
labeling.

For pitch labeling, we first extracted FO values
from the audio and then label each filler as high,
medium, or low based on average pitch values. We
compute these averages in two ways: one method
calculates the average pitch for each filler type,
and the other computes the average pitch of words
within an utterance. Details are provided in Ap-
pendix E.1.

Since pitch characteristics differ significantly by
gender, we labeled male and female speakers sep-
arately. To determine the pitch height, we used
semitone differences as a threshold. Specifically,
fillers were labeled as high or low if their pitch

deviated by more than four semitones from the
reference.

For duration labeling, we calculated the aver-
age duration of each filler type and categorized
instances as long or short. Fillers in the top 25%
of the duration distribution were labeled as long,
while those in the bottom 25% were labeled as
short. By considering both pitch and duration, the
dataset captures the prosodic and temporal charac-
teristics of fillers, offering detailed labels for pre-
cise control in filler synthesis.

4 Method

We present a speech synthesis method that inserts
fillers and enables control over their style. Our
model leverages filler style tokens in conjunction
with a pitch predictor and cross-attention to modu-
late speech style. In addition to directly manipulat-
ing filler style, we propose a fine-tuning approach
for LLMs to predict styled fillers, thereby enabling
the synthesis of filler-inclusive speech from text
alone. Detailed descriptions of each component are
provided in the following subsections.

4.1 Tokenization of Filler

To effectively incorporate fillers into speech syn-
thesis, we adopt a phoneme-based tokenization
approach for fillers rather than tokenizing each
filler as a whole. This is because fillers are gen-
erally fewer in number compared to phonemes,
and they are ultimately composed of phonemes.
Consequently, fillers undergo the same phoneme



conversion process as other text elements. This to-
kenization approach ensures that fillers and regular
words blend naturally into synthesized speech.
For filler style, we tokenize pitch and duration us-
ing discrete labels. Regular words, which lack pitch
and duration labels, are assigned null labels. Since
pitch is strongly correlated with speaker gender, we
further tokenize pitch labels based on gender.

4.2 Filler Style Control

To condition the encoder on pitch of filler at the
phoneme level, the pitch tokens are first embedded,
then expanded to match the phoneme-level reso-
lution, and finally concatenated with the phoneme
embeddings of the text. To further enhance the in-
tegration of fillers into synthesized speech, the en-
coder computes cross-attention between phoneme-
level text representations and word-level pitch em-
beddings.

For duration control, the duration tokens are first
embedded and then used together with the text
representations as input to the duration predictor.

To control filler styles more precisely, we explic-
itly include pitch information in training. A pitch
predictor estimates appropriate pitch values from
the text representation. By explicitly modeling
pitch during training, the text encoder learns to bet-
ter capture the prosodic characteristics necessary
for natural filler generation and style control.

4.3 Prior Loss for Filler Representation

We compute a prior loss between the encoder out-
puts and the target Mel-spectrograms. Unlike con-
ventional methods (Popov et al., 2021; Mehta et al.,
2024) that compute prior loss on a sampled subset
of encoder outputs to improve training efficiency,
we compute the loss for all encoder outputs. This
is because fillers constitute a small fraction of the
text, making it more likely that the sampling pro-
cess will primarily learn segments without fillers.
Since style tokens appear only in segments contain-
ing fillers, the controllability of filler style is con-
sequently diminished. After computing the prior
loss, we follow standard practices by sampling a
subset of encoder outputs for the decoder input to
improve training efficiency.

4.4 Flow Matching Decoder

Our decoder is built on the flow matching frame-
work, a generative diffusion model that employs
optimal transport conditional flow matching (OT-
CFM) for efficient and probabilistic data transfor-
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Figure 2: Overview of the fine-tuning LoRA for the
filler prediction.

mation. The flow matching process models a prob-
ability path that connects a simple prior distribu-
tion pg (e.g., Gaussian noise) to a complex data
distribution ¢(z), (e.g., Mel-spectrogram). This
is achieved by defining a vector field v¢(x) that
governs the transformation of samples over time ¢
through an ODE as follows:

Loi(x) = vy(dy());

Here, ¢;(z) represents the trajectory of a sample
from the prior distribution to the target distribution.
In OT-CFM, the training objective minimizes the
difference between the predicted vector field v ()
and the ideal vector field u. () as follows:

do(x) =x. (1)

L(0) = Bt up" (677 (@) ]21) — 00(0P" ()| : 0) |
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This formulation ensures that the decoder learns
an efficient and smooth transformation from latent
noise to Mel-spectrograms. The simplicity of the
vector field u; (), which changes linearly along
the trajectory, reduces the number of required syn-
thesis steps compared to traditional diffusion mod-
els, significantly improving speed and accuracy.

4.5 LLM-based Filler Prediction

To insert fillers naturally based on the input text,
we propose an LLM-based filler prediction method.
To leverage the reasoning capabilities of LLMs



(Wei et al., 2022) while mitigating catastrophic for-
getting, we fine-tune the LLM using a Low-Rank
Adaptation (LoRA) adapter (Hu et al., 2022). Our
method involves predicting both the position and
type of fillers in the input text. Simultaneously, we
predict the appropriate duration and pitch for each
filler, considering the surrounding context within
the input text.

To enable the model to perform a variety of filler
prediction tasks with a single model, we created
instruction prompts that allow for different levels
of specification. These prompts include scenarios
where the filler type is specified, the filler type
and position are given, a set of potential fillers is
provided, or only the filler position is specified,
allowing the model to predict the remaining char-
acteristics such as duration, pitch, and type.

The LLM is trained separately from the TTS
model, and during the speech synthesis inference
process, LLLM filler prediction can be utilized as
needed. Detailed information on the prompt is
provided in Appendix C.

5 Experiments

5.1 Dataset

Using the method described in Section 3, we con-
structed a filler-inclusive speech dataset based on
the large-scale Libriheavy corpus, which comprises
50,000 hours of speech data. The resulting dataset
comprises 4,460 speakers and a total of 2,116 hours
of speech data. Each sentence contains at least one
filler, with each filler containing pitch and duration
information. For the validation and test sets, we
selected 50 speakers and obtained 2,707 and 2,966
sentences, respectively.

5.2 Implementation Details

5.2.1 Data Construction

For constructing the filler-inclusive dataset, we
employed the Montreal Forced Aligner (MFA)
(McAuliffe et al., 2017) as the external aligner and
Parselmouth (Jadoul et al., 2018) as the pitch ex-
tractor.

5.2.2 Speech Synthesis

The flow matching decoder in our model was im-
plemented using a Transformer-based U-Net archi-
tecture, ensuring efficient and high-quality Mel-
spectrogram generation. For speaker information
extraction, we employed the style encoder from
Meta-StyleSpeech model (Min et al., 2021). We

integrated the pitch predictor into our framework
to achieve accurate and controllable style genera-
tion, adopting the structure proposed in (Ren et al.,
2021). To compute the alignment between the en-
coder output and Mel-spectrogram, we employed
super monotonic alignment search (Lee and Kim,
2024). For training, we used two NVIDIA RTX
A6000 GPUs, with a batch size of 32 per GPU.
The model was trained for one million steps, which
took 83 hours. The overall parameter count of our
model is 60.11M, and additional details regarding
the hyperparameters are provided in Table 6. As
the vocoder, we used BigVGAN (gil Lee et al.,
2023) for waveform generation.

5.3 LLM-based Filler Prediction

We employed Vicuna-7B (Chiang et al., 2023) as
our LLM model for fine-tuning on the filler pre-
diction task using a LoRA adapter. Additionally,
to validate the performance of the baseline LLM
used for the prompt-based filler prediction task,
we froze various instruction-tuned LLMs from the
LLaMA (Touvron et al., 2023a) and Qwen (Yang
et al., 2024) families and fine-tuned them on the
filler prediction task using a LoRA adapter. Their
performance is compared in Table 3. In particu-
lar, Vicuna w/ sampling-based filler insertion (SFI)
(Wang et al., 2022) was fine-tuned by adding an
additional output branch to Vicuna-7B, following
the approach of SFI , with the LoRA adapter in-
tegrated during fine-tuning. This branch consists
of a single 13-way softmax prediction layer that
estimates the probability of 13 filler words, as well
as the probability of no filler insertion.

5.4 Evaluation Metrics
5.4.1 Speech Synthesis

We evaluated the performance of the synthesized
speech using both subjective and objective met-
rics. To evaluate the naturalness of the synthesized
speech and the similarity to the target speaker, we
conducted a mean opinion score (MOS) test and
a similarity mean opinion score (sSMOS) test. In
the MOS test, evaluators rated the naturalness of
the speech on a 5-point scale (1 to 5), while in
the sMOS test, they assessed how similar the syn-
thesized speech was to the target speech on the
same scale. We employed the UTMOS (Saeki
et al., 2022) model to automatically predict MOS
scores, providing an objective measure of speech
quality. To evaluate the pronunciation accuracy
of synthesized speech, we used automatic speech



Table 1: Experimental results of the proposed method. Con, PP, and CA indicate style controllability, pitch predictor,
and cross attention, respectively. The results for both MOS and sMOS are reported with a 95% confidence interval.

Method | Con | Token PP CA | MOS ()  sMOS (1) | UTMOS (1) | WER (|) PER (}) | SECS (1)
GT - - - - 4024005 422+005| 3.6038 5.64 1427 | 0.8809
Vocoded - - - - 399+005 416+£005| 34116 5.64 1448 | 0.8814
Matcha-TTS | X | X X X |3.624+007 347+007| 33536 | 4.56 111 | 07723
V| v X X |320£007 339+007| 3.2020 4.60 11.05 | 0.7698
FillerSpeech | v | v v X |3804+0.06 3.53+0.07 | 3.8307 9.36 1428 | 0.7693
V| v / / |384+006 350+007 | 3.8780 6.33 1210 | 0.7736

recognition (ASR) models, specifically Whisper
(Radford et al., 2023) and Wav2Vec 2.0 (Baevski
et al., 2020), to calculate word error rate (WER),
and phoneme error rate (PER). To verify how well
the synthesized speech matched the target speaker’s
voice, we extracted speaker embeddings using Re-
semblyzer! and computed speaker embedding co-
sine similarity (SECS).

5.4.2 Filler Prediction

To evaluate the performance of the language
model’s filler prediction, we calculate the accu-
racy of filler position, type, duration, and pitch by
comparing the model’s outputs to the ground truth,
with results reported as percentages. This evalua-
tion measures the degree of agreement between the
predicted and ground truth labels for each aspect.
Note that the accuracy for filler type, duration, and
pitch is computed only for those instances where
the predicted filler is inserted at the correct position
as specified in the ground truth.

In addition to quantitative accuracy, qualitative
evaluation is conducted using GPT-40 (OpenAl,
2024), which assigns scores to the model’s per-
formance in two filler prediction tasks: position
(Score-P) and type (Score-T). Scores range from
one to five, where a score of one indicates poor
performance and a score of five indicates excel-
lent performance. Given the inherent variability
of natural speech, multiple filler placements may
appear natural within a sentence. Therefore, quali-
tative evaluation is crucial to capture these nuances,
which is why we leverage GPT-4o for this assess-
ment.

Filler position evaluation assesses how appro-
priately the model places fillers within sentences,
focusing on the naturalness and suitability of their
placement. Filler type evaluation measures the ap-
propriateness of the specific filler words predicted

"https://github.com/resemble-ai/Resemblyzer

by the model, ensuring that they align with the
context of the sentence.

The scoring process for all tasks takes into ac-
count factors such as naturalness, contextual rele-
vance, fluency, and overall suitability for speech
interaction, providing a comprehensive assessment
of the model’s performance. For more details on
the evaluation process, please refer to Appendix
D.3.

6 Results

6.1 Speech Synthesis with Filler Injection

Table 1 shows the results of subjective and objec-
tive evaluations. The proposed method success-
fully synthesizes speech with natural and contex-
tually appropriate filler injection. Through both
subjective MOS test and objective metrics such as
UTMOS and SECS, the synthesized speech demon-
strated high naturalness, even with fillers inserted
into various positions in the text.

Notably, the inclusion of pitch information led to
significant improvement in UTMOS, indicating en-
hanced speech naturalness. However, a decline in
pronunciation accuracy was observed, as reflected
in increased WER and PER values. This suggests
that incorporating pitch information into the prior
loss computation may cause the text encoder to fo-
cus more on acoustic features rather than text-based
representations. Consequently, this shift could neg-
atively impact the encoder’s ability to accurately
represent phonetic information, leading to reduced
pronunciation accuracy. Nevertheless, by incor-
porating cross-attention, we were able to improve
both pronunciation accuracy and speaker similarity.

6.2 Filler Style Control

Our method provides precise control over filler
styles, allowing the pitch and duration of fillers to
be modulated as desired. To validate this capabil-
ity, we conducted experiments using the same text,
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Figure 3: Pitch track visualization of synthesized speech with different filler styles. The red boxes highlight regions
where filler words occur. The left column shows pitch control, while the right column shows duration control.

where the same filler was synthesized under differ-
ent style conditions. Figure 3 presents pitch track
plots, showing that the generated pitch contours
change according to the specified style tokens. For
example, when a higher pitch style was applied,
the filler’s pitch consistently increased compared
to other conditions, demonstrating the method’s
robustness in controlling prosodic attributes. This
highlights the model’s ability to adapt fillers dy-
namically based on stylistic requirements, a critical
feature for expressive and context-aware speech
synthesis.

Comparisons between FillerSpeech and models
with removed modules reveal that both the pitch
predictor and cross-attention significantly affect the
filler’s pitch control capabilities. Notably, while
the pitch predictor slightly degrades pronunciation
accuracy, it markedly improves control over the
filler’s pitch. Similarly, cross-attention, by incorpo-
rating word-level pitch conditions, adds stability to
the control. In contrast, duration control remains
largely unchanged, indicating that pitch informa-

tion does not substantially contribute to predicting
duration.

6.3 LLM-based Filler Prediction

Table 2 shows that our proposed method out-
performs the baseline models in filler prediction.
Specifically, the Vicuna w/o FT model fails to pre-
dict fillers accurately. Although the Vicuna w/ SFI
model predicts only position and type, its perfor-
mance is significantly inferior to that of our model.

To verify that the Vicuna-7B model was the opti-
mal choice for the LLM component, we compared
its performance with that of other instruction-tuned
LLMs. All models were trained under identical
conditions, with only the LLM component varied.
The results are presented in Table 2. Vicuna-7B,
fine-tuned on dialogues between GPT and humans,
outperforms other models.

6.3.1 Accuracy Evaluation

For filler position accuracy, the model achieved
a high score of 82.56, indicating strong precision
in placing fillers correctly within sentences. This



suggests that the model is effective at maintaining
the natural flow of the sentence, which is crucial
for realistic filler insertion in spontaneous speech.

In terms of filler duration, the accuracy was
52.46. This reflects the difficulty of predicting
the appropriate duration for filler pauses, as their
natural length can vary significantly depending on
the context. Filler durations in spontaneous speech
are flexible, influenced by factors such as hesita-
tion, emphasis, and speaker intent. This variability
points to the need for further refinement of the
model to better capture these nuances, which are
vital for replicating natural speech patterns.

For filler pitch accuracy, the model scored 63.27,
indicating moderate performance. While this score
is reasonable, it reveals that predicting pitch for
fillers is still a challenging task. The gap between
the model’s performance on pitch and position ac-
curacy suggests that there is room for improve-
ment, particularly in understanding and predict-
ing prosody, which is an essential component for
natural-sounding filler usage.

6.3.2 LLM-based Evaluation

For filler position, the model achieved a score of
3.31, very close to the ground truth (GT) score
of 3.25. This minor discrepancy suggests that the
model is almost as accurate as the ground truth
when it comes to determining the appropriate po-
sition of fillers, with only a slight difference in the
evaluation.

In terms of filler type, the model scored 3.27,
slightly lower than the GT score of 3.30. This
result indicates that the model generally predicts
appropriate and natural filler types for the given
context, with only a small deviation from the ex-
pected outcome.

Overall, the model demonstrated strong perfor-
mance across all tasks, particularly excelling in pre-
dicting filler positions. Although its accuracy for
filler duration was slightly lower and there is still
room for improvement in pitch prediction, the qual-
itative evaluation through GPT scores showed that
the model predictions were very close to the ground
truth. In fact, for filler duration and pitch, the model
even outperformed the ground truth. These results
highlight the effectiveness of the model in predict-
ing filler characteristics while also identifying areas
for further refinement, especially in filler timing
and pitch.

Table 2: Comparison of filler prediction performance.
Vicuna w/ SFI model only supports position and type
prediction.

Accuracy GPT Scores
Method Position Type Duration Pitch | Position Type
GT | | 325 330
Vicunaw/o FT | 135 1333 4667 2444 | 244 247
Vicuna w/ SFI 59.67 38.14 - - 2.41 2.81
Vicuna w/LoRA | 82.56 7844 5246  63.27 3.31 3.27

Table 3: Comparison of LoRA-based fine-tuning results
for filler prediction across instruction-tuned LLMs.

Accuracy GPT Scores
Method Position Type Duration Pitch | Position Type
GT - - - - 3.25 3.30
Qwen-1.5B | 69.65 60.15 49.87 6195 3.10 3.13
Qwen-3B 7359  57.66  49.03  61.19 3.23 3.14
Qwen-7B 7520 5976 51.43  62.02 3.23 3.19
LLaMA-1B | 81.11 72.85 5254 62.36 3.25 3.22
LLaMA-3B | 80.13 73.78 5028  62.68 3.27 3.20
LLaMA-8B | 81.65 7643  50.55  63.71 3.29 3.22
Vicuna-7B ‘ 82.56 7844 5246 6327 | 3.31 3.27

7 Conclusion

In this paper, we introduced FillerSpeech, a novel
speech synthesis framework that integrates filler
insertion with style control. We constructed a
filler-inclusive speech dataset from the large-scale
speech corpus, leveraging an automated method to
label fillers with pitch and duration information,
thereby eliminating the need for manual annotation.
Our approach employs cross-attention mechanisms
and a pitch predictor to condition the model on
filler style, which enhances the control over pitch.
While fillers can be manually adjusted to achieve
a desired style, we further propose an LL.M-based
filler prediction method that enables natural filler
insertion based solely on text input. Experimen-
tal results demonstrate that cross-attention mech-
anisms and pitch predictor substantially improve
both speech quality and style control, and the LLM-
based filler prediction method effectively predicts
filler attributes from text.

8 Limitations

Our model is trained using three discrete labels
for both pitch and duration. While this approach
allows for effective control within the predefined la-
bel space, it limits the model’s capability to achieve
extreme or fine-grained control. In future work, we
aim to explore more expressive speech synthesis
and investigate control methods based on continu-
ous values rather than categorical labels.
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Table 4: Inference performance of the CFM decoder
with pitch predictor.

#Steps | RTF (]) | UTMOS (1) | WER () | SECS (1)

1 0.0206 3.7519 6.41 0.7507
2 0.0213 3.8945 5.59 0.7600
4 0.0227 3.8780 6.33 0.7736
8 0.0259 3.8260 7.03 0.7779

Table 5: Inference performance of the CFM decoder
without pitch predictor.

#Steps | RTF (]) | UTMOS (1) | WER () | SECS (1)

1 0.0201 2.0691 0.0356 0.6925
2 0.0210 2.6805 0.0366 0.7323
4 0.0224 3.0658 0.0418 0.7578
8 0.0255 3.2020 0.0460 0.7698

A Analysis on Sampling Steps

In our analysis of the CFM decoder during infer-
ence, we evaluated the effect of varying the number
of sampling steps by measuring the real time fac-
tor (RTF), UTMOS, WER, and SECS. As shown
in Tables 4 and 5, our model achieves rapid per-
formance improvements even with fewer sampling
steps. This improvement is attributed to the use
of a pitch predictor, which enables the decoder to
condition on encoder outputs that include pitch in-
formation. Conversely, as the number of sampling
steps increases, we observed a decline in UTMOS
and WER, indicating that the pitch information
employed for enhanced pitch style control does
not necessarily improve pronunciation accuracy.
Moreover, with additional sampling steps, SECS
increases. This can be explained by the fact that
our model’s encoder outputs combine text, filler
pitch style, and speaker representations, thereby
reducing the relative influence of speaker informa-
tion. Since the sampling process further conditions
on the speaker information with encoder outputs,
speaker similarity improves with more sampling
iterations.

B Discussion

B.1 General Word Style Control

Due to our model’s design which applies style con-
ditioning at the positions of designated tokens, it is
capable of modulating the style not only of these
tokens but also of general words. Consequently, we
demonstrate that even when only a subset of words
in the speech data contains pitch or duration infor-
mation, our approach enables fine-grained control
over the overall speech style.
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Table 6: Hyperparameters of FillerSpeech.

Module ‘ Hyperparameter ‘ FillerSpeech
Text 192
Embedding gii;ker gi
Duration 64

Prenet Conv. Hidden Dim. 192
Prenet Conv. Layers 3
Prenet Conv. Kernel Size

Prenet Dropout 0.5
Transformer Hidden Dim. 320
Transformer FFN Filter Channels 768
Encoder Transformer Layers 6
Transformer Kernel Size 3

Transformer Attention Heads
Transformer Dropout
Projection Hidden Dim.
Projection Layers

Projection Kernel Size 3

Projection Dropout 0.5
Conv. Hidden Dim. 192
. . Conv. Layers 5
Piteh predictor Conv. Kernel Size 5
Conv. Dropout 0.5

Conv. Hidden Dim.
Conv. Layers

Conv. Kernel Size 3
Conv. Dropout 0.1

Duration predictor

Channels [512,512]
Dropout 0.05
Blocks 1
Mid Blocks 2
CFM decoder Attention Heads 2
Activation snakebeta
Solver euler
Sigma min le-4
Optimizer Adam
Optimizer Learning Rate 0.0001
Beta [0.9, 0.98]

B.2 Potential Risks

While the advancements in speech synthesis tech-
nology offer significant benefits, they also raise
concerns about potential malicious uses. The abil-
ity to generate highly realistic synthesized speech
can be exploited to produce deceptive content, such
as deepfakes or misleading information, which may
have harmful societal implications. To address
these risks, a discussion on synthesized speech de-
tection and watermarking techniques during syn-
thesis is necessary to authenticate and trace speech
outputs.

B.3 Al asist

We used GPT-4o0 for proofreading, including typo
and sentence correction.

C Prompt for Filler Prediction

To train our LLM to predict the appropriate posi-
tion, type, duration, and pitch of fillers, as shown
in Figure 4, we employed four different types of
prompts.
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In the first prompt type, the desired filler type
is explicitly specified for prediction. In this case,
<TGT_SEN> denotes the sentence into which the
filler will be inserted, and <FILLER> indicates
the desired filler type.

The second prompt type involves specifying both
the desired filler type and the insertion position
within the sentence. Here, <TGT_SEN> repre-
sents the sentence for filler insertion, <FILLER>
stands for the desired filler type, and <TGT_POS>
indicates the token position within <TGT_SEN>
where the filler should be inserted.

For the third prompt type, a set of filler type
options is provided, and the LLLM selects the most
appropriate filler from these options to insert into
<TGT_SEN>.

In the fourth prompt type, similar to the third, a
set of filler type options is given. However, in this
case, the LLM not only selects the appropriate filler
but also inserts it at the specified token position
<TGT_POS> within <TGT_SEN>.

Across all prompt types, the predicted duration
for each filler is classified as either short, medium,
or long, while the predicted pitch is categorized as
low, medium, or high.

D Details of Evaluation Metrics

D.1 Mean Opinion Score Test

For the subjective evaluation, we conducted both
MOS and sMOS tests using Amazon Mechanical
Turk, recruiting 20 evaluators for each test. For the
evaluations, 50 utterances were randomly sampled
from the test set. Additionally, we interspersed
fake samples among the test utterances. We filtered
out ratings from workers who gave scores to fake
samples to exclude unreliable participants.

D.2 Automatic Speech Recognition for
Filler-inclusive Speech

In typical TTS tasks, ASR used for pronunciation
evaluation employs a text normalization process
that includes the removal of filler words from the
ASR output. However, because our approach inten-
tionally synthesizes speech with fillers, we delib-
erately bypass the removal of filler words during
text normalization. This allows us to directly as-
sess the performance of our system in generating
filler-inclusive speech.



D.3 GPT Score

Building on the studies (Chiang and Lee, 2023;
Chiang et al., 2023; Zheng et al., 2023; Fang et al.,
2025) that use LLM models to evaluate model out-
puts, we employ GPT-40 (OpenAl, 2024) to as-
sess the filler prediction ability of our fine-tuned
LLM. In this evaluation, GPT-40 examines two key
aspects: the prediction of filler positions and the
prediction of filler types.

For the filler position, GPT-40 assigns a score
ranging from 1 to 5, where a higher score indicates
better performance (1: Poor, 2: Below Average, 3:
Neutral, 4: Good, 5: Excellent). The evaluation of
filler types is carried out in the same manner, with
GPT-40 using the identical 1 to 5 scoring scale.
Detailed information on the evaluation prompt can
be found in Figure 5. Here, the term {sentence}
refers to the sentence into which the predicted filler
is inserted.

E Analysis on Constructed Data

E.1 Comparison between Pitch labeling
Method

We employ two complementary strategies for anno-
tating filler pitch, each designed to capture different
aspects of prosodic variation. First, we extract FO
values using Parselmouth and identify filler regions
with the MFA. Based on these boundaries, we com-
pute two sets of average FO values: one for the filler
segments and one for the entire utterance.

Our first labeling strategy focuses on comparing
FO values across fillers, independent of their utter-
ance context. For each filler type, we calculate the
median FO separately for male and female speakers
to reduce the impact of outliers and account for
gender-specific pitch differences. We use XLSR-
52-based gender recognition model®. Each filler
instance is then labeled as low, medium, or high
based on whether its FO is at least four semitones
below or above the gender-specific median. The
threshold is defined as:

threshold.. = median x 2%75. 3)

The second strategy normalizes filler pitch rela-
tive to the overall utterance. Here, we compare the
FO of filler regions to the average FO of the entire
sentence. Fillers whose FO deviates by at least four
semitones from the utterance average are labeled

2h'ctps ://huggingface.co/alefiury/

Table 7: Performance comparison of pitch labeling
strategies.

Method | UTMOS (1) | WER ({) | SECS (1)
First Strategy 3.8780 6.33 0.7736
Second Strategy 3.8240 7.55 0.7631

as low or high. If the proportion of fillers labeled
as low or high is below 15% when using a four-
semitone threshold, a three-semitone threshold is
applied instead. As with the first method, these
calculations are performed separately for male and
female speakers to accommodate gender-specific
pitch characteristics. The FO ratio is computed as:

FO
FO ratio = —fnean ) 4)
sentence_F(0_mean

with the threshold given by:
threshold. = 2%1s . (5)

These two methods provide complementary per-
spectives on pitch variation: one capturing filler-
specific deviations across speakers and the other
contextualizing filler pitch within each utterance.
We evaluated both labeling strategies in our exper-
iments and, as shown in Table 7, found that the
first method yields superior performance in speech
synthesis.

Figure 6 shows the FO distributions for fillers
computed using the first strategy. For most filler
types, the distribution near the median is skewed
toward values below the median. However, in gen-
eral, the proportion of fillers labeled as high tends
to be higher than those labeled as low.

wav2vec2-large-x1lsr-53-gender-recognition-librispeech


https://huggingface.co/alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech
https://huggingface.co/alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech

Type 1: Prompt template for filler prediction

Target sentence: <TGT_SEN>

USER: Add the specified fillers (like <FILLER>) to the target sentence to make it sound more natural.
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound
contextually appropriate and natural.

ASSISTANT:

Type 2: Prompt template for filler prediction

Target sentence: <TGT_SEN>

USER: Add the specified fillers (like <FILLER>) at target positions <TGT_POS> in the target sentence.
For each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound
contextually appropriate and natural.

ASSISTANT:

Type 3: Prompt template for filler prediction

Target sentence: <TGT_SEN>

Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well

USER: Add contextually appropriate fillers to the target sentence. For each filler, also specify its duration
(short, medium, long) and pitch (low, medium, high) that sound contextually appropriate and natural."
ASSISTANT:

Type 4: Prompt template for filler prediction

Target sentence: <TGT_SEN>

Filler word options: oh, ah, ha, eh, aha, huh, hm, uh, yeah, mm, um, ya, well

USER: Add contextually appropriate fillers at target positions <TGT_POS> in the target sentence. For
each filler, also specify its duration (short, medium, long) and pitch (low, medium, high) that sound
contextually appropriate and natural.”

ASSISTANT:

Figure 4: Sample templates for filler prediction (Type 1, 2, 3, 4)
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Prompt for GPT Scores — Filler Position (Model: GPT-40)

You are an expert evaluator of filler placement.

I need your help to evaluate the performance of a model in a filler prediction scenario.

The model receives a target sentence and generates a response by inserting fillers at specific positions.
Your task is to rate the model’s response based only on the correctness of filler positions.

Ignore the content of the fillers themselves and focus strictly on whether the placement of the fillers
aligns with natural speaking patterns.

##t# Scoring Guidelines (Evaluate only the filler position!)
Provide a single score on a scale from 1 to 5, where:

- 1: Poor

- Fillers are placed incorrectly, disrupting the sentence’s natural flow.

- 2: Below Average

- Some fillers are misplaced, causing minor disruptions.

- 3: Neutral

- Fillers are placed in acceptable locations but do not necessarily enhance the sentence.
- 4: Good

- Fillers are mostly well-placed, making the sentence sound natural.

- 5: Excellent

- Fillers are placed perfectly, improving the conversational tone.

Important: Focus only on filler position for this evaluation.

After evaluating, output the score only as a number (e.g., '4).

Q/aluate the following sentence:\n'{sentence}' /

Prompt for GPT Scores — Filler Type (Model: GPT-40)

You are an expert evaluator of filler types in natural speech.

I need your help to evaluate the performance of a model in a filler prediction scenario.

The model receives a target sentence and generates a response by inserting fillers of specific types at
particular positions.

Your task is to rate the model’s response based only on the naturalness and appropriateness of the
filler types used in the sentence.
Consider the following aspects:

1. Contextual Suitability: Assess whether the chosen filler types (e.g., "um,” "oh," "yeah") fit naturally
within the conversational context of the sentence, enhancing the flow and coherence.

2. Human-like Selection: Determine if the filler type corresponds to what a human speaker would
likely use in the given situation, considering the tone, intent, and conversational style of the sentence.

### Scoring Guidelines
Provide a single score on a scale from 1 to 5, where:

- 1: Poor

- Filler types are unnatural or disrupt the conversational flow.

- 2: Below Average

- Some filler types seem out of place or could be improved.

- 3: Neutral

- Filler types are acceptable but do not necessarily enhance the sentence.
- 4: Good

- Fillers are mostly well-chosen, making the sentence sound natural.

- 5: Excellent

- Filler types are perfectly suited, improving the conversational tone.

Important: Focus only on the filler type selection, not the placement.

Ignore grammar, word choice, and meaning—evaluate only whether the type of fillers used is what a
human would naturally say.

After evaluating, output the score only as a number (e.g., '4°).

Evaluate the following sentence:\n'{sentence}' /

Figure 5: Prompt templates for GPT-based filler evaluation, using a 1-5 scoring scale.
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Figure 6: FO distribution for each filler type. Odd-numbered columns correspond to female speakers, while even-
numbered columns correspond to male speakers.
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e highly recommend to hear audios with headphone in the environment with no noise in background.

@ Evaluate naturalness of audio samples.

e This score should reflect your opinion of how natural the audio sounded.

e Note that you should not judge the grammar or content of the audio, just how it sounds and pronounces.
e |t is an absolute evaluation.

Warning: Noise samples are included. If you rate a noise sample with a score other than 'X', your evaluation will be
rejected.

Example of audio 1 (expected "Excellent - 5")

> 0:00/0:04 O i

Example of audio 2 (expected "Good - 4")

> 0:00/0:02 0 i

Instructions X Select an option
0. Please wear earbuds or headphone > 0:02/0:14 O i Excellent - Completely natural 1
before you start the task speech - 5
1. Adjust the volume of your audio device to Good - Mostly natural speech - 4 2
a comfortable level

Fair - Equally natural and 3
2. Listen to an audio sample. Please listen
to the sample at least twice. unnatural speech - 3
3. Rate the naturalness of the audio sample Poor - Mostly unnatural speech - *
that you just heard from "Bad" to "Excellent” 2
4. Select " if the voice is a fake sample Bad - Completely unnatural 5
5. Skip 'Submit” button. Go to the next speech - 1
question X - Fake sample 6
More Instructi

Figure 7: MOS evaluation interface.

Please wear earbuds or headphone before you start the task

Instructions

Evaluate speaker similarity of the audio pair.

Please listen to the two audio samples and rate how similar they are.

IYour rating should reflect an evaluation of how close the voices of the two speakers sound.

[You should not judge the audio quality (how natural it is) of the sentence

instead, just focus on the similarity (e.g. voice, timbre and intonation) of the speakers to one another.

Please listen to each of the audio files carefully during evaluation.

If reliability of your evaluation is less than 50% or the total evaluation time is shorter than the total length of the audio files, we will
reject your review.

\We put some fake samples. So, if your evaluation on fake samples looks doubtful, we will reject your review.

Example of audio pairs 1 (expected "Completely similar speech - 5")

> 000/ 004 )

> 0:00/ 004 O i

Example of audio pairs 4 (expected "Completely unsimilar speech - 1")

> 0:00/0:04 O i

> 0:00/0:05 ©

[*] Before you start, please read the instructions next to each task and answer each one carefully, thanks!!!

Q. How similar (i.e., voice, timbre, intonation) is the second recording compared to the first? ®
Instructions X Select an option
0. Please wear earbuds or headphone » 0:00/0:19 0 Excellent - Completely similar
before you start the task speech - 5
1. Adjust the volume of your audio device to » 0:00/014 S o i Good - Mostly similar speech -4 2
a comfortable level. :

- L 3
2. Listen to an audio sample. Please listen Fair F;unally swr:\llaar and
to the sample at least twice. unsimilar speech -
3. Rate the naturalness of the audio sample Poor - Mostly unsimilar speech - 4
that you just heard from "Bad” to "Excellent” 2
4. Select "x" if the voice is a fake sample Bad - Completely unsimilar 5
5. Skip ‘Submit” button. Go to the next speech - 1
question X - Fake sample 6

More Instructions

Figure 8: sMOS evaluation interface.
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