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Abstract

Accurate and scalable quantification of animal pose and appearance is crucial for
studying behavior. Current 3D pose estimation techniques, such as keypoint- and
mesh-based techniques, often face challenges including limited representational de-
tail, labor-intensive annotation requirements, and expensive per-frame optimization.
These limitations hinder the study of subtle movements and can make large-scale
analyses impractical. We propose Pose Splatter, a novel framework leveraging
shape carving and 3D Gaussian splatting to model the complete pose and appear-
ance of laboratory animals without prior knowledge of animal geometry, per-frame
optimization, or manual annotations. We also propose a rotation-invariant visual
embedding technique for encoding pose and appearance, designed to be a plug-in
replacement for 3D keypoint data in downstream behavioral analyses. Experiments
on datasets of mice, rats, and zebra finches show Pose Splatter learns accurate 3D
animal geometries. Notably, Pose Splatter represents subtle variations in pose,
provides better low-dimensional pose embeddings over state-of-the-art as evalu-
ated by humans, and generalizes to unseen data. By eliminating annotation and
per-frame optimization bottlenecks, Pose Splatter enables analysis of large-scale,
longitudinal behavior needed to map genotype, neural activity, and behavior at high
resolutions.

1 Introduction

The study of animal behavior is a central focus in neuroscience research, as it provides essential
context for understanding neural and physiological processes. In particular, accurate capture of 3D
pose allows researchers to study important elements of animal behavior including walking, balance,
and interaction with the environment [37]]. These elements are essential for detecting small behavioral
changes associated with neurological diseases or therapies [61].

Deep learning methods originally developed for 3D human pose estimation from images [4} 45| [20]
have inspired and driven dramatic advances in 3D animal shape and pose reconstruction as well [82,
4411241174, |1}, |5]]. These methods are most often based on either keypoints or meshes.

Keypoint-based methods [44} 24,12} 17} |14] are straightforward to implement and relatively efficient
computationally. They triangulate a set of anatomical points (e.g., joints, wing edges, or tail tips)
across multiple camera views to reconstruct their 3D positions. However, each keypoint must be
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Figure 1: (a) Pose Splatter pipeline. Multi-view images and their corresponding masks are carved
into a coarse voxel shape, which a stacked U-Net converts into de-voxelized 3D Gaussian parameters
that are finally rendered through Gaussian splatting. The entire process runs in only 2.5 GB of
GPU memory (VRAM) compared to 10-20 GB for competing methods. (b) Shape-carving concept.
Silhouettes from each camera are back-projected into a shared voxel grid (yellow cones), removing
voxels outside the visual hull. The green intersection marks the rough volumetric prior fed to the
network.

located accurately for training, leading to labor-intensive annotation. Additionally, these landmarks
are too sparse to capture the body’s full geometry, let alone the color and texture of its surface.

Mesh-based methods [82, |81} [70, |65} |1} |5, (63} |79} 132, 53] do reconstruct the animal’s complete
surface geometry by fitting a parameterized 3D model to observed data, and thereby facilitate in-
depth analyses of body shapes and deformations. However, inferring this richer information requires
specialized and time-intensive mesh-fitting routines for each input frame. Inference often also depends
on an accurate template model (e.g., SMAL [82]]) and may fail to generalize to postures that are not
well-represented by the original template, or to altogether different species (e.g., mice, rats).

To address these challenges, we propose Pose Splatter, a feed-forward model based on 3D Gaussian
splatting (3DGS) that reconstructs 3D shapes of different animal species accurately and in a scalable
way. 3DGS [25] is a 3D scene rendering technique that has recently become popular due to its
extremely fast rendering times and high visual fidelity. It represents a scene as a collection of
Gaussian particles, each with its own position, covariance, and color parameters. While earlier
models optimized these parameters on a scene-by-scene basis, recent efforts have introduced feed-
forward variants [10,|11]] designed to perform single-step inference after training. However, unlike
Pose Splatter, these methods assume ample inter-view overlap and therefore struggle with sparse-view
3D animal reconstruction, where such overlap is minimal.

Pose Splatter captures each scene with a small set of calibrated cameras (4—6 in this work) and
generates foreground masks for each view using SAM2 [50]. A shape-carving process [30, 29]
back-projects these multi-view masks into 3D visual cones, whose intersection yields a rough estimate
of the voxels inside the animal’s shape. A stacked 3D U-Net then refines this coarse volume, and a
compact multi-layer perceptron (MLP) processes the voxel-level features to produce the parameters
for the 3D Gaussian splats, which are rendered with 3DGS. The network is trained end-to-end to
minimize image-based losses. We additionally introduce a visual embedding technique that relies on
the ability to render the scene from novel viewpoints and provides an informative low-dimensional
descriptor of pose and appearance for use in downstream analyses.

Our framework addresses several limitations of existing techniques. Unlike keypoint-based ap-
proaches, which use a sparse representation of body and require extensive landmark annotation, our
framework recovers the complete 3D posture of the animal without any manual labeling. In
contrast to mesh-based methods, which often demand per-frame optimization and accurate template
models, our network performs inference via a single forward pass and requires no species-specific
templates. Our quantitative and qualitative experiments demonstrate that our model achieves robust
3D reconstructions and novel view renderings of multiple animal species despite its simplicity. Our
experiments show that the proposed visual embedding captures subtle variations in animal pose
and serves as a useful descriptor for behavioral analysis. By removing manual annotation and
computational bottlenecks, our approach opens the door to large-scale and high resolution behavioral
analysis, facilitating deeper understanding of the genetic and neural underpinnings of behavior.



2 Related Work

Keypoint-based Pose Estimation Keypoint-based pose estimation research first concentrated on 2D
keypoint estimate for human pose [8} |48}, 73 16} |54} 55|57, [76], where models aimed to localize
joints in 2D images to infer human poses. The field moved toward 3D keypoint estimation [40, 51} |3}
211,128} 16, |20, 49], using multi-view information to represent human poses in a more realistic, spatially
aware manner. This evolution was mirrored in animal pose estimation, with early studies primarily
tackled 2D keypoint estimation [46, |18 (7,41, [31}|72} 39} 52] and more recent studies shifting to 3D
keypoint estimation [44}, [2, 75} 74,36l |12]], allowing for a more accurate representation of animal
poses in three-dimensional space. However, these models capture only a sparse representation and
depend on manually annotated training data. Pose Splatter, by contrast, reconstructs the animal’s
complete 3D geometry and requires no manual labels.

Mesh-based Pose Estimation Mesh-based 3D pose estimation provides a more complete rep-
resentation of body shape and surface characteristics compared to keypoint methods by fitting a
parametric 3D model to observed data. Mesh models have been extensively applied in human pose
estimation [33} |4} |19} 23] |27, [13] to capture fine-grained details, such as muscle contours and body
surface deformations, thereby enabling them especially in applications requiring great accuracy, like
biomechanics and animation. Mesh-based techniques [82] |80, 70, |68l |65} |1} 5 58}, 163, |53|] have
recently been used in animal pose estimation, providing a more detailed representation of the diverse
anatomies and movements of different species compared to keypoint methods. Unlike mesh methods,
Pose Splatter does not require a species-specific template or per-frame optimization routines.

3D Gaussian Splatting (3DGS) 3DGS [25] has emerged as a powerful technique for novel view
synthesis and 3D reconstruction due to its exceptional rendering speed and quality. Most initial
approaches [25} |34} 56} 15,162, (35,169} 78, |67]] relied on per-scene optimization routines and abundant
multi-view images, which can limit broader applicability. Recently, researchers have begun to
investigate feed-forward pipelines [|10, |1 1] that, once trained, can generate novel views from sparse
input images in a single inference step. However, to the best of our knowledge, there is currently no
3DGS framework specifically tailored for sparse-view 3D animal reconstruction.

3 Method

At a high level, Pose Splatter uses masked images captured from a small number of calibrated
cameras. We apply shape carving techniques to create a voxelized “rough” representation of a
single animal’s pose and appearance. Then the rough volume passes through a stacked 3D U-
Net architecture to produce a “clean” volume with an occupancy channel and additional feature
channels. The occupancy channel determines whether to render a Gaussian for each voxel, while the
remaining feature channels for each rendered voxel are independently mapped through a small MLP
to determine 3D displacement vectors, which de-voxelizes the representation, along with covariance
and appearance features needed to render the Gaussian. Finally, the scene is rendered given camera
parameters by Gaussian splatting. Image-based losses are then used to propagate gradients through
the model parameters. The model is a simple, lightweight framework which uses only about 2.5 GB
of GPU memory (VRAM). Note that Pose Splatter captures an animal’s pose at a given instant not in
the sense that it estimates joint angles or positions, but in the more general sense of capturing the
whole geometry of the animal. The overall framework is illustrated in Figure [Th. See Appendix [A]for
a brief discussion of camera considerations.

Mask Generation We generate mask videos used for training using a pre-trained Segment Anything
Model (SAM2) [50]. We first prompted a mask on the first frame using SAM?2 image mode, and
propagate the mask through the video using SAM?2 video mode. We chose not to fine-tune SAM?2 on
our video datasets to see how well our pipeline could perform without manual annotation, but it is
also possible to fine-tune the model, which would likely improve the results.

Determining Animal Position and Rotation The model quantifies animal pose independent of the
3D position and azimuthal orientation (about the vertical axis) of the animal. We determine these
quantities without relying on 3D keypoints, thereby avoiding the time-intensive process of creating a
training dataset for a keypoint detection network. To this end, a robust triangulation of the center
coordinates of the mask in each image yields a rough 3D center. Shape carving, described below,
provides a rough estimate of the animal mass, which is summarized as a 3D Gaussian distribution
with a mean vector and covariance matrix. The mean vector is taken as the animal’s position, while



the principal axis of the 3D covariance matrix is tracked smoothly over time and projected onto the
X/Y plane to estimate the horizontal rotation. Additional details can be found in Appendix

Shape Carving Procedure Shape carving centers a 3D cubic grid of voxels at the estimated animal
center and rotates it according to the estimated azimuthal rotation angle. By back-projecting masks
from each camera view into space, we determine which voxels lie outside the visual hull of the animal
and which ones are inside. We assign colors to the inside voxels based on their visibility from each
view. This approach assumes minimal occlusion and relies on precise camera calibration to ensure
accurate alignment of projections. In particular, this precludes a direct application to multi-animal
recordings, where occlusions are common. Figure[Ib provides an intuitive illustration of the shape
carving process. See Appendix [C|for more details on our shape carving procedure.

Stacked U-Net Architecture The stacked 3D U-Net architecture consists of three U-Net modules
arranged sequentially, designed to progressively refine the rough volume. This stacked configuration,
inspired by the refinement capability of stacked hourglass networks, allows for iterative enhancement
of feature quality and spatial coherence. Each module contains four downsampling and upsampling
blocks, with skip connections to facilitate feature preservation. All layers employ ReLLU activations,
and the last U-Net module outputs 8 channels. The U-Nets are initialized to approximate the identity
function by initializing filters near the Dirac delta filter and relying on the first skip connection to
propagate the image through the U-Net. We find that no pretraining is needed with this initialization,
unlike standard initialization schemes.

Gaussian Splatting To render the animal using Gaussian splatting, we first decide which Gaussians to
render, interpreting the first channel of the volume as a probability of rendering a Gaussian for a given
voxel. For each rendered voxel, we pass all 8 channels through a small MLP to produce Gaussian
parameters. Crucially, the mean parameter is taken by adding the MLP-predicted displacement
to the coordinate of the voxel in 3D space, thereby de-voxelizing the animal shape representation.
A standard splatting is then performed, taking Gaussian and camera parameters and outputting a
rendered RGBA image. We use the gsplat library [71] to perform splatting. In standard splatting,
each Gaussian particle is described by a location parameter 1« € R3 and a spatial covariance matrix
¥ € R3*3, in addition to color and opacity parameters, ¢ € R? and a € [0, 1], respectively. The
density of the Gaussian particle at location z is given by

G(2) = exp (~4 (e — W)= @ - p)) -

As described in [83]], using a camera transformation matrix W and the Jacobian matrix J of an
affine approximation to the projective transformation, the resulting 2D covariance matrix is given by
Y = JWEW TJT. Lastly, the color at a given pixel in the image plane is given by

N i—1
> im0 Cilki Hj:O(l — )
where the particles are ordered by decreasing depth (along the j subscript) relative to the camera.

Loss Terms We employ two standard image-based losses to train the network. First, we calculate an
L1 color loss to encourage accurate color rendering, as L1 losses are more robust to changes in colors
caused by non-Lambertian effects than L2 losses: L.oior = Zij |Zi; — 5| / 3 Zij m;; where &
is the predicted image, x is the ground truth image with the rendering background color, outside of
the masked region, modified to be white, and m is the input mask. Second, we use an intersection-
over-union loss to compare an input mask m to the transparency channel of the rendered image m to
encourage accurate silhouettes: Lrop =1—) ", j(mm)ij /> ; (m +m — mm),; , where products
are elementwise. The total loss is £ = L,y 4+ AcotorLecolor Where Aeoior 18 @ hyperparameter.

3.1 A Visual Embedding Technique

In addition to producing collections of Gaussian particles that capture the 3D geometry and appearance
of the animal, it is often useful to distill these particles into a moderate-dimensional descriptor of pose
and appearance for subsequent behavioral analyses. For example, 2D and 3D keypoint coordinates in
an egocentric reference frame have greatly advanced the study of animal behavior 60, 26]]. Designing
a comparable descriptor directly from the Gaussian particle parameters is complicated by two factors.
First, the number of particles can vary from frame to frame. Second, Gaussians that are completely
inside the surface layer of the animal volume do not materially affect appearance. To bypass these
issues, we propose a method that relies on rendered appearance of the particles rather than on the raw
particle parameters while maintaining invariance to animal position and azimuthal rotation.
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Figure 2: (a) Example renderings for visual embedding. 32 virtual cameras, distributed on a sphere
centered on the animal, produce appearance-only renderings used to build our visual embedding. (b)
Nearest-neighbor preference study. Nearest-neighbor retrieval with the visual embedding (VE) is
favored over a 3D-keypoint (KP) baseline in a 102-person study (54 % vs. 50 %; p = 1.5 x 1075,
two-sided t-test, n = 40). The query pose (left) and its two candidate nearest neighbors illustrate
that the visual embedding preserves a subtle leftward head tilt that the keypoint method misses. (c¢)
Visual embedding tracks subtle movements. Two image rows are shown—the upper row contains
ground-truth frames and the lower row the corresponding Pose Splatter renders, illustrating from
left to right a typical pose, slight feather expansion, and a head-shaking bout. Beneath them, the
first five principal components (PC1-PC5) plotted through time reveal these behaviors: thin grey
lines indicate head reorientations that coincide with changes in PCs 2—4, dark-grey bands mark brief
head-shaking bouts that stand out in PCs 1 and 5, and the surrounding light-blue interval captures
slow feather expansion and compression, reflected in the low-frequency trends of PCs 1 and 2.

Overview of the Embedding We place a virtual camera at a set of viewpoints covering the sphere
centered on the animal’s 3D center. At each viewpoint (8, ¢), where € [0, 7] is the polar angle
from the positive z-axis down and ¢ € [0, 27] is the azimuthal angle about the z-axis, we render a
224 x 224 RGB image of the Gaussian particles as seen looking inward toward the animal (Figure [2h).
Because internal Gaussians are occluded in all views, the resulting set of images captures only the
visually relevant features (shape, silhouette, color, etc.).

Latent Encoding Rather than working directly with the RGB images, each 224 x 224 rendering
is passed through a pretrained convolutional encoder (ResNet-18) that outputs a 512-dimensional
feature vector. Denote this resulting function on the sphere by f(0, ) € R>'2, Each component
fx(6,9) (for k = 1,...,512) encodes some learned feature of appearance or geometry across the
sphere.

Spherical Harmonic Expansion and Quadrature To produce a rotation-invariant descriptor, we
expand each component fj, in a truncated spherical harmonic basis Yz, (6, ¢) of bandwidth L,

Fu0,8) = S oty From Yem(0, 0).

We estimate each coefficient fAk7 ¢m Via spherical quadrature:

foam ~ Z;V:Gl SN wi fo(0,00) Yiin (0, 6),



where (0, ¢;) range over a suitable sampling grid on the sphere, and wj; ; are the corresponding
quadrature weights. We use Gauss-Legendre quadrature with L = 3, which avoids evaluating the
points 6 € {0, 7}, where there is no well-defined vertical camera orientation.

Ensuring Invariance to Horizontal Rotations Our goal is invariance to rotations of the animal
about the vertical (z) axis—i.e. a shift in ¢. Under such a rotation, f}, ¢, picks up a phase factor eimo,

By taking the squared magnitude || fx ¢m||?, we eliminate that phase dependence. Consequently, we
form our final descriptor by collecting all such terms for each latent dimension & and each ¢, m:

¢ 2
{”fk’emH }k:l..512, 0=0..L, m=—t..4

This yields a fixed-size feature vector whose entries remain the same if the animal is rotated in the
horizontal plane.

However, we found that these feature vectors still strongly encoded the azimuthal angle of the animal,
possibly due to uneven lighting conditions across views. To remove this effect, we employ an
adversarial formulation of principal components analysis (PCA) to find a 50-dimensional subspace of
the feature vectors that contains a large portion of the variance of the input vectors and can predict
only a small portion of the variance of the sine and cosine components of the azimuthal rotation angle
[9]]. We take these 50-dimensional pose descriptors as the visual embedding. See Appendix [DJfor
more details.

4 Experiments

4.1 Datasets

Our first dataset is six synchronous 30-minute videos taken from cameras with known parameters
of a freely-moving mouse in a 28 cm diameter plastic cylinder. The RGB videos are captured at
a resolution of 1536 x 2048 at a frame rate of 30 FPS, for a total of 324000 frames. In the video,
the mouse engages in a variety of behaviors including walking, rearing, grooming, and resting.
Consecutive thirds of the video are used training, validation, and testing. A second dataset of a
freely-moving zebra finch is obtained in the same manner with a 20 minute duration. Both datasets
are downsampled spatially by a factor of 4 and temporally by a factor of 5 in the following results.

A third dataset is Rat7M, which contains videos of a freely moving rat in a cylindrical arena captured
from 6 camera angles (CC BY 4.0) [38]. This video is more challenging to mask due to occlusions of
the feet and tail by the bedding material, additional occlusion on the side of the arena in one of the
views, and uneven lighting conditions across the views. We present results on a subset of 135,000
frames. Appendix [E]contains additional results from a subset of the 3D-POP dataset consisting of a
single freely moving pigeon in a large room captured from 4 camera angles (CC BY 4.0) [43]42].

4.2 Training Details

The loss hyperparameter was tuned by hand to encourage realistic renderings on the training set
of the first mouse video. We set A o0 = 0.5 for all experiments. We trained Pose Splatter with a
single Nvidia RTX A4000 GPU along with 32 CPU cores used for data fetching. Our model uses
only 2.5 GB of GPU memory (VRAM), compared to 10GB for Gaussian Object [[67]] and 20GB
for PixelSplat and MV Splat [10,|11]], thanks to its simple architecture. Training runs varied between
2 and 12 hours, depending on the number of frames and camera views used. The learning rate was
fixed at 10~ for all experiments. The number of epochs was chosen so to minimize validation set
loss, and ranged from 40 to 75 epochs across all experiments. A single forward pass through the
model takes about 30 ms during inference. Full details are in Appendix [F} Project code is available at
https://github.com/jackgoffinet/pose-splatter,

4.3 Rendering Metrics

We report four metrics to compare the quality of rendered images to ground truth. First, intersection
over union (IoU) computes the ratio of the intersection of the binarized predicted mask and the ground
truth mask to their union, measuring how well the predicted geometry aligns with the true object
silhouette. Second, the average L1 distance between predicted and ground truth colors, normalized
by the ground truth mask area, quantifies the accuracy of surface appearance. Third, the peak
signal-to-noise ratio (PSNR) evaluates the overall pixel-wise fidelity of the rendered image, with
higher values indicating lower reconstruction error relative to the dynamic range of image intensities.
Lastly, the structural similarity index measure (SSIM) assesses the perceptual similarity between the
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Figure 3: (a) Single-view reconstruction. Against single-view baselines, MagicPony and 3D Fauna
collapse when the camera departs from the input view, failing to recover a plausible mouse geometry.
Pose Splatter, by contrast, reconstructs accurate shapes from all viewpoints of an unseen time step
in the test set. (b) Sparse-view 3DGS comparison. Most sparse-view 3DGS baselines reproduce
the white background well but fail to reconstruct the given subject. Consequently, their quantitative
scores appear high even though the rendered animals lack detail. See Table[Th for quantitative scores.
(c) Comparison with per-scene-optimized 3DGS (4 view). Some methods post good metrics yet
still fail to reconstruct the given subject. See Table[Tp for metrics. Only GaussianObject and Pose
Splatter deliver comparable, visually convincing foreground reconstructions.

predicted and ground truth images by comparing local luminance, contrast, and structural information,
providing a more perceptually aligned quality score than pixel-wise metrics.

4.4 Results

Pose Splaf‘ter accurately Nethod Momse Finch

learns animal geometry IoUt LI1L PSNRt SSIMt IoUf LI, PSNRf SSIM{

and appearance. We com- Por-Scene  3DGS 0502 0742 259 0969 0513 0.689 264 0975
; [ocene  FSGS 0462 0923 253 0975 0454 0925 256 0981

pared Pose Splatter with the  optimization ¥ 07 0638 2ua 097 0819 038 a4 0990

strongest  sparse-view 3D PixelSplat 0424 0921 252 0968 0428 0858 262 0971
Gaussian—splatting  (3DGS)  Feed-Forward  MVSplat 0417 0887 255 0966 0461 0893 259 0970

baselines. Because the highest- Ours 0.760 0.632 29.0 0.982  0.848 0.345 345 0.992
performing methods to date (a) Comparison with sparse-view 3DGS methods.
still rely on scene—spemﬁc Method Mouse (4 cam) Finch (4 cam)

optimization, we first selected IoUT LI PSNRT SSIM{ IoUf LI, PSNRT SSIMt

three  perscene  OPUMIZA- = e T 0786 258 0967 0439 0754 261 0973
tion pipelines: 3DGS [25], FsGs 0414 0982 249 0974 0423 0891 254  0.980
FSGS [78], and GaussianOb- GO 0706 0745 285 0981 0.725 0.657 304 0985
ject (GO) [67]. For every Ours 0.721 0.753 282 0.982 0.731 0.685 29.0 0.981
test scene, each model was
optimized from scratch on
the same five input views, Table 1: (a) Sparse-view 3DGS benchmark. We compare our
leaving the remaining single method with three per-scene optimization 3DGS baselines and two
view unseen for evaluation, feed-forward alternatives. Higher values for IoU, PSNR, and SSIM
and we retained the authors’ and lower values for L1 indicate better performance. The best score
default hyperparameters in each column is set in bold; the second-best is underlined. See
throughout. As summarized Figure3p for qualitative results. (b) Additional benchmark. We
in Table [[a and illustrated conducted additional evaluation by limiting the input to just 4 views
in Figure Bp, Pose Splatter and benchmarking against the optimization-based 3DGS baselines.
outperforms every baseline on See Figure Ek: for qualitative results.

both evaluation datasets. The

original 3DGS, which is designed for dense multi-view input, degrades noticeably when given only
sparse cameras (see Figure[3p); its scores remain moderate largely because it reproduces the uniform
white background well, which inflates pixel-wise similarity even as the animal’s geometry collapses.
FSGS behaves much the same: it reproduces the white background well and sketches a coarse shape,

(b) Comparison with per-scene optimization methods.
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Figure 4: (a) Cross-species renderings. (b) Renderings given different numbers of input views. The
rendered views are novel for the 5- and 4-camera models.

(b)

so its overall metrics stay reasonable, yet—as Figure Bb shows—it fails to recover the correct body
shape. GaussianObject (GO) achieves the strongest numbers among the optimization methods. By
coupling pretrained diffusion priors with iterative depth-guided refinements, GO produces markedly
cleaner surfaces and sharper texture, as both the table and figure confirm. The trade-off is runtime:
each scene of GO requires roughly one hour of test-time-optimization, as opposed to the roughly 30
ms test-time forward pass of Pose Splatter (over 100,000x faster).

‘We now turn to feed-forward baselines. In line with each author’s recommendations, we trained both
PixelSplat and MVSplat with two input views and treated one of the remaining views as the test view,
leaving all other hyperparameters at their defaults. Both models post moderate scores because, like the
other methods, they reproduce the white background. However, Figure [3p shows that neither network
reconstructs the animal itself with meaningful accuracy. Both authors note that their pipelines depend
on substantial overlap between input views to establish reliable cross-view correspondences. Our
datasets provide minimal overlap, leaving few shared features to match, and this limitation prevents
either model from capturing the true 3D geometry. We experimented with varying the number of
input views during testing, but observed no noticeable changes in the results (see Appendix [G). In
addition, we provide comparisons with several large, pretrained, and generalizable feed-forward 3D
reconstruction models in Appendix [G] including HunYuan 3D-2 [77]], TRELLIS [64], VGGT [59],,
and AnySplat [22].

We further evaluated the optimization-based baselines and Pose Splatter using a sparser view setting,
with each method trained on only four views and assessed on the remaining two. Results are in
Table [Tp and Figure Bk. Under this split, GaussianObject retains a slight edge, but Pose Splatter
matches it within a small margin on every metric. Figure Bk shows that both methods capture
comparable geometry and texture, whereas the original 3DGS and FSGS do not perform well. 3DGS
and FSGS achieve good numerical scores because they accurately reconstructed the white background,
but qualitative experiments make clear that fine detail is lost.

Additionally, because multi-view animal datasets are scarce, the current state of the art in 3D animal
reconstruction still relies on single-image mesh predictors. We therefore compared Pose Splatter
with two leading single-view models: MagicPony [63]] and 3D Fauna [32]. We trained these two
models on all six reference views and evaluated them on a random view from an unseen time-step.
Pose Splatter used the same six training images but was tested on all six views of the unseen time
step. As illustrated in Figure B, the single-view networks accurately reproduce their input view yet
fail to maintain shape coherence once the mesh is rotated, whereas Pose Splatter preserves plausible
anatomy from every angle. The difference stems from the fact that single-image pipelines never
observe the six views simultaneously, making it difficult to resolve self-occlusions and silhouette
ambiguities in complex animal poses. We also present the results of another single-view animal
reconstruction model, BANMo [68]], on our dataset in Appendix [G] Similar to MagicPony and 3D
Fauna, BANMo fails to accurately reconstruct the 3D shape from unseen views. See Appendix [H] for
additional novel and input-view Pose Splatter renderings.
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6cam  0.868 0317 33.5 0989 0913 0231 364 0991 0.797 0.658 269 0975 Mouse — Rat  0.658 1.014 25.1 0.972
6cam” 0.825 0.380 322 0.987 0.876 0.308 34.5 0.990 0.664 0.849 255 0.971 Fil’lCh N Rat 0 545 1 200 24 0 0 972
Scam 0760 0.632 29.0 0982 0.848 0345 345 0992 0.794 0.628 27.6 0981

Scam™ 0748 0.663 28.8 0983 0.838 0421 337 0991 0.688 116 246 0970 Mouse — Finch 0.719 0.625 31.1  0.988
4cam  0.721 0.753 282 0.982 0.731 0.685 29.0 0.981 0.651 1.16 244 0.967 Finch — Mouse 0.736 0.609 203 0.982

4cam™ 0.701 0.737 284 0982 0.675 0874 280 0979 0.579 2.01 235 0955

(a) Pose Splatter ablation study (b) 5-camera cross-species generalization

Table 2: (a) Ablation study. The table shows how Pose Splatter responds to fewer input views and
to the removal of the stacked U-Net refinement (methods annotated with a superscript minus). (b)
5-camera cross-species generalization. Models trained on one species are evaluated on the single
held-out view of another, revealing how well the learned representation transfers across animals.

Keypoint Prediction Behavior Prediction
1.00

g° I 3D Keypoints
D & B Visual Embedding

0.75

Accuracy

0.50

0.25

% A £l
Mouse Finch We \,\ead\w o 6(00‘“ Y\eadx:ead‘;\%\\go‘“ ,(a\\\W

Mouse Finch

Figure 5: Left R? values of predicting egocentric 3D keypoints from visual embeddings. Each
scatterpoint represents a single manually annotated keypoint. Right: Accuracies of logistic regression
models predicting different manually annotated behaviors using egocentric 3D keypoints (gray) versus
visual embeddings (purple). Six of eight behaviors are better predicted by the visual embedding.

Pose Splatter generalizes across different species We evaluated cross-species transfer by applying
models trained on one animal to a single held-out view of another. As Table[Zp shows, accuracy trails
the in-species baselines (cf. the 5 camera results in Table |Zh), yet the decline is modest; indeed, the
Finch-to-Mouse model matches the Mouse-only 5 camera model. Also, the stronger Mouse-to-Rat
performance, compared with Finch-to-Rat, suggests that morphological similarity may ease transfer.
Qualitative results in Figure dp confirm that, despite the domain shift, all three models still recover
the novel animal’s overall shape and appearance with only minor degradation.

Visual embedding produces preferred nearest neighbors We have seen that Pose Splatter is able
to accurately model the pose and appearance of animals. Now we turn our attention to whether the
proposed visual embeddings provide an informative description of animal pose. First, we reasoned
that a good description of animal pose should provide meaningful nearest neighbors. To test this,
we trained a supervised 2D keypoint predictor (SLEAP, [47]]) using 1000 hand-labeled images
of mouse poses with 16 keypoints, which required roughly 15 hours of manual annotation time.
We then performed a robust triangulation to create 3D keypoints for each frame. The keypoints
are shifted and rotated in the X/Y plane into an egocentric coordinate system, a 48-dimensional
representation of mouse pose. We additionally calculated our proposed visual embedding, a 50-
dimensional representation, which requires no manual annotation phase. To gauge the relative quality
of nearest neighbors produced by both feature sets, we had 102 participants choose the more similar
of two poses to 40 randomly sampled query poses. We chose a Euclidean metric to calculate nearest
neighbors in both feature spaces and excluded nearby frames in time (within 500 frames). We
additionally randomized the order of presentation of the two candidate answers. Example queries and
answers are shown in Figure 2b, demonstrating the high degree of similarity produced by both feature
sets. Participants showed a slight but statistically significant preference for the visual embedding
nearest neighbors (54.0 & 0.8% of visual embedding nearest neighbors preferred, mean + SEM,
p = 1.5 x 1073, two-sided one-sample ¢-test, n = 40). Thus, our findings provide strong evidence of
a genuine preference for the visual embedding neighbors over the keypoint-based neighbors. This is
despite the fact that Pose Splatter requires no manual annotations and the 3D keypoints were tested
in the optimistic condition where the manual annotations were taken from the same dataset. See



Appendix [[|for an investigation of the triangulated 3D keypoint quality and Appendix [J] for additional
survey details.

Visual embedding captures subtle movements To test whether the visual embedding could encode
subtle variations in pose, we took a closer look at a 5-second clip in the test portion of the finch
video in which the finch’s feathers slowly but subtly expand in a way not seen in the training footage.
Interspersed in this footage are two brief bouts of head shaking. Figure 2k shows three stills from the
clip in addition to the same three rendered frames. Below, we plot the first 5 principal components
of the visual embedding over time and observe that they correspond very well with the annotated
features of the video, including the subtle expansion of feathers.

Visual embedding vs. keypoints We next assessed whether the visual embedding implicitly encodes
3D information by predicting egocentric 3D keypoints from the visual embedding using a 5-nearest-
neighbor regressor (see Appendix D). The visual embedding explains the majority of variance for most
mouse keypoints and all finch keypoints, even though it was not trained explicitly for this purpose
(Fig.[5} left). We then evaluated a common downstream application—behavior classification—by
training logistic regression models to predict manually annotated behaviors from either egocentric
3D keypoints or visual embeddings (see Appendix [D]for details). The visual embedding outperforms
the keypoint-based features for six of the eight annotated behaviors, despite requiring no manual
supervision (Fig. 3] right).

Ablation study We measured how Pose Splatter performs when fewer input cameras are available
and when the stacked U-Net refinement is removed. In the “shape-carving only” variant — which
bypasses the U-Net and maps the carved voxel grid directly to Gaussian parameters — we flag each
row with a superscript minus in Table Zh (e.g., 6 cam™). We observe that quantitative scores decline
as views are removed yet the 5- and 4-camera models still recover the animals’ overall shape and
appearance well as shown in Figure[db. Also, every setting that retains the stacked U-Net outperforms
its counterpart without it. Qualitative results in Figure dp clearly show this trend: compared with
the full 6-camera model, the 6 cam™ (6 cam w/o U-Net”) volume is noticeably noisier, leading to
blurrier renders and a loss of fine detail.

5 Discussion & Conclusion

In this work, we introduced Pose Splatter, a novel approach leveraging 3D Gaussian splatting and
shape carving to reconstruct and quantify the 3D pose and appearance of laboratory animals. Unlike
existing keypoint- and mesh-based methods, which either require extensive manual annotations or
rely on predefined template models, Pose Splatter operates in a feed-forward manner without the need
for per-frame optimization and requires no manual annotation. Our method successfully captures
fine-grained postural details and provides a compact, rotation-invariant visual embedding that can be
seamlessly integrated into downstream behavioral analyses.

Although Pose Splatter performs well with a single subject, some neuroscience experiments involve
multiple interacting animals. Such settings introduce prolonged and severe occlusions beyond our
current benchmarks. While Pose Splatter effectively resolves most self-occlusions, addressing these
more challenging scenarios remains an open problem for future work. Additionally, while our visual
embedding provides a powerful descriptor for capturing pose and appearance, further exploration is
needed to improve interpretability and facilitate direct comparisons across species.
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A Camera Considerations

Pose Splatter requires a minimum of roughly four calibrated cameras to operate, but performs best
with 5 or more cameras, as seen in Figure[dp. Additionally, even lighting conditions and well-spread
camera orientations facilitate rotation-invariant visual embeddings and higher quality shape-carved
volumes, respectively. These camera requirements may hinder application in some outdoor or wild
settings, but are becoming more common in laboratory settings where precise behavioral tracking is
needed (e.g. [2[12}60]).

B Center and Rotation Estimation

To estimate the animals orientation at each time point ¢, we modeled its shape as a Gaussian
distribution A/ (g, 3) by matching the 3D moments of a shape-carved voxel grid. We then extracted
the principal axis by computing the eigenvector corresponding to the largest eigenvalue of 3;. This
eigenvector is normalized to unit legnth and called v;. Because an eigenvector can flip sign from one
timepoint to the next, we introduced a sign-consistency procedure to best ensure a smooth progression
of the eigenvectors. Specifically, after computing v, at time ¢ + 1, we used a Wasserstein-2 optimal
transport map to track a reference point from the distribution at time ¢ to that at time ¢ + 1. We then
compared the distance of this transported point to the two possible orientations (p4;41 £ v¢41) and
chose the orientation that preserved the local consistency (i.e., whichever was closer to the transported
point).

Finally, we enforced a global orientation consistency by making use of the following heuristic:
animals move on average in the direction they face, and not the opposite direction. We operationalize
this heuristic by checking if the cumulative displacement of the mean positions p; from start to end
correlated positively with the sequence of principal axes {v;}. If the overall dot product was negative,
we flipped all axes to align with the general direction of motion. This procedure yielded a temporally
consistent set of principal axes {v;} that reliably tracked the animal’s primary orientation over time.

C Shape Carving Details

Voxel Occupancy We first start with a 112 x 112 x 112 spatial grid with equal-sized edges. The
z-axis is aligned with the third axis of the grid, while the first axis of the grid is aligned with the
estimated azimuthal heading direction of the animal (see Appendix [B). For each point in the grid and
each camera, we determine whether its projection onto the image plane of the camera corresponds
with a masked (animal) or unmasked (background) point. Voxels that correspond with masked regions
in at least [N cameras are considered occupied.

Voxel Colors To estimate the color of each voxel in the reconstructed volume, we first determined
its visibility from multiple camera viewpoints using a ray-casting procedure. For each camera, the
voxels were sorted by their distance from the camera center, ensuring that the closest voxels were
processed first. These voxels were then projected into the image plane using a standard pinhole
camera model. To track occlusions, a depth buffer was maintained at each pixel location. If a voxel
mapped to a pixel that already contained a closer voxel, it was marked as occluded. This process
produced a visibility mask indicating whether each voxel was directly observable from each camera.

We then computed each voxel’s color by sampling the corresponding pixel values from the camera
images. All voxels, whether fully visible or occluded, were projected into the camera views, and
their colors were retrieved from the respective images. To integrate these sampled colors into a
single representative value per voxel, we applied a weighted averaging scheme. Fully visible voxels
contributed with a weight of one, while occluded voxels were assigned a reduced weight (0.25) to
reflect the uncertainty introduced by occlusion. The final voxel color was obtained by normalizing
and summing these weighted contributions across all cameras, allowing us to account for occlusions
while still incorporating partial information from less reliable viewpoints.

Determining Volume Dimensions

To save on RAM and GPU memory during training, we truncated our original 112 x 112 x 112
volumes based on voxel usage in the animal’s training frames. We first calculated a sum over all the
voxel occupancies and then manually set thresholds and determined volume slice indices to balance
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voxel use and memory considerations. The following table shows the final dimensions of the volumes
for each animal.

Mouse | 96 x 80 x 64
Finch 96 x 64 x 80
Rat 96 x 80 x 64
Table 3: Volume dimensions (d, x d, x d) for each animal.

Final Steps Our volumes consist of 4 channels: one binary occupancy channel and 3 color channels.
To produce our final volumes, we produce two volumes independently, one with an occupancy
threshold of C, where C is the number of cameras, and one with the threshold C' — 1. We then
average the two volumes together. Note that the C' — 1 threshold produces a coarser visual hull,
with generally more occupied voxels. Initial tests showed that fine body parts such as mouse tails
were often not represented in the shape-carved volume with just a threshold at C, especially when
masks from different views disagree on the boundaries of the animal. We found that adding the C' — 1
threshold and averaging resulted in much better coverage of fine body parts.

D Visual Embedding Details

The feature extractor used in the visual embedding is a pre-trained ResNet 18, trained on the ImageNet
dataset. We pass rendered images through all but the last layer of the network, producing a 512-
dimensional vector per image. 32 of these vectors are used in a spherical routine to produce the
norms of 16 norms of spherical harmonic coefficients, independently for each feature dimension. The
resulting coefficients are then flattened to 8192-dimensional vectors.

To produce our visual embeddings, we reduce the feature dimension in two steps. First, we perform
PCA on dataset of feature vectors, reducing the feature vectors to 2000 dimension. Then we collect
the estimated azimuthal angle for each pose and concatenate the sine and cosine components of this
angle together to be used as concomitant data in the adversarial PCA routine [9]. Adversarial PCA
was then performed to reduce the feature dimensionality to 50 from 2000. The regularization strength
parameter 1 was set to the smallest integer power of 10 such that the adversarial PCA reconstructions
of the sine and cosine components produced an average R? value less than 0.05, indicating the
sines and cosines are not readily linearly decodable from the 50-dimensional features. We call these
features the visual embedding.

To predict egocentric 3D keypoints from visual embeddings (Figure[3] left), we used a consecutive
80/20 train/test split, fit a 5-nearest neighbor regressor to the training data, and report a uniform
average of the R? scores over the 3 spatial dimensions on the test set. We also predicted egocentric
3D keypoints from the 8192-dimensional visual features, which are processed to produce the 50-
dimensional visual embeddings to test how much usable information is lost in this process. We
used ridge regression with 5-fold cross validation on the training set to select a model and then
report a uniform average of the R? scores over the 3 spatial dimensions on the test set. Figure E]
shows moderately better performance using the visual features than the visual embedding to predict
egocentric 3D keypoints.

To classify behavior given egocentric 3D keypoints and visual embeddings, we used a random
60/40 train/test split using all available frames. We used 5-fold cross validation to determine the L2
regularization strength on the train set, targeting a balanced accuracy metric. Accuracies for each
class are then reported on the test set. Mouse behavior was classified using one 4-way prediction
(Walk vs. Head Up vs. Still vs. Groom) and finch behavior was classified using two two-way
predictions (Head Left vs. Head Right and Tail Down vs. Tail Up).

E Application to 4-View Pigeon Data

To complement the 6-view mouse, finch, and Rat7M datasets, we applied Pose Splatter to a subset
(Sequence 8) of the 4-view 3D-POP dataset ([43]]), which contains video of a single pigeon in a large
room.
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Figure 6: Predicting egocentric 3D keypoints from visual embedding (d = 50) and visual
features (d = 8192). We observe good predictive ability as measured by R? values using both visual
embeddings (green) and visual features (purple) to predict held-out finch (left) and mouse (right)
keypoints. Note the different vertical axes in the two subplots.

Compared to the three datasets tested previously (mouse, finch, and Rat7M), the cameras in the
3D-POP data are located further apart relative to the size of the animal. For this reason, we found
that the shape carving procedure with the provided camera parameters sometimes failed to detect
overlap among the back-projected masks. To correct for this, we applied an adaptive frame-by-frame
adjustment to the intrinsic camera parameters.

Briefly, we first find 2D mask centroids in each view and triangulate a rough 3D center of the animal
using these centers and the provided camera parameters. We then re-project this 3D center point onto
the 2D image planes and calculate a discrepancy between the reprojected point and the 2D mask
centroids. Lastly, the camera center parameters (c, and c,) are updated to remove the discrepancy.

More specifically, we assume an intrinsic matrix of the form
fa 0 ¢
0 fy ¢y . (1)

We then project the 3D center point Zyopa into camera coordinates: Zeam = RZTworia + t, Where [R; t]

are the camera’s extrinsic parameters. Lastly, we update the intrinsic center parameters for each
camera:

Cy < u* — ( cam/xcam) ) Cy vt - fy( cam/xcam) (2)

where u* and v+ are the image coordinates of the reprojected 3D center and (xéa,zq, foQ,,, §§’,21) are
the three coordinates of the 3D center in camera coordinates.

IoUt L1, PSNR{ SSIM 1t

0.622 1.16 248 0.982
Table 4: Pose Splatter metrics on sequence 8§ from the 3D-POP single pigeon, 4-view dataset.

Apart from this intrinsic parameter modification all aspects of the pipeline remain unchanged for
the pigeon data. Table 4] shows performance metrics on the test set (c.f. Table [2a] 4 cameras).
Qualitatively, the renderings are of lower quality than the mouse, finch, and rat 4-camera renderings,
as expected from the lower PSNR, but still adhere to the overall shape of the pigeon (Figure[7).
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Observed

= 4

Figure 7: Representative test set pigeon reconstructions from sequence 8 of the 3D-POP dataset.

Reconstructed

Shape Carving U-Nets  MLP  Shift & Rotate  Splatting Train FPS  Inference FPS

Finch 7.0 ms 46ms 14.3 ms 6.0 ms 0.2 ms 7.0 7.4
Mouse 7.0 ms 47ms 13.6 ms 3.5 ms 0.3 ms 5.8 6.5
Rat 7.1 ms 5.1ms 14.3 ms 2.6 ms 0.3 ms 9.7 13.1

Table 5: Median times for the 5 stages of the Pose Splatter forward pass and overall frame rates for
training and inference.

F Training and Network Details

Training was run with a single Nvidia RTX A4000 GPU along with 32 CPU cores used for data fetch-
ing. Our model uses only about 2.5GB of GPU memory (VRAM), thanks to its simple architecture.
Training runs varied between 2 and 12 hours, depending on the length of the dataset. We estimate
that the experiments presented in this paper required 6 days of compute time to complete.

The learning rate was fixed at 10~ for all experiments. The number of epochs were chosen to
minimize validation set loss, and ranged from 40 to 75 epochs across all experiments.

In experiments with fewer than 6 camera views, we found that this center and rotation estimation
procedure produces less reliable results. While it would be useful to develop a more robust procedure
for camera systems with fewer cameras, this was not a primary aim of our work. Therefore, we used
the centers and orientations inferred with all 6 cameras for all experiments.

Tables[5]and 6] show timing information and the number of Gaussians rendered for all three datasets.
Additional details may be found in the supplemental code.

Meanwhile, our additional training details for the comparison baselines were as follows. For the
per-scene optimization methods (3DGS [25]], FSGS [78]l, and GaussianObject [67]), the original
pipelines initialize optimization with a point cloud created from "Structure-from-Motion Revisited
(COLMAP)." In typical neuroscience-oriented animal-behavior studies, however, one may work with
hundreds of thousands of video frames; running COLMAP on every frame would be prohibitively
slow. We therefore assume no COLMAP ground-truth point cloud is available. Instead, we follow
GaussianObject’s COLMAP-free protocol: we seed optimization with a point cloud created from
"DUSt3R: Geometric 3D Vision Made Easy (DUSt3R)," feeding the calibrated poses directly into
DUSIt3R (because the camera intrinsics and extrinsics are known) so that its reconstruction is as clean
as possible. The GaussianObject paper shows that this DUSt3R initialization maintains state-of-the-art
performance, a result that our experiments confirm. All remaining hyperparameters mirror the “best”
settings recommended in each method’s official repository. Additionally, per-scene optimization
methods require varying amounts of time depending on the approach, ranging from a few minutes
(3DGS, FSGS) to about an hour (GaussianObject) per scene. As such, optimizing tens of thousands
of frames is impractical. Therefore, we randomly sampled 150 images from the test set and conducted
experiments using this subset. For the feed-forward baselines, PixelSplat and MVSplat [T1]],
we likewise adopt the authors’ recommended hyperparameters. Finally, the single-view animal
reconstruction models MagicPony [63] and 3D Fauna [32]] are trained with their prescribed data
preprocessing pipelines and hyperparameters.
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Before Training  After Training

Finch 13.9k 13.8k
Mouse 8.4k 8.5k
Rat 4.8k 4.8k

Table 6: Average number of Gaussians rendered before training (at initialization) and after training.

G Additional Model Comparisons

G.1 PixelSplat & MVSplat

We report how the feed-forward baselines behave as the number of context views changes (see Fig-
ure[8). According to the papers and authors’ code repositories, both PixelSplat and MVSplat
were trained with two input views, and adding more cameras does not guarantee improvement in the
output. Our results confirm that increasing the number of context views does not appreciably improve
the performance of either baseline.

Target PixelSplat MVSplat Target PixelSplat MVSplat

3 input views 4 input views

Figure 8: Results for the two feed-forward baselines with varying numbers of input views.

G.2 TRELLIS & HunYuan3D-2

As an additional point of comparison, we tested the ability of two recent large pretrained 3D object
models to render consistent and realistic mice: HunYuan3D-2 and TRELLIS [64]. Both models
pretrain VAEs on large collections of 3D assets and use flow matching to generate latents from
conditioning images. These latents can then be decoded into meshes. Figure [0]shows ground truth
conditioning views alongside the meshes produced by the both models when conditioned on these
views. We note that the meshes display crisp yet often inaccurate geometric details. For example,
note the third HunYuan3D-generated mesh, which has 6 legs (5 visible from rendered view) and the
sixth TRELLIS-generated mesh, which has an unrealistic head shape. Furthermore, the meshes are
clearly inconsistent with one another, a clear limitation of single-view conditioned models.
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Figure 9: HunYuan3D-2 and TRELLIS produce crisp yet often inaccurate geometric detail that are
inconsistent across conditioning views.
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Figure 10: InstantMesh produces unrecognizable shapes given multiview image input. Three views
of the output mesh are shown. The conditioning images are shown on the first row of Figure E}

GT Rotated camera views

Figure 11: When the mesh generated by BANMo is rotated, it fails to reconstruct a proper shape
from unseen views.

G.3 InstantMesh

InstantMesh is a large pre-trained image to mesh pipeline that first maps a monocular image to a
multiview image using a pretrained diffusion model and then uses the multiview images to construct
a textured mesh . We bypassed the first part of the pipeline and sent the multiview images
displayed in Figure 9 (top row) directly to the InstantMesh model, taking care to match the expected
preprocessing steps and formats exactly. Figure[I0]shows three views of the predicted mesh, which
is not recognizably a mouse. We suspect that InstantMesh is unable to reconstruct a meaningful
shape because of the tightly controlled range of camera parameters seen by the model during training.
Specifically, the camera positions are equidistant from the object centers, which does not apply
to images of a moving animal relative to stationary cameras. This design choice is reasonable for
InstantMesh, which is trained on easily-manipulable synthetic 3D data, but has disadvantages for
translating to messier real-world data, even in relatively well-controlled laboratory conditions.

G.4 BANMo

We also tested BANMo [68]], a well-known model for monocular 3D animal reconstruction. BANMo
is a template-free approach that reconstructs animatable 3D models from monocular videos through
per-video optimization. However, each sequence requires separate optimization, making the method
computationally expensive and unsuitable for large-scale datasets. Moreover, its reliance on single-
view input limits reconstruction accuracy, especially for occluded or rarely visible body parts.
Figure[TT]illustrates that BANMo struggles to reconstruct accurately under unseen views.

G.5 VGGT & AnySplat

We tested two recent generalizable, feed-forward 3D reconstruction models, VGGT []3_@[] and AnyS-
plat [22], to check whether large pre-trained models could outperform or complement our lightweight
model.

VGGT reconstructs point clouds and depth maps from multi-view inputs but does not produce
renderings. Due to the absence of ground-truth depth or 3D meshes in our dataset, quantitative
evaluation was not feasible. Qualitatively, VGGT failed to produce coherent 3D surfaces on our
animal data, which features minimal overlap between views. Instead, it generated misaligned, layered
point clouds, a characteristic “onion-peel” artifact also visible in elongated parts such as tails. The
result is shown in Figure[12]

AnySplat, which uses VGGT as its geometric backbone for Gaussian Splatting, exhibited similar
issues as shown in Figure[T3] While it supports direct rendering and quantitative evaluation, its zero-
shot performance on our dataset was significantly lower than Pose Splatter. Fine-tuning AnySplat
yielded only marginal improvements across all metrics (IoU, L1, PSNR, SSIM) and did not resolve
the misalignment artifacts. The quantitative result is displayed in Table 7}

21



GT Rotated camera views

Figure 12: Due to inaccurate camera estimation, VGGT produces a point cloud that shows an “onion-
peel” layered appearance when reconstructed.

T NN ) p s

GT GT

Figure 13: Similar to the results of VGGT (Figure , AnySplat exhibits an “onion-peel” artifact
and produces inaccurate reconstruction results.

These findings indicate that current generalizable models like VGGT and AnySplat struggle to handle
sparse, low-overlap multi-view animal data. In contrast, a lightweight model trained from scratch,
such as Pose Splatter, provides more accurate and efficient reconstructions under these challenging
conditions.

H Additional Renderings

Figure [14]shows randomly sampled test set renderings for the three 6-camera models from observed
views.
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Figure 14: Representative renderings from observed views.

Figure[T3]shows randomly sampled test set rendering for the three 6-camera models from unobserved
views.

Despite the de-voxelization step in Pose Splatter, we observed regular grid-like patterns in many
renderings. For the mouse and finch datasets we trained models with twice the spatial resolution in
the voxelization step, resulting in 8 times as many voxels. As shown in Figure[T6 we see a similar
visual quality but no apparent regular grid patterns.

I Quality of 3D Keypoints

After training a SLEAP model to predict 2D keypoints from images, we perform a robust
triangulation across views using the known camera parameters to estimate 3D keypoints. To assess
the quality of these 3D keypoints, we calculated the distribution of reprojection errors (in pixels) for
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Dataset  Views Model Setting IoUt L1] PSNRT SSIMt
AnySplat Zero-Shot  0.403 1.132 25.1 0.952

5 AnySplat Fine-Tuned 0.431 1.088 25.5 0.959

Pose Splatter - 0.760  0.632 29.0 0.982
Mouse

AnySplat Zero-Shot  0.392  1.227 25.6 0.961

4 AnySplat Fine-Tuned 0.415 1.051 26.3 0.965

Pose Splatter - 0.721 0.753 28.2 0.982

AnySplat Zero-Shot 0365 1.359 247 0.968

5 AnySplat Fine-Tuned 0412 1.174 254 0.971

Fi Pose Splatter - 0.848 0.345 34.5 0.992
inch

AnySplat Zero-Shot  0.421 1.057 242 0.962

4 AnySplat Fine-Tuned 0.459 1.012 24.9 0.967

Pose Splatter - 0.731  0.685 29.0 0.981

Table 7: Quantitative comparison between AnySplat and Pose Splatter on Mouse and Finch datasets
with 4 or 5 cameras.
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Figure 15: Representative renderings from unobserved views.
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Figure 16: Visual comparison between regular and large shape carving volumes. The renderings
on the left come are from models using a “standard" volume size of 96 x 80 x 64 for the mouse
and 96 x 64 x 80 for the finch (the volume sizes used in the rest of the paper). The renderings on
the right come from models that use a larger volume size of 192 x 160 x 128 for the mouse and
192 x 128 x 160 for the finch. Note that the regular grid artifacts seen on the left are not visible on
the right. Best viewed zoomed in.

both the mouse and finch datasets. As seen in Figure[I7} we find higher quality 3D keypoints for the
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finch dataset. We believe this results from the higher quality 2D keypoints for this dataset. This may
also explain the better performance predicting 3D keypoints from visual embeddings on the finch
dataset (Figure[3] left). Representative examples of SLEAP-predicted 2D keypoints and reprojected

3D keypoints are shown in Figure[T8]
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Figure 17: Summary of per-keypoint reprojection errors for a) mouse and b) finch datasets. Violin
plots for each keypoint show the distribution of errors between SLEAP-predicted 2D keypoints and
the 2D projections of per-frame robustly triangulated 3D keypoints. Units are Euclidean distance in
pixels, for full 1536 x 2048 images. Median errors are marked.

P

L

50 px

_—

Figure 18: Frames showing SLEAP-predicted 2D keypoints (blue) and corresponding projected 3D
keypoints (red). Black lines connect corresponding 2D and 3D keypoints and 50-pixel bars are shown
for scale. Note the high accuracy of the triangulated finch keypoints (left) and some 2D keypoint
errors for the mouse pose such as front right versus back left paw (right).

J Survey

To ensure transparency and enable replication of the nearest neighbor survey, with results presented
in Figure [Zb, we provide the survey instructions and illustrative screenshots of the user interface.
The complete wording of the participant instructions is reproduced verbatim below, while Figure[T9]
depicts the layout of an individual survey question.

Please read these instructions carefully before beginning the survey.

In this study, you will judge how closely two candidate poses resemble the body
posture of a reference (“query”) mouse.

Each question is laid out in 3 columns: the left column shows the query pose, while
the center and right columns show Option 1 and Option 2. Every column contains
two synchronized camera views (top and bottom) captured at the same instant,
giving complementary angles on a single pose.
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Your task is to decide which option—1 or 2—better matches the query. Focus only
on the configuration of body parts such as the head, torso, limbs, and tail, and
disregard background, lighting, or color differences. Beneath the images are two
radio buttons; click the button under the option you believe is closer to the query.

There are 40 questions in total, and there is no time limit. By continuing, you
confirm that you consent to your anonymous responses being used for academic
research on animal-pose representations.

Question 1

Query Option 1 Option 2

pr—

k‘/;[\"

Figure 19: Example survey question
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the abstract and introduction are demonstrated in the experiments
section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations such as the requirement of several camera views and
the inability of the model to handle severe occlusions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method description in the main body and appendices are sufficient to
reproduce the experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code implementing the method is included in the supplementary material
and will be released upon publication. The mouse and finch datasets will be released upon
publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are presented in the main text and a supplementary section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: A single statistical claim is made (the human evaluation of nearest neighbors)
and the necessary details are clearly stated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

28


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: These details are reported in a supplemental section.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper conforms to all aspects of the ethics guidelines.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This work has no immediate societal impacts, positive or negative.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose these risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The Rat7M and 3D-POP datasets are properly credited and the CC BY 4.0
licenses are noted.

Guidelines:

* The answer NA means that the paper does xnot use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The 6-camera mouse and finch behavior datasets will be released upon publi-
cation along with detailed descriptions of the data.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We have included this in an Appendix.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: While this paper does have a human preference study, this is not considered
research with human subjects by our IRB.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs were not used in essential or non-standard ways.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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