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Abstract

Scaling laws predict the loss of a target language
model by extrapolating from easier-to-train mod-
els with fewer parameters or smaller training
sets. This provides an efficient way for practi-
tioners and researchers alike to choose optimiz-
ers, datasets, and model architectures. Despite
the widespread use of scaling laws to model the
dynamics of language model training, there has
been little work on understanding how to best
estimate and interpret them. We collect (and re-
lease) a large-scale dataset containing losses and
downstream evaluations for 485 previously pub-
lished pretrained models. We use these to estimate
more than 1,000 scaling laws, then derive a set of
best practices for estimating scaling laws in new
model families. We find that fitting scaling laws
to intermediate checkpoints of training runs (and
not just their final losses) substantially improves
accuracy, and that—all else equal—estimates of
performance are generally most accurate when de-
rived from other models of similar sizes. However,
because there is a significant degree of variabil-
ity across model seeds, training multiple small
models is sometimes more useful than training a
single large one. Moreover, while different model
families differ in scaling behavior, they are often
similar enough that a target model’s behavior can
be predicted from a single model with the same ar-
chitecture, along with scaling parameter estimates
derived from other model families.1

1. Introduction
Substantial effort and cost are required to train even a single
large language model (LLM), and even greater cost and
effort are required to evaluate proposed changes to language

1MIT 2MIT-IBM Watson AI Lab 3IBM Research. Correspon-
dence to: Leshem Choshen <leshem.choshen@mit.edu>.
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1See our repository for code, data, and experimental results.
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Figure 1: Illustration of a scaled family, an estimated scaling
law, and its prediction error for a target model.

models’ architecture or training data. There is thus an acute
need for efficient decision-making aids that can evaluate new
methods without full-scale training. A large body of work
motivates or evaluates these changes using small models
(Warstadt et al., 2023; Hu et al., 2024a; Hillier et al., 2024),
synthetic tasks (Akyürek et al., 2024; Wortsman et al., 2023)
or theory (Jelassi et al., 2024). But one of the most important
tools for current practitioners is the estimation of scaling
laws for LLMs (Ivgi et al., 2022; Dubey et al., 2024).

A scaling law extrapolates the performance of a target model
from the performance of a set of models with fewer pa-
rameters or smaller training sets. Typically, this requires
models to belong to the same model family, differing only
in parameter count and training size, but using the same ar-
chitecture and training distribution. A high-quality scaling
law accurately predicts the target model’s test performance
(Rosenfeld et al.; Kaplan et al., 2020; Hoffmann et al., 2022).
Most past work fixes a model family and exhaustively trains
models to relate scale and performance through a new scal-
ing law. One question that has received comparatively little
attention is how to create such laws in the first place.

This paper offers a practical guide to when, how and which
small models to use, to efficiently obtain meaningful predic-
tions about large models’ behavior—maximizing prediction
reliability while minimizing the budget for preliminary ex-
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perimentation, which necessarily involves tradeoffs between
the number of preliminary models trained, the size of the
largest preliminary model, and size of the dataset used to
train it. To answer those questions one requires analysis
across model families and scaling law procedures.

We begin by collecting data to perform a large-scale meta-
analysis of scaling laws (§3). Usually, scaling law research
relies on a single collection of closely related models, or
alters only a minimal aspect of pretraining (e.g. data size;
Muennighoff et al., 2024). We instead gather a large and
diverse set of scaled families, to allow this and future meta-
analysis of scaling laws that generalize across architectures,
datasets and settings.

The rest of the paper uses this data to analyze a number of
key questions around scaling law estimation:
1. What reliability is achievable and expected from scal-

ing laws? Variation between LLM initializations pro-
duce unpredictable changes of up to 4% in loss. Most
published controlled experiments on pretraining deci-
sions, report changes between 4% and 50% (§4).

2. How much does the shape of scaling laws vary across
model families? Different model families have scaling
laws with a different functional dependence on model
size. However, transformer LLMs are similar enough
that, with a single model from a target family and a
scaling law from a different model family, it is some-
times possible to accurately estimate target model per-
formance. (§5).

3. Must scaling laws be estimated only from fully
trained models? Even though optimization procedures
are typically sensitive to the full size of a training run,
(unprincipled) estimation of scaling laws from interme-
diate training checkpoints greatly improves scaling law
fit (§6). It is generally possible to estimate a model’s
final loss beginning roughly 1/3 of the way through train-
ing.

4. How large must models be to produce reliable scaling
laws? All else equal, experimenting with large models
is typically more useful than with small models (§7), but
may be outweighed by the benefits of reduced variance
from training more, smaller models (§8).

5. Taken together, cost-effective estimation of a scaling
law should consider the number of models, the size of
the models, and the number of training tokens for each
model. We highlight those size, tokens and number of
models effects in Fig. 2.

Our experiments also provide insight into the functional
form of scaling laws themselves, suggesting that they may
have fewer degrees of freedom than typically assumed (§9).
We conclude with discussion of other work on scaling law
estimation that may be of interest to practitioners (§10).

2. Defining a scaling law
A scaling law estimates the loss of a costly model by training
cheaper ones (see Fig. 1) typically with fewer parameters
(#params) and training tokens (#toks). A scaling law is a
function that predicts a target model’s loss on held-out data
when setting the value of one hyperparameter (Kaplan et al.,
2020) or both (Rosenfeld et al.; Hoffmann et al., 2022).
Comparing laws’ predictions about different pretraining
choices (e.g. data Ge et al., 2024) allows informed decisions
about which large-scale model to train. A scaling law also
enables finding the optimal choice of hyperparameters under
computational constraints on pretraining (Hoffmann et al.,
2022) or inference (Touvron et al., 2023; Sardana et al.).

Formally, we call a model f any single neural language
model with a specific set of parameters. Different seeds,
or even different checkpoints from the same training run,
correspond to different models. We define a scaled model
family F as a set of models, with each f ∈ F differing only
in size #params(f) and number of tokens #toks(f). We
note that a change in size is usually applied in a systematic
manner that affects the number of attention heads, width,
depth and such network characteristics that in all our data
changes with it in a one-to-one mapping.

Two subsets of scaled model families will be especially im-
portant in our analysis. First, the maximal parameter fam-
ily FmaxP contains only models with the largest number of
parameters. Formally, define m = maxf∈F #params(f);
then FmaxP = {f ∈ F : #params(f) = m}. FmaxP

will generally contain the target model(s) whose behavior
we wish to predict t ∈ Ftarget. Second, the q-maximal
token family F#tok>q contains all models trained on at
least a q-sized fraction of the training set. Formally, de-
fine t = q · (maxf∈F #toks(f)); then F#tok>q = {f ∈
F : #toks(f) ≥ t}. Note that this definition does not
distinguish between partially trained models, and models
trained to convergence on a subset of the training set. These
two types of models generally differ, but as current theory
does not predict in what manner and the former are cheap
substitutes, we test empirically if those are similar enough
to make good predictions in Section 6.

A scaling law L̂(f | F ) estimates the performance of a
new model f given a model family F . (We will simply
write L̂(f) when the family is clear from the context.) All
experiments in this paper use the widely used functional
form proposed by Hoffmann et al. (2022):

L̂(f) := eE +
eA

#params(f)α
+

eB

#toks(f)β
. (1)

Here E captures the scaled family’s general performance;
A,α and B, β describe the scaling effect of #params and
#toks respectively. The parameters are in an exponent
to ensure positivity, i.e., more training data improves the
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Figure 2: The effects of 3 variables on scaling law accuracy. Each cell corresponds to a single scaling law estimated from a
set of model checkpoints Ftrain, with the color denoting the error when predicting the largest model. Each column shows a
subset of the three axes along which these training sets differ: (1) the number of tokens used to train each LM in Ftrain

(expressed as a fraction of the full training corpus), (2) the number of distinct models trained; and (3) the size of the largest
model trained (expressed as a scale-up factor—the ratio between the target model and the largest model in Ftrain). In (a), all
laws are estimated from four models. In (c) all laws use the full corpus. Orange lines show iso-FLOP contours (sets of
scaling laws whose training sets require the same computational cost to produce). represent the most efficient ways to
obtain 15%, 10% and 5% ARE. One of the most immediate conclusions from these plots is that scaling law estimation is
quite noisy—the inclusion of a single badly-behaved model in the estimation procedure can produce large errors, and in
small model families error does not reliably decrease with additional computation. However—because of noise—it is often
preferable to extrapolate from a large number of small, partially trained models rather than a small number of large models.

scaling. 2 These parameters are estimated by first collect-
ing a set of training models Ftrain, then minimizing the
reconstruction error

argmin
E,A,α,B,β

∑
f∈Ftrain

(L̂(f)− L(f))2

where L(f) denotes the empirical negative log-likelihood
of some held-out data under the model f .

In this sense, a scaling law is an ordinary parametric model,
and we may ask many of the questions about L̂ that we
ask about LLMs themselves—what training data (Ftrain) to
collect? How to estimate accuracy? However, to provide
empirical answers to these questions, we first require data.

2We believe many of our findings apply to other functional
forms (Caballero et al.), and even suggest new ones in §9.

3. Data for 1000+ scaling laws and more
As part of this work, we have collected and released the
largest-scale public dataset describing scaling behavior
across model families. This dataset aggregates informa-
tion from a large number of LLM training efforts that have
released information about the behavior of multiple models
of different sizes or scales. While experiments in this paper
focus on scaling laws that measure loss, the dataset also
includes information about model performance on down-
stream evaluation benchmarks where available. We have
focused on language models where the largest one is more
than 3B parameters and where data was shared publicly or
in private correspondence. Our repository accepts further
contributions and requests for additions. In addition to those,
we have manually extracted some data from papers that did
not release models but reported losses in figures.

Other data sources. We want to highlight other sources
for data on model results. Resources on the training check-
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points and dynamics are scarce and perhaps the only other
collection of such will be in the data-limited babyLM mod-
els of 2025 (Charpentier et al., 2025). There are some efforts
to collect large sets of downstream evaluations for models
that have been useful in other works. Those include DoVE,
which aims to collect all LLM evaluations (Habba et al.,
2025), and data collected to create observational scaling
laws (Maia Polo et al., 2024; Ruan et al., 2024).

3.1. Data sources

For each model in this dataset, we collect any downstream
evaluation and loss during training that was reported, as well
as #toks for each, links to matching checkpoints when
available, links to data sources, and information about com-
putational cost (in FLOPs) and number of training epochs
(i.e. passes over the training set). Each model is identified
by a unique name, a type (e.g. llama), #toks, #params,
architecture type (e.g. encoder-decoder), and seed.

Models (families) in this dataset include Pythia (Biderman
et al., 2023), OPT (Zhang et al., 2022, collected thanks to
Xia et al., 2023; Biderman et al., 2023), OLMO (Groeneveld
et al., 2024), Amber (Liu et al., 2023), K2 (LLM360 Team,
2024), Mamba (Liu et al., 2023), RedPajamas(Together,
2023)ModuleFormer mixture of experts (Shen et al., 2023),
overtrained models (Gadre et al., 2024), Mamba, Llama and
hybrid architecture variations from Poli et al. (2024), trans-
former architectures (Alabdulmohsin et al., 2022), Bloom
(Le Scao et al., 2023), T5-Pile (Sutawika et al., 2024),
Pandey (2024) models, GPT-family models with different
data regimes (Muennighoff et al., 2024), Gopher (Hoffmann
et al., 2022) and GPT-3 (Brown et al., 2020).

The data consists of 1.9M steps of training evaluated on loss
or perplexity, usually on multiple data sources belonging
to 485 unique pretrained models, and more than 40 scaled
families. We hope this will provide a useful resource for
the community and plan to extend it further as models get
released and their training dynamics are shared. We see
such a resource as a facilitator to more research on model
development (e.g. A/B testing), scaling laws, downstream
scaling laws (Gadre et al., 2024; Ruan et al., 2024; Owen,
2024; Isik et al., 2024), training dynamics (Choshen et al.,
2022) and more.

3.2. Scaling law estimation

In the rest of the paper, we present findings from estimating
hundreds of scaling laws as follows:

Fitting For each model family F , we identify the maximal
parameter family FmaxP , and estimate a scaling law L̂ us-
ing the remaining models Ftrain = F \ FmaxP . Estimation
of scaling law parameters uses the curve_fit function in
scikit-learn (Pedregosa et al., 2011), with square loss.

We additionally experimented with an L-BFGS-based solver
but found it to be less stable. It converged to similar results,
but often did not converge, was slow and required multiple
trials. Some past work has Huber loss to improve the ro-
bustness of estimates; we repeat the analysis from the main
paper with Huber loss in §E and find the same trends as
in our main analysis. We only estimate scaling laws for
families that contain at least three models.

Evaluation To evaluate estimated scaling laws reliably,
we need to account for loss fluctuations during large-scale
model training. Thus, we test against a few checkpoints
near the end of training: we choose as target models Ftarget

the 30%-maximal token family from the set F#tok>30% de-
fined in the previous paragraph—that is, we take Ftarget =
FP,#tok>30%. We then report the mean absolute relative
error (ARE) Ef∈Ftarget |L(f) − L̂(f | Ftrain)|/L(f) be-
tween the empirical loss L and the loss L̂ predicted by the
scaling law.

4. How well should scaling laws predict?

4% is the best ARE typically obtained; ARE up to 20% can
still distinguish between many modeling choices.

To establish how accurate a scaling law must be to be useful
to practitioners, we first assess what changes in model ac-
curacy have been considered meaningful in past work. We
have surveyed experiments in the literature where an A/B
test was performed, i.e., two models were trained similarly,
manipulating one attribute to see how it affects scores. Em-
pirically, we found no widely adopted modeling changes
that were motivated with less than a 4% relative difference
between models. Additionally, reported variance across ran-
dom restarts of the same model architecture reaches up to
3.5% (c.f.,§8; Sellam et al., 2021). We take this to mean that
this is approximately the minimal effect size experimenters
care, as well the minimal effect that can be reliably mea-
sured. Accordingly, this bounds the best goodness of fit we
should expect or require of scaling laws.

To offer several concrete points of comparison: Pythia 6.9B
models fixed inconsistencies in their code and hence have
two versions (c.f. App. B; Biderman et al., 2023) which
differ in loss by 40%. They also provide a data deduplication
A/B test that decreased loss by roughly 5%. Gadre et al.
(2024) tested the effect of training 400M parameter models
for different #toks. The smallest modification (doubling
the number of training tokens) decreased loss by roughly
4%, while 30× more training tokens produced a 50% loss
difference. Instead of varying the amount of data or epochs,
Ge et al. (2024) found that training on a different kind of
data incurred ARE of approximately 10% and different data
mixes led to 6% changes or less.
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Figure 3: Parameters differ between scaled model families. Surprisingly, however, the pairs of parameters controlling the
influence of model and training set size have similar ratios. The legend shows model architecture (left), scaling families
(center) and per-family intercept (right).

5. When I train a new model, do I even need a
new scaling law?

Different model families exhibit different scaling behavior, but
performance can sometimes be estimated using a single model
in a new family.

Scaling laws relate performance to scalar training parame-
ters like model or dataset size. For discrete decisions (e.g.
the choice of nonlinearity), it is unclear how to pool infor-
mation across models that differ in these traits (see Ruan
et al., 2024; Maia Polo et al., 2024, for concurrent work that
performs this pooling based on downstream task behavior).
Clearly, discrete choices affect loss of pretrained models
with the same #params and #toks. But how do they affect
the form of scaling laws?

One way to answer this question is to look at the param-
eter estimates for scaling law parameters E, α, A, β and
B differ across model families. These results are shown in
Figure 3, where it can be seen that there are often dramatic
differences in all five parameters across families. In this
sense, even the rate at which additional data or parameters
improve model performance depend on underlying architec-
tural details, suggesting that understanding the behavior of
a new model family may require a new scaling law.

But another way to answer this is to ask how reliably we can
predict final model accuracy when borrowing (or pooling)
some parameters of scaling laws between families—even if
these result in poor parameter estimates, they may predict
large-scale model behavior within the range of meaningful
differences identified in Section 4. To do so, we set the
#params scaling parameters (A,α) to fixed values reported
in past work, and estimate remaining parameters for indi-
vidual model families. We take the variable values found
by Muennighoff et al. (2024) (see Besiroglu et al., 2024;
Porian et al., 2024 for a discussion of estimates from earlier
work including Hoffmann et al., 2022). We find (see Fig. 6
in App. A) that in some cases only a single training run in a
new model family is necessary to obtain accurate scaling law
predictions. In the OLMO family, for example, we obtain

less than 1% error estimating the accuracy of a 7B model
from a collection of 1B model checkpoints. We find that
predictions generalize, and a constant #params scaling fac-
tor is enough for most models (except the encoder-decoder
T5-Pile). However, error rates are larger than in the source
family, and predictions for larger models are worse (most
conspicuous in OPT’s error of 37%, 25% and 15% when
extrapolating from 8.7B, 13B and 30B to 175B).

5.1. Can I train the target model a bit instead of many
small models?

Yes, but obtaining reliable estimates in this way requires up to
30% of the full training run.

The above results (last row of Fig. 6 in App. A) also suggest
the possibility of predicting losses not with just smaller mod-
els, but with partially trained versions of the target model
itself. When predicting inside the same #params family—
that is, estimating L̂(f | Ftarget \ {f})— the #params
term in Equation (1) is constant, and extrapolation is only
required for #toks. As seen in the figures, this form of
estimation is informative if permitted by computational con-
straints. Beyond the immediate usefulness of this approach,
it is a promising avenue for future research on alternatives
to scaling the number of layers.

5.2. Are even simpler baselines enough?

Some extrapolation is necessary: scaling laws can produce
accurate estimates even when the target model vastly outper-
forms any training model.

To provide another form of comparison for the predicted
scaling laws, we compute two baselines. Both base-
lines adopt a pessimistic evaluation assuming that the tar-
get model is no better than the best model in the small
model family used to estimate a scaling law. Specif-
ically, the baselines are the best performance L̂(∅ |
Ftrain) = minf∈Ftrain

L(f) and the performance of the
most-trained model, consuming the most compute for train-
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Figure 4: The effect of fitting on more of the training trajectory. Each cell represents the absolute relative error estimating
scaling laws from a given number of models (vertical axis) trained on a subset of the final checkpoints from a training run
(so scaling laws on the left are estimated using all checkpoints, and on the right using only the final 10% of checkpoints).
White cells failed to fit. As long as the first ≈10% of checkpoints are discarded, final loss can often be predicted accurately.

ing, i.e. L̂(∅ | Ftrain) = argmaxf∈Ftrain
#params(f) ×

#toks(f). Those baselines might be the best one can ex-
pect without fitting a law to scaling.

We find (See App. 5.2) that the best performance baseline is
closer to L(Ftarget), which is to be expected, as the target
model performance is better than any other model in F and
this is the better of the two. In both cases, even with the full
F , the baselines suffer more than 15% error, mostly above
10%, almost never get below 5%, and 18% ARE on average
across all scaled families we study.

6. I have some data; what portions should I
use?

Estimate scaling laws from intermediate checkpoints, not just
fully trained models!

Most past work on scaling behavior of language models
(e.g., Gadre et al., 2024; Muennighoff et al., 2024) has
trained a separate model for each value of #toks studied.
This is based on the assumption that changes in the learning
rate schedule, which depend on the size of the full dataset
that will be used for training, render losses from intermedi-
ate checkpoints uninformative.

However, some recent work has demonstrated the effective-
ness of learning schedules that do not require prior access to
the size of the training set (Hu et al., 2024b), and some work
has questioned whether careful choice of the learning rate
decay is even necessary for reliable scaling laws (Porian
et al., 2024). Together, these findings motivate revisiting the
assumption that only a single useful datapoint may be ob-
tained from each training run. In §5.1, we observed the value
of intermediate checkpoints when only a single #params
family is used to fit a scaling law. In general, there may be
differences between models trained on the same number of

tokens and sizes depending on the choice of learning rate
schedule. But it is unknown whether these differences are
large enough to impact the estimation of scaling laws. We
now test whether this finding extends to larger families—i.e.
whether including intermediate checkpoints from all models
in a model family reduces ARE.

Results are shown in Figure 4, which plots ARE for scaling
laws estimated from data subsets of the form F#tok>q for
varying q. We find that including full training curves in scal-
ing law estimation can predict losses well. In fact, relying
merely on the end of training (left in Figure 4) produces
significantly worse performance across the board. Our re-
maining experiments thus fit scaling laws using all these
intermediate checkpoints, and not final performance alone.

6.1. Should I use all intermediate checkpoints?

Almost all, but drop very early checkpoints.

In Fig. 4, we plot ARE for different F#tok>q-maximal token
families serving as F , i.e., when fitting only with the end of
training runs. There is not a clear trend indicating whether
we should use all data (as might be suggested by GPT-3
results alone) or only some of it. But it is rarely the case that
best estimates are obtained from the end of training alone.

There is, however, a distinctly uninformative phase at the
beginning of training, as can be seen in the loss curves
(App. B) and noted in the literature (e.g., Chen et al.). We
observe that this period is more likely to contain significant
spikes or an increase in loss (worse performance) despite
additional training. We hence hypothesize this part should
always be removed from data used to estimate scaling laws.

Indeed, our experiments depicted in Fig. 5 compare scaling
law AREs with and without including models trained on
less than 10B tokens in F . Evidently, the very beginning
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of training (often not even reported in logs and graphs)
is sometimes harmful to the prediction. Specifically, we
run the same experiments with and without ignoring the
first 10B tokens seen. We find that for some models (e.g.,
OPT and Pythia) the ARE exceeds 15% even when using
the whole data, but drops to 4-10% when ignoring those
tokens. In preliminary experiments, we found that cutting
fewer tokens gave noisier results, and cutting more had a
negligible effect.

7. How big a model should I train?

Larger models are better, but not necessary. Mainly, beware
of specific models that might give noisy results.

In Figure 2 we compare scaling laws when controlling the
amount, percentage, or size of the models (2 at a time). We
find that choosing models closer in #params to the target
model is generally effective (e.g., Fig. 2a, 2c), but the effect
is neither strong nor monotonic. For example, in all cases
fitting on all F provides one of the lowest ARE. However,
in GPT, Gopher and OPT, predicting with the smallest 4
models available is already enough to achieve less than 10%
error. In Pythia, the smallest models are not predictive but
the rest of the models provide a similar fit. While relying on
a larger model is beneficial, predicting many scales up (e.g.,
the behavior of a 34× larger model in Pythia) is still reliable,
especially if accounting for other factors we discuss next.

In fact, training additional, larger models before fitting a
scaling law may sometimes decrease accuracy due to in-
creased variance in large model performance—see, for ex-
ample, Pythia 2.8B in Fig. 1. Unfortunately, it is difficult
to identify whether a seed is exceptionally high or low-
performing without additional information. For example,
cross-validation on F fails to detect it (see App. D).

Instead, this instability can be addressed by accounting for
seed variability. A wasteful way to do so would be to train
every model several times. A better alternative is to diversify
and train each model on as differing hyperparameters as
possible and to maximize the information gained (a common
practice in efficiency-coverage scenarios, e.g., Perlitz et al.,
2024). Hence, we suggest training more models of differing
sizes each accounting for both size and seed changes, rather
than training multiple seeds. We further discuss the effects
of number of models (|F |) in §8.

Given the choice of the largest model and the number of
models, it is unclear how to optimally space the model sizes,
whether linearly, log-scale, or otherwise. We leave that
optimization problem for future work.
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(b) Fit all data

Figure 5: The effect of fitting with/without the beginning
10B tokens seen. Each cell represents the absolute relative
error when estimating a scaling law from a given number
of models (vertical axis) trained on a given subset of check-
points from the beginning of training (horizontal axis).

8. How many models for reliable predictions?

5 models is a safe bet, more would improve the results’ robust-
ness. These models can be small.

We have seen that predicting with larger models and hence
extrapolating less yields better results. However, given com-
pute constraints (and additional hardware constraints like
memory), practitioners may generally wish to use smaller
models when possible. Consider for example Fig. 2b where
we compare fitting on 4 models but vary their size. We
find that more models reduce ARE even without being big-
ger models. As discussed in §7, adding a larger model to
a current scaled family serves two goals, it increases the
proximity to the predicted model, as well as increases the
number of models seen.

We separate the contribution of size and number of models.
In Fig. 2c, we predict with the largest model being held
constant and add (at minimal cost) smaller models. We see
again that larger models do benefit predictions. For exam-
ple, the small models part (left) of the graph indicates large
errors (bright). However, we also see again the unwanted
effects a single model may have on the overall prediction.
Consider for example the figure’s diagonal in Pythia. Cells
in a diagonal share a group of models and each row adds
another one to F . Evidently this specific group hurts results,
even when larger models are added to F . With enough mod-
els (bottom of diagonal), the negative decreases. Switching
the model (next column) also removes the negative effect.
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Moreover, across all rows the tendency is never monotonic,
implying larger models do not not ensure better predictions.

But in general, we see that increasing the number of mod-
els tends to improve prediction. For example, in GPT3
the best predictions are with many models. Perhaps intu-
itively, adding a larger model and improving both #params
and number of models aspects improves quite consistently
(Fig. 2b and diagonals of Fig. 2c).

9. Are all scaling law parameters crucial?

Scaling laws might have fewer degrees of freedom than de-
scribed in the literature.

Assuming we do not try to account for aspects other than
#toks and #params (see §10), one might wonder if some
of the observed errors come from model misspecification—
an incorrect functional form for L̂, which (with a small
number of exceptions including Caballero et al.) has gener-
ally gone uncontested since it was first proposed (Rosenfeld
et al.; Hoffmann et al., 2022). Here we specifically evaluate
whether scaling laws empirically exhibit fewer degrees of
freedom than has been proposed. First, we compute the
principal components of the 5 learned parameters and find
that 3 components explain 99.49% of the variance between
the 5 parameters. Inspection reveals that two of these com-
ponents tightly couple the pairs of parameters dealing with
the same training parameter (#params and #toks). Plot-
ting values of A against α and of B against β (Fig. 3), we
see a clear linear relationship between these variables de-
spite ther non-linear interaction in Eq. 1. There are a few
exceptions: the Encoder-Decoder model T5-Pile shows a
different behavior from the rest of the scaled families, and
four additional scaled families show a different relationship
between B and β. In fact, all these families share the com-
mon feature that they were trained using multiple passes
over a single training set Gadre et al. (2024). The outlier
point with β > 4 is a 70m baseline of Pythia for a continual
training intervention experiment (Biderman et al., 2023).
Future work may consider different function forms tying
some of the parameters or introducing other ones instead.

Another function form change that future work should con-
sider is accounting for the learning rate schedule, as our
experiments assumed it was negligible, and previous works
disregarded the training trajectory. A mismatch between the
form and the real dependence might explain the inconsisten-
cies in using the beginning of training. As noted in §6.1, the
beginning is not fitting as well as later on.

10. Related work
This work builds on a large number of recent studies re-
lating scaling law estimation and decision-making about

model training. Among the aspects studied are total train-
ing costs including inference (Sardana et al.), effects of
sophisticated data selection (Sorscher et al., 2022; Ge et al.,
2024), training time (Inbar & Sernau, 2024), transfer of
learned skills (Hernandez et al., 2021), behavior of models
in other modalities (Mikami et al., 2022; Abnar et al.; Al-
abdulmohsin et al., 2024; Hesslow et al., 2022) mixtures of
experts (Ludziejewski et al.), data mixing (Ge et al., 2024),
downstream performance (Muennighoff et al., 2024), vocab-
ulary size (Tao et al., 2024), and architecture comparisons
(Tay et al., 2023; Poli et al., 2024) including small models
(Muckatira et al., 2024) or other phenomena like finetuning
(Zhang et al.) and the loss in different positions in the train-
ing sequences (Xiong et al., 2024). Especially relevant to
our context is Ruan et al. (2024); Maia Polo et al. (2024)
that rely on multiple pretraining settings for creating scaling
laws that generalize across models or kinds of losses.

Another line of works that can be seen as a scaling law
discusses the relation between model width and hyperpa-
rameter choices (rather than loss) (Yang et al., 2022; 2021;
Blake et al., 2024; Lingle, 2024).

11. Limitations
Our primary metric, ARE, does not distinguish between
over- or under-estimation of performance. When using
scaling laws to choose between candidate models to train,
these error estimates may be unnecessarily conservative (e.g.
if both families’ laws are biased in the same direction).

Another difficulty is aggregating information across model
families. As most published families evaluate models of in-
comparable scales, often over incomparable ranges, we were
unable to produce an informative version of Figure 2 that
aggregated information across all models available, and was
thus able to give general recommendations about compute-
optimal choice of preliminary experiments.

12. Discussion
This paper provides a first study of open questions in the
estimation of scaling laws and their relation to large-scale
pretraining decisions. We expect that many of these conclu-
sions could be sharpened or extended with the availability
of additional information about model training, and we call
on other leaders of large-scale training efforts to share train-
ing losses and evaluation results from multiple checkpoints
during pretraining—even in cases where model parameters
themselves cannot be released.

Our findings leave open many important questions, from
efficient predictions by fitting on many model families to
scaling laws of the deltas between a/b test (e.g. on optimizer
choice), and to other methods that efficiently compare archi-
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tectures without relying on multiple models (e.g. continual
learning). In addition, our results in §9 suggest other scaling
law parameterizations might better fit data.

Practical reccomendations
§4 Set an estimation goal and a budget.
§5.1 If budget allows, train the whole model for 30%.
§A If extremely constrained, predict from one model.
§6 Use all training losses (except the beginning).
§7 Train as big as possible, but limit tokens.
§7 Train more models, not just larger ones.
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A. Scale up with 1 model
We bring errors of data from fitting from a single model
on a given percentage of training to the largest model with

full training. Scaling is constant and follows the literature
(Muennighoff et al., 2024) and the largest model stands as
target model (so the bottom line in each figure represents
predicting from the beginning of training). In parallel to
this paper, an even more efficient work on predicting with 1
model was suggested, and the two should be incorporated
(Maia Polo et al., 2024).

B. Loss curves and predictions
We provide in Fig. 7 graphs of the loss during training of the
target models per originating source (e.g., a paper) together
with the predictions by using different percentage of the
training.

C. Is scaling working only upwards?

No. Small models usually show consistent and predicatable
performance.

Usually, one does not use a scaling law to extrapolate to a
smaller model as one can just train the small model. How-
ever, under observational scaling laws, where one wants to
research a phenomenon without scaling at all (Ruan et al.,
2024; Maia Polo et al., 2024), or when many models were
trained and one wishes to create smaller models for various
reasons (Hillier et al., 2024; Warstadt et al., 2023), scaling
down might prove useful. Moreover, in the context of tra-
ditional scaling laws this may act as a baseline. Such an
experiment may shed another light on the number of models
|F | versus their size #params. If large models are better
because they are more stable or otherwise fit laws more ro-
bustly, few models will be enough, if the number of models
or scale down difference from the prediction, it will show
similar behaviour to scaling up. See more in §8.

To test this we reverse the order of models and predict with
the largest models the loss on the smallest models. This
means that for example in the case of 3 models, we predict
the smallest model’s loss and fit the scaling law relying on
the 3 largest models. As before, we break the results by the
percentage of training done and do not reverse it.

As shown in Fig. 8, the number of models plays an important
role in fitting well and a minimum of 30-40% of the training
is necessary for good fit, more than that often improves
further.

D. Can we detect bad models to fit on?

If so, not through cross validataion.

In §7, we raise the issue of instability of scaling law predic-
tions, with a single model vastly changing the results. We
tried to see if, without knowing the ARE, we could remove
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Figure 6: Fitting scaling laws under the assumption that all models scale similarly. Thus, a single model is needed to predict.
The last row in each Figure represents predicting a model at the beginning of its training.
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Figure 7: In each figure all losses from a specific source and predictions of the scaling loss with different percentage of the
#toks and all models. Predictions are points where the X axis is the available data for prediction and y the prediction value,
lines are the actual value. One scaled family per paper was sampled as a representative.

bad models from the prediction. We hypothesized that mod-
els that we can’t predict would mean models that would
skew our predictions when fitted upon. We performed a
cross-validation on the #params families in F each time
setting the models with most #toks as target ans exclusing
the #params family from F . Our hypothesis was found
to be incorrect. Such cases of hard-to-predict models were
found to indicate that the models left in F are bad predictors
and not that the target is very dissimilar (a "bad" training).
In 58% of the cases removing that model from the scaling
law created the worst ARE possible on the actual target,
more than removing any other model.

E. Huber replication
Huber loss is sometimes used instead of ARE (Hoffmann
et al., 2022). Huber loss is defined as

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,

δ ·
(
|a| − 1

2δ
)
, otherwise.

We use δ = e10−3 as done in (Hoffmann et al., 2022). The
overall results are similar but for completeness report them
in Fig. 9.
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Figure 8: Fitting scaling laws trying to predict the smallest model, with the largest (Y-axis) models trained on a percentage
of the data (X-axis).
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Figure 9: Scaling laws under a Huber loss. The line represents most efficient setting to recieve <0.05. Comparison of several
models given different amount of models and percentages of training.
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