Improving ML attacks on LWE with
data repetition and stepwise regression

Alberto Alfarano* Eshika Saxena Emily Wenger
FAIR, Meta FAIR, Meta Duke University
Francois Charton* Kristin Lauter!
Axiom Math FAIR, Meta
Abstract

The Learning with Errors (LWE) problem is a hard math problem used in lattice-
based cryptography. In the simplest case of binary secrets, it is the subset sum
problem with error. Effective ML attacks on LWE were demonstrated in the case of
binary, ternary, and small secrets, succeeding on fairly sparse secrets. After lattice
BKZ pre-processing, past ML attacks recovered secrets with up to three non-zero
bits in the “cruel region [9]”. We show that using larger training sets and repeated
examples enables recovery of denser secrets. Empirically, we observe a power-law
relationship between model-based attempts to recover the secrets, dataset size, and
repeated examples. We introduce a stepwise regression technique to recover the
“cool bits” of the secret, a substantial improvement over prior work.

Table 1: Largest Hamming weights recovered (two settings).

Settings Ours SALSA C&C Settings Ours SALSA C&C

n=256log, ¢ = 12 14 8 12 n=256 log, ¢ = 12 12 9 -

n=256 log, g =20 70 33 - n=256log, g =20 55 24 -

n=512log, ¢ = 28 12 - 12 n=5121og, ¢ =28 10 - -

n=512log, ¢ = 41 75 63 60 n=512log, ¢ = 41 75 66 -
Binary secret Ternary secret

1 Introduction and Related Work

Most current public-key cryptosystems, used to secure online interactions, are susceptible to quantum
attacks based on Shor’s algorithm [[14]. To address this, post-quantum cryptography (PQC) schemes
are being standardized [2], with ongoing research into their weaknesses and limitations. Many
PQC systems rely on the Learning With Errors (LWE) [[L1] problem, which asks to recover a
secret vector s € Z;’ given pairs (a;,b; = a; - s + ¢; mod ¢), with a; randomly sampled from a
uniform distribution over ng and ¢; sampled from a discrete Gaussian distribution with low standard
deviation. LWE is hard when s is chosen uniformly, for large values of n, and not too large moduli g.
Alternatives with sparse and binary, ternary or small secrets (i.e. non-zero coordinates are 1, 1 or —1,
or small integers, respectively) are attractive for efficiency of homomorphic encryption. The potential
weaknesses of these variants, for practical values of n and ¢, is under debate.

*Corresponding author: albealfa@meta.com
fCo-senior authors
Work done at FAIR, Meta

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

Recent works introduced SALSA, a transformer-based ML attack on LWE with small and sparse
secrets [17, 18,7} [15]. SALSA trains a model to predict b from a. Secret coordinates can be recovered
by comparing model predictions for close values of a. Later works [8}, (7, [15] used lattice reduction
algorithms (BKZ [13}13]]) to preprocess LWE samples. BKZ reduction splits a into two components:
the last coordinates of a (the “cool” region) have low variance, while the c first coordinates (the
“cruel” region) keep the same variance [9]. BKZ reduction allows the recovery of secrets with higher
Hamming weight h (number of non-zero secret bits) [8 (7, [15]]. However, models struggle to learn the
noisy dot product when there are more than three non-zero cruel bits [[18]]. For example, for n = 512,
and log, ¢ = 28, the cruel region size is 224. Thus, secrets with h > 10 likely have at least 4 cruel
bits and are not recoverable. Appendix [A]offers additional details on related work.

We present methods to recover secrets with more than 3 cruel bits. Overall, our contributions are:

* enabling secret recovery with up to 8 cruel bits using larger datasets and repeated examples [1]];

* replacing the linear regression used to recover cool bits [[18] by stepwise regression [5];

* exploring secret recovery as a function of data size, data repetition, secret Hamming weight and
cruel bits, in four LWE settings, through BKZ-reduced and synthetic data samples (Appendix [C));

* defining an empirical scaling power law relating secret recovery to data amount and data repetitions.

Overall, our attack recovers secrets with larger Himming weights than previous works (Table[T), and
demonstrates that the limitation of ML attacks to secrets with 3 cruel bits can be overcome.

2 Experimental settings

LWE settings. We consider four LWE parameter sets used in prior work [7[9] (see Table[7|in
Appendix B): (n,log, q) € {(256,12), (256, 20), (512, 28), (512,41)} with standard deviation of
the error equal to 3. Smaller ¢ values make BKZ reduction harder and increase the size of the cruel
region. Larger ¢ values enable more reduction and higher recoverable Hamming weights. We select
n for which running lattice BKZ reduction is reasonable, but brute-force attacks are not. In particular,
for n = 256, recovering a h = 14 secret takes 1022 attempts, each requiring thousands of operations.
This would take several months on the fastest current supercomputer (1018 FLOPS), at the frontier of
current brute force capability. For n = 512, recovering a 75-bit secret requires 10°! attempts, which
is far beyond any brute-force attack capability.

Data generation and reduction. We implement the Al-based attack described in Fresca [[15] [18]].
We sample m < n vectors from 4n random Z;' vectors and stack them in a matrix

_ 0 Q'In
A_L)-Im A}

A is reduced using flatter [9] interleaved with BKZ2.0, yielding RA with lower variance. LWE
pairs (A, b) become (RA, Rb) with the same secret, but a larger error e. This process is repeated to
generate the train and test sets. The first ¢ columns, the cruel region, remain unreduced [9], while the
last n — c are reduced. Please see Appendix [B|and Table|7|for reduction parameters.

Synthetic data. We generated 400 million reduced pairs for n = 256 and log, ¢ = 20 and between
4 and 60 for other settings. BKZ required around 42M CPU hours to generate our datasets. We
generated 400 million synthetic reduced pairs per setting in 1,000 CPU hours, matching the BKZ-
reduced data coordinate variance. Appendix [l [J]shows similar recovery rates for models trained on
reduced or synthetic data. Refer to Appendix [C|for an additional discussion on synthetic data.

Model. We train a 4-layer encoder-only transformer with embed dim d = 256 (4 heads) for larger
q and d = 512 (8 heads) for smaller ¢. Each coordinate a; is encoded by the angular embedding
[15]. We add to the input a absolute position embedding and a “cool-cruel” embedding, indicating
whether the current position is in the cruel or cool region (see Appendix [D]for additional details of
this embedding). As in [13], the transformer output is max-pooled and mapped to (01, 02).

Training. Loss is the mean-square error between (01, 02) and correct answers (cos(zT”b), sin(%b)).

To prevent output collapse to (0,0), prior work [12] added a penalty ar? + 3 7% Weseta =3 =0.1
(see Appendix [E]for a deeper discussion). Training jobs use one V100 GPU (32 GB), for up to 2
billion examples and up to 5 days. We use the Adam optimizer [6] with batch size 256.

Secret recovery. After each epoch (2.5 million training examples), the distinguisher introduced in [7]
is run on 1000 reduced LWE examples, and ranks the ¢ cruel columns of the secret by their likeliness
of being different from zero. We perform 15,000 model based attempts, and in each of them cool
bits are estimated via stepwise regression[d] Secret guesses are evaluated as in PICANTE [8]. If the
secret is discovered training stops; otherwise another training epoch is run.

3 Recovering higher Hamming weights with large sets of repeated examples

Prior work found that ML attacks on LWE samples cannot recover secrets with h > 3 from non-
reduced data, or more than 3 cruel bits on reduced data [9L[I8]. In Appendix [F]we show that larger
datasets and repeated data recovers secret with & > 3 from non-reduced data.

Here, we show that larger and repeated training sets allow recovery of more than 3 cruel secret
bits from reduced data. For n = 256, log, ¢ = 20 (cruel region size 34, Table[2)), and n = 512
log, ¢ = 28 (cruel region size 228, Table [3), we tested 4 secrets with h = 4 and h = 5 respectively
and train 16 models each. Success is defined as at least one of the 16 models recover all cruel bits.

For n = 256 and n = 512, data repetition allows recovery from smaller datasets. For n = 512, no
h =5 secret was recovered from 400 million data without data repetition. Training on large, repeated
examples recovers secret with more than 3 cruel bits, an improvement over prior work.

Table 2: n = 256,log, g = 20 Table 3: n = 512,log, g = 28
Data 4|5 cruel bits Data 4|5 cruel bits
budget | Ix 2x 5x 10x 20x 100x budget | 1x 2x 5x 10x 20x 100x
20M 0j0 0j0 ©0j0 o]0 00 00 20M 00 oj0o o0 10 10 10
50M 0/0 0/0 0]0 0|0 1]0 - 50M 00 10 10 1j0 10 -
100M | 00 ©0j0 1]0 10 1]0 - 100M | 0j0 1j0 1]0 1j0 2]0 -

200M | 0|0 1]0 2|0 3|1 - - 200M | 0j0 20 2|0 2]1 - -
400M | 3|1 4|1 4|1 - - - 400M | 1]0 4]0 41 -

x|y indicates = models recovered secrets with 4 cruel bits and y models recovered secrets with 5 cruel bits.

“-” indicates experiments were not run.

These results also shed new light on the role of cool bits. In theory, secrets with n = 256, log, ¢ = 20,
¢ = 34 should be easier to recover than those with n = 512, log, ¢ = 28, ¢ = 224 (smaller n, better
BKZ-reduction rate ¢). Yet, recovering secrets with 4 cruel bits requires only 20 million examples
for n = 512, but 50 millions for n = 256. Thus, higher reduction rates and more cool bits seem to
complicate cruel bits recovery.

4 Taming the cool bit noise: stepwise regression

Previous work assumes that once the cruel bits are known, cool bit recovery is easy, and proposes
a linear regression recovery method [18] based on (acoor; beoot = b — @cruet * Scruel). We propose
a new method for cool bit recovery, based on stepwise regression [5]. We fit linear regression to
(Acools beoot)- We iteratively set the cool bit with the smallest regression coefficient to zero. We repeat
this process until the number of remaining bits matches the known value h,;-

Stepwise regression recovers zeroes. Initially, because the secret is sparse, there are more zeroes than
ones. After several steps, the remaining bits are mostly ones. At this stage, it is more efficient to flip
all the remaining cool bits, and perform the regression on bgy,q; = acooi (1 — Scool) = acTooll — beool-
We call this variant dual stepwise regression. We provide the motivation for stepwise in Appendix [G]

Tables] and [5| compare linear, stepwise and dual stepwise regression in two settings with large BKZ
reduction (see Appendixfor other settings). We test secrets with cruel Hamming weight /...y
between 4 and 8, such that h.,e;/h = ¢/n. For each value of h, we run the three methods on 20
different secrets and report the number of secrets recovered (assuming cruel bits are known). Stepwise
regression outperforms linear regression, and dual stepwise regression achieves the best results. In
both settings, dual stepwise regression allows recovery of harder secrets with fewer samples.

Table 4: n = 256, log, g = 20

Table 5: n = 512,log, g = 41

Cool bits Linear Stepwise Dual Cool bits | Linear Stepwise Dual
(Total k) | 2M 20M | 2M 20M | 2M 20M (Totalh) | IM 4M | IM 4M | IM 4M
26 (30) 2 13 3 20 | 13 20 40(44) | 20 20| 20 20 | 20 20
3237 0 5 0 20 5 20 50(55) | 20 20|20 20|20 20
38 (44) 0 1 0 11 1 20 60(66) | 13 18 | 17 20 | 20 20
45 (52) 0 0 0 3 0 18 70 (77) 6 17|15 19|20 20
52 (60) 0 0 0 1 0 14 80 (88) 0 12|10 18|19 20

Cool bits recovery out of 20 secrets. Higher is better.

5 Opverall secret recovery and scaling laws

In Table[6] we report the highest recoverable Hamming weight / across four settings when we vary
training set size, repetition and BKZ-reduced vs synthetic data. For both binary and ternary secrets,
our method consistently recovers higher Hamming weights with at least 3 cruel bits. Optimal results
require large datasets and extensive data repetition. Our improvements over prior work are most
significant in settings with more reduction. With n = 256 log, ¢ = 20, prior work recovers h = 33
(binary) and h = 24 (ternary), while our method achieves & = 70 and h = 55. Appendices [[|and
[] detail the highest Hamming weight h for each distinct data quantity and repetition combination,
showing similar results with BKZ-reduced data and synthetic data.

| Binary secret | Ternary secret

n 256 256 512 512 256 256 512 512
log, q 12 20 28 41 12 20 28 41

Best h (Best cruel) | 14 (5) 70 (8) 12 (5) 75 (7) 12 (5) 55 (8) 10 (4) 75 (7)
Previous best h 12 33 12 63 9 24 - 66

Data, repetition |4M, 15x 100M, 5x 20M, 15x 20M, 15x | 200M, 5x 200M, 2x 50M, 15x 50M, 15x

Table 6: Best recovery result for different settings on binary and ternary secrets.

Next, we empirically study how the number of model-based attempts A needed to recover a secret
depends on model parameters N, data amount D, and repetitions R for n = 256, log, ¢ = 20 and
binary secrets of Hamming weight h. We define A as the number of attempts (from the distinguisher
output) needed to recover the correct secret bits.

Model parameters law: To understand scaling between model parameters /N and model-based
attempts A, we vary the embedding dimension (256 to 1024) and layers (4 to 12) for three different
secrets with Hamming weight h = {60, 65, 70}. We use 100M data and 1 repetition. As shown in
Figure [I] the number of model based attempts is not improved by an increase in model parameters.
We leave the exploration of larger models for future work.

< F T T T T T T T T T 7 <t 108J““ T T T T T T T T T T T T T
A A A A,
2 I A A Aah A A L4 1 2 s, A
6L =---dA———s=————— kg~ AR -] =&

R A v s M

g 5| ~h=65 1 8 106 aR=1 #%52&[&:%“‘ .

'02 E Ah =70 R E '02 s R=2 1;“‘:’“3\ A;&

E T N v e - e g

< a1 g e AT Sl

S .l s PO B AR =150 e

E 10 E Lol Ll = E | Lol Ll Lol
107 108 108 107 108 10°

Model params N Total training data D

Figure 1: Model parameters N vs model based
attempts A for three different Hamming weight h.

Figure 2: Total training data D and repetition R
vs model based attempts A for h = 70.

Data-repetition law: We fix the model embedding dimension at 256 and 4 layers. We vary the
distinct data amount from 1M to 400M and data repetitions R from 1 to 50. We define D as the
total training data: distinct training data times R. Figure [2|show results from the best of 8 model
initializations. We fit In(Ar) = Cr — ag In(D) using least square errors across 5 distinct R regimes.
Notably, our experiments reveal that o is considerably lower than v, R > 1. Thus, data repetition
reduces the need for distinct (costly) samples and reshapes the scaling law of A as a function of D.
Increasing data alone is important but insufficient.

6 Discussion and conclusion

We introduced three techniques to improve ML attacks in LWE problem: larger training sets, repeated
examples, and stepwise regression. These methods significantly increase both maximum recoverable
Hamming weight and the proportion of secrets recovered for a given h. Our conclusions extend in
two directions. First, larger training sets and repeated data are essential for recovering more cruel bits,
confirming previous observations [[1,[12]]. Second, stepwise regression is beneficial, likely because the
columns of matrix A are uncorrelated and stepwise regression enforces this inductive bias. Finally,
by investigating scaling laws on LWE, we provide some insights for tackling harder LWE problems.

Our findings advance ML-based attacks on LWE and outperform non-ML strategies at comparable
budgets and Hamming weights. On a broader level, this line of work is important for understanding
potential limitations of PQC systems before being deployed at scale.

References

[1] Frangois Charton and Julia Kempe. Emergent properties with repeated examples. ArXiv preprint:
2410.07041, 2024.

[2] Lily Chen, Dustin Moody, Yi-Kai Liu, et al PQC Standardization Process:
Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates.
US Department of Commerce, NIST, 2022. https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4.

[3] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In Proc. of
ASIACRYPT 2011, 2011.

[4] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Uni-
versal transformers. In Proc. of ICLR, 2019.

[5] Michael Alin Efroymson. Multiple regression analysis. Mathematical methods for digital
computers, pages 191-203, 1960.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of
ICLR, 2015.

[7] Cathy Li, Emily Wenger, Zeyuan Allen-Zhu, Francois Charton, and Kristin Lauter. SALSA
VERDE: a machine learning attack on Learning With Errors with sparse small secrets. In Proc.
of NeurlIPS, 2023.

[8] Cathy Yuanchen Li, Jana Sotdkovd, Emily Wenger, Mohamed Malhou, Evrard Garcelon,
Francois Charton, and Kristin Lauter. SALSA Picante: A Machine Learning Attack on LWE
with Binary Secrets. In Proc. of ACM CCS, 2023.

[9] Niklas Nolte, Mohamed Malhou, Emily Wenger, Samuel Stevens, Cathy Li, Frangois Charton,
and Kristin Lauter. The cool and the cruel: separating hard parts of LWE secrets. Proc. of
AFRICACRYPT, 2024.

[10] Theodoros Palamas. Investigating the ability of neural networks to learn simple modular
arithmetic. 2017.

[11] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In
Proc. of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, 2005. https:
//dblp.org/rec/journals/corr/cs-DS-0304005.bibl

https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://dblp.org/rec/journals/corr/cs-DS-0304005.bib
https://dblp.org/rec/journals/corr/cs-DS-0304005.bib

[12] Eshika Saxena, Alberto Alfarano, Emily Wenger, and Kristin E. Lauter. Making hard problems
easier with custom data distributions and loss regularization: A case study in modular arithmetic.
In Forty-second International Conference on Machine Learning, 2025.

[13] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical
Computer Science, 53(2):201-224, 1987.

[14] Peter W Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994.

[15] Samuel Stevens, Emily Wenger, Cathy Yuanchen Li, Niklas Nolte, Eshika Saxena, Francois
Charton, and Kristin Lauter. Salsa fresca: Angular embeddings and pre-training for ml attacks
on learning with errors. https://eprint.iacr.org/2024/150.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. of NeurIPS, 2017.

[17] Emily Wenger, Mingjie Chen, Francois Charton, and Kristin E Lauter. Salsa: Attacking lattice
cryptography with transformers. Proc. of NeurIPS, 2022.

[18] Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, and Kristin Lauter. Benchmark-
ing attacks on learning with errors. Proceedings of IEEE Symposium on Security & Privacy,
pages 279-297, 2025.

https://eprint.iacr.org/2024/150

Appendix

A Related Work in Depth

SALSA [17] is the first ML attack on LWE. It uses a shallow sequence-to-sequence transformer [16],
with shared layers [4], trained on 2 million unreduced LWE pairs, and recovers secrets from the
trained model with a basic distinguisher. Limited to dimensions up to 128 and Hamming weight 3, it
is proof of concept: all secrets recovered by SALSA could be found with exhaustive search. It also
requires millions of eavesdropped LWE pairs with the same secret, an unrealistic assumption.

PICANTE [_8] introduces pre-processing. It only requires 4n eavesdropped LWE pairs (a realistic
assumption) which are sampled to form n x n matrices A, and reduced by BKZ to produce matrices
R A with a low standard deviation of their entries. Applying the same transformationtob = A -s+¢
yields reduced LWE pairs with the same secret, but increased noise. A transformer is then trained
from 4 million reduced pairs, that can recover sparse binary secrets with h = 31 for n = 256 and
logy ¢ = 23, and h = 60 for n = 350 and log, ¢ = 32.

VERDE [[7] improves reduction techniques and distinguishers, recovering secrets with i = 63 for
n = 512 and log, ¢ = 41. It also extends the recovery mechanism to ternary and small secrets,
demonstrating that ternary secrets are not more secure than binary. Finally, it provides a theoretical
explanation of the role of reduction: models struggle to learn modular additions that exceed a multiple
of the modulus. FRESCA [15] introduces angular embeddings, an architecture for modular arithmetic,
which halves the length of inputs, allowing secret recovery for n = 1024 and log, ¢ = 50.

The difficulty of learning modular addition, first observed by [10], was further studied by [[12]. They
show that noiseless modular addition of many integers can be learned by adding a regularizer to
the loss introduced in FRESCA and adding sparser examples to the training data, in a manner of
curriculum learning.

[9]] offer a different perspective on BKZ reduction. They observe that the reduction of a is concentrated
to the last coordinates (the cool region), while the c first (the cruel region) stay unreduced. Thanks to
the reduction, the cool bits of the secret are easy to recover once the cruel bits known. Therefore,
recovering secrets from reduced LWE pairs amounts to discovering their cruel bits, and ML attacks
only recover secrets with up to three cruel bits. The paper also proposes a non-ML attack, where
all possible cruel bits are enumerated, and the cool bits then guessed. It performs well for small
dimensions and reduced data [18]], but scales exponentially with the Hamming weight to recover,
and requires large samples of LWE pairs for cool bit recovery. [[18] provides a comparison between
SALSA, Cool and Cruel and classic attacks on LWE for n = 256 and 1024.

Training from repeated examples was proposed by [[L]. They show that multiplication modulo 67, a
task that transformer cannot usually learn when trained from large datasets of single-use examples,
can be learned with 100% accuracy when models are trained from smaller sets of repeated data. [12]]
demonstrate a similar effect for modular addition.

B BKZ-reduced dataset

We report some statistics in Table [7]of the BKZ-reduced datasets. c is the size of the cruel region
(coordinates with variance larger than half the variance of the uniform law), o.,; is the standard
deviation of the coordinates of the cool region centered in [—¢q/2, ¢/2], p is the mean of absolute
values of off-diagonal pairwise correlation from the covariance matrix of the reduced samples and o
is the standard deviation of Re centered in [—¢q/2, q/2].

It is important to note that reduction creates a cool region of size n — c but introduces an error term
with standard deviation approximately equal to ¢/+/12 (the standard deviation of one cruel bit).

C Synthetic dataset

Some of the experiments in the manuscript require very large training sets (up to 400 million reduced
data), which requires a lot of computing resources. We reduce 400 million LWE samples for n = 256

Table 7: Reduction statistics. We report dataset size, CPU hours, c (size of the cruel region), o coo;
(standard deviation of the cool region), p (average non-diagonal pairwise absolute value correlation
from the covariance matrix of RA) and o, (standard deviation of Re).

n log, q¢ Datasetsize CPU hours c O cool P Oe
(millions) (millions)
256 12 4 0.1 143 0.30¢/v12 0.18% 0.88¢/v/12
256 20 400 40.4 34 0.23¢/v12 1.05% 0.90q/v12
512 28 60 1.0 224 0.19¢/v/12 0.12% 0.70q/+/12
512 41 4 0.1 46 0.15¢/v/12 0.18% 0.80q/v/12

logy ¢ = 20, but for the three other settings, we relied on synthetic data to complement smaller
BKZ-reduced datasets (see Table[7).

To generate synthetic data, we observe that after reduction the coordinates are uncorrelated (i.e. the
off-diagonal terms of the covariance matrix (RA)T(RA) are very small), i.e. the mean absolute
value p is close to 0. This suggests a method for generating synthetic data. One million LWE samples
are reduced using BKZ, and we use these reduced examples to measure ¢, 0., and o.. The synthetic
reduced a are then generated by sampling the first ¢ coordinates from a uniform distribution, and the
n — c others from a centered distribution with variance o.,.;. We then compute b = a - s + ¢, with €
a centered discrete Gaussian variable, with standard deviation o.. Note that because all unreduced
columns are assumed to have the variance of the uniform distribution, the synthetic data is a little less
reduced than the BKZ-reduced data.

When BKZ-reduction is applied, the original matrix A and vector b of LWE samples are subjected
to a linear transformation R. The columns of RA are not correlated, and have a block structure: the
c first column have high variance, and the n — ¢ last columns low variance. Multiplying RA by any
block diagonal matrix of the form

0 0
O:{ol QQ] M

with €1 and Q5 two ¢ x cand (n — ¢) X (n — ¢) matrices, near-orthogonal, (i.e. with condition
numbers close to 1), should have little impact on the distribution of cool and cruel bits. This means
we can generate, from BKZ-reduced samples RA, a lot of synthetic samples, with the same secret,
reduction factor, and noise, by sampling quasi-orthogonal matrices O, and generating new data ORA
and ORb. We leave an analysis of this data augmentation method for future work.

D Cool and cruel embedding ablation

For n = 256 log, ¢ = 20 we train 16 different models with 400 million samples and 2 repetitions for
5 different secrets with 4 cruel bits. In Table|8| we compare the recovery rate (i.e. if the secret is fully
recovered) with or without the cool and cruel embedding introduced in Section[2} We highlight that
the new embedding allows for recoveries on all secrets.

Table 8: Cool and cruel embedding comparison.
h CC embedding disabled CC embedding enabled

28 5/16 8/16
30 0/16 4/16
33 3/16 7/16
34 0/16 5/16
36 0/16 1/16

E Bias in angular embeddings and ways to circumvent it

To predict b = a - s + € from a, our transformer uses an angular embedding. The model out-
puts a point P(z,y) on the real plane, the integers ¢ € {0,...,¢q — 1} are encoded as the points
Bi(cos(%), sin(%)) on the unit circle, and the model prediction is the point B; closest to P.
If P has polar coordinates (r cos(f),rsin(6)), with » > 0, the point B;, closest to P verifies
1o = argmin, |0 — % .

During training, the model learns to minimize a Mean Square Error (MSE) loss. If the angular
embedding of B is (¢, yo), and if the model predicts P(x,y), the loss is | = (z — x0)? + (y — yo)?.
Since the possible values of b are uniformly distributed on the unit circle, we can assume, without
loss of generality, that B = (1, 0). Therefore, the loss is

I =(1-17cos(h))? +r?sin?(0) = 1 + > — 2r cos(8).

During the early stages of training, the model has not learned modular arithmetic and b is predicted at
random. Suppose that all model predictions lie at a distance r of the origin, the average MSE loss is
the integral of [over all possible angles, so
1 T
Lr)=— [(1+7r*—=2rcos())rdd=1+r>

2mr J_,

Therefore, for a clueless model (a model that predicts b at random), the average loss is 1 + 2, and
the optimizer can reduce the loss just by making r smaller. Model predictions will therefore tend
to collapse towards the origin, at which point the loss becomes constant (/(0) = 1 no matter the
prediction), and nothing can be learned anymore.

Note that collapse only happens when the model cannot predict b. If the model learns to predict b up
to some error, i.e. that, assuming B = (1, 0) the predicted value of @ lies in the interval [—e,] for
some small ¢, the average loss then becomes:

_ 9 sin(e) 9 sin(e)
L.(r)y=1+r"=2r 5 =(r—1) —2r< 5 —1).

This shows that once the model starts learning, model predictions stop collapsing to the origin. In
other words, model collapse only happens at the beginning of training. (Note, we assume here that
model predictions are uniformly distributed over [—&, €], this is a simplification. It can be shown that
the same phenomenon appears if the distribution of predictions is unimodal, and centered on 0).

To prevent the model from collapsing in the initial phase of training, we add to the loss a penalty
P(r) = ar? + 7% The average loss (for a random prediction of b) then becomes

Lr)=1+1+a)?+ 7"%
. B B 5
It reaches a minimum for £'(r) = 2(1 + a)r — 28/r® =0 orr* = Tra-

In Table [9] we experiment with two different settings and we report the hardest recovered secret by
the two different settings. The first setting fixes 8 = 1 and a = 0 to force predictions to remain close
to the unit circle in the initial, “clueless”, phase of learning. The second setting is inherited from
Saxena et al. [[12]], where authors suggest « = § = 0.1.

Overall the two settings are similar, with the second setting being more successful or at par on almost
all data budgets.

Table 9: Loss comparison.
Data budget Repetitions a=0,6=1 «a=0.1,8=0.1
N = 256 log, ¢ = 20

50M 15x 60/8 65/8

100M 5x 65/8 65/8

200M 5x 65/8 65/8

400M 2x 65/8 70/8
N =512log,q =28

20M 15x 12/4 12/5

50M 15x 12/4 12/4

F Recovering higher Hamming weight - non-reduced case

We consider models trained on non-reduced data, as in the original SALSA paper. This setting
is the cleanest possible, as there can be no side effects due to BKZ reduction, cool bits, or noise
amplification. We experiment with n = 64 and log, ¢ = 20, and secrets with 3 < h < 6, in the
presence and absence of noise. For each value of h, we train models on 3 different secrets, and report
success if one is recovered at least.

As in SALSA, secrets with Hamming weight 3 are always recovered, even when the model is trained
without repetition on one million sample only. Table[10]presents our findings for A = 4 to 6. Secrets
with h = 4 are recovered without repetition for large data budgets, but repetition enables recovery
even for small data budgets. For larger Hamming weights require large data budgets and repetition.
These results, a major improvement over SALSA, demonstrate the potential benefit of large training
samples of repeated examples.

Table 10: Secret recovery for different Data budgets (DB), and repetition levels, for secrets with Hamming
weight 4, 5 and 6. —: no secret recovered, v': recovery in the noiseless case only, v'v: recovery in all cases.

Data Hamming weight 4 Hamming weight 5 Hamming weight 6
budget | 1x 2x 4x 10x 20x | 1x 2x 4x 10x 20x | 1x 2x 4x 10x 20x
IM - - - v v - - = - - - - - - -
4M v oW W W - - = v v - - - - -
20M v v oW W - -/ oW - - = v v
50M W - - v - -/

G Stepwise regression motivation

ML-based attacks recover secrets by comparing model predictions for close values of a. If a’ =
a+ %ei, with e; the i-th base vector, then the difference between the associated values of b = a-s+¢

bV —b=(a'—a) s+ —e= %sﬂ—e’—e mod ¢
has mean zero if s; = 0, and ¢/2 if s; = 1. If the transformer produces good predictions of b and ¥’,
ie. T(a) = band T(a') =~ & (with T the transformer prediction), the difference |7 (a) — 7 (a’)],
averaged on a sample of vectors a, should allow us to guess the corresponding secret bit.

Previous research (section 5 of [7]]) suggests that transformers struggle to learn modular dot products
when the sum |a - s| becomes larger than a multiple of ¢. With reduced data, this can happen in
two cases: when the number of (unreduced) cruel bits in the secret exceeds a relatively small value,
but also when the size of the reduced, cool, region becomes large. We believe this accounts for the
observation, at the end of the Section that the cruel bits for the “hard setting” n = 512 log, g = 28,
were easier to recover, than those of the easier setting n = 256 log, ¢ = 20, which enjoyed a higher
reduction factor. Here, we investigate cool bit recovery, especially in the case when BKZ reduction is
high, and the secret has a lot of non-zero cool bits.

Previous research assumes that once the cruel bits are known, cool bit recovery is easy, and proposes
a linear regression recovery method [18]]. Once the cruel bits are guessed, the quantity b.oo; =

10

b — acruel * Scruel = Acool * Scool T € 18 computed (Scoo /cruel TEPresent the restriction of s to the
cool/cruel coordinates), and linear regression is used to predict S.,o; from a,,o; and bepo;-

The use of linear regression, here, is dubious for two reasons. First, we know that the coordinates of a
are not correlated, and that the secret bits are independent. Linear regression, on the other hand, will
compute and invert the test sampled covariance matrix A” A, which will have non diagonal elements
due to population error that will be amplified by matrix inversion. Second, linear regression ignores
the fact that the dot product is computed modulo g. As a result, it underestimates the contributions of
non-zero bits in the secret (which can “wrap” to zero when their sum exceeds ¢). Summarizing, we
believe that cool bits should better be recovered one by one than all at once, and zero bits are easier
to recover that non-zero bits.

We include the pseudocode to replicate the stepwise regression algorithm.

Algorithm 1: Linear Secret Backward Reduction

Input: Matrix a.,o € Zf %00l \octor beper € ZZOOI, int Acoor, flag use_dual_algo
Output: Secret guess g
g < vector of length cool with all entries equal to O
active < vector of length cool with all entries equal to 1
ones < heool
zeros < cool — hepol
while (use_dual_algo A |active| > 0) or (—use_dual_algo A |active| > heoor) do
use_dual < (ones > zeros) A use_dual_algo
// One-step regression
if use_dual then
| b+ (al,;1—b)modgq
X < acpol[:, active]
Yy« b
coef + argmin, ||y — Xcl|3
coef <+ coef / max(|coef])
// Remove weakest feature
J* < argmin; |coef;|
active[j*] 0
if use_dual then
b+ (b— Al j*]) mod ¢q
gli*l 1
ones < ones — 1
else
| zeros « zeros — 1

if ~use_dual_algo then
| glactive] <1

return g

H Linear regression

Similar to Section ff] we compare linear, stepwise and dual stepwise regression and we report the cool
bits recovery for the two harder settings, where the BKZ-reduced data has a larger cruel region. As
shown in Tables [T} [T2] [T3]and [14]dual stepwise regression shows the best performance.

11

Table 11: Cool bits recovery n = 256, log, g = 12 assuming cruel bits have been recovered

Linear regression

Stepwise regression

Dual stepwise regression

Cool bits Totalh | IM 2M 4M | IM 2M 4M M 2M 4M
8 18 20 20 20 | 20 20 20 20 20 20

18 41 8 20 20 | 20 20 20 20 20 20

23 52 0 3 7 0 9 20 13 20 20

28 63 0 0 0 0 0 2 0 3 19

Table 12: Cool bits recovery n = 256, log, g = 20 assuming cruel bits have been recovered

Linear regression Stepwise regression Dual stepwise regression
Coolbits Totalh | 2M 4M IOM 20M |2M 4M IOM 20M | 2M 4M 10M 20M

20 23 5 14 20 20 5 20 20 20 13 20 20 20
26 30 2 5 11 13 3 10 19 20 13 17 20 20
32 37 0 2 4 5 0 4 13 20 5 9 20 20
38 44 0 0 0 1 0 0 3 11 1 7 13 20
45 52 0 0 0 0 0 0 0 3 0 2 8 18
52 60 0 0 0 0 0 0 0 1 0 0 1 14

Table 13: Cool bits recovery n = 512,log, g = 28 assuming cruel bits have been recovered

Linear regression

Stepwise regression

Dual stepwise regression

Cool bits Totalh | IM 2M 4M | IM 2M AM IM 2M 4M
10 18 20 20 20 20 20 20 20 20 20
30 53 20 20 20 20 20 20 20 20 20
40 71 15 20 20 20 20 20 20 20 20
50 89 5 8 13 14 17 18 17 20 20

Table 14: Cool bits recovery n = 512, log, g = 41 assuming cruel bits have been recovered

Linear regression | Stepwise regression | Dual stepwise regression
Cool bits Totalh | IM 2M 4M | IM 2M 4M M 2M 4M
40 44 20 20 20 | 20 20 20 20 20 20
50 55 20 20 20 | 20 20 20 20 20 20
60 66 13 15 18 17 20 20 20 20 20
70 77 6 12 17 15 18 19 20 20 20
80 88 0 9 12 10 11 18 19 20 20

I Binary secrets

We report the hardest recovered binary secret, based on Hamming weight.

12

Highest Hamming weight and cruel bits recovered - binary secret.

Table 15: n = 256,log, g = 12.

Repetition
1x 2x 5x 15x 50x
BKZ-reduced data
4M \ 10/3 10/3 12/4 14/5 14/5
Synthetic data
4M 10/3 10/3 10/3 14/5 14/5
20M 10/3 10/3 10/3 14/4 14/5
50M 10/3 10/3 12/3 14/5 -
100M | 10/4 10/4 12/5 - -
200M | 12/5 12/5 12/5 - -
400M | 12/5 12/5 - - -
Best of 80 models.

Table 17: n = 256,log, g = 20

Repetition
1x 2X 5x 15x 50x
BKZ-reduced data
4M 55/6 55/6 55/7 60/8 65/8
20M 55/6 55/6 60/7 60/8 65/8
50M 60/8 65/8 65/8 65/8 -
100M | 65/8 65/8 70/8 - -
200M | 65/8 70/8 70/8 - -
400M | 65/8 70/8 - - -
Synthetic data
4M 55/6 60/7 60/7 60/7 60/8
20M 60/8 65/8 65/8 65/8 65/8
50M 65/7 65/8 70/8 70/8 -
100M | 65/8 65/8 70/8 - -
200M | 65/8 65/8 70/8 - -
400M | 65/8 65/8 - - -
Best of 80 models.

J Ternary secrets

Table 16: n = 512,log, g = 28

Repetition
1x 2x 5x 15x 50x
BKZ-reduced data
M 10/3 10/3 10/4 12/4 12/4
20M 10/4 10/4 10/5 12/5 12/5
50M 10/4 10/4 10/3 12/5 -
Synthetic data
4M 10/3 10/3 10/3 10/3 12/4
20M 10/3 10/4 12/5 12/5 12/5
50M 10/3 10/4 12/4 12/4 -
100M | 10/3 12/4 12/5 - -
200M | 12/4 12/4 12/4 - -
Best of 80 models.
Table 18: n = 512,log, g = 41
Repetition
1x 2x 5x 15x 50x
BKZ-reduced data
M \ 70/4 70/4 70/4 70/6 70/6
Synthetic data
4M 70/4 70/4 70/4 70/5 70/6
20M 70/6 70/6 70/7 75/7 7517
50M 70/6 70/6 70/6 75/7 -
100M | 70/6 70/6 70/6 - -
200M | 70/6 70/6 - - -

Best of 80 models.

We report the hardest recovered ternary secret, based on Hamming weight.

Highest Hamming weight and cruel bits recovered - ternary secret.

Table 19: n = 256, log, g = 12.

Table 20: n = 512, log, g = 28

Repetition Repetition
1x 2X 5x 15x 50x 1x 2X 5x 15x 50x
BKZ-reduced data BKZ-reduced data
4M \ 10/3 10/3 10/3 10/3 10/4 4M 8/3 8/3 8/4 8/4 8/4
Synthetic data 50M 8/4 10/3 10/3 10/4 -
aM 10/3 10/3 10/3 10/3 10/3 Synthetic data
50M 10/4 10/4 10/4 10/4 - 4M 8/3 8/3 8/3 8/3 8/4
200M | 10/4 10/4 12/5 - - 50M 8/4 8/3 10/3 10/3 -
400M | 10/4 10/4 - - - 200M | 10/3 10/3 10/4 - -
Best of 80 models. Best of 80 models.

13

Table 21: n = 256, log, g = 20

Repetition
1x 2x 5x 15x 50x
BKZ-reduced data
4M 40/5 40/5 45/5 45/5 45/5
50M 40/5 45/6 45/6 45/6 -
200M | 50/6 55/8 55/8 - -
400M | 55/7 55/8 - - -
Synthetic data
4M 40/5 40/5 40/5 45/5 45/5
50M 45/5 50/6 50/6 50/6 -
200M | 45/5 50/6 50/6 - -
400M | 50/6 50/7 - - -
Best of 80 models.

14

Table 22: n = 512,log, g = 41

Repetition
1x 2x 5x 15x 50x
BKZ-reduced data
4M \ 60/5 60/5 60/5 65/5 65/5
Synthetic data
4M 60/5 60/5 60/5 65/5 65/5
50M 65/5 70/6 70/6 75/7 -
200M | 70/6 70/6 - - -
Best of 80 models.

	Introduction and Related Work
	Experimental settings
	Recovering higher Hamming weights with large sets of repeated examples
	Taming the cool bit noise: stepwise regression
	Overall secret recovery and scaling laws
	Discussion and conclusion
	Related Work in Depth
	BKZ-reduced dataset
	Synthetic dataset
	Cool and cruel embedding ablation
	Bias in angular embeddings and ways to circumvent it
	Recovering higher Hamming weight - non-reduced case
	Stepwise regression motivation
	Linear regression
	Binary secrets
	Ternary secrets

