© ® N O o A~ W N =

20
21
22
23
24
25
26
27

28
29
30
31
32
33

34
35
36

Improving Parallel Program Performance with LLM
Optimizers via Agent-System Interfaces

Anonymous Author(s)
Affiliation
Address
email

Abstract

Modern scientific discovery increasingly relies on high-performance computing
for complex modeling and simulation. A key challenge in improving parallel pro-
gram performance is efficiently mapping tasks to processors and data to memory,
a process dictated by intricate, low-level system code known as mappers. De-
veloping high-performance mappers demands days of manual tuning, posing a
significant barrier for domain scientists without systems expertise. We introduce
a framework that automates mapper development with generative optimization,
leveraging richer feedback beyond scalar performance metrics. Our approach fea-
tures the Agent-System Interface, which includes a Domain-Specific Language
(DSL) to abstract away low-level complexity of system code and define a struc-
tured search space, as well as AutoGuide, a mechanism that interprets raw exe-
cution output into actionable feedback. Unlike traditional reinforcement learning
methods such as OpenTuner, which rely solely on scalar feedback, our method
finds superior mappers in far fewer iterations. With just 10 iterations, it outper-
forms OpenTuner even after 1000 iterations, achieving 3.8 x faster performance.
Our approach finds mappers that surpass expert-written mappers by up to 1.34x
speedup across nine benchmarks while reducing tuning time from days to min-
utes.

1 Introduction

Modern scientific discovery depends on advanced software tools for modeling and simulation [1-3].
Computational scientists, including physicists, chemists, and biologists, rely on high-performance
computing to tackle complex problems. These scientific computations dominate workloads on the
world’s most powerful supercomputers [4]. However, many domain scientists lack expertise in
computer science, and therefore having difficulties in optimizing their programs because of the
complexity and scale of the underlying machines. Even for experts, finding and fixing performance
problems resulting from program modifications or when porting to a new machine is often time-
consuming. Any progress on automating performance tuning is of great benefit in this domain.

Task-based programming [5—10] has emerged as a promising approach to high performance com-
puting. The paradigm involves decomposing computations into independent fasks that communicate
exclusively through their arguments. A key advantage of task-based systems is that the performance
tuning problem is factored out into a separate mapping: an assignment of tasks to processors and
data to particular memories. High-quality mapping, achieved through a well-designed mapper (im-
plemented as code), can significantly improve performance, often by an order of magnitude [11].

However, currently writing mappers remains a labor-intensive process, as it requires deep knowledge
of applications, hardware, and low-level system APIs. In addition, this process is highly application-
specific, input-specific, and machine-specific, often taking experts several days of meticulous tuning
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Figure 1: Iterative mapper refinement with agent-based generative optimization. The system
leverages the Agent-System Interface, which consists of the Domain-Specific Language (DSL) and
AutoGuide. The DSL abstracts away the low-level system code, defining a search space for map-
ping strategies, while AutoGuide interprets execution results into actionable guidance. As iterations
progress, the mapper evolves to improve performance.

to achieve high performance. This challenge is especially pronounced for domain scientists, who
typically lack the necessary expertise in computer systems and code optimization. Automating
mapper development would enable scientists to focus on their own domain of expertise while fully
utilizing the capabilities of high-performance computing systems.

In this paper, we introduce a system powered by large language models (LLMs) to automate both
the generation and optimization of mapper code. The first challenge stems from the complexity of
generating mapper code due to the original low-level programming system, which exposes the agent
to intricate system APIs, coupled with the problem that raw feedback messages from the system are
often uninformative to the agent. The second challenge involves optimizing mapper performance.
Specifically, it consists of (1) defining an appropriate search space and (2) devising efficient methods
to find optimal mappers, thereby maximizing parallel program performance.

To address the first challenge, we propose an Agent-System Interface (ASI), as shown in Figure 1,
an abstraction layer between the agent and the system that simplifies code generation and provides
more meaningful feedback to the agent. At the core of ASI is a Domain-Specific Language (DSL), a
high-level interface that encapsulates all performance-critical decisions required to generate a map-
per. The DSL abstracts away the complexity of low-level system code with a compiler. Additionally,
the DSL defines a structured search space, enabling systematic exploration of mapping strategies.
We also design and implement the AutoGuide mechanism to interpret raw execution output into
informative and actionable guidance. This mechanism allows the agent to iteratively optimize the
mapper by leveraging enriched feedback to update its strategy.

For the second challenge, we adopt the generative optimization approach, a recent advance in
optimization techniques. Unlike traditional methods such as reinforcement learning [12], which rely
solely on scalar rewards, generative optimization can utilize richer forms of feedback, such as error
explanations and actionable suggestions expressed in natural language. This agentic optimization
workflow has previously proven to be effective across various domains [13—17]. Our work is the
first to apply such technique to the domain of system optimization.

Our experiments demonstrate that mappers optimized by LLM-powered agents not only match but
often surpass expert-written mappers, achieving up to 1.34 x speedup across nine benchmarks. Since
expert-written mappers set the highest standard, surpassing them is a notable accomplishment. At
the same time, our method significantly reduces mapper tuning time from days to minutes, making
high-performance mapping more accessible to domain scientists. To further highlight the advantage
of generative optimization, we compare it against OpenTuner, a reinforcement learning-based auto-
tuning framework. Our generative optimizer finds mappers 11x faster than OpenTuner when both
run for 10 iterations and still maintains a 3.8 x advantage even when OpenTuner runs for 1000 iter-
ations. Furthermore, ablation studies underscore the necessity of the agent-system interface design
in achieving these performance gains. Our contributions are as follows:

1. Design of an Agent-System Interface: We introduce an abstraction layer that simplifies mapper
code generation and provides guidance to the agent. The Domain-Specific Language (DSL)
defines a search space, allowing the agent to explore mapping strategies without dealing with low-
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level system code. AutoGuide interprets raw execution output into targeted feedback, enabling
the agent to refine mapper code more effectively.

2. Generative Optimization for Systems: We introduce generative optimization to improve sys-
tem performance, leveraging richer feedback such as error messages and actionable suggestions
in natural language. Unlike reinforcement learning methods like OpenTuner, which rely solely
on scalar feedback, our method identifies better mappers in far fewer iterations. With only 10
iterations, it outperforms OpenTuner by 3.8 x even after 1000 iterations.

3. Empirical Evaluation of Performance: Our agent-based solution achieves up to 1.34 x speedup
across nine benchmarks, surpassing expert-written mappers while reducing tuning time from days
to minutes. We highlight the critical role of the agent-system interface through ablation studies,
demonstrating its impact on achieving the performance gains.

2 Related Work

Mapping in Parallel Programming Many parallel programming systems allow users to make
their own mapping decisions, such as Legion [6], StarPU [7, 18], Chapel [8], HPX [19, 20], Se-
quoia [21], Ray [9], TaskFlow [22], and Pathways [10]. Several techniques have been proposed
to automate mapping, including machine learning models [23, 24], static analysis [25, 26], rein-
forcement learning [12, 27] and auto-tuning [28]. We use an agent-based approach with LLMs and
explore a larger search space for mappers than traditional methods.

Agentic Frameworks Agents powered by Large Language Models (LLMs) play a critical role
in decision-making, planning, tool integration, and solving complex problems in dynamic environ-
ments [29]. Many agentic frameworks have been developed [30-33], with uses spanning domains
such as software engineering [34—-36], robotics [37], healthcare [38], education [39], and knowledge
engineering [40]. Our work is the first to apply an agentic workflow to iteratively optimize mapper
code, improving the performance of parallel programs.

Al for Systems The application of Al to optimize system design has gained significant trac-
tion in recent years. Techniques such as deep learning [41-43] and gradient-boosted trees [44]
have been used to predict program execution times for performance optimization. Reinforcement
learning methods have addressed challenges in chip floorplanning [45], autotuning [12], auto-
vectorization [46], and compiler phase ordering [47]. While previous efforts have predominantly
relied on traditional approaches for cost prediction and optimization, our work uses the recent ad-
vances in generative optimization to tackle complex system challenges.

Generative Optimization Recent work has explored the use of LLMs for optimization problems
traditionally tackled with numerical methods, including mixed-integer programming [48, 49] and
numerical optimization [13]. A key advantage of generative optimization is its ability to iteratively
refine solutions using diverse forms of feedback. For example, Cheng et al. [14] applies generative
optimization to robotic manipulation and game playing, while Yuksekgonul et al. [17] optimizes
prompts and molecular designs. While reinforcement learning has been applied to system optimiza-
tion, the potential of LLM-driven optimization in systems remains unexplored. Our work explores
whether generative optimization with richer feedback outperforms traditional methods using scalar
rewards in system optimization.

3 Problem Definition

Motivation and Challenges The concrete problem we address is the automated generation of
high-performance mappers for the Legion parallel programming framework [6]. Mappers dictate
task scheduling and data placement. A well-designed mapper can achieve orders-of-magnitude
speedup over naive strategies.

However, automating mapper generation is challenging due to two key factors. First, the complexity
of low-level system code. Implementing a mapper requires writing hundreds of lines of intricate
C++ code, demanding expertise in system internals. Second, the vast search space of mapping
strategies. The search space grows exponentially with the number of tasks and arguments.
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| void slice_task(const Task& task,

2 const SliceTaskInput &input,
3 SliceTaskOutput &output) {
4 vector<Processor> targets =

1 # Map task@ to GPU.
2 Task task@ GPU;

4 # Place certain data onto GPU ZeroCopy.

5 Region * ghost_region GPU ZCMEM 5 this->select_targets_for_task(ctx, task);

6 6 DomainT<2> space = input.domain;

7 # Specify layout in memory 7 Point<2> num_points =

8 # (aligned to 64 bytes) 8 space.bounds.hi - space.bounds.lo + ones;

9 Rect<2> blocks(zeroes, num_blocks - ones);

10 ... // 126 lines of C++ code omitted here

11 11 for (PointInRectIterator<2> it(blocks); it() !=
12 def cyclic(Task task): NULL; it++)

13 ip = task.ipoint; 2 {

14 mgpu = Machine (GPU);

9 Layout * *x x C_order SOA Align==64

DomainT<2,coord_t> slice_space;

15 node_idx = ip[@] % mgpu.size[0Q]; ! TaskSlice slice;
16 gpu_idx = ip[@] % mgpu.size[1]; 5 slice.domain = {slice_lo, slice_hi}
17 return mgpulnode_idx, gpu_idx]; 6 slice.proc = targets[index++ % targets.size()]

output.slices.push_back(slice);

19 IndexTaskMap task4 cyclic
\()} 3
(a) An example mapper in Domain-Specific Lan- .
guage (DSL) (b) Code snippet from a C++ mapper

Figure 2: Comparison of a DSL mapper and a C++ mapper. The DSL’s declarative, high-level
design abstracts away the complexity of low-level C++ code, serving as the core of the Agent-
System Interface. The highlighted boxes illustrate how the same functionality, which requires
extensive C++ system code, can be expressed concisely in just a few lines in DSL.

Search Space and Performance Impact As illustrated in Figure A1, the search space of map-
pers involves multiple decisions, each influencing performance. The first key aspect is processor
selection, which determines whether a task runs on GPUs, CPUs, or the OpenMP runtime. This
choice depends on factors such as task size, GPU memory capacity, and kernel launch overhead.
For instance, small tasks may prefer CPUs due to the overhead of launching GPU kernels, while
tasks with large memory footprints may run on CPUs when GPU memory is insufficient.

Another crucial dimension is memory placement, which dictates where data is stored. A mapper
must decide whether to place data in the GPU’s FrameBuffer for fast access, ZeroCopy memory
for CPU-GPU sharing, or CPU system memory for more available storage. Each option presents
trade-offs between access speed, memory usage, and data transfer overhead.

Additionally, memory layout further expands the search space, with decisions on Struct of Arrays
(SOA) vs. Array of Structures (AOS), data ordering (Fortran-order vs. C-order), and alignment
constraints (e.g., 128-byte alignment) significantly affecting cache efficiency and performance.

Finally, an important idiom in high-performance computing is launching tasks over partitioned data.
Index mapping determines how data partitions and task executions are distributed across multiple
processors. For consistency, we can represent data partitioning as a tensor of data partitions, the
machine as a tensor of processors, and tasks operating on the partitioned data as a tensor of tasks. The
way data and task indices are mapped to processor indices affects inter-processor communication, a
key factor in performance [50, 51].

4 Our Approach: Agent-System Interface

4.1 Domain-Specific Language Design

A key challenge in automating mapper generation with a coding agent is the complexity of low-
level system code, which requires intricate C++ implementations. To address this, we design a
high-level Domain-Specific Language (DSL) as the core of our Agent-System Interface (ASI).
The DSL provides a structured search space for mapping strategies while abstracting away low-
level implementation details. Unlike C++, which demands imperative specifications of mapping
policies, our DSL adopts a declarative design, allowing users to specify what to achieve rather than
how to implement it. Most critically, the DSL separates concerns, enabling multiple aspects of
mapping decisions to be expressed independently rather than being entangled in low-level system
APIs. This design reduces code complexity and naturally provides a search space for the agent to
explore. To implement it, we develop a compiler that translates DSL into the low-level C++ APIs.
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Figure 3: Agent Optimization Process. The mapper agent takes server specifications and
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plication on the server. Raw execution feedback is enriched using the AutoGuide mechanism and
iteratively refined by an LLM optimizer to improve performance.

Feedback
—

(7]
[}
=
<
[
=

As illustrated in Figure 2, the complexity of DSL code is significantly lower than that of C++.
Figure 2a provides an example of a DSL mapper, highlighting the key features of our DSL. In
contrast, Figure 2b shows a snippet from a C++ mapper, emphasizing the intricacy of low-level
implementation details. According to Table A1, using the DSL results in an average lines of code
reduction of 14x. This substantial reduction makes DSL a more suitable target for LLM code
generation, as it abstracts away the complexities inherent in low-level systems. As we will show in
Section 5.2, LLMs generate DSL code more effectively, despite DSL having no examples in LLM
training corpora, whereas C++ is widely represented.

Next, we describe the DSL’s design, emphasizing its declarative nature and structured search space.
Section 3 details the performance impact of each decision.

The Task statement (Line 2) defines processor selection for each task, choosing between CPU,
GPU, or OpenMP. Line 2 specifies that instances of task@ should run on GPUs. This decision is
made per task; note that the search space expands exponentially with the number of tasks.

The Region statement (Line 5) controls memory placement for data arguments. Line 5 specifies
that all tasks using ghost_region should place the data in GPU ZeroCopy memory. Other choices
include GPU FrameBuffer memory and CPU System Memory. This decision is made per task and
per argument, causing the search space to grow exponentially.

The Layout statement (Line 9) defines memory layouts. Line 9 enforces a C_order axis ordering,
an SOA layout, and a 64-byte memory alignment for all data used by all tasks mapped to all proces-
sors. Alternative choices include F_order, AOS, and various alignment strategies. This is a per-task,
per-data, per-processor decision.

The IndexTaskMap statement (Line 19) controls index mapping using a customized function.
Line 12 defines the mapping function that establishes the correspondence between two index spaces:
the task index space (represented by task.ipoint) defined in the application code (e.g., for loops)
and the processor space of the distributed machine (represented by Machine (GPU)). The DSL allows
users to express arbitrary arithmetic mappings between the two index spaces. This decision applies
to each task group launched by parallel for loops.

4.2 Generative Optimization via AutoGuide

We formulate mapper generation as an online optimization problem. Given a triplet (©,w,T),
where © is a set of possible mappers, w is an optimization objective, and T is a function that takes
a mapper 6 € © as input, (f,g) = T(0) and returns f, the feedback from executing the mapper
(i.e., the measured performance after running the application code with the generated mapper), and
g, the process graph tracing how the mapper was generated. In our setup, mapper performance
is deterministic, as we carefully control all sources of randomness in the environment. If the pa-
rameter space were numerical, this online optimization problem could be addressed using bandit
algorithms [52], reinforcement learning [53], or Bayesian optimization [54], but these methods are
less efficient when the parameter search space is large and discrete (i.e., text).
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Case Raw Execution Output . AutoGuide
Explain Suggest
Execution Error: Assertion Memory Adjust the layout constraints or

Case 1 failed: stride does not match layout is move tasks to different

expected value. unexpected. processor types.
Performance Metric: Execution Move more tasks to GPU to

Case 2 L N/A .

time is 0.03s. reduce execution time.

Table 1: AutoGuide Feedback Mechanism. The AutoGuide mechanism interprets raw execution
output from the runtime system, providing more informative error explanations and suggestions for
mapper modifications. It is implemented via keyword matching. Additional examples are shown in
Table A2.

In this online optimization problem, we leverage the DSL to structure the parameter space to improve
the efficiency of optimization. Here, 6 represents the program code, while w and f are expressed as
text. We adopt generative optimization, leveraging LL.Ms as optimizers given the objective in text
form. This emergent optimization behavior has been recently observed and applied across various
domains [55, 14, 17, 56].

Optimization Process We present the optimization process in Figure 3. The agent takes two
inputs: server specifications (e.g., CPU/GPU counts) and application information (e.g., task lists,
data arguments). It generates mapper code, which is executed alongside the application code on the
server. Raw execution feedback from the runtime is augmented with the AutoGuide mechanism and
fed back to the LLM, iteratively refining the agent for improved mapper code generation.

Coding Agent Our mapper agent improves mapping decisions by iteratively generating DSL code.
A high-level schema of the mapper agent is shown in Figure 3. The mapper agent is implemented
as a Python program in the Trace [14] framework, where we decompose the task of generating a
monolithic mapper into independent code segments. This decomposition allows the agent to decide
what code to generate for each segment separately. This approach is effective because our DSL de-
sign eliminates unnecessary dependencies between mapping decisions. Our modularization strategy
aligns with least-to-most prompting [57].

AutoGuide The AutoGuide feedback mechanism is designed based on three key motivations: (1)
generative optimization benefits from natural language feedback rather than relying solely on scalar
values, (2) raw execution output from the runtime system is often too uninformative to effectively
guide the agent’s decisions, and (3) domain heuristics known to systems researchers can be natu-
rally expressed in language (e.g., most tasks run faster on GPUs than CPUs). To address these needs,
AutoGuide helps the agent by explaining opaque error messages and suggesting mapper modifica-
tions. As shown in Table 1, it interprets uninformative execution output into actionable insights,
with additional examples in Appendix A.4. The implementation relies on keyword matching over
the raw execution output. An ablation study in Section 5.3 demonstrates its effectiveness in our
experiments.

5 Evaluation

Experiments are conducted on one node with two Intel 10-core E5-2640 v4 CPUs, 256G main
memory, and four NVIDIA Tesla P100 GPUs. We use gpt-40-2024-08-06.

5.1 Speedup of Application Performance

We evaluate our approach using 9 benchmarks. Circuit [6] is a simulation benchmark that mod-
els electrical circuit behavior by simulating currents and voltages across interconnected nodes and
wires. Stencil [58] simulates a 2D grid where each point’s value is updated based on a stencil pattern
determined by its neighbors. Pennant [59] models unstructured mesh Lagrangian staggered-grid hy-
drodynamics, commonly used for simulating compressible flow. The remaining six benchmarks —
Cannon’s [60], SUMMA [61], PUMMA [62], Johnson’s [63], Solomonik’s [64], and COSMA [65]
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Figure 4: Performance Comparison. Normalized throughput for 9 benchmarks, comparing expert
mappers, random mappers, the average optimization trajectories of Trace, OPRO, and OpenTuner
in 10 iterations across 5 runs, and the best mappers found by Trace.

— are widely studied parallel matrix multiplication algorithms, which we discuss in more detail in
Appendix A.3.

In this experiment, we evaluate the perfor- Generative Optimizer vs Traditional RL (1k iters

mance of the mappers with the following base- g 13X
lines. 2
()]
Expert-Written Mappers. These mappers 3 % — Trace
are manually developed by domain scientists = 11X —— OpenTuner 3.8X
who spend years mastering computational sci- £ 5x
ence. Writing mappers in parallel programming %
frameworks is another challenge, and tuning & 1x I

them for specific applications can take days. 10° 10% 102 10°
Iterations (Log Scale)

Randomly Generated Mappers. These map- ) ) )
pers were randomly generated with 10 different Figure 5: Comparison of Trace (generative opti-
random seeds, sampling from the entire search Mizer) and OpenTuner (traditional RL) over 1K
space of each application. We report the aver- 1terations (averaged across all 9 benchmarks).

age performance.

Agent-Optimized Mappers. Using Trace [14], we evaluated the Trace and OPRO [15] search
algorithms, running 10 iterations per application. To account for stochastic output, we repeated the
process 5 times and report the average. The best mapper from Trace across runs is also reported.

OpenTuner Mappers. OpenTuner [12] is a program autotuning framework that uses reinforce-
ment learning to optimize performance based on scalar feedback. We provided execution time as
feedback, with a high penalty for failures.

Results We use normalized throughput as the performance metric in Figure 4, where higher values
indicate better performance. The throughput is normalized relative to the expert-written mappers.
All the best mappers found by Trace can match or surpass the expert-written mappers, under-
scoring the effectiveness of agent-based generative optimizer. Random mappers consistently exhibit
low performance across all applications, emphasizing the critical role of mapping decisions. When
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1 2 3 8§ 9 10
C++ (single trial) X - - X - - X X - - 0%
DSL (single trial) v v v v v - v v v - 80%
C++ (iterative refine) X - - X X X x X x X 0%
DSL (iterative refine) v v v v v v v v v Y 100%

Table 2: Code Generation Success Rates. Success rates for generating code across 10 mapping
strategies described in natural language. The test evaluates whether the generated code compiles
and passes execution tests. Generating DSL code significantly outperforms generating C++ for both
settings. Symbols indicate results: — fails to compile, X compiles but fails the test, and v" passes the
test.
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Figure 6: Comparison of different feedback designs. 0-Shot and 5-Shot are baselines. Execution
provides only the raw execution output as feedback. Explain provides additional explanations of
execution errors. Suggest offers mapper modification suggestions. All feedback is automatically
generated.

comparing optimization trajectories, Trace performs similarly to OPRO, and significantly outper-
forms OpenTuner.

To further compare the agent-based optimizer with traditional reinforcement learning, we extended
OpenTuner’s optimization iterations from 10 to 1000, as shown in Figure 5, where the x-axis is the
log-scale of iterations and the y-axis represents relative throughput (averaged across all 9 bench-
marks). Notably, Trace achieves a 3.8x speedup over OpenTuner even when OpenTuner is run
for 1000 iterations. When both are limited to 10 iterations, Trace outperforms OpenTuner by 11X,
demonstrating its ability to quickly identify high-performance mappings. This highlights the supe-
riority of Trace (generative optimizer) over OpenTuner (traditional reinforcement learning).
Moreover, Trace completes the entire optimization process in just 10 minutes per application, re-
ducing mapper development time from days to minutes.

Case Analysis The largest performance gain achieved by Trace over the expert mapper is observed
in Circuit, with a speedup of 1.34x. This improvement is primarily due to memory placement: the
best mapper allocates two data collections to GPU FrameBuffer memory, while the expert mapper
places them in GPU ZeroCopy memory. Despite a slight increase in inter-GPU communication
costs, Trace reduces task execution time due to faster memory access, resulting in higher overall
performance. For matrix-multiplication algorithms, the greatest speedup is seen in COSMA, with
Trace achieving a 1.31x speedup over the expert mapper. This is attributed to Trace’s more efficient
index mapping functions, which reduce inter-GPU communication by better distributing partitioned
submatrices across GPUs. For additional context, examples of Trace mappers are presented in Ap-
pendix A.7.

5.2 Ablation Study of DSL for Code Generation

In Section 5.1, we demonstrate the overall effectiveness of our approach. Here, we conduct an
ablation study on the DSL, the core of the Agent-System Interface. Since successful generation is
the foundation of optimization, this subsection focuses on how well the DSL helps LLMs generate
correct mappers compared to C++, rather than directly optimizing performance.
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Experiment Setup We designed 10 mapping strategies, described in natural language, to evaluate
whether LLMs can generate correct code in both the DSL and the original low-level C++. The
strategies are detailed in Appendix A.6. To ensure a fair comparison, identical prompt materials
(documentation, examples, and starting code) were provided for both the DSL and C++. Success
rates are measured based on whether the generated code passes predefined test cases, with results
reported for single trials and iterative refinement, where the LLM is allowed up to 10 iterations
to improve the code using compiler feedback. The evaluation is conducted with the DSPy [16]
framework.

Results Table 2 shows that DSL achieves significantly higher generation success rates than
C++ in both the single-trial and iterative refinement settings. This demonstrates the effectiveness
of DSL’s design in abstracting system complexity and providing a high-level interface that enables
LLMs to tackle complex system challenges in code generation. Incorporating iterative refinement
with compiler feedback further improves success rates, resolving three compilation errors in C++
and two in the DSL. However, the gap between DSL mappers and C++ mappers remains substantial.
Notably, these results are striking given that the DSL is a low-resource language with no pre-training
or fine-tuning data, while C++ code is widely present in LLM training corpora.

Analysis LLMs perform better with the DSL for two reasons. First, the semantic gap between
natural language and code is smaller with the DSL than with C++. For example, writing a mapper
to “align all data to 64 bytes in memory and use Fortran ordering” requires one line Layout =*
* x Align==64 F_order in the DSL because of its declarative design. In contrast, the C++
mapping API requires a sequence of operations to enforce alignment and ordering, which widens
the semantic gap. Second, the DSL reduces the amount of code. As shown in Table Al, LLMs
achieve an average reduction of 14X in lines of code, simplifying code generation. These results
underscore the importance of a high-level agent-system interface.

5.3 Ablation Study of the AutoGuide Feedback

The AutoGuide mechanism provides enriched feedback to the agentic optimizer. We compare with
alternative feedback designs.

Experiment Setup We compare the following baselines. 0-shot and 5-shot have no feedback, al-
lowing the LLM to generate once with either O or 5 examples provided. Execution only provides raw
execution feedback, Explain offers additional explanations for execution errors, and Suggest offers
mapper modification suggestions. The Trace trajectory shown in Figure 4 uses the full AutoGuide
mode with all Execution+Explain+Suggest. As an ablation study, we evaluate 3 benchmarks.

Results and Analysis Figure 6 demonstrates that the full feedback mechanism consistently out-
performs all reduced feedback variants. The 0-shot and 5-shot results perform the worst, underscor-
ing the importance of feedback-based iterative refinement. This highlights the value of an agentic
workflow, showing that performance improvements are not solely driven by prompting the LLM but
are a direct result of the iterative refinement inherent in the workflow design.

6 Conclusion

In this paper, we introduced a system that leverages LLMs to automate mapper generation and op-
timization. The Agent-System Interface (ASI) simplifies code generation with a Domain-Specific
Language (DSL), which abstracts away the low-level complexity of system code, and enriches ex-
ecution feedback through AutoGuide, which interprets raw execution output into actionable guid-
ance. We adopted generative optimization, allowing LLMs to refine mappers using rich textual
feedback beyond scalar metrics. Unlike RL-based methods like OpenTuner, which rely on numer-
ical rewards, our approach incorporates error explanations and targeted suggestions, accelerating
search efficiency. Experiments show that agent-generated mappers outperform expert-written ones,
achieving up to 1.34x speedup across nine benchmarks. Our method, running only 10 iterations,
maintains a 3.8 x advantage over OpenTuner even after 1000 iterations. By reducing mapper devel-
opment time from days to minutes, our approach benefits computational scientists and demonstrates
the effectiveness of generative optimization in system design.
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ss2. A Appendix

553 A.1 Illustration for Mapping

554 We show an illustration for mapping in Figure Al.

Application .
PP Mapper Machines
Tasks
Py o Node 0
Frame
task task1(A: region<1000,1000>, Processor GPU i gitter CPU | CPU
B: region<10,200,5>, ... :
iR ot Selection ® @ © Py | Fome cpu | cru
(tasks) e GpU | Freme 7| e ] wemow (oo
° GPU (- arer | | CPU | CPU
300 GB/s
d P:Vlemoryt GPUs Network
TN a(zem?“ 25GB/s
ata
CPUs
[oros)
Data Node 1
nd GPU H peme CPU | CPU
Mn ex GPU | it N\{zpugom|_| sysm | OPU | CPU
appin 1 [Frams |\ Mematy || Memor
pping GPU2 | GPU3 Node 0 GPU H :’:'zf remen ) Memow | ooy | cpy
(tasks, data) [ oy || Frame |
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(processor) T ‘—1—’
32GB 1TB

Figure Al: Mappers decide the placement of each task in the task graph to processors, the place-
ment of data to memory, and how the iteration space of data is partitioned and mapped to different
processors.

555 A.2 Tables for Lines of Code Comparison

556 We show the lines of code comparison between DSL and C++ mappers in Table Al.

Application | 1 2 3 4 5 6 7 8 9 | Avg.
LoC in C++ 347 306 379 447 437 430 428 433 448 | 406
LoC in DSL 16 14 16 38 38 38 33 38 32 29

LOCReducti0n‘22>< 22x  24x  12x  12x 11x 13x 11x 14><‘14><

Table Al: Lines of Code (LoC) comparison between DSL and C++ mappers. The DSL achieves
a 14 x average reduction in LoC, making it a more suitable target for LLM code generation.
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A.3 Parallel Matrix Multiplication Algorithms

2D Algorithms Cannon’s [60] introduced a systolic communication pattern with tiled data par-
titioning for distributed matrix multiplication. PUMMA [62] and SUMMA [61] extended this ap-
proach by supporting non-square matrices and improving communication efficiency through pipelin-
ing. They are called 2D algorithms because they partition the matrices into 2D tiles and then map
them onto the processor space.

Non-2D Algorithms Johnson’s [63] introduced a 3D algorithm that partitions the input matrices
into 3D tiles and uses additional memory per processor to reduce communication compared to 2D
algorithms. Solomonik’s [64] balances between 2D and 3D approaches by using extra memory
to further minimize communication. COSMA [65] takes a different approach by optimizing the

processor grid and parallelization strategy based on the input size and the machine size.

A.4 Examples of Feedback Configurations

We give examples for the raw execution output and enriched feedback in Table A2. The enhanced
feedback includes explanations of errors and suggestions for mapper modifications.

Case Raw Execution Output . AutoGuide
Explain Suggest
Compile Error: Syntax error, There should be no colon : in
casel . N/A . ..
unexpected :, expecting { function definition.
case? Compile Error: IndexTaskMap’s N/A Define the IndexTaskMap
function undefined function first before using it.
Include mgpu =
case3 Compile Error: mgpu not found N/A Machine(GPU); in the
generated code.
Execution Error: Assertion Memory Adjust the layout constraints or
case4 failed: stride does not match layout is move tasks to different
expected value. unexpected. processor types.
Execution Error: DGEMM Memory
case5 | parameter number 8 had an illegal layout is Adjust the layout constraint.
value unexpected.
Ensure that the first index of
Execution Error: Slice processor IndexTaskMap mepu ends with %
caseb . statements mgpu.size[@], and the second
index out of bound o
cause error. element ends with %
mgpu.size[1].
Execution Error: Assertion InstancelLimit Avoid generating InstanceLimit
case7’ . . s o statements
event.exists()’ failed statements.
cause error.
Performance Metric: Execution Move more tasks to GPU to
case8 L N/A .
time is 0.03s. reduce execution time.
Try using different
case9 Performance Metric: Achieved N/A IndexTaskMap or
throughput = 4877 GFLOPS SingleTaskMap statements to
maximize throughput.

Table A2: Raw execution output and AutoGuide (error explanations and adjustment suggestions)
for different cases.
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A.5 Trace Agent Code

Trace [14] uses Python decorators like @bundle to annotate Python programs. It allows us to design
an LLM code generation agent as if we were writing a Python program ourselves. We first set up an
end-to-end runnable Python program that can generate a valid mapper program by randomly making
decisions over the search space. We show the high-level structure of our Trace Mapper in Figure A3.
Figure A2 shows how we incorporate the feedback from the execution to update the agent. At each
optimization step, Trace will execute DSLMapperGenerator and collect the corresponding execution
flow to build up a graph. Then it will make a call to an LLM to perform an update to any function
that is decorated with @bundle(trainable=True). The DSLMapperGenerator is structured in the
same way as providing a search space specified by the DSL, where an LLM optimizer can make
decisions along the pre-designed axes. We note that this type of design is only enabled by recent
developments like Trace and is much more challenging to do using older LLM-based frameworks.

I policy = MapperAgent ()

2 params = policy.parameters()
3optimizer = trace.Optimizer (params)
4

5 app
6 test

GetApplicationInfo()
GetMapperEvaluator (app)

8 for i in range(iterations):
9 # Forward pass

10 try:
11 mapper = policy(app)
12 # feedback (str) contains performance

13 feedback = test(mapper)

14 except TraceExecutionError as e:

15 feedback = str(e)

16 target = e.exception_node

17

18 # Backward pass and update

19 optimizer.zero_feedback ()

20 optimizer.backward(target, feedback)
21 optimizer.step()

Figure A2: We show how we use Trace to incorporate the feedback from the execution to update the
agent, with a Pytorch-like syntax.

17



import opto.trace as trace

1
3 class MapperAgent(trace.Module):

4 @trace.bundle(trainable=True)

5 def task_decision(self, tasks):

8 @trace.bundle(trainable=True)
9 def region_decision(self, regions):

12 @trace.bundle(trainable=True)

13 def layout_decision(self):

14

15

16 @trace.bundle(trainable=True)

17 def instance_limit_decision(self, tasks):

18

19

20 @trace.bundle(trainable=True)

21 def index_task_map_decision(self, index_tasks):

k)

23 @trace.bundle(trainable=True)

24 def single_task_map_decision(self, single_tasks):

25

26

27 def generate_mapper (self):

28 o

29 Generate the final mapper code by combining all code statements.

30 e

31 task_statements = self.task_decision(self.tasks)

32 region_statements = self.region_decision(self.regions)

33 layout_statements = self.layout_decision()

34 instance_limit_statements = self.instance_limit_decision(self.tasks)

35 index_task_map_statements =
self.index_task_map_decision(self.index_tasks, self.index_task_specification)

36 single_task_statements = self.single_task_map_decision(self.single_tasks)

38 code_statements = (

39 task_statements +

40 region_statements +

41 layout_statements +

42 instance_limit_statements +

43 index_task_map_statements +

44 single_task_statements

45 )

46 # Combine all code statements and function definitions into a single
string

47 code_list = code_statements

48 mapper_code = str_join(node(’\n’), *code_list)

49 return mapper_code

Figure A3: High-level structure of the Trace-based agent template, where functions annotated with
@bundle(trainable=True) define the search space that the LLM optimizer updates during mapper
generation. Note: This agent serves as a shared starting point for ALL tasks. For each task, we
produce a mapper from this starting agent and then ask LLMs to “optimize” this agent (by changing
functions that are trainable) to produce mappers that are optimal for the particular task.
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583 A.6 Mapping Strategies

s84  Strategy 1: Map the tasks of calculate_new_currents, distribute_charge, update_voltages
585 onto GPUs in this way: linearize the 2D GPU processor space into 1D, then perform 1D block
sss mapping from launch domain to the linearized 1D processor space.

587
588 1 Task * GPU,CPU; # for any task, run on GPU if supported

589 2 Region * *GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default

590 3 Region * * CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
591 4

592 5 Layout * * x SOA C_order;

593 6

594 7mcpu = Machine (CPU);
595 8§ mgpu = Machine (GPU);

596 9

597 10 ========== Above is fixed ==========

598 11 def linearblock(Task task) {

599 12 return mgpul[task.ipoint[@] / mgpu.size[1], task.ipoint[@] % mgpu.size[1]];
600 13}

601 14

g83 15 IndexTaskMap calculate_new_currents,distribute_charge,update_voltages linearblock;

604 Strategy 2: Place ghost/shared regions (rp_shared and rp_ghost) onto GPU zero-copy memory
605
606 | Task * GPU,CPU; # for any task, run on GPU if supported

607 2

608 3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
609 4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default

610 5

611 6 Layout * * * SOA C_order;

612 7

613 8 mcpu = Machine (CPU);

614 9mgpu = Machine (GPU);

615 10

616 || ========== Above is fixed ==========

617 12

618 13 Region * rp_shared GPU ZCMEM;

g3§ 14 Region x rp_ghost GPU ZCMEM;

621 Strategy 3: Use Array Of Struct (AOS) data layout for all data instead of the default SOA
622
623 1 Task * GPU,CPU; # for any task, run on GPU if supported

624 2

625 3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
626 4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default

627 5

628 6 mcpu = Machine (CPU);

629 7mgpu = Machine (GPU);

630 8

631 9 ========== Above is fixed ==========
632 10

§33 1l Layout x * * AOS;

635 Strategy 4: Use Fortran ordering of data layout for all data instead of the default C order
636
637 1 Task * GPU,CPU; # for any task, run on GPU if supported

638 2

639 3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
640 4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default

641 5

642 6 mcpu = Machine (CPU);

643 7 mgpu = Machine (GPU);

644 8

645 9 ========== Above is fixed ==========
646 10

B4 !l Layout x x x F_order;
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724

Strategy S: Align all the regions to 64 bytes while using the Fortran ordering of data

Task * GPU,CPU; # for any task, run on GPU if supported

1
2
3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5

6 mcpu = Machine (CPU);
7 mgpu = Machine (GPU);

9 ========== Above is fixed ==========
10
11 Layout * * * Align==64 F_order;

Strategy 6: Place the task calculate_new_currents onto CPU

| Task * GPU,CPU; # for any task, run on GPU if supported

’)

3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default

6 mcpu = Machine (CPU);

7

8 mgpu = Machine (GPU);

9

10 Layout * * * SOA C_order;

11

12 ========== Above is fixed ==========

13 Task calculate_new_currents CPU;

Strategy 7: Collect all the memory used by task calculate_new_currents

1 Task * GPU,CPU; # for any task, run on GPU if supported

N

3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5

6 mcpu = Machine (CPU);

7 mgpu = Machine (GPU);

8

9 Layout * * * SOA C_order;

10

|] ========== Above is fixed ==========

12 CollectMemory calculate_new_currents *;

Strategy 8: Ensure that at most 4 tasks of calculate_new_currents can be run at the same time

1 Task * GPU,CPU; # for any task, run on GPU if supported

o

3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default

5

6 mcpu = Machine (CPU);

7 mgpu = Machine (GPU);

8

9 Layout * * x SOA C_order;

10

11 ========== Above is fixed ==========

12 InstancelLimit calculate_new_currents 4;

Strategy 9: Map the second region argument of task distribute_charge onto GPU’s Zero-Copy mem-
ory

1 Task * GPU,CPU; # for any task, run on GPU if supported

p)

3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5

6 mcpu = Machine (CPU);

7 mgpu = Machine (GPU);

8

9 Layout * * x SOA C_order;

10

=== ==sms==s AevE 18 FiRee =S=ssss==ss

12 Region distribute_charge 1 GPU ZCMEM;
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Strategy 10: Map the tasks of calculate_new_currents,distribute_charge,update_voltages onto
GPUs in a 1D cyclic manner: perform a cyclic distribution over both the node and processor di-

mensions.

1 Task * GPU,CPU; # for any task, run on GPU if supported

N

3 Region * * GPU FBMEM; # for any task, any region, if mapped onto GPU, use FBMEM as default
4 Region * x CPU SYSMEM; # if mapped onto CPU, use SYSMEM as default
5

6 mcpu = Machine (CPU);
7 mgpu = Machine (GPU);

9 Layout * * * SOA C_order;

10

|| ========== Above is fixed ==========
12def cyclicld(Task task) {

13 ip = task.ipoint;

14 # cyclic over node, cyclic over gpu

15 return mgpulip[@] % mgpu.size[@], ip[@] / mgpu.size[@] % mgpu.size[1]];
16 }

17
18 IndexTaskMap calculate_new_currents,distribute_charge,update_voltages cyclicld;
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A.7 Generated Mapper Examples

Here we provide examples of generated mappers for a subset of problems. The mappers, written in
DSL, are produced by the mapper agent. While the LLM is responsible for creating and refining the
mapper agent, the agent itself is implemented in Python, and it generates mappers as DSL programs.
For the Circuit Simulation benchmark, the optimized mapper (Figure AS) is more concise than the
initial version (Figure A4), with an additional constraint for byte alignment in the data layout. In
contrast, for Solomonik’s algorithm, the initial mapper is relatively simple (Figure A6), whereas the
final optimized mapper adopts a more complex and detailed index mapping strategy (Figure A7).

Task * GPU,OMP,CPU;
> Task calculate_new_currents GPU;
Task update_voltages GPU;

4 Region * x GPU FBMEM;

5 Region * * * SOCKMEM, SYSMEM;
6 Region x all_times GPU FBMEM;
7 Region * all_nodes GPU FBMEM;
8§ Region x all_wires GPU FBMEM;
9 Region * ghost_ranges GPU FBMEM;
10 Region * rp_all_nodes GPU FBMEM;
Il Region * all_private GPU FBMEM;
12 Region x all_shared GPU FBMEM;
13 Region * rp_shared GPU FBMEM;
14 Region * rp_wires GPU FBMEM;
15 Region * rp_ghost_ranges GPU FBMEM;
16 Layout *x % x C_order AOQOS;

M

17 mgpu = Machine (GPU);

19 m_2d = Machine (GPU);

20 def same_point(Task task) {

21 return m_2d[xtask.parent.processor(m_2d)1];

22 }

Figure A4: For the Circuit task, we show the mapper produced by the mapper agent at iteration 2.

| Task * GPU,OMP,CPU;
> Task calculate_new_currents GPU;

3 Task update_voltages GPU;

4 Region * * GPU FBMEM;

5 Layout * * x C_order AOS Align==128;
6 mgpu = Machine (GPU);

§ m_2d = Machine (GPU);
9 def same_point(Task task) {
10 return m_2d[xtask.parent.processor(m_2d)1;

1}

Figure AS5: For the Circuit task, we show the mapper produced by the mapper agent at iteration 10.
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I Task * GPU,OMP,CPU;

2> Region * % GPU FBMEM;

3 Region * * x SOCKMEM, SYSMEM;
4 Layout * * x F_order SOA;

5 mgpu = Machine (GPU);

7 def blockld(Task task) {

8 ip = task.ipoint;

9 return mgpulip[@] % mgpu.sizel[@], ip[@] % mgpu.size[1]];
10 }

12 IndexTaskMap task_2 blockild;

14 m_2d = Machine (GPU);
15 def same_point(Task task) {
16 return m_2d[xtask.parent.processor(m_2d)];

17 }

Figure A6: For Solomonik’s algorithm, we show the mapper produced by the mapper agent at
iteration 2.
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| Task * GPU,OMP,CPU;

2> Region * % GPU FBMEM;

3 Region * * x SOCKMEM, SYSMEM;

4 Layout * * *x C_order SOA No_Align;
5 mgpu = Machine (GPU);

7 def blockld(Task task) {

8 ip = task.ipoint;

9 return mgpulip[@] % mgpu.sizel[@], ip[@] % mgpu.size[1]];
10 }

12 IndexTaskMap task_1 blockld;

14 def cyclicld(Task task) {

15 ip = task.ipoint;

16 linearize = ip[@] *x 2 + ip[1];

17 return mgpulip[@] % mgpu.size[@], linearize % mgpu.size[1]];
18}

19

20 IndexTaskMap task_1 cyclicld;

22 def cyclic2d(Task task) {

23 ip = task.ipoint;

24 linearize = ip[@] + ip[1] * 2;

25 return mgpulip[@] % mgpu.size[@], linearize % mgpu.size[1]1];
26}

28 IndexTaskMap task_1 cyclic2d;

30 def linearize3D(Task task) {
31 ip = task.ipoint;

32 linearize = ip[@] + ip[1] + ip[2];
33 return mgpullinearize % mgpu.size[@], linearize % mgpu.size[1]];
34}

36 IndexTaskMap task_1 linearize3D;

38 def linearize2D(Task task) {
39 ip = task.ipoint;

40 linearize = ip[@] * 2 + ip[2];

41 return mgpullinearize % mgpu.size[0@], linearize % mgpu.size[1]];
42 3}

43

44 IndexTaskMap task_1 linearize2D;
45 IndexTaskMap task_2 blockld;

46 IndexTaskMap task_2 cyclicid;

47 IndexTaskMap task_2 cyclic2d;

48 IndexTaskMap task_2 linearize3D;
49 IndexTaskMap task_2 linearize2D;
IndexTaskMap task_3 blockld;
IndexTaskMap task_3 cyclicld;
IndexTaskMap task_3 cyclic2d;
IndexTaskMap task_3 linearize3D;
IndexTaskMap task_3 linearize2D;
IndexTaskMap task_5 blockld;
IndexTaskMap task_5 cyclicld;
IndexTaskMap task_5 cyclic2d;
IndexTaskMap task_5 linearize3D;
IndexTaskMap task_5 linearize2D;

[V RV NV SRV VNNV SRV SRV
© VAR DR -

n

6(
61 m_2d = Machine (GPU);

62 def same_point(Task task) {

63 return m_2d[xtask.parent.processor(m_2d)];
64 }

Figure A7: For Solomonik’s algorithm, we show the mapper produced by the mapper agent at
iteration 10.
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