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Abstract

Modern scientific discovery increasingly relies on high-performance computing1

for complex modeling and simulation. A key challenge in improving parallel pro-2

gram performance is efficiently mapping tasks to processors and data to memory,3

a process dictated by intricate, low-level system code known as mappers. De-4

veloping high-performance mappers demands days of manual tuning, posing a5

significant barrier for domain scientists without systems expertise. We introduce6

a framework that automates mapper development with generative optimization,7

leveraging richer feedback beyond scalar performance metrics. Our approach fea-8

tures the Agent-System Interface, which includes a Domain-Specific Language9

(DSL) to abstract away low-level complexity of system code and define a struc-10

tured search space, as well as AutoGuide, a mechanism that interprets raw exe-11

cution output into actionable feedback. Unlike traditional reinforcement learning12

methods such as OpenTuner, which rely solely on scalar feedback, our method13

finds superior mappers in far fewer iterations. With just 10 iterations, it outper-14

forms OpenTuner even after 1000 iterations, achieving 3.8× faster performance.15

Our approach finds mappers that surpass expert-written mappers by up to 1.34×16

speedup across nine benchmarks while reducing tuning time from days to min-17

utes.18

1 Introduction19

Modern scientific discovery depends on advanced software tools for modeling and simulation [1–3].20

Computational scientists, including physicists, chemists, and biologists, rely on high-performance21

computing to tackle complex problems. These scientific computations dominate workloads on the22

world’s most powerful supercomputers [4]. However, many domain scientists lack expertise in23

computer science, and therefore having difficulties in optimizing their programs because of the24

complexity and scale of the underlying machines. Even for experts, finding and fixing performance25

problems resulting from program modifications or when porting to a new machine is often time-26

consuming. Any progress on automating performance tuning is of great benefit in this domain.27

Task-based programming [5–10] has emerged as a promising approach to high performance com-28

puting. The paradigm involves decomposing computations into independent tasks that communicate29

exclusively through their arguments. A key advantage of task-based systems is that the performance30

tuning problem is factored out into a separate mapping: an assignment of tasks to processors and31

data to particular memories. High-quality mapping, achieved through a well-designed mapper (im-32

plemented as code), can significantly improve performance, often by an order of magnitude [11].33

However, currently writing mappers remains a labor-intensive process, as it requires deep knowledge34

of applications, hardware, and low-level system APIs. In addition, this process is highly application-35

specific, input-specific, and machine-specific, often taking experts several days of meticulous tuning36
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Figure 1: Iterative mapper refinement with agent-based generative optimization. The system
leverages the Agent-System Interface, which consists of the Domain-Specific Language (DSL) and
AutoGuide. The DSL abstracts away the low-level system code, defining a search space for map-
ping strategies, while AutoGuide interprets execution results into actionable guidance. As iterations
progress, the mapper evolves to improve performance.

to achieve high performance. This challenge is especially pronounced for domain scientists, who37

typically lack the necessary expertise in computer systems and code optimization. Automating38

mapper development would enable scientists to focus on their own domain of expertise while fully39

utilizing the capabilities of high-performance computing systems.40

In this paper, we introduce a system powered by large language models (LLMs) to automate both41

the generation and optimization of mapper code. The first challenge stems from the complexity of42

generating mapper code due to the original low-level programming system, which exposes the agent43

to intricate system APIs, coupled with the problem that raw feedback messages from the system are44

often uninformative to the agent. The second challenge involves optimizing mapper performance.45

Specifically, it consists of (1) defining an appropriate search space and (2) devising efficient methods46

to find optimal mappers, thereby maximizing parallel program performance.47

To address the first challenge, we propose an Agent-System Interface (ASI), as shown in Figure 1,48

an abstraction layer between the agent and the system that simplifies code generation and provides49

more meaningful feedback to the agent. At the core of ASI is a Domain-Specific Language (DSL), a50

high-level interface that encapsulates all performance-critical decisions required to generate a map-51

per. The DSL abstracts away the complexity of low-level system code with a compiler. Additionally,52

the DSL defines a structured search space, enabling systematic exploration of mapping strategies.53

We also design and implement the AutoGuide mechanism to interpret raw execution output into54

informative and actionable guidance. This mechanism allows the agent to iteratively optimize the55

mapper by leveraging enriched feedback to update its strategy.56

For the second challenge, we adopt the generative optimization approach, a recent advance in57

optimization techniques. Unlike traditional methods such as reinforcement learning [12], which rely58

solely on scalar rewards, generative optimization can utilize richer forms of feedback, such as error59

explanations and actionable suggestions expressed in natural language. This agentic optimization60

workflow has previously proven to be effective across various domains [13–17]. Our work is the61

first to apply such technique to the domain of system optimization.62

Our experiments demonstrate that mappers optimized by LLM-powered agents not only match but63

often surpass expert-written mappers, achieving up to 1.34× speedup across nine benchmarks. Since64

expert-written mappers set the highest standard, surpassing them is a notable accomplishment. At65

the same time, our method significantly reduces mapper tuning time from days to minutes, making66

high-performance mapping more accessible to domain scientists. To further highlight the advantage67

of generative optimization, we compare it against OpenTuner, a reinforcement learning-based auto-68

tuning framework. Our generative optimizer finds mappers 11× faster than OpenTuner when both69

run for 10 iterations and still maintains a 3.8× advantage even when OpenTuner runs for 1000 iter-70

ations. Furthermore, ablation studies underscore the necessity of the agent-system interface design71

in achieving these performance gains. Our contributions are as follows:72

1. Design of an Agent-System Interface: We introduce an abstraction layer that simplifies mapper73

code generation and provides guidance to the agent. The Domain-Specific Language (DSL)74

defines a search space, allowing the agent to explore mapping strategies without dealing with low-75
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level system code. AutoGuide interprets raw execution output into targeted feedback, enabling76

the agent to refine mapper code more effectively.77

2. Generative Optimization for Systems: We introduce generative optimization to improve sys-78

tem performance, leveraging richer feedback such as error messages and actionable suggestions79

in natural language. Unlike reinforcement learning methods like OpenTuner, which rely solely80

on scalar feedback, our method identifies better mappers in far fewer iterations. With only 1081

iterations, it outperforms OpenTuner by 3.8× even after 1000 iterations.82

3. Empirical Evaluation of Performance: Our agent-based solution achieves up to 1.34× speedup83

across nine benchmarks, surpassing expert-written mappers while reducing tuning time from days84

to minutes. We highlight the critical role of the agent-system interface through ablation studies,85

demonstrating its impact on achieving the performance gains.86

2 Related Work87

Mapping in Parallel Programming Many parallel programming systems allow users to make88

their own mapping decisions, such as Legion [6], StarPU [7, 18], Chapel [8], HPX [19, 20], Se-89

quoia [21], Ray [9], TaskFlow [22], and Pathways [10]. Several techniques have been proposed90

to automate mapping, including machine learning models [23, 24], static analysis [25, 26], rein-91

forcement learning [12, 27] and auto-tuning [28]. We use an agent-based approach with LLMs and92

explore a larger search space for mappers than traditional methods.93

Agentic Frameworks Agents powered by Large Language Models (LLMs) play a critical role94

in decision-making, planning, tool integration, and solving complex problems in dynamic environ-95

ments [29]. Many agentic frameworks have been developed [30–33], with uses spanning domains96

such as software engineering [34–36], robotics [37], healthcare [38], education [39], and knowledge97

engineering [40]. Our work is the first to apply an agentic workflow to iteratively optimize mapper98

code, improving the performance of parallel programs.99

AI for Systems The application of AI to optimize system design has gained significant trac-100

tion in recent years. Techniques such as deep learning [41–43] and gradient-boosted trees [44]101

have been used to predict program execution times for performance optimization. Reinforcement102

learning methods have addressed challenges in chip floorplanning [45], autotuning [12], auto-103

vectorization [46], and compiler phase ordering [47]. While previous efforts have predominantly104

relied on traditional approaches for cost prediction and optimization, our work uses the recent ad-105

vances in generative optimization to tackle complex system challenges.106

Generative Optimization Recent work has explored the use of LLMs for optimization problems107

traditionally tackled with numerical methods, including mixed-integer programming [48, 49] and108

numerical optimization [13]. A key advantage of generative optimization is its ability to iteratively109

refine solutions using diverse forms of feedback. For example, Cheng et al. [14] applies generative110

optimization to robotic manipulation and game playing, while Yuksekgonul et al. [17] optimizes111

prompts and molecular designs. While reinforcement learning has been applied to system optimiza-112

tion, the potential of LLM-driven optimization in systems remains unexplored. Our work explores113

whether generative optimization with richer feedback outperforms traditional methods using scalar114

rewards in system optimization.115

3 Problem Definition116

Motivation and Challenges The concrete problem we address is the automated generation of117

high-performance mappers for the Legion parallel programming framework [6]. Mappers dictate118

task scheduling and data placement. A well-designed mapper can achieve orders-of-magnitude119

speedup over naive strategies.120

However, automating mapper generation is challenging due to two key factors. First, the complexity121

of low-level system code. Implementing a mapper requires writing hundreds of lines of intricate122

C++ code, demanding expertise in system internals. Second, the vast search space of mapping123

strategies. The search space grows exponentially with the number of tasks and arguments.124
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1 # Map task0 to GPU.
2 Task task0 GPU;
3
4 # Place certain data onto GPU ZeroCopy.
5 Region * ghost_region GPU ZCMEM
6
7 # Specify layout in memory
8 # (aligned to 64 bytes)
9 Layout * * * C_order SOA Align ==64

10
11 # Define a cyclic mapping strategy
12 def cyclic(Task task):
13 ip = task.ipoint;
14 mgpu = Machine(GPU);
15 node_idx = ip[0] % mgpu.size [0];
16 gpu_idx = ip[0] % mgpu.size [1];
17 return mgpu[node_idx , gpu_idx ];
18
19 IndexTaskMap task4 cyclic

(a) An example mapper in Domain-Specific Lan-
guage (DSL)

1 void slice_task(const Task& task ,
2 const SliceTaskInput &input ,
3 SliceTaskOutput &output) {
4 vector <Processor > targets =
5 this ->select_targets_for_task(ctx , task);
6 DomainT <2> space = input.domain;
7 Point <2> num_points =
8 space.bounds.hi - space.bounds.lo + ones;
9 Rect <2> blocks(zeroes , num_blocks - ones);

10 ... // 126 lines of C++ code omitted here
11 for (PointInRectIterator <2> it(blocks); it() !=

NULL; it++)
12 {
13 DomainT <2,coord_t > slice_space;
14 TaskSlice slice;
15 slice.domain = {slice_lo , slice_hi };
16 slice.proc = targets[index++ % targets.size()];
17 output.slices.push_back(slice);
18 }
19 }

(b) Code snippet from a C++ mapper

Figure 2: Comparison of a DSL mapper and a C++ mapper. The DSL’s declarative, high-level
design abstracts away the complexity of low-level C++ code, serving as the core of the Agent-
System Interface. The highlighted boxes illustrate how the same functionality, which requires
extensive C++ system code, can be expressed concisely in just a few lines in DSL.

Search Space and Performance Impact As illustrated in Figure A1, the search space of map-125

pers involves multiple decisions, each influencing performance. The first key aspect is processor126

selection, which determines whether a task runs on GPUs, CPUs, or the OpenMP runtime. This127

choice depends on factors such as task size, GPU memory capacity, and kernel launch overhead.128

For instance, small tasks may prefer CPUs due to the overhead of launching GPU kernels, while129

tasks with large memory footprints may run on CPUs when GPU memory is insufficient.130

Another crucial dimension is memory placement, which dictates where data is stored. A mapper131

must decide whether to place data in the GPU’s FrameBuffer for fast access, ZeroCopy memory132

for CPU-GPU sharing, or CPU system memory for more available storage. Each option presents133

trade-offs between access speed, memory usage, and data transfer overhead.134

Additionally, memory layout further expands the search space, with decisions on Struct of Arrays135

(SOA) vs. Array of Structures (AOS), data ordering (Fortran-order vs. C-order), and alignment136

constraints (e.g., 128-byte alignment) significantly affecting cache efficiency and performance.137

Finally, an important idiom in high-performance computing is launching tasks over partitioned data.138

Index mapping determines how data partitions and task executions are distributed across multiple139

processors. For consistency, we can represent data partitioning as a tensor of data partitions, the140

machine as a tensor of processors, and tasks operating on the partitioned data as a tensor of tasks. The141

way data and task indices are mapped to processor indices affects inter-processor communication, a142

key factor in performance [50, 51].143

4 Our Approach: Agent-System Interface144

4.1 Domain-Specific Language Design145

A key challenge in automating mapper generation with a coding agent is the complexity of low-146

level system code, which requires intricate C++ implementations. To address this, we design a147

high-level Domain-Specific Language (DSL) as the core of our Agent-System Interface (ASI).148

The DSL provides a structured search space for mapping strategies while abstracting away low-149

level implementation details. Unlike C++, which demands imperative specifications of mapping150

policies, our DSL adopts a declarative design, allowing users to specify what to achieve rather than151

how to implement it. Most critically, the DSL separates concerns, enabling multiple aspects of152

mapping decisions to be expressed independently rather than being entangled in low-level system153

APIs. This design reduces code complexity and naturally provides a search space for the agent to154

explore. To implement it, we develop a compiler that translates DSL into the low-level C++ APIs.155
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Figure 3: Agent Optimization Process. The mapper agent takes server specifications and
application-specific information as input, generates mapper code, and executes it alongside the ap-
plication on the server. Raw execution feedback is enriched using the AutoGuide mechanism and
iteratively refined by an LLM optimizer to improve performance.

As illustrated in Figure 2, the complexity of DSL code is significantly lower than that of C++.156

Figure 2a provides an example of a DSL mapper, highlighting the key features of our DSL. In157

contrast, Figure 2b shows a snippet from a C++ mapper, emphasizing the intricacy of low-level158

implementation details. According to Table A1, using the DSL results in an average lines of code159

reduction of 14×. This substantial reduction makes DSL a more suitable target for LLM code160

generation, as it abstracts away the complexities inherent in low-level systems. As we will show in161

Section 5.2, LLMs generate DSL code more effectively, despite DSL having no examples in LLM162

training corpora, whereas C++ is widely represented.163

Next, we describe the DSL’s design, emphasizing its declarative nature and structured search space.164

Section 3 details the performance impact of each decision.165

The Task statement (Line 2) defines processor selection for each task, choosing between CPU,166

GPU, or OpenMP. Line 2 specifies that instances of task0 should run on GPUs. This decision is167

made per task; note that the search space expands exponentially with the number of tasks.168

The Region statement (Line 5) controls memory placement for data arguments. Line 5 specifies169

that all tasks using ghost_region should place the data in GPU ZeroCopy memory. Other choices170

include GPU FrameBuffer memory and CPU System Memory. This decision is made per task and171

per argument, causing the search space to grow exponentially.172

The Layout statement (Line 9) defines memory layouts. Line 9 enforces a C_order axis ordering,173

an SOA layout, and a 64-byte memory alignment for all data used by all tasks mapped to all proces-174

sors. Alternative choices include F_order, AOS, and various alignment strategies. This is a per-task,175

per-data, per-processor decision.176

The IndexTaskMap statement (Line 19) controls index mapping using a customized function.177

Line 12 defines the mapping function that establishes the correspondence between two index spaces:178

the task index space (represented by task.ipoint) defined in the application code (e.g., for loops)179

and the processor space of the distributed machine (represented by Machine(GPU)). The DSL allows180

users to express arbitrary arithmetic mappings between the two index spaces. This decision applies181

to each task group launched by parallel for loops.182

4.2 Generative Optimization via AutoGuide183

We formulate mapper generation as an online optimization problem. Given a triplet (Θ, ω, T ),184

where Θ is a set of possible mappers, ω is an optimization objective, and T is a function that takes185

a mapper θ ∈ Θ as input, (f, g) = T (θ) and returns f , the feedback from executing the mapper186

(i.e., the measured performance after running the application code with the generated mapper), and187

g, the process graph tracing how the mapper was generated. In our setup, mapper performance188

is deterministic, as we carefully control all sources of randomness in the environment. If the pa-189

rameter space were numerical, this online optimization problem could be addressed using bandit190

algorithms [52], reinforcement learning [53], or Bayesian optimization [54], but these methods are191

less efficient when the parameter search space is large and discrete (i.e., text).192
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Case Raw Execution Output AutoGuide
Explain Suggest

Case 1
Execution Error: Assertion
failed: stride does not match

expected value.

Memory
layout is

unexpected.

Adjust the layout constraints or
move tasks to different

processor types.

Case 2 Performance Metric: Execution
time is 0.03s. N/A Move more tasks to GPU to

reduce execution time.

Table 1: AutoGuide Feedback Mechanism. The AutoGuide mechanism interprets raw execution
output from the runtime system, providing more informative error explanations and suggestions for
mapper modifications. It is implemented via keyword matching. Additional examples are shown in
Table A2.

In this online optimization problem, we leverage the DSL to structure the parameter space to improve193

the efficiency of optimization. Here, θ represents the program code, while ω and f are expressed as194

text. We adopt generative optimization, leveraging LLMs as optimizers given the objective in text195

form. This emergent optimization behavior has been recently observed and applied across various196

domains [55, 14, 17, 56].197

Optimization Process We present the optimization process in Figure 3. The agent takes two198

inputs: server specifications (e.g., CPU/GPU counts) and application information (e.g., task lists,199

data arguments). It generates mapper code, which is executed alongside the application code on the200

server. Raw execution feedback from the runtime is augmented with the AutoGuide mechanism and201

fed back to the LLM, iteratively refining the agent for improved mapper code generation.202

Coding Agent Our mapper agent improves mapping decisions by iteratively generating DSL code.203

A high-level schema of the mapper agent is shown in Figure 3. The mapper agent is implemented204

as a Python program in the Trace [14] framework, where we decompose the task of generating a205

monolithic mapper into independent code segments. This decomposition allows the agent to decide206

what code to generate for each segment separately. This approach is effective because our DSL de-207

sign eliminates unnecessary dependencies between mapping decisions. Our modularization strategy208

aligns with least-to-most prompting [57].209

AutoGuide The AutoGuide feedback mechanism is designed based on three key motivations: (1)210

generative optimization benefits from natural language feedback rather than relying solely on scalar211

values, (2) raw execution output from the runtime system is often too uninformative to effectively212

guide the agent’s decisions, and (3) domain heuristics known to systems researchers can be natu-213

rally expressed in language (e.g., most tasks run faster on GPUs than CPUs). To address these needs,214

AutoGuide helps the agent by explaining opaque error messages and suggesting mapper modifica-215

tions. As shown in Table 1, it interprets uninformative execution output into actionable insights,216

with additional examples in Appendix A.4. The implementation relies on keyword matching over217

the raw execution output. An ablation study in Section 5.3 demonstrates its effectiveness in our218

experiments.219

5 Evaluation220

Experiments are conducted on one node with two Intel 10-core E5-2640 v4 CPUs, 256G main221

memory, and four NVIDIA Tesla P100 GPUs. We use gpt-4o-2024-08-06.222

5.1 Speedup of Application Performance223

We evaluate our approach using 9 benchmarks. Circuit [6] is a simulation benchmark that mod-224

els electrical circuit behavior by simulating currents and voltages across interconnected nodes and225

wires. Stencil [58] simulates a 2D grid where each point’s value is updated based on a stencil pattern226

determined by its neighbors. Pennant [59] models unstructured mesh Lagrangian staggered-grid hy-227

drodynamics, commonly used for simulating compressible flow. The remaining six benchmarks –228

Cannon’s [60], SUMMA [61], PUMMA [62], Johnson’s [63], Solomonik’s [64], and COSMA [65]229
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Figure 4: Performance Comparison. Normalized throughput for 9 benchmarks, comparing expert
mappers, random mappers, the average optimization trajectories of Trace, OPRO, and OpenTuner
in 10 iterations across 5 runs, and the best mappers found by Trace.

– are widely studied parallel matrix multiplication algorithms, which we discuss in more detail in230

Appendix A.3.231

100 101 102 103

Iterations (Log Scale)
1X

5X

9X

13X

Re
la

tiv
e 

Th
ro

ug
hp

ut

11X
3.8X

Generative Optimizer vs Traditional RL (1k iters)

Trace
OpenTuner

Figure 5: Comparison of Trace (generative opti-
mizer) and OpenTuner (traditional RL) over 1K
iterations (averaged across all 9 benchmarks).

In this experiment, we evaluate the perfor-232

mance of the mappers with the following base-233

lines.234

Expert-Written Mappers. These mappers235

are manually developed by domain scientists236

who spend years mastering computational sci-237

ence. Writing mappers in parallel programming238

frameworks is another challenge, and tuning239

them for specific applications can take days.240

Randomly Generated Mappers. These map-241

pers were randomly generated with 10 different242

random seeds, sampling from the entire search243

space of each application. We report the aver-244

age performance.245

Agent-Optimized Mappers. Using Trace [14], we evaluated the Trace and OPRO [15] search246

algorithms, running 10 iterations per application. To account for stochastic output, we repeated the247

process 5 times and report the average. The best mapper from Trace across runs is also reported.248

OpenTuner Mappers. OpenTuner [12] is a program autotuning framework that uses reinforce-249

ment learning to optimize performance based on scalar feedback. We provided execution time as250

feedback, with a high penalty for failures.251

Results We use normalized throughput as the performance metric in Figure 4, where higher values252

indicate better performance. The throughput is normalized relative to the expert-written mappers.253

All the best mappers found by Trace can match or surpass the expert-written mappers, under-254

scoring the effectiveness of agent-based generative optimizer. Random mappers consistently exhibit255

low performance across all applications, emphasizing the critical role of mapping decisions. When256
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Code Generation Target Mapping Strategy Success Rate1 2 3 4 5 6 7 8 9 10

C++ (single trial) ✗ – – ✗ – – ✗ ✗ – – 0%
DSL (single trial) ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ – 80%

C++ (iterative refine) ✗ – – ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%
DSL (iterative refine) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100%

Table 2: Code Generation Success Rates. Success rates for generating code across 10 mapping
strategies described in natural language. The test evaluates whether the generated code compiles
and passes execution tests. Generating DSL code significantly outperforms generating C++ for both
settings. Symbols indicate results: – fails to compile, ✗ compiles but fails the test, and ✓ passes the
test.
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Figure 6: Comparison of different feedback designs. 0-Shot and 5-Shot are baselines. Execution
provides only the raw execution output as feedback. Explain provides additional explanations of
execution errors. Suggest offers mapper modification suggestions. All feedback is automatically
generated.

comparing optimization trajectories, Trace performs similarly to OPRO, and significantly outper-257

forms OpenTuner.258

To further compare the agent-based optimizer with traditional reinforcement learning, we extended259

OpenTuner’s optimization iterations from 10 to 1000, as shown in Figure 5, where the x-axis is the260

log-scale of iterations and the y-axis represents relative throughput (averaged across all 9 bench-261

marks). Notably, Trace achieves a 3.8× speedup over OpenTuner even when OpenTuner is run262

for 1000 iterations. When both are limited to 10 iterations, Trace outperforms OpenTuner by 11×,263

demonstrating its ability to quickly identify high-performance mappings. This highlights the supe-264

riority of Trace (generative optimizer) over OpenTuner (traditional reinforcement learning).265

Moreover, Trace completes the entire optimization process in just 10 minutes per application, re-266

ducing mapper development time from days to minutes.267

Case Analysis The largest performance gain achieved by Trace over the expert mapper is observed268

in Circuit, with a speedup of 1.34×. This improvement is primarily due to memory placement: the269

best mapper allocates two data collections to GPU FrameBuffer memory, while the expert mapper270

places them in GPU ZeroCopy memory. Despite a slight increase in inter-GPU communication271

costs, Trace reduces task execution time due to faster memory access, resulting in higher overall272

performance. For matrix-multiplication algorithms, the greatest speedup is seen in COSMA, with273

Trace achieving a 1.31× speedup over the expert mapper. This is attributed to Trace’s more efficient274

index mapping functions, which reduce inter-GPU communication by better distributing partitioned275

submatrices across GPUs. For additional context, examples of Trace mappers are presented in Ap-276

pendix A.7.277

5.2 Ablation Study of DSL for Code Generation278

In Section 5.1, we demonstrate the overall effectiveness of our approach. Here, we conduct an279

ablation study on the DSL, the core of the Agent-System Interface. Since successful generation is280

the foundation of optimization, this subsection focuses on how well the DSL helps LLMs generate281

correct mappers compared to C++, rather than directly optimizing performance.282
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Experiment Setup We designed 10 mapping strategies, described in natural language, to evaluate283

whether LLMs can generate correct code in both the DSL and the original low-level C++. The284

strategies are detailed in Appendix A.6. To ensure a fair comparison, identical prompt materials285

(documentation, examples, and starting code) were provided for both the DSL and C++. Success286

rates are measured based on whether the generated code passes predefined test cases, with results287

reported for single trials and iterative refinement, where the LLM is allowed up to 10 iterations288

to improve the code using compiler feedback. The evaluation is conducted with the DSPy [16]289

framework.290

Results Table 2 shows that DSL achieves significantly higher generation success rates than291

C++ in both the single-trial and iterative refinement settings. This demonstrates the effectiveness292

of DSL’s design in abstracting system complexity and providing a high-level interface that enables293

LLMs to tackle complex system challenges in code generation. Incorporating iterative refinement294

with compiler feedback further improves success rates, resolving three compilation errors in C++295

and two in the DSL. However, the gap between DSL mappers and C++ mappers remains substantial.296

Notably, these results are striking given that the DSL is a low-resource language with no pre-training297

or fine-tuning data, while C++ code is widely present in LLM training corpora.298

Analysis LLMs perform better with the DSL for two reasons. First, the semantic gap between299

natural language and code is smaller with the DSL than with C++. For example, writing a mapper300

to “align all data to 64 bytes in memory and use Fortran ordering” requires one line Layout *301

* * Align==64 F_order in the DSL because of its declarative design. In contrast, the C++302

mapping API requires a sequence of operations to enforce alignment and ordering, which widens303

the semantic gap. Second, the DSL reduces the amount of code. As shown in Table A1, LLMs304

achieve an average reduction of 14× in lines of code, simplifying code generation. These results305

underscore the importance of a high-level agent-system interface.306

5.3 Ablation Study of the AutoGuide Feedback307

The AutoGuide mechanism provides enriched feedback to the agentic optimizer. We compare with308

alternative feedback designs.309

Experiment Setup We compare the following baselines. 0-shot and 5-shot have no feedback, al-310

lowing the LLM to generate once with either 0 or 5 examples provided. Execution only provides raw311

execution feedback, Explain offers additional explanations for execution errors, and Suggest offers312

mapper modification suggestions. The Trace trajectory shown in Figure 4 uses the full AutoGuide313

mode with all Execution+Explain+Suggest. As an ablation study, we evaluate 3 benchmarks.314

Results and Analysis Figure 6 demonstrates that the full feedback mechanism consistently out-315

performs all reduced feedback variants. The 0-shot and 5-shot results perform the worst, underscor-316

ing the importance of feedback-based iterative refinement. This highlights the value of an agentic317

workflow, showing that performance improvements are not solely driven by prompting the LLM but318

are a direct result of the iterative refinement inherent in the workflow design.319

6 Conclusion320

In this paper, we introduced a system that leverages LLMs to automate mapper generation and op-321

timization. The Agent-System Interface (ASI) simplifies code generation with a Domain-Specific322

Language (DSL), which abstracts away the low-level complexity of system code, and enriches ex-323

ecution feedback through AutoGuide, which interprets raw execution output into actionable guid-324

ance. We adopted generative optimization, allowing LLMs to refine mappers using rich textual325

feedback beyond scalar metrics. Unlike RL-based methods like OpenTuner, which rely on numer-326

ical rewards, our approach incorporates error explanations and targeted suggestions, accelerating327

search efficiency. Experiments show that agent-generated mappers outperform expert-written ones,328

achieving up to 1.34× speedup across nine benchmarks. Our method, running only 10 iterations,329

maintains a 3.8× advantage over OpenTuner even after 1000 iterations. By reducing mapper devel-330

opment time from days to minutes, our approach benefits computational scientists and demonstrates331

the effectiveness of generative optimization in system design.332
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A Appendix552

A.1 Illustration for Mapping553

We show an illustration for mapping in Figure A1.554

(processor)

Application

Tasks
Mapper

Processor

Selection

(tasks)

Memory

Placement

(data)

Data

Index

Mapping

Machines

(tasks, data)

Figure A1: Mappers decide the placement of each task in the task graph to processors, the place-
ment of data to memory, and how the iteration space of data is partitioned and mapped to different
processors.

A.2 Tables for Lines of Code Comparison555

We show the lines of code comparison between DSL and C++ mappers in Table A1.556

Application 1 2 3 4 5 6 7 8 9 Avg.

LoC in C++ 347 306 379 447 437 430 428 433 448 406
LoC in DSL 16 14 16 38 38 38 33 38 32 29

LoC Reduction 22× 22× 24× 12× 12× 11× 13× 11× 14× 14×

Table A1: Lines of Code (LoC) comparison between DSL and C++ mappers. The DSL achieves
a 14× average reduction in LoC, making it a more suitable target for LLM code generation.
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A.3 Parallel Matrix Multiplication Algorithms557

2D Algorithms Cannon’s [60] introduced a systolic communication pattern with tiled data par-558

titioning for distributed matrix multiplication. PUMMA [62] and SUMMA [61] extended this ap-559

proach by supporting non-square matrices and improving communication efficiency through pipelin-560

ing. They are called 2D algorithms because they partition the matrices into 2D tiles and then map561

them onto the processor space.562

Non-2D Algorithms Johnson’s [63] introduced a 3D algorithm that partitions the input matrices563

into 3D tiles and uses additional memory per processor to reduce communication compared to 2D564

algorithms. Solomonik’s [64] balances between 2D and 3D approaches by using extra memory565

to further minimize communication. COSMA [65] takes a different approach by optimizing the566

processor grid and parallelization strategy based on the input size and the machine size.567

A.4 Examples of Feedback Configurations568

We give examples for the raw execution output and enriched feedback in Table A2. The enhanced569

feedback includes explanations of errors and suggestions for mapper modifications.570

Case Raw Execution Output AutoGuide
Explain Suggest

case1
Compile Error: Syntax error,

unexpected :, expecting { N/A There should be no colon : in
function definition.

case2
Compile Error: IndexTaskMap’s

function undefined N/A Define the IndexTaskMap
function first before using it.

case3 Compile Error: mgpu not found N/A
Include mgpu =

Machine(GPU); in the
generated code.

case4
Execution Error: Assertion
failed: stride does not match

expected value.

Memory
layout is

unexpected.

Adjust the layout constraints or
move tasks to different

processor types.

case5
Execution Error: DGEMM

parameter number 8 had an illegal
value

Memory
layout is

unexpected.
Adjust the layout constraint.

case6
Execution Error: Slice processor

index out of bound

IndexTaskMap
statements
cause error.

Ensure that the first index of
mgpu ends with %

mgpu.size[0], and the second
element ends with %
mgpu.size[1].

case7
Execution Error: Assertion

‘event.exists()’ failed

InstanceLimit
statements
cause error.

Avoid generating InstanceLimit
statements.

case8
Performance Metric: Execution

time is 0.03s. N/A Move more tasks to GPU to
reduce execution time.

case9
Performance Metric: Achieved

throughput = 4877 GFLOPS N/A

Try using different
IndexTaskMap or

SingleTaskMap statements to
maximize throughput.

Table A2: Raw execution output and AutoGuide (error explanations and adjustment suggestions)
for different cases.
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A.5 Trace Agent Code571

Trace [14] uses Python decorators like @bundle to annotate Python programs. It allows us to design572

an LLM code generation agent as if we were writing a Python program ourselves. We first set up an573

end-to-end runnable Python program that can generate a valid mapper program by randomly making574

decisions over the search space. We show the high-level structure of our Trace Mapper in Figure A3.575

Figure A2 shows how we incorporate the feedback from the execution to update the agent. At each576

optimization step, Trace will execute DSLMapperGenerator and collect the corresponding execution577

flow to build up a graph. Then it will make a call to an LLM to perform an update to any function578

that is decorated with @bundle(trainable=True). The DSLMapperGenerator is structured in the579

same way as providing a search space specified by the DSL, where an LLM optimizer can make580

decisions along the pre-designed axes. We note that this type of design is only enabled by recent581

developments like Trace and is much more challenging to do using older LLM-based frameworks.582

1 policy = MapperAgent ()
2 params = policy.parameters ()
3 optimizer = trace.Optimizer(params)
4
5 app = GetApplicationInfo ()
6 test = GetMapperEvaluator(app)
7
8 for i in range(iterations):
9 # Forward pass

10 try:
11 mapper = policy(app)
12 # feedback (str) contains performance
13 feedback = test(mapper)
14 except TraceExecutionError as e:
15 feedback = str(e)
16 target = e.exception_node
17
18 # Backward pass and update
19 optimizer.zero_feedback ()
20 optimizer.backward(target , feedback)
21 optimizer.step()

Figure A2: We show how we use Trace to incorporate the feedback from the execution to update the
agent, with a Pytorch-like syntax.
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1 import opto.trace as trace
2
3 class MapperAgent(trace.Module):
4 @trace.bundle(trainable=True)
5 def task_decision(self , tasks):
6 ...
7
8 @trace.bundle(trainable=True)
9 def region_decision(self , regions):

10 ...
11
12 @trace.bundle(trainable=True)
13 def layout_decision(self):
14 ...
15
16 @trace.bundle(trainable=True)
17 def instance_limit_decision(self , tasks):
18 ...
19
20 @trace.bundle(trainable=True)
21 def index_task_map_decision(self , index_tasks):
22
23 @trace.bundle(trainable=True)
24 def single_task_map_decision(self , single_tasks):
25 ...
26
27 def generate_mapper(self):
28 """
29 Generate the final mapper code by combining all code statements.
30 """
31 task_statements = self.task_decision(self.tasks)
32 region_statements = self.region_decision(self.regions)
33 layout_statements = self.layout_decision ()
34 instance_limit_statements = self.instance_limit_decision(self.tasks)
35 index_task_map_statements =

self.index_task_map_decision(self.index_tasks , self.index_task_specification)
36 single_task_statements = self.single_task_map_decision(self.single_tasks)
37
38 code_statements = (
39 task_statements +
40 region_statements +
41 layout_statements +
42 instance_limit_statements +
43 index_task_map_statements +
44 single_task_statements
45 )
46 # Combine all code statements and function definitions into a single

string
47 code_list = code_statements
48 mapper_code = str_join(node(’\n’), *code_list)
49 return mapper_code

Figure A3: High-level structure of the Trace-based agent template, where functions annotated with
@bundle(trainable=True) define the search space that the LLM optimizer updates during mapper
generation. Note: This agent serves as a shared starting point for ALL tasks. For each task, we
produce a mapper from this starting agent and then ask LLMs to “optimize” this agent (by changing
functions that are trainable) to produce mappers that are optimal for the particular task.
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A.6 Mapping Strategies583

Strategy 1: Map the tasks of calculate_new_currents, distribute_charge, update_voltages584

onto GPUs in this way: linearize the 2D GPU processor space into 1D, then perform 1D block585

mapping from launch domain to the linearized 1D processor space.586

587
1 Task * GPU ,CPU; # for any task , run on GPU if supported588
2 Region * *GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default589
3 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default590
4591
5 Layout * * * SOA C_order;592
6593
7 mcpu = Machine(CPU);594
8 mgpu = Machine(GPU);595
9596

10 ========== Above is fixed ==========597
11 def linearblock(Task task) {598
12 return mgpu[task.ipoint [0] / mgpu.size[1], task.ipoint [0] % mgpu.size [1]];599
13 }600
14601
15 IndexTaskMap calculate_new_currents ,distribute_charge ,update_voltages linearblock;602603

Strategy 2: Place ghost/shared regions (rp_shared and rp_ghost) onto GPU zero-copy memory604

605
1 Task * GPU ,CPU; # for any task , run on GPU if supported606
2607
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default608
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default609
5610
6 Layout * * * SOA C_order;611
7612
8 mcpu = Machine(CPU);613
9 mgpu = Machine(GPU);614

10615
11 ========== Above is fixed ==========616
12617
13 Region * rp_shared GPU ZCMEM;618
14 Region * rp_ghost GPU ZCMEM;619620

Strategy 3: Use Array Of Struct (AOS) data layout for all data instead of the default SOA621

622
1 Task * GPU ,CPU; # for any task , run on GPU if supported623
2624
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default625
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default626
5627
6 mcpu = Machine(CPU);628
7 mgpu = Machine(GPU);629
8630
9 ========== Above is fixed ==========631

10632
11 Layout * * * AOS;633634

Strategy 4: Use Fortran ordering of data layout for all data instead of the default C order635

636
1 Task * GPU ,CPU; # for any task , run on GPU if supported637
2638
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default639
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default640
5641
6 mcpu = Machine(CPU);642
7 mgpu = Machine(GPU);643
8644
9 ========== Above is fixed ==========645

10646
11 Layout * * * F_order;647648
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Strategy 5: Align all the regions to 64 bytes while using the Fortran ordering of data649

650
1 Task * GPU ,CPU; # for any task , run on GPU if supported651
2652
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default653
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default654
5655
6 mcpu = Machine(CPU);656
7 mgpu = Machine(GPU);657
8658
9 ========== Above is fixed ==========659

10660
11 Layout * * * Align ==64 F_order;661662

Strategy 6: Place the task calculate_new_currents onto CPU663

664
1 Task * GPU ,CPU; # for any task , run on GPU if supported665
2666
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default667
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default668
5669
6 mcpu = Machine(CPU);670
7671
8 mgpu = Machine(GPU);672
9673

10 Layout * * * SOA C_order;674
11675
12 ========== Above is fixed ==========676
13 Task calculate_new_currents CPU;677678

Strategy 7: Collect all the memory used by task calculate_new_currents679

680
1 Task * GPU ,CPU; # for any task , run on GPU if supported681
2682
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default683
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default684
5685
6 mcpu = Machine(CPU);686
7 mgpu = Machine(GPU);687
8688
9 Layout * * * SOA C_order;689

10690
11 ========== Above is fixed ==========691
12 CollectMemory calculate_new_currents *;692693

Strategy 8: Ensure that at most 4 tasks of calculate_new_currents can be run at the same time694

695
1 Task * GPU ,CPU; # for any task , run on GPU if supported696
2697
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default698
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default699
5700
6 mcpu = Machine(CPU);701
7 mgpu = Machine(GPU);702
8703
9 Layout * * * SOA C_order;704

10705
11 ========== Above is fixed ==========706
12 InstanceLimit calculate_new_currents 4;707708

Strategy 9: Map the second region argument of task distribute_charge onto GPU’s Zero-Copy mem-709

ory710

711
1 Task * GPU ,CPU; # for any task , run on GPU if supported712
2713
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default714
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default715
5716
6 mcpu = Machine(CPU);717
7 mgpu = Machine(GPU);718
8719
9 Layout * * * SOA C_order;720

10721
11 ========== Above is fixed ==========722
12 Region distribute_charge 1 GPU ZCMEM;723724
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Strategy 10: Map the tasks of calculate_new_currents,distribute_charge,update_voltages onto725

GPUs in a 1D cyclic manner: perform a cyclic distribution over both the node and processor di-726

mensions.727

728
1 Task * GPU ,CPU; # for any task , run on GPU if supported729
2730
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default731
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default732
5733
6 mcpu = Machine(CPU);734
7 mgpu = Machine(GPU);735
8736
9 Layout * * * SOA C_order;737

10738
11 ========== Above is fixed ==========739
12 def cyclic1d(Task task) {740
13 ip = task.ipoint;741
14 # cyclic over node , cyclic over gpu742
15 return mgpu[ip[0] % mgpu.size[0], ip[0] / mgpu.size [0] % mgpu.size [1]];743
16 }744
17745
18 IndexTaskMap calculate_new_currents ,distribute_charge ,update_voltages cyclic1d;746747
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A.7 Generated Mapper Examples748

Here we provide examples of generated mappers for a subset of problems. The mappers, written in749

DSL, are produced by the mapper agent. While the LLM is responsible for creating and refining the750

mapper agent, the agent itself is implemented in Python, and it generates mappers as DSL programs.751

For the Circuit Simulation benchmark, the optimized mapper (Figure A5) is more concise than the752

initial version (Figure A4), with an additional constraint for byte alignment in the data layout. In753

contrast, for Solomonik’s algorithm, the initial mapper is relatively simple (Figure A6), whereas the754

final optimized mapper adopts a more complex and detailed index mapping strategy (Figure A7).755

1 Task * GPU ,OMP ,CPU;
2 Task calculate_new_currents GPU;
3 Task update_voltages GPU;
4 Region * * GPU FBMEM;
5 Region * * * SOCKMEM ,SYSMEM;
6 Region * all_times GPU FBMEM;
7 Region * all_nodes GPU FBMEM;
8 Region * all_wires GPU FBMEM;
9 Region * ghost_ranges GPU FBMEM;

10 Region * rp_all_nodes GPU FBMEM;
11 Region * all_private GPU FBMEM;
12 Region * all_shared GPU FBMEM;
13 Region * rp_shared GPU FBMEM;
14 Region * rp_wires GPU FBMEM;
15 Region * rp_ghost_ranges GPU FBMEM;
16 Layout * * * C_order AOS;
17 mgpu = Machine(GPU);
18
19 m_2d = Machine(GPU);
20 def same_point(Task task) {
21 return m_2d[*task.parent.processor(m_2d)];
22 }

Figure A4: For the Circuit task, we show the mapper produced by the mapper agent at iteration 2.

1 Task * GPU ,OMP ,CPU;
2 Task calculate_new_currents GPU;
3 Task update_voltages GPU;
4 Region * * GPU FBMEM;
5 Layout * * * C_order AOS Align ==128;
6 mgpu = Machine(GPU);
7
8 m_2d = Machine(GPU);
9 def same_point(Task task) {

10 return m_2d[*task.parent.processor(m_2d)];
11 }

Figure A5: For the Circuit task, we show the mapper produced by the mapper agent at iteration 10.
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1 Task * GPU ,OMP ,CPU;
2 Region * * GPU FBMEM;
3 Region * * * SOCKMEM ,SYSMEM;
4 Layout * * * F_order SOA;
5 mgpu = Machine(GPU);
6
7 def block1d(Task task) {
8 ip = task.ipoint;
9 return mgpu[ip[0] % mgpu.size[0], ip[0] % mgpu.size [1]];

10 }
11
12 IndexTaskMap task_2 block1d;
13
14 m_2d = Machine(GPU);
15 def same_point(Task task) {
16 return m_2d[*task.parent.processor(m_2d)];
17 }

Figure A6: For Solomonik’s algorithm, we show the mapper produced by the mapper agent at
iteration 2.
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1 Task * GPU ,OMP ,CPU;
2 Region * * GPU FBMEM;
3 Region * * * SOCKMEM ,SYSMEM;
4 Layout * * * C_order SOA No_Align;
5 mgpu = Machine(GPU);
6
7 def block1d(Task task) {
8 ip = task.ipoint;
9 return mgpu[ip[0] % mgpu.size[0], ip[0] % mgpu.size [1]];

10 }
11
12 IndexTaskMap task_1 block1d;
13
14 def cyclic1d(Task task) {
15 ip = task.ipoint;
16 linearize = ip[0] * 2 + ip[1];
17 return mgpu[ip[0] % mgpu.size[0], linearize % mgpu.size [1]];
18 }
19
20 IndexTaskMap task_1 cyclic1d;
21
22 def cyclic2d(Task task) {
23 ip = task.ipoint;
24 linearize = ip[0] + ip[1] * 2;
25 return mgpu[ip[0] % mgpu.size[0], linearize % mgpu.size [1]];
26 }
27
28 IndexTaskMap task_1 cyclic2d;
29
30 def linearize3D(Task task) {
31 ip = task.ipoint;
32 linearize = ip[0] + ip[1] + ip[2];
33 return mgpu[linearize % mgpu.size[0], linearize % mgpu.size [1]];
34 }
35
36 IndexTaskMap task_1 linearize3D;
37
38 def linearize2D(Task task) {
39 ip = task.ipoint;
40 linearize = ip[0] * 2 + ip[2];
41 return mgpu[linearize % mgpu.size[0], linearize % mgpu.size [1]];
42 }
43
44 IndexTaskMap task_1 linearize2D;
45 IndexTaskMap task_2 block1d;
46 IndexTaskMap task_2 cyclic1d;
47 IndexTaskMap task_2 cyclic2d;
48 IndexTaskMap task_2 linearize3D;
49 IndexTaskMap task_2 linearize2D;
50 IndexTaskMap task_3 block1d;
51 IndexTaskMap task_3 cyclic1d;
52 IndexTaskMap task_3 cyclic2d;
53 IndexTaskMap task_3 linearize3D;
54 IndexTaskMap task_3 linearize2D;
55 IndexTaskMap task_5 block1d;
56 IndexTaskMap task_5 cyclic1d;
57 IndexTaskMap task_5 cyclic2d;
58 IndexTaskMap task_5 linearize3D;
59 IndexTaskMap task_5 linearize2D;
60
61 m_2d = Machine(GPU);
62 def same_point(Task task) {
63 return m_2d[*task.parent.processor(m_2d)];
64 }

Figure A7: For Solomonik’s algorithm, we show the mapper produced by the mapper agent at
iteration 10.
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