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ABSTRACT

We address the common yet often-overlooked selection bias in interventional stud-
ies, where subjects are selectively enrolled into experiments. For instance, partici-
pants in a drug trial are usually patients of the relevant disease; A/B tests on mobile
applications target existing users only, and gene perturbation studies typically focus
on specific cell types, such as cancer cells. Ignoring this bias leads to incorrect
causal discovery results. Even when recognized, the existing paradigm for interven-
tional causal discovery still fails to address it. This is because subtle differences in
when and where interventions happen can lead to significantly different statistical
patterns. We capture this dynamic by introducing a graphical model that explicitly
accounts for both the observed world (where interventions are applied) and the
counterfactual world (where selection occurs while interventions have not been
applied). We characterize the Markov property of the model, and propose a prov-
ably sound algorithm to identify causal relations as well as selection mechanisms
up to the equivalence class, from data with soft interventions and unknown targets.
Through synthetic and real-world experiments, we demonstrate that our algorithm
effectively identifies true causal relations despite the presence of selection bias.

1 INTRODUCTION

Experimentation is often seen as the gold standard for discovering causal relations, but due to its cost,
alternative methods have been developed to infer causality from pure observational data (Spirtes et al.|
2000 [Pearl, 2009). Many real-world scenarios fall between these two extremes, involving passive ob-
servations collected from interventions. Interventional causal discovery addresses this, with methods
for hard interventions (Cooper & Yoo, |1999; Hauser & Biihlmann, [20135)), soft interventions (Tian &
Pearl, 2001} Eberhardt & Scheines) 2007)), and those with unknown targets (Eaton & Murphy, 2007}
Squires et al., [2020). A detailed review is provided in §2.1] with further related works in Appendix [C]

While significant progress has been made in interventional causal discovery, existing methods over-
look a critical issue: selection bias (Heckman, [1977;|1990; Winship & Marel [1992). Though ideally,
experiments should be randomly assigned in the general population, in practice, subjects are usually
pre-selected. For example, drug trial participants are typically patients with the relevant disease; A/B
tests target only existing users, and gene perturbation studies often focus on specific cell types like
cancer cells. Ignoring this bias leads to incorrect statistical inferences. While various methods address
selection bias for causal inference (Didelez et al., [2010; [Bareinboim & Pearl| [2012; Bareinboim:
et al.,2014) and for observational causal discovery (Spirtes et al.,|1995; Borboudakis & Tsamardinos)
2015; Zhang et al.,|2016)), no existing work tackles selection bias in interventional causal discovery.

Then, one may naturally wonder whether existing well-established paradigms from both interventional
causal discovery and observational causal discovery with selection bias can solve the problem.
However, as we will illustrate in Examples[T]and[2] these methods still fail to characterize data given
by intervention under selection, and will thus lead to false causal discovery results. This is because
subtle differences in when and where interventions happen can lead to significantly different statistical
patterns, demanding a new problem setup and model. This is exactly what we address in this paper.

Contributions: We introduce a new problem setup for interventional causal discovery with selection
bias. We show that existing graphical representation paradigms fail to model data under selection,
since the when and where of interventions have to be explicitly considered (§2). To this end, we
propose a new graphical model that captures the dynamics of intervention and selection, characterize
its Markov properties, and provide a graphical criterion for Markov equivalence (§3). We develop a
sound algorithm to identify causal relations and selection mechanisms up to the equivalence class,
from data with soft interventions and unknown targets (§4). We demonstrate the effectiveness of our
algorithm using synthetic and real-world datasets on biology and education (§5).
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Figure 1: Examples of the existing graph representations. (a) and (b) show mutilated DAGs (Hauser &
BiithImann| [2012) and the augmented DAG (Yang et al} 2018) for G = 1 — 2 — 3 with targets 7 =
{2,{2},{3}}. Solid nodes represent the intervention indicators. (c) is the augmented DAG for G =
1+ L — 2 where L, in a square, is latent, and Z = {&, {1} } (Magliacane et al., 2016). (d) shows
a seemingly natural representation for selection bias, G = 1 — S < 2 where .9, in double circles,
is selected, and Z = {@, {1}}. But does (d) truly capture the underlying process? See Example|i}

2  MOTIVATION

In this section, we first revisit the established paradigm graph representations for interventional causal
discovery (§2.1)), then use illustrative examples to demonstrate how directly extending this paradigm
fails to address the selection bias issue (§2.2)), followed by an analysis of why this occurs (§2.3).

2.1 REVISITING THE ESTABLISHED PARADIGM OF INTERVENTIONAL CAUSAL DISCOVERY

We start with the problem setup. Let the DAG G on vertices [D] .= {1,--- , D} represent a causal
model where vertices correspond to random variables X = (X;)2 ;. For any subset A C [D], let
X4 = (X;)ica and by convention Xz = 0. Interventional causal discovery aims to learn the
structure of G from data collected under multiple intervention settings, each with an intervention
target I C [D], meaning variables X are intervened on. Let Z = {I(®©) 1) .. 1)} denote
the collection of intervention targets, and {p(o), pL, . pE )} the corresponding interventional
distributions over X . We assume throughout 1 ©) = &, ie., the pure observational data is available.

For hard interventions, Hauser & Biihlmann|(2012) consider each p(k) as factoring to a mutilated
DAG over D], denoted by mut (G, I(*)), where edges incoming to target I*) in G are removed and
other edges remain, as in Figure|lal They show that two DAGs are Markov equivalent under Z if and
only if Vk = 0, - - - , K, their corresponding mutilated DAGs have the same skeleton and v-structures.

For soft interventions, however, mutilated DAG representation fails, as interventions may not remove
edges, and all settings may factor to a same G. Instead of checking each setting individually, a better
approach is then to compare changes and invariances across settings: intervening on a cause changes
the marginal p(effect), but the conditional p(effect|cause) remains invariant. Conversely, intervening
on an effect leaves p(cause) unchanged, while p(cause|effect) changes (Hoover, |1990; [Tian & Pearl,
2001)). Such invariance is exploited in the invariance causal inference framework (Rothenhéusler et al.
2015 Meinshausen et al., [2016}; |Ghassami et al., 2017), typically as parametric regression analysis.

Invariance can also be understood nonparametrically. To model “the action of changing targets”,
Newey & Powell|(2003)); [Korb et al. (2004)) introduce the augmented DAG, denoted by augg(g ,I),
which, as shown in Figure extends the original G by adding exogenous vertices ¢ = {(i};_; as
intervention indicators, each pointing to its target 1(*). Whether the k-th intervention alters a con-
ditional density p(X 4| X¢) is then nonparametrically represented by the conditional independence
(CD) relation i 1. X 4| X¢ in the pooled data of p(© and p(*), and graphically by the d-separation
Ce LaA|C, (k)\{x} in aug(G,Z). Yang et al. (2018) show that two DAGs are Markov equivalent un-
der soft interventions Z if and only if their augmented DAGs have the same skeleton and v-structures.

Such invariance analysis, together with the augmented DAG representation, offers a unified way
to understand interventional data or, more generally, data from multiple domains with changing
mechanisms. For example, unknown target is no longer a challenge; Z (i.e., where changes occur) can
be learned by discovering the adjacencies between ¢ and X (Zhang et al., 2015; Huang et al.| [2020;
Mooij et al., 2020; [Squires et al.,|2020). Hidden confounders can also be incorporated by introducing
latent variables into augmented DAGs, as shown in Figure[Ic| Algorithms like FCI (Spirtes et al.l[2000}
Zhangl |2008)) are then used to for discovery (Magliacane et al., 2016; Kocaoglu et al.,2019). Despite
different specifics, these problems share a same core concept under the augmented graph paradigm.

Now finally, let us consider the issue of selection bias. Although, to our knowledge, no prior work has
addressed it, a seemingly natural solution is to follow the paradigm and introduce selection variables
into augmented DAGs, as shown in Figure[Td} This seems intuitive, especially given Figure[Ic] as
the FCI algorithm can indeed handle both hidden confounders and selection bias. However, does
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this augmented graph truly capture the underlying dynamics? The answer is no — or at least, it is not
straightforward. Let us examine the following Examples [[|and [2]that illustrate these complexities.

2.2 How THE AUGMENTED DAG PARADIGM FAILS IN THE PRESENCE OF SELECTION

We start with an example of a clinical study where only patients with a specific disease are involved.

Example 1. Consider a clinical study fo-
cusing on two variables: X (Blood Glu-
cose Levels) and X» (Hearing Ability). . |
Unknown to the doctor, these variables ’
are independent with no causal relations
or confounders. This independence is
shown in the scatterplot (both ‘<’ and
‘e’) in[(a)| of Figure[2| (hereafter omitted),
where X; and X, are independently
drawn from U[1, 2]. However, the study
somehow only includes Alzheimer’s
Disease (AD) patients. Since both variables contribute to AD, only individuals with a high combined
value of the two (say, X; + X2 > 3) were included in the study, represented by the ‘e’s in

2.0

X1 Xi Xi
Figure 2: (a) Scatterplot of X;; X5 in general population
(both ‘<’ and ‘e”), with only ‘e’ individuals involved into
study as p(?). (b) and (c) show p(!) after two distinct but
both effective interventions on X7, applied to ‘e’ from (a).

In the trial, patients are randomly assigned to either a placebo or a treatment controlling Blood
Glucose Levels, i.e., T = {@, {1}}. The control group p(®) follows the ‘e’s distribution in To
model the intervention, we can use a hard stochastic one, randomly assigning X; a lower value,
shifting each ‘o’ (X1, X5) in[(a)] i.e., individuals before their treatments, to (X1, X5) in[(b)} with
X{ ~ U[0.5,1.5] and importantly, X, remains unchanged, as indeed X; does not influence Xo.
Alternatively, a ‘soft’ intervention can be modeled, reducing X relative to its current value, e.g.,
to (X7 — 0.5, X5), resulting in scatterplots The interventional distribution p(l) follows or

Then, can we directly apply the augmented graph in Figure[Id] since it is exactly independent X
and X selected to the trial, and X is intervened on? According to it, two statements should hold:

1. The marginal p(X5) should change by the intervention, since {; £42|S;
2. The conditional p(X2|X7) should remain invariant, since ¢; 142|1,.S;

However, our observations contradict both. Comparing|(a)| with [(b)|or[(c)] p(X2) remains unchanged,
as seen in the marginal density plots, while p(X5|X7) changes. For example, at X; = 1.25, X5 in
follows U[1.75, 2], in is non-uniform, more concentrated at higher values, and in follows
UI1.5, 2]. This discrepancy suggests that the graph in Figuredoes not fit the data here. One aug-
mented graph however indeed fits is (; — 1 < 2, meaning that if directly applying existing standard
algorithms, the doctor would falsely conclude that Hearing Ability causes Blood Glucose Levels. A

We show that simply augmenting the DAG with selection variables fails to model interventional data
under selection. In Example[l]there is at least another (incorrect) augmented DAG that fits the data.
In contrast, in Example [2] no augmented DAG fits the data, suggesting a failure of this paradigm.

Example 2. Let X7, X5, and X3 denote the number of bird-nesting shrubs, predatory birds, and pests,
respectively. An ecologist is studying pest issues in several fields across the state. After collecting
data, denoted p(?), the ecologist finds that X; and X3 are conditionally independent given Xy. This
aligns with the true causal relations 1 — 2 — 3, where shrubs attract birds, birds reduce pests, but
shrubs do not directly affect pests. To control pests, the ecologist plants more shrubs (intervening on
X1) in these fields and, after some time collect data, denoted p(l). As expected, there is an increase
in X and decrease in X3. However, further analysis reveals a surprise: conditioning on X», X; and
X3 now appear dependent in p(!), with more shrubs associated with less pests. This confuses the
ecologist — “did I find a new type of shrubs that directly reduce pests, i.e., added a direct edge 1 — 3?”

“Selection may be at play!”, suggested a student, noting the study focused only on fields with pest
issues, i.e., high X3 values. The initial p(O) follows a DAG 1 — 2 — 3 — S where d-separation 1 1L
43]2, S indeed holds, consistent with the observed CI in p(o). But after intervening on X, shouldn’t
p still be Markovian to this DAG? Why did the CI disappear? No augmented graph can explain
this anomaly, as it suggests that each p(k) , conditioned on root variables (, should still be Markovian
to the original DAG. This puzzle is unsolved until explained in Example[3} there is no specialty with
the shrubs. A simulation on this example, similar to Figure[2]above, is provided in Appendix[B.1} A
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2.3 WHY THE AUGMENTED DAG PARADIGM FAILS WHEN SELECTION PRESENTS

The core reason why augmented DAG paradigm fails, as illustrated in §2.2} lies in the timing and
context — when and where interventions are applied. In real-world scenarios, interventions are usually
applied after selection, as experiments are typically designed for specific scopes of study. When
selection is interpreted as survival, this means an individual must first survive itself, before undergoing
any observations or interventions (e.g., ‘e’s in Figure [2a). We consider this setting in our work.

Simply extending the augmented graph with selection variables (as in Figure [Id), however, models
a different scenario: one where interventions are applied from scratch. There, individuals are not
selected when they receive interventions (and non-interventions), and then undergo the same selection
mechanisms afterwards, until observed. This scenario is much rarer, with examples like social pro-
grams applied to newborns and observed later in life, or medical trials on newly generated stem cells.

This fundamental distinction in when and where interventions occur is often overlooked. This is
because when selection bias is absent, and even with latent variables, these two forms produce the
same interventional data at the distribution level. However, now with selection it is different; the
selective inclusion of individuals and their pre-intervention world must be carefully modeled.

3 CAUSAL MODEL INVOLVING SELECTION AND INTERVENTION

In §|Z| we demonstrated that the when and where of interventions matter. Building on this motivation,
in this section, we define the causal graph on how interventions are applied under selection (§3.1)),
characterize the Markov properties (§3.2)), and provide the criteria for determining whether two
DAGs, possibly under selection, are Markov equivalent given possibly different interventions (§3.3).

We follow the notation in §2.1] with the key difference being that the DAG G is now over vertices
[D]US, where S = (S;)Z_, represents unobserved selection variables conditioned upon their specific
values. W.Lo.g. let each \S; be binary, has no children, and has parents only from [D]. Let 1 be the
vector of all 1s. A sample is observed if and only if it satisfies all selection criteria, denoted by S = 1.

In the DAG G, for any vertices ,j € [D] U S, i is a parent of j and j is a child of i if i — j € G,
denoted by i € pag(j) and j € chg(i); i is an ancestor of j and j is a descendant of i if i = j or
there is a directed path i — --- — j in G, denoted by 7 € ang(j) and j € deg(4). These notations
extend to sets: e.g., for any vertex set C' C [D] U S, pag(C) = J;cc Pag(i). For any vertex
i € [D], we say i is directly selected if i € pag(S), and ancestrally selected if i € ang(.S).

3.1 CAUSAL GRAPHICAL MODEL FOR INTERVENTIONS UNDER SELECTION

Building on the principle that enrolled individuals are already selected before interventions, we
introduce the following graphical model, with examples and explanations given afterwards.

Definition 1 (Interventional twin graph). For a DAG G over [D] U S and a intervention target
I C [D], the interventional twin graph G is a DAG with vertices {¢} UX UX 4 Ui US™, wher

¢ ( is an exogenous binary indicator for whether a sample is intervened (¢ = 1) or not (¢ = 0);

e X = {Xi}i';l are variables in the observed reality world, pure observational or interventional,

e X3 = {X; :i € deg(I)}2, are variables in the unobserved counterfactual basal worlcﬂ
representing the variable values before the intervention. As indicated in its name, only variables
affected by the intervention, i.e., those in deg([), are split into these additional vertices;
unaffected variables retain identical values in both worlds and can be represented solely by X;

o Ea = {6 11 € deg(I)}2 , are common exogenous noise terms shared by the two worlds;

e S* = {S7}L| represent the selection status before the intervention in the counterfactual world.

G consists of the following four types of direct edges:

* Direct causal effect edges in both worlds: for each i — j € G with 4, j € [D], add X; — X j to
G". Additionally, if i € deg(I), add X; — X7; otherwise, if j € deg(I?)), add X; — X7;

* Selection edges in the counterfactual basal world: for each i — S; € G withi € [D], j € [T):
if i € deg(I), add X; — S} to G otherwise, add X; — S*;

* Edges representing common exogenous influences: {€; — X, €; — X7 }ie[D)ndeg ()3

 Edges representing mechanism changes due to the intervention: {¢ — X; }icr.

'The word “twin” is to echo the twin network from (Balke & Pearl||1994). See discussions in Appendix
The word “basal” is borrowed from biology, referring to a natural state of cells prior to any perturbations.

4
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Figure 3: Examples of interventional twin graphs (Deﬁnition. (a) and (c) are two DAGs for clinical
and pest control Examples[T|and[2] respectively; (b) and (d), (e) are their corresponding interventional
twin graphs under different targets. The white X nodes and solid ¢ node are observed, forming the
reality world (enclosed by solid frames), where observations or interventions are conducted. The grey
nodes are unobserved, of which squares (X and E.¢) are latent variables and double circles (S*)
are selection variables. The counterfactual basal world is enclosed by dashed frames.

Ilustrative examples for interventional twin graphs (Definition[T]) are shown in Figure[3] In what
follows, we explain several key structural and statistical insights of this causal graphical model.

What is modeled by the interventional twin graph? In G, only X and ¢ are observed, repre-
senting pure observational data, p(X|( = 0, 5* = 1), and interventional data, p(X|{ = 1,5* =1).
Crucially, S* = 1 is conditioned on, meaning all individuals, observed or intervened, were selected at
the outset. The key difference from the augmented graph (Figure is that, here G() explicitly mod-
els each individual’s unobserved pre-intervention values: non-affected variables retain their Valuesﬂ as
X, while affected variables, whose values change, are modeled by extra vertices X ;. The pre- and
post-intervention worlds share £, common external influences like individual-specific traits. Specif-
ically, selection is applied in the pre-intervention world, while observation is made post-intervention.

According to the graph, what is changed by the intervention? Individuals in pure observational
and interventional data are not matched, which reflects common interventional studies (e.g., RNA
sequencing is destructive, preventing measurements to a same cell both before and after a gene
knockout). Instead, the two datasets are related at the distribution level: directed edges from ( to X
indicate changes in generating mechanisms for targeted variables. For affected but not directly targeted
variables i € deg(I)\I, as suggested by the graph, their generating functions p(X;|Xpa, i), €i)
remain invariant for ( = 0, 1. However, unlike in augmented graph paradigm, this invariance no
longer extends to observed conditional distributions p(X;|Xpa, (i) For instance, in Figure
intervening on X alters not only p(X7) but also p(X2|X7) and p(X3|X2) (see Example [3)).

3.2 THE MARKOV PROPERTIES

Our ultimate goal is to discover true causal relations and selection mechanisms from data. To this end,
we must understand the CI implications in the data. Hence, in what follows, we define the Markov
properties, showing how the interventional twin graph model serves to identify these CI implications.

To start, let us revisit Example [1{(clinical study) with the defined interventional twin graph GH{1}) | as
shown in Figure It becomes clear that there is ¢ 14 X5|S* and ¢ £4X5|X1,S™*, consistent with
the invariant p(X5) and the changed p(X»|X1), resolving the earlier discrepancy given by Figure|[1d]

For discovery from data, two types of statistical information can help: 1) conditional (in)dependencies
among variables within each interventional distribution, and 2) the (in)variances of conditional distri-
butions across different interventions. Below, we formally define these relations implied by the model.

Theorem 1 (CI and invariance implications). For interventional distributions {p®) (X)} ke{0}U[K]

generated from DAG G with targets {I(k)}ke{o}u[K], let {g(l(k))}ke{O}U[K] be the corresponding
interventional twin graphs. For any disjoint A, B,C C [D), the following two statements hold:

1. Forany k € {0} U[K), if Xa LaXp|Xc,S*,C holds in Q(I(k)), then X4 1L Xp|Xc in p*).
2. Foranyk € [K), if ¢ 1aX4|Xc, S* holds in GU ™), then p® (X 4| X¢) = p© (X 4| Xc).
Theorem|[T] shows that both types of statistical information are implied by the graphical conditions,

namely d-separations among X U {(}|S™ in interventional twin graphs. The two conditions charac-
terize the CIs in each intervention, and the conditional invariances across interventions, respectively.

We now show how selection and intervention specifically lead to the first type of information, CIs in
each distribution. First, selection is known to introduce spurious dependencies in pure observations:

3For reasons why not to also split unaffected variables across both worlds, see Appendix
5
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Lemma 1 (Additional dependencies induced by selections). For any DAG G on [D]US and disjoint
A,B,C C [D), if A 14B|C, S holds, then A 14B|C also holds. The reverse is not necessarily true.

Further, interventions can introduce even more dependencies, making interventional distributions no
longer Markovian to the original DAG § (recall the post-pest-control distribution in Example 2)):

Lemma 2 (Even more dependencies induced by interventions). For any DAG G on [D]U S, target
I C [D], and disjoint A, B,C C D), if Xa 14Xp|Xc,S*,¢ holds in the twin graph G, then
A 14B|C, S holds in the original DAG G. The reverse is not necessarily true, except when I = &.

Lemma 2] offers a counterintuitive insight that contrasts with cases without selection or where
selection is not applied before interventions, as those modeled by the augmented graph paradigm.
In those cases, interventions add no dependencies and may only add independencies (e.g., via hard
interventions). In our setting, however, an intervention may indeed add more dependencies. Now,
let us examine Theorem [T] and Lemma [2] in the context of Example 2] (pest control), address the
ecologist’s concern, and summarize the motivations behind the Markov properties in this subsection.

Example 3. Continuing from Example 2] the original DAG # and the interventional twin graph
H{1D are shown in Figures and respectively. To explain the X; £ X3|X5 observed after in-
tervening on shrubs, graphically we indeed see the d-connection X f4X3|Xo, 5%, ¢ in H{1D, with
an open path X < €; = X| = X5 — X3 < e3 — X3 where the collider X3 has its descendant
S} conditioned on. Statistically, X3 is a combination of exogenous noises €1, €, €3, and selection on
X3 renders €1, €2, €3 not independent anymore. Such dependent noises also leave trace in conditional
invariances: though only X7 is targeted, not only p(X7 ) but also p(X3|X1) and p(X35|X?2) are altered,
as graphically implied by the ¢ £4X1|S*, { LqX2|X1, 5%, and ¢ L;X5]|X2, S*, respectively.

If, however, the ecologist somehow directly targets X3 (pests), the corresponding H{3}) (see Fig-
ure shows that X; 1 X3|X5 holds in the interventional distribution this time, and the marginals
of X1, X, remain unaltered. More details on this pest-control example are in Appendix A

3.3 MARKOV EQUIVALENCE RELATIONS

In §3.2) we characterized the CI relations implied by the true model in the data. Now, to identify
the true model from data, in this section, we must understand to what extent the true model is
identifiable, as different models may share identical CI implications, namely, being Markov equivalent
(Definition 2)). To establish graphical criteria for this equivalence, we leverage the maximal ancestral
graph (MAG) framework. In we introduce MAG basics. In we characterize the MAGs
of interventional twin graphs, and accordingly, present the graphical criteria for Markov equivalence.

We first define the Markov equivalence. Two different DAGs with different intervention targets (since
we allow unknown targets) can entail the same CI and invariance relations in the data. Formally,

Definition 2 (Markov equivalence). Let G and 7 be two DAGs over vertices [D] U S and [D] U S,
respectively, i.e., defined over the same variables [D] but possibly with different selections. Let Z and
J be two collections of intervention targets with a same size 1 + K. The pairs (G,Z) and (H, J)
are said to be Markov equivalent, denoted by (G,Z) ~ (H, J), if they imply the same set of CIs in
each distribution and the same conditional invariances across distributions, as given by Theorem [T}

3.3.1 MAG BASICS: REPRESENTING CIS WITH LATENT AND SELECTION VARIABLES

We now introduce the MAG framework to simplify the graphical representation for the CI implications.
Only the essentials are covered here; for more details, see (Richardson & Spirtes}, 2002} [Zhang, [2008)).

A MAG is a mixed graph with three kinds of edges: directed (—), bi-directed (), and undirected (—).
Given any DAG G over vertices partitioned as O (observed), L (latent), and S (selected), a correspond-
ing MAG over O, denoted by Mg, can be constructed. Before presenting the construction rules, let us
recap the motivation: to capture the CI relations among O marginalized over L and conditioned on S.

First, for two observed variables i, j € O, when are they always d-connected given C' U S for any
subset of observed variables C' C O\{%, j}? The answer is given by the adjacencies in the MAG:

Definition 3 (MAG construction step 1: adjacencies; [Richardson & Spirtes|(2002)). For each
pair of observed variables i, j € O, 7 and j are adjacent in Mg if and only if 4, j are adjacent in G, or
there exists a path p between ¢ and j in G where every non-endpoint observed or selected vertex on p
is a collider on p, and every collider on p is an ancestor of ¢ or j or a member of .S.
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Figure 4: Examples of MAGs of interventional twin graphs. Readers may reconstruct these MAGs
from DAGs in Figure %Jsing either general rules (Definitions [3|and [ or interventional twin graph-
specific rules (Lemmas]to[6) and verify if they match. Readers may also verify if the CI implications
(TheoremE[) match between d-separations on DAGs and m-separations (Deﬁnition@ on MAGs.

Next, we orient these adjacencies to fully capture the d-separation relations implied by G on O|S:

Definition 4 (MAG construction step 2: orientations;|Richardson & Spirtes|(2002)). For each two
adjacent vertices i, j as defined by Definition[3] orient the edge in Mg as i — jif i € ang({;j} U S)
and j ¢ ang({i}US);i«jifj € ang({i}US)andi ¢ ang({j}US);i <> jifi ¢ ang({j}US)
and j ¢ ang({i} U S); and i — j otherwise, i.e., if i € ang({j} U S) and j € ang({i} U S).

The two steps above give general MAG construction rules. In a MAG, a vertex j is a descendant of ¢ if
i=gjori— --- — j. Anedge between ¢, j is into j if itis ¢ — j or¢ <+ j. A vertex ¢ is a collider on
a path p if both edges incident to ¢ on p are into i. A path p as (i, k, j) is a v-structure if ¢ and j are not
adjacent, and k is a collider on p. Using these notations, the MAG’s CI implications are as follows:

Definition 5 (m-separation). In the MAG Mg, a path p between vertices 4 and j is open relative
to a vertex set C' (i, ¢ O), if every non-collider on p is not in C, and every collider on p has a
descendant in C. i and j are m-separated by C, denoted by i L,,j|C, if there is no open path
between ¢, j relative to C. i L,,,7|C holds in MAG Mg, if and only if ¢ 1 ;5|C U S holds in DAG G.

3.3.2 GRAPHICAL CRITERIA FOR MARKOV EQUIVALENCE

The MAG framework is useful, as it represents Cls in distributions under latent variables and selection,
and determines Markov equivalence between such distributions, precisely aligning with our goal. Ac-
cordingly, we construct MAGs of interventional twin graphs, with vertices partitioned into observed
(X U{¢}), latent (X ;U &), and selected (S*) ones. Examples of such MAGs are shown in Figure
While general MAG construction rules are outlined in §3.3.1] to better understand the CI implications
graphically, we present the following construction rules specific to interventional twin graph.

Given a DAG G over [D] U S and a target I C [D], denote by Mg the MAG constructed on

X U {¢} from the interventional twin graph G(!). We show the specific rules to construct Mg,
by presenting the following lemmas and the questions they aim to answer.

Lemma 3 (When are two variables always dependent in pure observational data?). For any
i,j € [D], i and j are adjacent in Mg e, if and only if i and j are adjacent in G, or chg (i) Nchg ()N
ang(S) # @, i.e., they involve in a same selection, or have a common child that is ancestrally selected.

The adjacencies in Lemma [3] reflect additional dependencies due to selection bias (Lemma [I).
Furthermore, interventions can introduce even more dependencies, as shown in Lemma |Z|—again,
recall the pest control example. We now generalize Lemma 3]to characterize all these dependencies.

Lemma 4 (When are two variables always dependent under an intervention?). Foranyi,j € [D],
i and j are adjacent in Mg, if and only if i and j are adjacent in the observational MAG Mg e,
or there exists a path between i and j in Mg ), where all non-endpoint vertices are affected (i.e., in
deg(I)), and they, together with i, j, are all ancestrally selected (i.e., in ang(S)).

Further generalizing the adjacencies in Lemma[d]to the indicator variable ¢, we have:

Lemma 5 (When does an intervention alters all of a variable’s conditional distributions?). For
any j € [D], ¢ and j are adjacent in Mg, if and only if j is directly targeted (i.e., j € I), or j is
both indirectly affected and ancestrally selected (i.e., j € deg(I) Nang(S)).

Lemma [5|implies the unidentifiability of direct intervention targets when they are unknown. This is
different from the case without selection, where “unknown target is no longer a challenge” (§2.1).

After constructing the adjacencies of M) in Lemmas |§| to EI, we conclude with edge orientations:
Lemma 6 (MAG of interventional twin graphs). The MAG Mg, consists of the following edges:
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* “Pseudo” direct intervention target edges (by Lemma @) {¢— Xi}iGIU(dEQ(I)ﬁang(S));

* Edges among X. Let Mg be the MAG of G over [D). For each adjacent X;, X; (by Lemma E])
— Ifi — j is in the original MAG Mg, then orient X; — X in interventional MAG Mgy,
— Otherwise (i.e., i — j € Mg or i, j are not adjacent in Mg):

Ifi ¢ deg(l) and j & deg(I): orient X; — X;

Ifj € deg(I) and (i & deg(I) ori € ang(j)): orient X; — X;

Ifi e deg(I) and (j & deg(I) or j € ang(i)): orient X; — X;;

Otherwise, i.e., both i, j € deg(I), but neither is another’s ancestor: orient X; <» X IR

*

* ¥ ¥

Finally, we present the graphical criteria for Markov equivalence, using MAG construction rules
defined above. By enforcing same Cls in each setting and same invariances across settings, we have:

Theorem 2 (Graphical criteria for Markov equivalence). For two DAGs G and H with two col-
lections of targets T = {10 1) ... TUY and 7 = {JO JO ... JUEN the Markov equiv-
alence (G, T) ~ (H,J) holds, if and only if for each k = 0,1, -- - | K, the corresponding MAGs of
interventional twin graphs, M g1 and MH J(ky, have the same adjacencies and v-structure

Below let us examine such Markov equivalence and its graphical criteria on Examples [T|and 2}

Example 4. In the clinical example, let G be the DAG in Figureand G’ the DAG 2 — 1 without
selection. For Z = {@,{1}}, the equivalence (G,Z) ~ (G',Z) holds, i.e., intervening on one
variable cannot identify if the two variables are causally related or just correlated by selection.
However, adding an intervention on the other variable can identify this distinction: (G,Z) # (G', 1),
for 7 = {@, {1}, {2}}. In the pest control example, let H be the DAG in Figure[Bc|and H’ the DAG
1—2—85 3. Fori=1,2,(H,{@,{i}}) # (H,{@,{i}}),ie., interventions on upstream vari-
ables can distinguish the two, but not on downstream X3. With unknown targets, however, upstream
interventions may still leave the two indistinguishable, e.g., (¥, {2, {1}}) ~ (H',{2,{1,3}}). A

4 ALGORITHM: INTERVENTIONAL CAUSAL DISCOVERY UNDER SELECTION

In this section, we develop Algorithm named Causal Discovery from Interventional data under
potential Selection bias (CDIS). Using the twin graph framework and Markov properties from §3]
this algorithm learns causal relations and selection structures up to the equivalence class, from
interventional data with soft interventions, unknown targets, and potential selection bias. We assume
causal sufficiency and faithfulness, i.e., no CIs beyond those implied by the graph (Theorem [I)).

A first thought might be to obtain adjacencies from observational data p(©), as it provides the sparsest
skeleton (Lemmas|[T]and[2). Then, one could form v-structures involving intervention indicators by
checking conditional (in)variances, and use these v-structures for further orientation on the sparsest
skeleton. However, as we will show, this seemingly intuitive approach can lead to false discoveries:

Example 5. Consider the DAGG =1 — 2 — S < 3 with targets Z = {@, {1}}. CIs in p(?) first
yield a skeleton 1 — 2 — 3, and the target is identified as ( — {1, 2}. Since p(X3) does not change

(¢ 1L X3), the v-structure ¢ — 2 < 3 is formed. Now, if we directly apply orientation rules (Meekl,
1995) on the skeleton, the non-collider 1 <— 2 < 3 will be oriented, leading to a falseedge 1 +— 2. A

Example [5 highlights the pitfalls of directly applying orientations on adjacencies obatined from pure
observational data, even if they are the sparsest and closest to truth. Instead, orientations must be
applied on denser adjacencies from interventional data to prevent false propagation, and then used
to refine edges in the sparsest skeleton. Our CDIS algorithm is built on this principle.

The pseudocode for CDIS is detailed in Algorithm [I]in Appendix [A]due to page limit. Below we
provide a high-level summary. CDIS consists of the following three steps:

Step 1. Maximal orientation from pure observational data. Run FCI (Zhang} 2008) on p(o), we

obtain the maximal information possible from p(®) only, represented by a PAGMA(O).
Step 2. Maximal orientation from interventional data. For each k¥ = 1,--- , K, orientations

are derived from pooled data (p(®), p(*)), represented by a PAG M®) over [D] U {¢}.
Significant pruning is applied since conditional dependencies from p(®) must hold in p(*).
Step 3. Refinement using interventional twin graph-specific criteria. Guided by the specific con-

struction rules in Lemmas @to EL information from M (%) are used to orient uncertain edges

* Another condition for general MAG equivalence is not needed here, due to twin graphs’ specific structures.
SPartial ancestral graph (PAG) is a graph to represent a class of MAGs. See definitions in Appendix

8
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in M), i.e., to narrow down the equivalence class about the true model. Updated M (©)
then guides further refinement on M (%), iterating until no new orientations are possible.

We show that CDIS correctly identifies and distinguishes causal relations and selection mechanisms:

Theorem 3 (Soundness of CDIS). Let M(©) be the output PAG of Algorithmwith oracle CI tests on
interventional data {p*) }i_ given by (G, T). Then, M©) is consistent with MAG Mg. Specifically,

1. Foranyt — j € MO, there is also i — j € G, and j is not ancestrally selected in G.
2. Foranyi—j € M), bothiand j are ancestrally selected in the true DAG G.

The soundness of CDIS follows from the soundness of FCI rules, but its completeness—whether all
invariant edges in the equivalence class are identified—remains uncertain to us. Through brutal search
on ~ 50,000 (G, Z) pairs with up to 15 vertices, we have not found any incomplete example, and thus
we conjecture its completeness. However, proving this is challenging, since the refining step relies on
our graphical criteria (Lemmal6)) as background knowledge, for which no complete rules exist yet (An}
drews et al.,[2020). This technical difficulty mirrors also to FCI itself: though FCI has been widely
adopted since Spirtes et al.|(1999), its completeness result (without background knowledge) was not
established until|Ali et al.| (2005) (partially) and |Zhang| (2008)) (fully). Notably, in our scenario, FCI
is guaranteed complete on pure observational data, while CDIS provides more information than that.

5 EXPERIMENTS AND RESULTS

In this section, we present empirical studies on simulations and real-world data to demonstrate that
our algorithm effectively identifies true causal relations despite the presence of selection bias.

5.1 SIMULATIONS

We conduct simulations to validate the soundness of our proposed method. We compare our method
against existing methods such as GIES (Hauser & Biithlmann/| |[2012), IGSP (Wang et al.,[2017), UT-
IGSP (Squires et al., 2020), CD-NOD (Huang et al., [2020), and DCDI (Brouillard et al., 2020). We
also consider the JCI-GSP method used in|Squires et al.|(2020), which is an extension of JCI (Mooij
et al.| 2020) with GSP (Solus et al.,[2021)). Further details are described in Appendix @}

We follow the data generating procedure outlined in Definition |1} Specifically, we begin by randomly
sampling Erdos—Rényi (Erdos & Rényi, [1959) graphs with an average degree of 2 as the ground truth
DAG for {X;}P | (by definition, the same DAG is used as ground truth among {X;}2 ). Next,
we generate four selection variables S7, ..., .S}, where each selection variable randomly includes
m € Unif{1, 2, 3} parents from {X;}2 | in the counterfactual world as parents. We then simulate
specific SEMs for { X7 }2 | with exogenous noise terms {e} } 2 ;, and select samples conditioned on

> pag(S;) falling within a predefined interval and ensuring the desired sample size.

Using the exogenous noise variables {€} } 2 | of the selected samples, we simulate specific SEMs over
{X;}2., with m € Unif{1,2,3,4} intervention targets, where the intervention targets determine

whether the causal mechanisms fi(k) and f}* differ. We simulate a total of 10 interventions, each with
1,000 samples after selection. For the SEMs, we consider both linear SEMs and nonlinear SEMs.
For the latter, each function is modeled as a two-layer multilayer perceptron, following the data
generating procedure of |Zheng et al.| (2020).

We focus on validating the soundness of CDIS in identifying true causal relations, and illustrate
the informativeness of the results. Therefore, we report the precision of the estimated (directed)
edges produced by the method. Specifically, we aim to assess the proportion of directed edges that
correspond to true causal edges in the ground truth. Given that our primary goal is to investigate
the algorithm’s soundness, and its completeness remains uncertain, we emphasize precision in our
evaluation. Regarding completeness, there is no established metric since a graphical representation
for the equivalence class remains an open problem.

The experimental results, presented in Figure[5] demonstrate that CDIS consistently outperforms the
baselines in terms of precision, particularly for nonlinear SEMs. Notably, the average precision of
our algorithm exceeds 0.8 across all configurations, and surpasses 0.9 in more than half of the cases.
In contrast, the baselines generally achieve precision below 0.7 in most settings (with the exception
of GIES in some instances), and drop below 0.6 for nonlinear SEMs. These observations validate
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the soundness of CDIS in identifying true causal relations, while suggesting that other methods may
falsely infer spurious causal relations, possibly due to selection bias, as illustrated in Examples[T|and[2]

—e— CDIS —%— GIES —¢— IGSP —A— UTIGSP —<— JCI-GSP —é— CD-NOD DCDI
1.0 §_/—0\2/Q 1.001 §\9\§\§
i — 3 0.751
g }»é\\ 5
'z Y " B i
£ =, | oot~ .
= ~ | £ Jm
AN 0.251 t'\,\i.—/_‘
5 10 15 20 5 10 15 20
Number of Variables Number of Variables
(a) Linear SEM. (b) Nonlinear SEM.

Figure 5: Empirical results across different number of variables. The error bars illustrate the standard
errors based on 10 random simulations.

5.2 REAL-WORLD APPLICATIONS

We evaluate the gene regulation networks (GRNs) of 24 previous reported essential regulatory genes
encoding different transcription factors (TFs) using a single-cell perturbation data,
i.e., sciPlex2 (Peidli et al, [2024), where the A549 cells, a human lung adenocarcinoma cell line,
are either exposed to one of the four different transcription modulators, including dexamethasone,
nutlin-3a, BMS-345541, and suberoylanilide hydroxamic acid (SAHA), or simply treated with
dimethylsulfoxide vehicle as control (Srivatsan et all, [2020). Shown in Figure [J] we discovered
some validated regulatory relationships like RELA — RUNXI and JUNB — MAFF, since RELA
has been implicated as a RUNX3 transcription regulator (Zhou et al] 2013) and Maf family was
upregulated by JunB (Koizumi et al| [2018)), despite the extensive co-regulation between these two
genes (Kataoka et al| [1994). Besides, the link between E7S2 or RUNXI and STAT3 may encounter
the risk of spurious correlation induced by selection (i.e., conditioning on a particular cell line). It is
supported by previous studies since it is reported Runx1 and Stat3 synergistically driving stem cell
development in epithelial tissues trough Runx1/Stat3 signalling network (Scheitz et al.| 2012} [Sarper]
let al] 2018)), while TF Ets2 together with p-STAT3 activation induce cathepsins K and B expression

in human rheumatoid arthritis synovial fibroblasts (RASFs) 2021).

We also apply it to an educational dataset (Table[I), from a random controlled trial evaluating the
effects of incentives and services on college freshmen’s academic achievements
[2009). First-year undergraduates are randomly assigned to either the control group or one of the
three treatment arms: a service strategy (Student Support Program, SSP) with both peer-advising
service and supplemental instruction service in facilitated study groups; an incentive strategy (the
Student Fellowship Program, SFP) with the opportunity to win merit scholarships based on academic
achievements; and an intervention offering both named SFSP. As depicted in Figure[I0] subgroup
analysis stratified by genders indicate that SSP only improves the women’s performance while SFP
shows effects only on men (see Figure[TT). The results indicates that interventions exhibit genuine
heterogeneous treatment effects on college students’ academic performance, with the moderating
effect of gender rather than being attributed to selection bias based on gender.

6 CONCLUSION AND LIMITATIONS

We introduce a new problem setup for interventional causal discovery with selection bias. We show
how and why existing models fail to represent the data, propose a new model to capture intervention
and selection dynamics, characterize Markov properties and a criterion for equivalence, and develop
a sound algorithm called CDIS for identifying causal relations and selection mechanisms.

One could naturally extend the graph by introducing S also to the reality world to model a new
round of post-intervention selection, e.g., lost to follow-up (AKI et al,2012). Another extension
can be the causal inference results based on our model. While we provide the graphical criteria to
determining equivalence, a graphical representation for the equivalence class is to be developed. Also,
the completeness guarantee of the CDIS algorithm, though hypothesized, is yet to be proven.

10
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A PSEUDOCODE FOR THE CDIS ALGORITHM

Before detailing CDIS, we introduce key notations. Like a CPDAG for DAGs, we use a partial
ancestral graph (PAG (Spirtes et al., 2000)) to represent a class of MAGs with same adjacencies.
A PAG is a graph with six kinds of edges (—, —, <>, o—, o—o, o—) where non-circle marks
indicate marks shared by all MAGs in the class. FCI (Zhang, 2008) is an algorithm that identifies
the true PAG from data. In the pseudocode, PC denotes a function that takes in data and returns a
PAG. Adjacencies are determined by Cls, with orientations as io—k<—oj for v-structures and io—oj
otherwise. FCTT denotes a function that takes in a PAG, recursively applies the ten FCI rules and
an extra rule to orient all o— as —, and returns the PAG when no further orientations can be made.

The pseudocode for the CDIS algorithm is provided below:

Algorithm 1: Causal Discovery from Interventional data under potential Selection bias (CDIS)

Input: Observational and interventional data {p(k) }kK:O over X|p; with unknown targets.
Output: A partially ancestral graph (PAG) over vertices [D].

Step 1: Get maximal orientation from pure observational data. M «— rc1t(pC(p(®)).
Step 2: Get MAG adjacencies from interventional data. for k < 1,--- | K do

M®) — pc(p®, p®), running PC on pooled data of p(®) and p*) over {¢} U [D], with Cls
in forms of Theorem |1} Pruning can be made: any adjacency in M(®) must appear in M *).

Step 3: Refine MO using graphical criteria on MAGs of twin graphs. repeat
Step 3.1: Orient M) based on current knowledge. for k < 1,--- | K do

foreach i — j € M do Orient i — j in M®, as suggested by Lemma@;

foreach ¢ adjacent to ¢, do Orient ( — ¢ in M(k), as intervention indicator is exogenous;
B M®) — pc1t (M(k)), further orientation with above background knowledge edges;

|72]

tep 3.2: Update M (©) using information from M), foreach adjacent i, j in M©) do
if 3k such that i — j € M® then Orient i — j in M(©);
if 3% such that i — j € M® and io—j € M(® then Orient i — j in M©);
if 3k such that i — j € M®) and p(© (X;) # p® (X;) then Orient i — j in M(®);
| if 3k, # ko such thati — j € M® and i « j € M*2) then Orient i — j in M(©);
Step 3.3: Further orient M (%) based on current knowledge. M(©) « rc1+(M(©);
until no further orientations are found for MO jp Step 3.2;
return M (©)

B MORE ELABORATIONS ON EXAMPLES AND MOTIVATIONS

B.1 SIMULATION FOR THE PEST CONTROL EXAMPLE
Following Example[2] let the DAG G be 1 — 2 — 3 — S;. Data is simulated as follows:

E,, Es, E3 ~ U[—1,1], independently;

X1 = ki

X9 = sigmoid(X; + E»);

X3 = sigmoid(—2Xs + E3);

S = ]].(X3 > 04)
Only individuals with S; = 1 values are involved into the study and get observed, corresponding to
the ‘e’ markers in p(o) in Figure@ For these individuals, an intervention to lift X; is made:

X, = X1+ E' with E' ~ N(4,1).

That is, individuals are expected to gets a lift of 4 in its X; values, while a variance of 1 is also
given to model the randomness in applying real interventions. X5, X3 are then generated using the
same generating functions and their same F», '3 values as above. The scatterplots of the resulting
interventional distribution p(!) are shown in Figure
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Figure 6: (a) shows the scatterplot of X7; X3 in general population (both ‘<’ and ‘e’), with only
‘e’ individuals involved into study as p(©. (b) shows the scatterplot of X7, X3 in p© with X,
conditioned on its mean value xo, illustrating the conditional independence X; I X3|X5 in p(O).
Applying an intervention to X; on the ‘e’ individuals in (a), we get the interventional distribution
p(M). (c) shows the scatterplot of X;; X5 in p(!). (d) shows the scatterplot of X, X5 in p(®) with X,
conditioned on its mean value x5, illustrating that the intervention destroys the original condition
independence, i.e., X; £ X3| X3 holds in p(*),

To illustrate the condition independence relation X; I X3|Xo, we show in Figure [6bland Figure
the scatterplots of X7, X3 with X5 conditioned on their specific mean values in p(o) and p(l),
respectively. Clearly, X; I X3|X5 holds in p(®) (though to be rigorous, the scatterplot on a single
conditioned x5 value is not enough), while this condition independence no longer holds in the
interventional data p(1).

B.2 WHY NOT SPLIT EVERY VARIABLE INTO COUNTERFACTUAL AND REALITY VERTICES?

In our definition of the interventional twin graph (Definition I]), the graph is defined for each single
intervention with target 7, instead of on a collections of targets Z. This is different from the usual
augmented graph setting where only one augmented graph is defined, with multiple exogenous
intervention indicators (1, --- ,(x. The specific reason why we do not choose to use only one
combined graph is that, our definition of the graph depends on each specific I, namely, only variables
that are affected from an intervention target I are split. Questions then naturally arise: can we split
all variables into the two worlds, as in typical twin graph models (Balke & Pearl,|1994)? In this way,
can we formulate a single graph that represents for the whole Z, which seems simpler?

In what follows, we show that a single graph with all vertices split is doable. However, in contrast to
our expectation, it introduces more unnecessary complexities.

First we define this alternative model. Let 1 and O be vectors of all 1s and all Os, respectively, and 1y,
be the vector with 1 at its k-th entry and Os elsewhere (by convention, 1o = 0).

Definition 6 (Alternative one-for-all interventional twin graph). For a DAG G over [D] U S and

a collection of targets Z = {I*)} X the alternative one-for-all interventional twin graph G* is
a DAG with vertices X* U S* U & U X U ¢, where:

* ¢ = {Ck}re[k) are intervention indicators: ¢ = 1, denotes a sample from the k-th interventional
distribution p(*). Specifically, ¢ = 1, = 0 denotes for the pure observational samples from p(©).

« X = {X;}2, are variables in the observed reality world, pure observational or interventional;

o X*={X;}2, and S* = {S;}L | are variables in the unobserved counterfactual basal world,
representing the corresponding variable values and selection status before the interventions;

e & = {¢&;}2 | are exogenous noise variables capturing common external influences on X and X*.

G consists of the following four types of direct edges:

* Direct causal effect edges in both worlds: {X; — X;, X — X7} ,jcq. ijen)s

* Selection edges in the counterfactual basal world: { X — S;-‘}Hsjeg’ ic[D], jE[T]>

* Exogenous influence edges: {e; — Xy, e; — X/ }iern)s

* Edges representing mechanism changes due to interventions: {Cx — X;};c . ke[K]-
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Counterfactual \. \—0/'
Basal World G T Ck Reality World

Figure 7: The alternative one-for-all interventional twin graph (Definition E[) The white X nodes
and solid ¢ nodes are observed, forming the reality world, where observations or interventions are
conducted. The grey nodes are unobserved, of which squares are latent variables and double circles
are selection variables. The unobserved X* and S* variables form the counterfactual basal world
where interventions have not been applied. The two worlds are linked by £, latent exogenous noise
variables that commonly influence X and X*.

Figure 8: Examples showing how d-separations in one-for-all twin graph can lose information. (a)
DAG G. (b) GZ for arbitrary T. (c) G7 constructed from (b) as in Lemmal 7| where all d-separations
among X U ( remain the same. (d) Another DAG H whose HZ is also (c).

Using structural equation model (SEM) notation, denote by f;* the generating function that maps
k . e

(X;ag(i), €;) to X ¥, and {fi( )}kKZO the functions (if exists) that maps (X (i)

sponding pure observational or interventional distributions (where ¢ = 1). We assume the counter-

factual basal world operates the same as the pure observational world. For each intervention targeted

at I™%) | we also assume non-targeted variables’ generating functions are invariant to this intervention:

€;) to X; in corre-

Vk e {0}U[K], Vie[DN®, f* existsand £ = fr

Q-

(B.1)

The graphical structure GZ with the invariance constraint Equation (B.1) completes our definition.

An illustrative example of the alternative one-for-all interventional twin graph is shown in Figure([7}
Readers may compare it with the ones shown in Figure 3]

As we have shown in Lemma 2] referring to the original DAG G is not Markovian for interventional
distributions. Then, does the one-for-all model GZ fully capture the interventional distributions? The
answer is still no: GZ may be unfaithful, i.e., there are CIs not implied by d-separations in GZ. A trivial
example is that, one could construct the GZ for the pest control example where G = 1 — 2 — 3 — S
andZ = {@, {1}}. G encodes a d-connection X7 f;X3|X2,(,S*, which is indeed the case for X; /
1 X3| X, inp™). However, if we let Z = {@, {3} }, the d-connection X f4X3|X>, ¢, S* still holds,
while this time, in p(!) it is actually X; I X3|X5. To explain this, one may notice that intervention
on X3 does not change the values of X5 for individuals, and therefore in this case, when conditioning
on X5, the counterfactual value X5 is automatically conditioned on, blocking the open path.

We have shown a major issue of the one-for-all twin graph, or, the issue of splitting every vertices
into two worlds: the d-separations over the graph do not fully capture the conditional independencies
implied. Then, one may wonder, what is exactly the d-separations in this one-for-all twin graph?
We show the following lemma to characterize these d-separations, and also to illustrate why the
one-for-all twin graph misses key distributional information:

Lemma 7. For each one-for-all twin graph G*, construct another DAG Gz by removing the X*
nodes and associated edges, and adding edges {¢; — S M Ficang( s;), ie[D], je[T)> I-e., selection now

applies ancestrally on exogenous noises. Then, GT and G7 entail the same set of d-separations over
X u(c|s*.

18



Under review as a conference paper at ICLR 2025

Examples illustrating Lemma [7| are presented in Figure For each one-for-all graph GZ, the

counterfactual values X* can be further marginalized, allowing the construction of a new graph, GZ.
This new graph excludes X* and includes edges from & ancestrally pointing to .S*. Importantly, the
d-separation patterns remain unchanged. Subfigures (c) and (d) show this construction. Then, what is
the consequence of this equivalence? Consider the following example:

Let DAGs G and H shown in (a) and (b). They share the same d-separations among X U ( in their

respective GT and HZ for arbitrary Z, as both GT and HZ are equivalent to the GZ shown in (d). Then,
does this imply that the G and H are indistinguishable under any Z? The answer is no. Actually, they
can already be distinguished in p(®), where 1 143|2,4, S; holds in G but not in A.

From above, we have shown that the d-separations alone of the one-for-all interventional twin graph
can fail to characterize the distributions. There are two specific losses: one is determinism, i.e., when
some unaffected variable is conditioned on, its counterfactual basal variable will also be conditioned
on; the other is the loss of sparsity of selection mechanisms, i.e., it falsely represents selection
as being applied ancestrally on exogenous noise terms instead of on X * variables. While we can
solve these issues by defining Markov properties in a technically heavier way, we choose to use
interventional twin graphs as defined in Definition [T} where the d-separations are exactly all the
conditional independence implications.

C RELATED WORK
In this section we give a more comprehensive review of literature.

When only pure observational data is available. There are constraint-based causal discovery
algorithms (Spirtes et al.|[2000), score-based algorithms (Chickering), |2002)), and methods that utilize
properties of functional forms in the underlying causal process (Shimizu et al., [2006; Hoyer et al.,
2008; Zhang & Hyvirinen, [2009). The corresponding Markov equivalence characterization can be
referred to (Verma & Pearl, |1991; Meek, 1995} |Andersson et al., {1997} |[Robins et al., [2000; [Friedman
et al., [2000; Brown et al., [2005)).

Two kinds of interventions. When experimental data is available, previous literature has considered
two types of interventions to model how experimental data is generated: hard (or perfect) interventions
and soft (or imperfect) interventions, also known as mechanism change. Hard interventions destroy the
dependence between targeted variables and their direct causes, either by deterministically fixing the
target variables to specific values, or by stochastically setting them to values drawn from independent
random variables (Pearl, |2009; [Korb et al., 2004). In contrast, soft interventions do not destroy
the aforementioned dependence, and they modify the functional form that characterizes the causal
generating mechanism of targeted variables (Tian & Pearl, 2001; |Eberhardt & Scheines, [2007)).

The earliest attempts on interventional causal discovery. The earliest Bayesian methods are
introduced by (Cooper & Yoo, [1999; [Eaton & Murphy, |2007)), compute the posterior distribution
of DAGs using both observational and interventional data. These methods however did not address
critical challenges like identifiability or equivalence class characterization. (Tian & Pearl,2001) is the
first to consider identifiability and the Markov equivalence for interventional causal discovery. They
consider the single-variable interventions with mechanisms change (soft interventions). A graphical
criterion for two DAGs being indistinguishable is given, but no graphical representation for such
equivalence class is characterized.

Treatments on hard interventions. (Hauser & Biihlmann, [2012)) first considers the characterization
of MEC with hard stochastic, multiple-variable interventions. There graphical criterion is based on
the mutilated DAGs as introduced in §2] and the graphical representation for equivalence class is
given by Z-essential graphs. Their graph criterion actually is consistent with (Tian & Pearl, 2001))’s,
though the latter focuses on single-variable interventions only. The provided algorithm GIES Hauser
& Biithlmann|(2015) is basically utilizing the CI relations in each experimental setting and integrate
results together. Under such paradigm, methods such as (Tillman & Spirtes},|2011};|/Claassen & Heskes|
2010) are also developed. (Wang et al., |2017) show the consistency issue of GIES when certain
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faithfulness assumptions are violated, and propose the new permutation-based algorithms (Wang
et al.l[2017).

For soft interventions, exploiting invariance in mechanisms. The basic idea of using the
(in)variance of causal generating mechanisms and the asymmetries among them to identify causal
relations can root back to (Hoover, |1990) with its application in economics. The invariant causal
inference framework (Meinshausen et al., 2016; [Rothenh&usler et al.| |2015; |Ghassami et al., [2017;
Peters et al., [2016) is developed, though they typically require parametric assumptions such as linear
models and the problem is transformed to regression analysis. Such invariances is later seen as
conditional independencies between an augmented exogenous domain index variable and the other
variables, which further can be related to the d-separation conditions on graphs. The interventional
causal discovery can then be unified with pure observational causal discovery, by viewing domain
indices as causal variables. Such representation has been discussed in e.g., (Korb et al., 2004} [Newey:
& Powell, 2003). In the causal discovery field, it is proposed by (Zhang et al. [2015) and got for-
malized in (Zhang et al.| 2017; Huang et al.l 2020; Mooij et al., |2020)), providing a unified way of
seeing data from multiple domains with mechanism change. The graphical criterion for Markov
equivalence under soft interventions is given in (Yang et al.| | 2018)). As with the earlier consistency
between (Hauser & Biithlmann| 2012)) and (Tian & Pearl, [2001), it is shown that as long as the pure
observational data is available, the equivalence condition for hard interventions and soft interventions
are the same. The issue of unknown intervention targets, also known as “fat hand” issue, is also
directly solvable from the augmented graph (Squires et al.,[2020; Jaber et al.|[2020).

When latent variables are involved. In the pure observational data and nonparametric causal
discovery setting, the frameworks of MAG and FCI have been well established(Richardson & Spirtes|
2002; |Zhang}, [2008)). For interventional causal discovery, various methods have been proposed to
address latent variables (Hyttinen et al., 2013b; |Triantafillou & Tsamardinos, |[2015}; |Kocaoglu et al.,
2017} |[Eaton & Murphy, [2007; |Magliacane et al.,|2016). They are either lying under the umbrellas of
FCI and the augmented DAG frameworks, or using parametric assumptions.

Another parallel line of study: active experimental design. Active experimental design is a
closely related area of research, but with a distinct focus. In the interventional causal discovery
setting, the interventional data are passively observed. In active experimental design however, we
have control over experiments. The aim is then to select specific targets for intervention in a sequence
of steps to efficiently uncover the final DAG. It can be roughly drawn into two lines. The first line
is graph based methods, such as (He & Gengl [2008; Eberhardt, 2008; [Eberhardt et al., 2005} [2010;
Hyttinen et al., [2013aj |Shanmugam et al., 2015; Kocaoglu et al.| | 2017; (Ghassami et al.| [2018)), which
characterize the equivalence at each step, and considers counting the DAGs in each equivalence class
so as to find the next step interventions that can possibly maximally reduce the DAG search space.
The second line is Bayesian based methods, such as (Tong & Koller, [2001; Murphy, 2001} |Agrawal
et al.} 2019; |Sussex et al., [2021}; Tigas et al.,|2022; Zhang et al., [2023), which treat the problem as an
optimization problem.

Modelling the interaction between reality and counterfactual world. At first glance, our
model seems similar to the twin network defined by (Balke & Pearl, [1994)), as both link reality and
counterfactual worlds through exogenous noise. This is where our name ‘twin’ is echoing. However,
key differences exist. Twin networks, or single world intervention graphs (SWIGs (Richardson &
Robins| 2013)), are used as diagrams to guide counterfactual queries when the structure is known,
while we discover structure from data. Their CI queries are in forms of X %; X p|X¢, so as to find
ClIs to calculate counterfactual quantities from the reality quantities, while we check the (in)variances
of p(X4|X¢). Also, they only model hard interventions while we handle soft ones. The most
relevant model we find is from (Ribot et al.,|2024) with a different focus on imputation. They assume
linearity and have non-fixed S* while we explore Markov properties nonparametrically.

D SUPPLEMENTARY EXPERIMENTAL DETAILS AND RESULTS

We use the implementation of IGSP, UT-IGSP, and JCI-GSP from the causaldag package (Chan{
dler Squires, |2018]), and the implementation of CD-NOD from the causal-learn package (Zheng
et al., |2023)). For the linear case, we use the Fisher Z test to examine conditional relations, while for
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nonlinear case, we adopt the kernel-based conditional independence test (Zhang et al., 2011). The
significance level is set to 0.05 in all cases.

PAG of Gtwin (interventional); sure | targets

Figure 9: Causal structure estimated by our CDIS method on a single-cell perturbation data, i.e.,
sciPlex2 2024). The red nodes and their outgoing edges represent the intervention targets
across different interventions. Here, X; — X indicates a causal edge from X; to X; and X is
not ancestrally selected; X; — X indicates that both X; and X; are ancestrally selected; X;0—0.X;
indicates that each endpoint may vary in the equivalence class. For simplicity in showing the DAG
and targets collection at the same time, we put multiple intervention indicators and the selection
variables, if any, all into one graph. This is merely for presentation ease; according to Lemma [7}
such graphs do not characterize the CI relations in data. The edge interpretation applies to all figures
below.

PAG of Gtwin (interventional); sure | targets

Figure 10: Causal structure estimated by our CDIS method an educational dataset. I1 represents SSP,
12 represents SFP, and 13 represents SFSP.
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PAG of Gtwin (interventional); sure | targets

chooseUTM

credits_earned1 Im_rarely

goodstanding_yearl

(a) Male.

PAG of Gtwin (interventional); sure | targets
credits_earned1

goodstanding_yearl

prob_yearl

mtongue

(b) Female.

Figure 11: Causal structure estimated by our CDIS method an educational dataset conducted with
subgroup analysis stratified by genders.
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Category Variable Meaning
GPA_yearl Ist year GPA
goodstandi~1  Good standing in year 1

Main outcome prob_yearl On probation in year 1
credits_ea~1 Credits earned in year 1
mathsci Number of math and science credits attempted
female Sex (Female dummy)
age Age

Personal backgrounds eiglish Wghether Mother tongue is English
gpal High school GPA
hcom ‘Whether Lives at Home
chooseUTM Whether At first choice school
work1 Whether Plans to work while in school
dad_edn Father education

Other covariates mom_edn Mother education
Im_rarely ‘Whether Rarely puts off studying for tests
Im_never Whether Never puts off studying for tests
lastmin how often do you leave studying until the last minute for tests and exams
graddeg Whether Wants more than a BA
finish4 Whether Intends to finish in 4 years

F1 Score

Table 1: Variables in the educational dataset
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Figure 12: Empirical results of different metrics with selection.
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Figure 13: Empirical results of different metrics without selection.
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(d) Estimated structure by JCI-GSP.

Figure 14: Examples of ground truth structure and estimated structures.
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