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Abstract001

Generating high-quality, interconnected ques-002
tions remains a significant challenge in arti-003
ficial intelligence (AI), particularly in appli-004
cations requiring logical coherence and social005
relevance. Current methods often lack a cogni-006
tive foundation to ensure meaningful question007
relationships, limiting their effectiveness in dy-008
namic environments. To address this gap, we009
propose a novel neuroscience-inspired frame-010
work, HPN-SCA, that integrates AI with theo-011
ries of prefrontal cortex function, hippocampal012
memory retrieval, and the dynamic interplay013
between the Default Mode Network (DMN)014
and Central Executive Network (CEN). Our015
methodology consists of three key steps: (1) the016
Prefrontal Cortex Simulator, where dual mod-017
els emulate the dorsolateral prefrontal cortex018
(DLPFC) for logical structuring and the ventro-019
medial prefrontal cortex (VMPFC) for social020
contextualization to generate preliminary ques-021
tions; (2) the Hippocampus Simulator, which022
classifies questions into Scenario-based (re-023
trieved from knowledge bases) or Logic-based024
(interactively generated) chunks, mimicking025
memory association mechanisms; and (3) the026
DMN/CEN Simulator, where difficulty-based027
routing refines questions through either asso-028
ciative (DMN) or rigorous (CEN) processing.029
Experiments show our HPN-SCA method out-030
performs baselines in coherence, diversity, and031
human evaluation. This work integrates AI and032
cognitive science, enabling applications in edu-033
cation and conversational AI. Future work will034
explore additional cognitive mechanisms.035

1 Introduction036

Automatic question generation remains a funda-037

mental challenge in artificial intelligence, with sig-038

nificant implications for educational technologies,039

conversational systems, and knowledge discovery.040

While recent advances in natural language process-041

ing have improved question generation capabilities,042

current approaches often produce isolated ques-043

tions lacking logical coherence, contextual depth, 044

or social relevance. This limitation stems from their 045

failure to incorporate the cognitive mechanisms un- 046

derlying human question formulation. 047

Existing methods predominantly rely on pat- 048

tern recognition from large text corpora (Liu et al., 049

2025b; Xie et al., 2025) or sequence-to-sequence 050

architectures (Sujatha et al., 2025; Bi et al., 2025), 051

overlooking the neurocognitive processes that en- 052

able humans to generate meaningful, intercon- 053

nected questions. Particularly absent are models 054

that account for: (1) the complementary roles of 055

dorsolateral and ventromedial prefrontal cortices 056

in logical structuring and social contextualization 057

(Guo and Shing, 2025; Badre and Nee, 2018), (2) 058

hippocampal mechanisms for memory retrieval 059

and association (Hasselmo and Eichenbaum, 2005), 060

and (3) the dynamic interaction between Default 061

Mode and Central Executive Networks during ques- 062

tion refinement (Chen et al., 2013). This cognitive 063

gap limits both the quality and applicability of gen- 064

erated questions. 065

2 Related Work 066

Question Generation Methods in AI: Exist- 067

ing approaches to automated question generation 068

can be categorized into three main paradigms. 069

Rule-based systems (Caufield et al., 2024; Lyu 070

et al., 2025) employ syntactic patterns and tem- 071

plate matching to transform declarative sentences 072

into questions, offering high precision but limited 073

scalability. Statistical methods (Rani and Jain, 074

2024; Lin, 2024) utilize n-gram models and seman- 075

tic role labeling, improving flexibility but strug- 076

gling with complex sentence structures. Recent 077

neural approaches (Raiaan et al., 2024; Annepaka 078

and Pakray, 2024; Veeramachaneni, 2025) lever- 079

age sequence-to-sequence architectures with atten- 080

tion mechanisms, achieving state-of-the-art per- 081

formance through transformer-based models like 082
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Figure 1: Overview of the HPN-SCA Framework: The HPN-SCA framework integrates AI with neuroscience to
generate high - quality questions. It has three steps: the Prefrontal Cortex Simulator creates Preliminary Questions
by mimicking prefrontal cortex functions; the Hippocampus Simulator classifies and retrieves/generates Chunks
like the hippocampus’s memory processes; and the DMN/CEN Simulator refines questions by routing Chunks to
different models based on difficulty, simulating network switching in the brain.

BERT and GPT. While these neural methods gen-083

erate fluent questions, they often produce isolated084

queries without considering logical sequences or085

contextual relationships (Zhou et al., 2024).086

Neuroscience-Inspired AI Research: Several087

studies have successfully integrated cognitive prin-088

ciples into AI systems. Memory-augmented net-089

works (Jimenez Gutierrez et al., 2024; Zhu et al.,090

2025) have modeled hippocampal functions for091

question answering, while prefrontal cortex simula-092

tions (Wei et al., 2025) have enhanced decision-093

making systems. Particularly relevant are: (1)094

DLPFC-inspired architectures for task organiza-095

tion (Kahnt et al., 2011), (2) VMPFC models for096

social cognition (Labutina et al., 2024), and (3)097

DMN/CEN interaction systems for creative prob-098

lem solving (Maslova et al., 2025). However,099

these implementations remain specialized - no ex-100

isting work combines these cognitive components101

for question generation. Recent hybrid systems102

(Liu et al., 2025a; Zheng et al., 2025) have shown103

promise in integrating multiple brain regions, but104

focus primarily on memory retrieval rather than105

generative tasks.106

Research Gaps and Our Position: Three crit-107

ical gaps emerge from this review: First, current108

question generation systems lack mechanisms for109

maintaining logical coherence across multiple ques-110

tions, analogous to the DLPFC’s organizational 111

function. Second, they fail to incorporate social- 112

relevance filtering comparable to VMPFC opera- 113

tions. Third, no existing framework implements the 114

dynamic DMN/CEN switching crucial for adapt- 115

ing question difficulty and type. Our work ad- 116

dresses these limitations through: (1) simultane- 117

ous DLPFC/VMPFC simulation for balanced ques- 118

tion formulation, (2) hippocampal modeling for 119

interconnected question chunks, and (3) difficulty- 120

adaptive DMN/CEN routing - representing the first 121

unified cognitive architecture for comprehensive 122

question generation. 123

The main contributions of our paper are as fol- 124

lows: 125

• Methodological Innovation: Emphasize the 126

novelty of combining artificial intelligence 127

techniques with neuroscience concepts to 128

model different brain regions (prefrontal cor- 129

tex, hippocampus, DMN/CEN) for question - 130

generation in the HPN-SCA framework. Ex- 131

plain how this integration provides a new per- 132

spective on question - generation. 133

• Performance Improvement: Present how the 134

HPN-SCA framework outperforms existing 135

methods in terms of question quality and in- 136

terconnectedness. Provide quantitative and 137
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qualitative metrics to support this claim.138

• Theoretical and Practical Implications: Dis-139

cuss the theoretical contribution to the under-140

standing of question - generation and its un-141

derlying mechanisms within the HPN-SCA142

framework, as well as the practical implica-143

tions for applications in different domains.144

3 Methods145

3.1 Overall Framework146

The HPN-SCA Framework comprises three inter-147

connected modules (Figure 1): (1) Prefrontal Cor-148

tex Simulator for initial question formulation, (2)149

Hippocampus Simulator for memory-based ques-150

tion association, and (3) DMN/CEN Simulator for151

adaptive question refinement. The system takes152

an input query Q and progressively transforms it153

through these modules to output a set of intercon-154

nected questions {q1, ..., qn} with balanced logical155

structure and social relevance.156

3.2 Probabilistic Formalization of the157

HPN-SCA Framework158

We model the question-generation process as a159

probabilistic pipeline where each component (Pre-160

frontal Cortex, Hippocampus, and DMN/CEN161

Simulators) contributes to the generation of high-162

quality, interconnected questions. Below, we for-163

malize each step with probabilistic formulations164

and define the associated parameters.165

3.2.1 Prefrontal Cortex Simulator166

The DLPFC and VMPFC simulators generate a167

preliminary question Qprelim from an input query168

q.169

Formulation The combined generation process170

is modeled as:171

P (Qprelim | q) = α · PDLPFC(Qprelim | q)172

+ (1− α) · PVMPFC(Qprelim | q) (1)173

where:174

• PDLPFC(Qprelim | q): Probability of gen-175

erating Qprelim under logical structuring176

(DLPFC).177

• PVMPFC(Qprelim | q): Probability of generat-178

ing Qprelim under social-contextual refinement179

(VMPFC).180

• α ∈ [0, 1]: Weight balancing logical vs. social181

considerations (tuned empirically).182

Explanation: 183

• The DLPFC model generates questions with 184

high PDLPFC when logical coherence is priori- 185

tized. 186

• The VMPFC model increases PVMPFC when 187

social relevance is needed. 188

• α controls the trade-off (e.g., α = 0.7 for 189

exam-style questions, α = 0.3 for conversa- 190

tional questions). 191

3.3 Hippocampus Simulator 192

The Hippocampus Simulator classifies Qprelim 193

into Scenario (S) or Logic (L) categories and re- 194

trieves/generates associated knowledge chunks C. 195

The classification and chunk generation follow: 196

P (S | Qprelim) = σ(fclass(Qprelim)) (2) 197

198
P (L | Qprelim) = 1− P (S | Qprelim) (3) 199

where: 200

• σ(·): Sigmoid function for binary classifica- 201

tion. 202

• fclass: A language model-based classifier (e.g., 203

few-shot LLM scoring). 204

For chunk generation: 205

• If Qprelim is Scenario-type: 206

C ∼ Pretrieve(C | Qprelim,K) (4) 207

where K is the knowledge base, and retrieval 208

follows a similarity-based distribution (e.g., 209

Pretrieve ∝ sim(Qprelim, C)). 210

• If Qprelim is Logic-type: 211

C ∼ PDLPFC(C | Qprelim) (5) 212

where the DLPFC simulator generates chunks 213

via few-shot prompting. 214

Explanation: 215

• The classifier fclass determines whether the 216

question requires factual recall (Scenario) or 217

logical derivation (Logic). 218

• Pretrieve uses embeddings (e.g., cosine similar- 219

ity) to fetch relevant chunks. 220

• PDLPFC ensures logical continuity by reusing 221

the DLPFC’s structured generation. 222
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3.4 DMN/CEN Simulator223

The DMN (Default Mode Network) and CEN224

(Central Executive Network) simulators refine225

chunks C into related questions Qrelated based on226

difficulty.227

First, difficulty is classified:228

P (Hard | C) = σ(gdiff(C)) (6)229

where gdiff is a language model-based difficulty230

scorer.231

Then, Qrelated is generated via:232

P (Qrelated | C) = β · PCEN(Qrelated | C)233

+ (1− β) · PDMN(Qrelated | C) (7)234

where:235

• PCEN(Qrelated | C): Analytical refinement236

(high-depth reasoning).237

• PDMN(Qrelated | C): Associative/creative ex-238

pansion (broad connections).239

• β = P (Hard | C): Dynamic weight favoring240

CEN for hard chunks.241

Explanation:242

• gdiff assigns difficulty (e.g., based on chunk243

complexity or ambiguity).244

• Hard chunks (β ≈ 1) use CEN for rigorous245

question decomposition.246

• Easy chunks (β ≈ 0) use DMN for creative247

associations (e.g., analogies).248

3.5 Full Pipeline Integration249

The end-to-end generation of related questions fol-250

lows:251

P (Qrelated | q) =
∑

Qprelim,C

P (Qrelated | C)252

· P (C | Qprelim) · P (Qprelim | q) (8)253

The pseudo code of the HPN-SCA Framework254

algorithm is shown in Algorithm 1.255

4 Experiments256

4.1 Experimental Setup257

In the experiment setups of our study, the selec-258

tion of models is crucial for achieving accurate259

and effective results. For the main model, we have260

Algorithm 1 Question Generation Algorithm of
HPN-SCA Framework
Require: Input query q
Ensure: Set of interconnected questions

{q1, . . . , qn}
1: // Prefrontal Cortex Simulator
2: Define α ∈ [0, 1] (weight for logical vs. social

considerations)
3: PDLPFC(Qprelim | q) := Probability of gener-

ating Qprelim under logical structuring (using
DLPFC model)

4: PVMPFC(Qprelim | q) := Probability of generat-
ing Qprelim under social - contextual refinement
(using VMPFC model)

5: Qprelim := α · PDLPFC(Qprelim | q) + (1 − α) ·
PVMPFC(Qprelim | q)

6: // Hippocampus Simulator
7: fclass := Language model - based classifier
8: P (S | Qprelim) := σ(fclass(Qprelim)) (probabil-

ity of Qprelim being Scenario - type)
9: P (L | Qprelim) := 1 − P (S | Qprelim) (proba-

bility of Qprelim being Logic - type)
10: if P (S | Qprelim) is high then
11: K := Knowledge base
12: C ∼ Pretrieve(C | Qprelim,K) (retrieve

chunks based on similarity to Qprelim from K)
13: else
14: C ∼ PDLPFC(C | Qprelim) (generate

chunks using DLPFC model)
15: end if
16: // DMN/CEN Simulator
17: gdiff := Language model - based difficulty

scorer
18: P (Hard | C) := σ(gdiff(C)) (probability of

chunk C being hard)
19: β := P (Hard | C)
20: PCEN(Qrelated | C) := Probability of generating

Qrelated via analytical refinement (using CEN
model)

21: PDMN(Qrelated | C) := Probability of generat-
ing Qrelated via associative/creative expansion
(using DMN model)

22: Qrelated := β · PCEN(Qrelated | C) + (1 − β) ·
PDMN(Qrelated | C)

23: Return Qrelated as the set of interconnected
questions {q1, . . . , qn}
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Table 1: Description of Artificial Intelligence-Related Datasets

Dataset Name Type Key Features Scale
CoQA (Reddy et al.,
2019)

Conversational
Question Answer-
ing

Conversational questions; free-
form text answers; evidence sub-
sequences highlighted; 7 diverse
domains; includes coreference
and pragmatic reasoning chal-
lenges

127,000 questions from
8,000 conversations

MCTest (Richard-
son et al., 2013)

Machine Compre-
hension

Freely available; gathered via
Mechanical Turk

660 stories with associated
questions

High School Chi-
nese Educational
(HSCE)

1

Educational Ques-
tions

20 different texts with learning
tasks and questions

484 learning tasks, 1,452
questions

Figure 2: Performance Comparison on Three Datasets

chosen Qwen - 14B - chat(Bai et al., 2023). This261

model was selected due to its distinct advantages262

in handling cross - text datasets. Its architecture263

and training process endow it with the ability to264

understand and process text across diverse sources,265

which is essential for the tasks at hand. In addi-266

tion, for the similarity comparison in the retrieval267

process, we employed the Sbert model(Reimers268

and Gurevych, 2019). Sbert is well - known for269

its efficiency and accuracy in calculating semantic270

similarities between text snippets. By using this271

model, we can effectively retrieve relevant infor-272

mation from a large corpus, enabling us to make273

more informed comparisons and analyses within274

our experimental framework.275

4.1.1 Datasets276

We evaluate our the HPN-SCA Framework on three277

benchmark datasets. The details are presented in278

Table 1.279

1Data source: https://anonymous.4open.science/r/
HSCE-ED7B

4.2 Quantitative Results 280

In this section, we present the performance com- 281

parison of different methods on three datasets: 282

CoQA, MCTest, and HSCE, using evaluation met- 283

rics such as BLEU-1, BLEU-2, ROUGE-1-F, and 284

ROUGE-L-F, with the results summarized in Fig- 285

ure 2. This study assesses the question generation 286

performance of the HPN-SCA method, compar- 287

ing it against Standard Prompt and CoT(Wei et al., 288

2022) methods. Across all datasets, HPN-SCA out- 289

performs the others. On CoQA and MCTest, it 290

demonstrates significant improvements in all met- 291

rics, achieving 12 - 15 times higher scores than 292

the baseline in some cases. For HSCE, although 293

CoT has a relatively high ROUGE-1-F score, HPN- 294

SCA dominates in BLEU metrics and attains the 295

highest ROUGE-L-F score. The core advantages 296

of HPN-SCA, including its multi-dimensional se- 297

mantic modeling, robustness across datasets, and 298

superiority in handling complex contexts, allow it 299

to capture semantic relationships, maintain stable 300

performance, and generate contextually consistent 301
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questions, thereby providing a new paradigm for302

natural language tasks.303

4.3 Hyperparameter Influence304

Figure 3: Hyperparameter vs. Evaluation Metrics
Heatmap

The heatmap (Figure 3) analysis reveals that305

optimal performance across all metrics (BLEU-1,306

BLEU-2, ROUGE-1-F, and ROUGE-L-F) occurs at307

intermediate values of α (0.5–0.7) and β (0.4–0.6),308

demonstrating the importance of balanced trade-309

offs between logical structuring (α) and difficulty-310

based refinement (β). Extreme values in either hy-311

perparameter degrade performance, with α show-312

ing stronger influence than β, indicating that nei-313

ther purely logical (DLPFC-dominated) nor purely314

social-contextual (VMPFC-dominated) generation315

is optimal. ROUGE-L-F exhibits the highest sen-316

sitivity to hyperparameter tuning, suggesting its317

stronger dependence on the framework’s balanced318

refinement strategy compared to lexical overlap319

metrics (BLEU-1/2). These results empirically val-320

idate the probabilistic formulation of HPN-SCA,321

highlighting that joint optimization of α and β is322

crucial for maximizing question-generation quality323

across diverse evaluation dimensions.324

4.4 Qualitative Analysis325

4.4.1 Case Study326

Input: "Learning Task: Writing a Biography The327

first section of the exhibit board requires an intro-328

duction to Tu Youyou. Please draft a biographi-329

cal sketch to help students quickly understand her330

significance. Students should carefully read the331

assigned text, gather and review relevant materials332

about Tu Youyou, and present the information ob-333

jectively and rigorously, with a minimum length of 334

200 words." 335

Output Questions: 336

1. (Standard Prompt) Based on the content of 337

the text Artemisinin, compose a biographical 338

introduction for Tu Youyou to be displayed 339

on the exhibit board. Your writing should 340

draw upon the text’s descriptions of her re- 341

search background, key contributions, career 342

trajectory, and personal qualities, ensuring 343

factual accuracy while maintaining an objec- 344

tive and scholarly tone. The summary should 345

be concise yet comprehensive, with a mini- 346

mum of 200 words. After completing the read- 347

ing and organizing your materials, draft a 348

well-rounded overview. 349

2. (CoT) Who is Tu Youyou, and what is her sig- 350

nificance in the history of Chinese medicine? 351

In which field did Tu Youyou make her most 352

notable contributions? In what year was she 353

born, and which province did she come from? 354

What was her pivotal breakthrough in scien- 355

tific exploration? For which discovery or 356

invention is Tu Youyou most widely recog- 357

nized? What challenges and obstacles did 358

she face during her research? How has her 359

work impacted global healthcare? What ma- 360

jor scientific awards or honors has Tu Youyou 361

received? Which traditional herbal remedy 362

inspired her research team’s extraction pro- 363

cess for artemisinin? How do Tu Youyou’s 364

personal traits—such as perseverance and in- 365

novative thinking—manifest in her scientific 366

journey? What lessons can contemporary 367

scholars and scientists draw from Tu Youyou’s 368

life and work? How does Tu Youyou’s story 369

inspire young people to pursue scientific as- 370

pirations? These questions are designed to 371

guide students in closely analyzing the text, 372

seeking answers, and composing the biogra- 373

phy. 374

3. (HPN-SCA) Before reading the text, list Tu 375

Youyou’s key contributions to the discovery 376

of artemisinin. Which paragraph(s) detail Tu 377

Youyou’s research background? What pro- 378

fessional competencies does this highlight? 379

What challenges did Tu Youyou encounter dur- 380

ing her research, and how did she address 381

them? What was the "523 Project," and how 382

did it influence Tu Youyou’s work? Identify 383
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Table 2: Manual Scoring Rubric

Criterion Score Range Evaluation Description
Expression Quality 8-10 Flawless grammar, coherent semantics, scientifically accurate

5-7 Minor grammatical issues, basically clear, mostly accurate
1-4 Confused structure, ambiguous meaning, cognitive errors

Content Quality 8-10 Highly scenario-adaptive, strong emotional resonance
5-7 Partially scenario-adaptive, moderate practical value
1-4 Poor scenario fit, low practical value, potential discomfort

Question Relevanc 8-10 Strict thematic focus, progressive logic, highly complementary
5-7 Basic thematic consistency, some logical repetition
1-4 Dispersed themes, chaotic logic, redundant content

Table 3: Human Evaluation

Data Set Method Expression Quality Content Quality Question Relevance
CoQA Standard Prompt 7.47 4.20 3.87

CoT 7.53 4.267 4.13
HPN-SCA 8.07 7.93 8.20

MCTest Standard Prompt 7.27 4.40 3.87
CoT 7.20 4.47 4.33

HPN-SCA 7.93 8.13 8.07
HSCE Standard Prompt 4.71 4.19 2.42

CoT 4.33 3.00 2.33
HPN-SCA 7.10 7.14 7.00

the traditional herbal extraction method men-384

tioned in the text and explain its underlying385

principles. How many critical turning points386

occurred during the artemisinin extraction387

process? Describe these pivotal events. Inter-388

pret Tu Youyou’s statement, "Inspiration came389

from The Handbook of Prescriptions for Emer-390

gencies." Does this reflect her innovative inte-391

gration of traditional knowledge? What criti-392

cisms or difficulties did Tu Youyou face upon393

receiving awards? How did her resilience394

shine through? Which of Tu Youyou’s quali-395

ties or values are most worthy of emulation?396

Provide textual examples. When drafting the397

biography, which key achievements and traits398

of Tu Youyou would you emphasize, based399

on the text? These questions aim to guide400

students in examining Tu Youyou’s research401

process and personal attributes from multiple402

perspectives, ensuring thorough preparation403

for writing the biography.404

4.5 Human Evaluation405

To systematically evaluate the quality of questions406

across multiple dimensions, we propose a manual407

scoring rubric with three key criteria: Expression408

Quality, Content Quality, and Question Relevance. 409

Each criterion is assessed on a 10-point scale, with 410

higher scores indicating stronger adherence to lin- 411

guistic precision, practical utility, and logical co- 412

herence. The detailed scoring guidelines are pre- 413

sented in Table 2, which provides clear benchmarks 414

for distinguishing between excellent (8–10), satis- 415

factory (5–7), and inadequate (1–4) performance. 416

This rubric ensures consistent and transparent eval- 417

uation while accommodating nuanced variations in 418

question design. The human evaluation results are 419

presented in Table 3. 420

The results show that across different datasets 421

(CoQA, MCTest, HSCE), the HPN - SCA method 422

outperforms the Standard Prompt and CoT methods 423

in all three evaluation criteria: Expression Quality, 424

Content Quality, and Question Relevance. Specifi- 425

cally, on CoQA and MCTest, HPN - SCA achieves 426

scores above 7.9 in all criteria, demonstrating ex- 427

cellent performance in grammar, scenario adapt- 428

ability, and thematic focus. For the HSCE dataset, 429

although the base scores of the other two methods 430

are lower, HPN - SCA still significantly improves 431

each indicator to around 7. This indicates that HPN 432

- SCA has strong advantages in the question gener- 433

ation task, especially in enhancing the quality and 434
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relevance of generated questions.435

Limitations436

While HPN-SCA demonstrates promising results in437

generating contextually anchored question chains,438

several limitations warrant discussion. First, the439

current architecture relies on predefined knowl-440

edge bases for scenario-based question retrieval,441

which may limit generalization in domains with442

sparse or evolving knowledge. Second, the cogni-443

tive simulations (DLPFC/VMPFC, DMN/CEN dy-444

namics) are abstract computational approximations445

rather than biologically precise models, potentially446

overlooking nuanced neural mechanisms. Third,447

the evaluation metrics, though comprehensive, do448

not fully capture longitudinal learning effects that449

hippocampal-prefrontal interactions would enable450

in biological systems. Addressing these limitations451

through adaptive knowledge graphs, more detailed452

neural circuit modeling, and optimized inference453

pipelines represents key directions for future re-454

search.455
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A Example Appendix 616

A.1 Prefrontal Cortex 617

A.1.1 DLPFC Prompt 618

"Act as logical question designer. Given $\{q\}$, 619
generate 3 variants that: 1) Maintain logical 620
coherence 2) Decompose complexity 3) Follow 621
deductive structures. Format: - Primary: 622
[Reformulation] - Follow-up 1/2: [Sub-questions]" 623

A.1.2 VMPFC Prompt 624

"Generate 3 social variants of $\{q\}$: 1) Cultural 625
references 2) Natural dialog structures 3) 626
Formality-adjusted versions. Output: - Professional: 627
[Formal] - Casual: [Conversational] - Adapted: 628
[Locale-specific]" 629

A.2 Hippocampus 630

A.2.1 Classifier Prompt 631

"Classify $\{Q_{\text{prelim}}\}$ as: Scenario (factual recall)632
or Logic (derivation needed). Output: Type: 633
[S/L] Confidence: [0-100\%] Justification: 634
[1-sentence]" 635

A.2.2 Retrieval Prompt 636

"Generate knowledge chunks for $\{Q_{\text{prelim}}\}$. 637
Scenario-type: Factual excerpts. Logic-type: 638
1) Core Concept 2) Supporting Facts 3) Logical 639
Connections 4) Potential Gaps" 640

A.3 DMN/CEN 641

A.3.1 Difficulty Prompt 642

"Rate $\{C\}$ difficulty (1-5): 1) Conceptual 643
Complexity 2) Background Knowledge 3) Cognitive 644
Load. Thresholds: Hard (sum$\geq$10), Easy (sum$\leq$6)" 645
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A.3.2 CEN Prompt646
"Refine hard question $\{C\}$: 1) Identify assumptions647
2) Decompose 3) Add constraints 4) Verification648
methods"649

A.3.3 DMN Prompt650
"Generate creative associations for $\{C\}$: 1) Analogies651
(3 domains) 2) Alternative phrasings 3) Cross-disciplinary652
connections 4) Counterfactuals"653
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