

000 LEXICON-ALIGNED PROMPTING: A GENERAL 001 METHOD FOR DICTIONARY-GUIDED LOW-RESOURCE 002 003 MACHINE TRANSLATION

004
005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 We present *Lexicon-Aligned Prompting* (LAP), a general methodology that in-
014 jects bilingual dictionary evidence into large language models (LLMs) for low-
015 resource machine translation (LR-MT). LAP formally separates (i) *lexicon-*
016 *sentence retrieval*, (ii) *prompt integration*. As a **main experiment**, we retain
017 a Tangut→Chinese setting with strong literal alignment and idiomatic rewriting
018 results, then add two **tiny-data probe studies** designed to test LAP’s portability
019 under *extreme data scarcity*: Inuktitut→English and Nahuatl→Spanish. Each
020 probe uses only **100** training sentences. Despite the tiny size, LAP consistently
021 improves chrF and terminology accuracy in both zero-shot and lightweight fine-
022 tuning regimes, with significance supported by paired bootstrap and sign tests. The
023 results demonstrate that LAP offers a transparent, controllable, and reproducible
024 way to ground LR-MT in human-curated lexical knowledge.
025
026
027

1 INTRODUCTION

030 Low-resource machine translation (LR-MT) faces challenges due to scarce parallel data and the diffi-
031 culty of grounding rare/domain terms. Bilingual dictionaries, however, often exist even when parallel
032 corpora do not. This paper proposes *Lexicon-Aligned Prompting* (LAP), a portable methodology for
033 injecting explicit lexicon evidence into LLM translation.

034 Our work is motivated by the translation of historical, logographic scripts like Tangut, the official
035 writing system of the Western Xia dynasty (1038-1227 CE).¹ Translating Tangut texts is a formid-
036 able challenge due to the script’s structural complexity, the lack of continuous usage traditions, and a severe
037 scarcity of parallel corpora. Traditional methods rely on a manual “four-line aligned translation”
038 process, which is labor-intensive and demands specialized expertise, severely limiting scalability.
039 While large language models (LLMs) offer opportunities for automation, existing research has not
040 systematically addressed Tangut translation.

041 We treat Tangut→Chinese as our **main experiment**—a historically challenging setting that requires
042 both character-level alignment and idiomatic rewriting. We then design two **minimal probes**—
043 Inuktitut→English (Iu→En) and Nahuatl→Spanish (Nah→Sp)—each restricted to only 100 training
044 and 20 test sentences. These probes are not intended to rank systems; they serve as cross-lingual
045 sanity checks that isolate LAP’s mechanism under stringent data scarcity. To mitigate small-sample
046 concerns, we adopt character-based metrics (chrF/chrF++) and paired bootstrap with segment-level
047 win/tie/lose analysis.

048 Our contributions: (1) a general, model-agnostic LAP pipeline; (2) a strong Tangut→Chinese main
049 experiment re-expressed through LAP; and (3) two tiny-data probes showing portable gains on
050 Iu→En and Nah→Sp using public lexicon resources.

051
052
053 ¹This work was informed by our prior workshop version; to preserve double-blind review, we omit identifying
details here.

054
055

2 RELATED WORK

056
057

2.1 LOW-RESOURCE MACHINE TRANSLATION

058
059 Machine translation (MT) for low-resource languages has gained significant attention in recent years,
060 driven by the success of neural models and transfer learning techniques. Early approaches relied
061 on rule-based and statistical methods, which struggled to handle the morphological and syntactic
062 complexities of under-resourced languages. The advent of neural machine translation, particularly
063 sequence-to-sequence models and transformer architectures, has revolutionized the field, enabling
064 more robust and context-aware translations (Zoph et al., 2016).065 For historical and ancient languages, MT systems must address unique challenges, such as incomplete
066 lexicons, fragmented texts, and the absence of native speakers. Recent work has demonstrated the
067 potential of LLMs in this domain (Jiao et al., 2023). For example, BERT-based models have been
068 adapted for Classical Chinese (Yu & Wang, 2020), while GPT variants have been fine-tuned for
069 Uyghur (Lu et al., 2025) and Latin (Stüssi & Ströbel, 2024). These models leverage pre-training on
070 large corpora and domain-specific fine-tuning to achieve state-of-the-art performance.071 A key innovation in low-resource MT is the use of auxiliary resources, such as dictionaries, parallel
072 texts, and multilingual embeddings (Ammar et al., 2016), to enhance model performance. Techniques
073 like back-translation (Sennrich et al., 2016), data augmentation, and transfer learning (Zoph et al.,
074 2016) have proven effective in scenarios with limited parallel data. Additionally, prompting strategies,
075 including chain-of-thought (CoT) (Wei et al., 2022) and few-shot learning (Wang et al., 2020), have
076 emerged as powerful tools for guiding LLMs in low-resource settings.077 Despite these advances, the application of MT to Tangut texts remains unexplored. The script's
078 logographic nature, combined with its historical and cultural specificity, presents unique challenges
079 that require tailored solutions. Our work bridges this gap by integrating domain-specific lexicons and
080 CoT prompting into a fine-tuned LLM framework, enabling accurate and scalable Tangut-Chinese
081 translation.082
083

2.2 TANGUT-TO-CHINESE TRANSLATION

084
085 The Tangut script, also known as Fanwen or Xixia script, is an intricate logographic writing system
086 comprising over 6,000 characters, developed by the Tangut people in the 11th century under the
087 Western Xia dynasty (1038–1227 CE). Serving as the official script of this once-flourishing Silk
088 Road civilization, it preserves invaluable historical, religious, and sociopolitical insights (Sun, 2023).
089 Early efforts to decipher Tangut texts began in the 20th century, spearheaded by scholars such
090 as Nevsky (1960) and Luo (1914), who laid the groundwork for understanding its phonetic and
091 semantic structures. Despite these advances, the decipherment and translation of Tangut texts remain
092 formidable challenges. The script's structural complexity, lack of continuous usage traditions, and
093 scarcity of parallel corpora have hindered efficient scholarly access to these cultural treasures (Kong,
094 2018). Traditional methodologies—most notably the labor-intensive “four-line aligned translation”
095 format (original text, phonetic transcription, literal translation, and idiomatic translation)—demand
096 highly specialized expertise and limit the scalability of Tangut studies.097 In the study of Tangut texts, the “four-line alignment” paradigm is a traditional and important method
098 of interpretation, as shown in Figure 1.099
100 In the four-line alignment format, the first line contains the Tangut original text, the second line is the
101 Tangut phonetic transcription, the third line represents the Chinese literal translation, and the fourth
102 line represents the idiomatic translation. The literal translation process primarily reflects one-to-one
103 correspondence at the word level, while idiomatic translation requires restructuring and semantic
104 reconstruction based on a correct understanding of the original text, following the syntactic rules and
105 expression habits of Chinese. Notably, when a Tangut character lacks a corresponding character in
106 Chinese, researchers typically mark it with the symbol “△”. In the idiomatic translation phase, these
107 symbols need to be reasonably converted and expressed based on the context and semantic relations.
Compared to literal translation, idiomatic translation involves more complex cognitive processes and
conversion mechanisms, making it more challenging.

108	Tangut	𢃢	𢃢	𢃢	𢃢,	𢃢	𢃢	𢃢	𢃢,	𢃢	𢃢	𢃢	𢃢。
109	Original Text												
110	Tangut	khji ²	džji	ŋowr ²	ŋowr ²	thji ²	ŋwer ¹	džjwi ¹	mjjj ¹	tjjj ¹	bju ¹	šjjj ¹	njwi ²
111	Phonetic												
112	Transcription												
113	Chinese												
114	Literal												
115	Translation	万	行	一	切,	此	等	属	无,	若	依	法	能。
116	Chinese												
117	Idiomatic												
118	Translation	一切万行，无属此等。若能依法。											
119													
120													
121													

Figure 1: Example of Four-Line Alignment in Tangut Translation

2.3 INUKTITUT-TO-ENGLISH TRANSLATION

Inuktitut is an Inuit language spoken primarily in the Canadian territory of Nunavut and is characterized by its polysynthetic morphology, where a single word can encode complex propositional meaning. Machine translation of Inuktitut has long been regarded as a low-resource challenge due to its rich morphology, scarcity of parallel corpora, and dialectal variation (Martin et al., 2003; Joannis et al., 2020b). Previous efforts have mainly relied on phrase-based SMT augmented with morphological segmentation (Micher, 2017) or neural models trained on the Nunavut Hansard corpus (Joannis et al., 2020b). Despite these advances, Inuktitut–English systems remain limited in coverage and prone to errors with rare morphemes and domain-specific terminology.

In this context, dictionary-based guidance offers a promising alternative. By incorporating lexicon entries that map complex Inuktitut stems to English glosses, models can improve robustness under data-scarce conditions. Our probe study adopts precisely this strategy: grounding translation through LAP while evaluating whether dictionary injection compensates for extreme data scarcity (only 100 training sentences). This setting enables us to isolate the mechanism of lexicon alignment in a highly morphologically complex and under-documented language.

2.4 NAHUATL-TO-SPANISH TRANSLATION

Nahuatl, the language of the Aztecs, remains spoken by over a million people in modern-day Mexico but exists in multiple dialectal forms with significant variation in orthography and phonology (Lastra, 1986). Translation into Spanish is hindered by limited parallel resources, inconsistent standardization, and frequent use of oral registers in the available corpora. Prior computational efforts include bilingual dictionaries (Andrews, 2003) and limited-domain MT systems for educational purposes (Mager et al., 2018; Gutierrez-Vasques et al., 2016a). However, the lack of large-scale aligned corpora has prevented robust neural MT development.

Given Spanish is the dominant contact language with abundant resources, dictionary-guided methods are particularly well-suited to bridge Nahuatl–Spanish translation. By aligning lexical entries to sentence-level translation tasks, our probe tests whether LAP can consistently enforce terminology fidelity and improve character-level accuracy. The small-scale experiment (100 training and 20 test sentences) serves not to establish state-of-the-art benchmarks but to validate portability: if LAP works under such extreme scarcity in Nahuatl, it suggests general applicability to other indigenous and endangered languages with comparable resource profiles.

162 3 METHODOLOGY
163164 3.1 MODEL DESIGN
165166 We design our Tangut→Chinese translation framework by explicitly incorporating bilingual lexicon
167 evidence into large language models (LLMs). The methodology is divided into three stages: (i) base
168 model pretraining and fine-tuning, (ii) literal translation prompting, and (iii) idiomatic translation
169 prompting.170 3.1.1 BASE MODEL
171172 We adopt Qwen1.5-14B-Chat(Bai et al., 2023) as the backbone and further adapt it for classical
173 Chinese. Specifically, we construct a specialized model **QwenClassical**, obtained by:174
175 1. **Domain pretraining:** continued pretraining on 36GB of classical Chinese corpora, denoted as
176 $\mathcal{D}_{\text{classical}}$, to improve its linguistic competence.
177 2. **Task-specific fine-tuning:** supervised fine-tuning on 390,000 instances from 76 classical Chinese
178 NLP tasks, denoted as $\mathcal{T}_{\text{classical}}$.179 Formally, if θ_0 denotes the original parameters of Qwen1.5-14B-Chat, then

180
181
$$\theta_{\text{classical}} = \text{FineTune} \left(\text{PreTrain}(\theta_0, \mathcal{D}_{\text{classical}}), \mathcal{T}_{\text{classical}} \right).$$

182

183 For comparison, we also directly fine-tune θ_0 on Tangut-to-Chinese parallel data, yielding the baseline
184 model **Qwen**.185 For Iu→En and Nah→Sp, we use the vanilla Qwen1.5-14B-Chat as backbone (no domain pretraining),
186 with/without LoRA(100). QwenClassical is only used in Tangut→Chinese.

188 3.1.2 LITERAL TRANSLATION PROMPTING

189 Given a Tangut character sequence $X = (x_1, \dots, x_n)$ and its dictionary glosses $G = (g_1, \dots, g_n)$,
190 we define the literal translation objective as:

191
192
$$Y^{\text{lit}} = f_{\theta}([X; G]),$$

193 where $[X; G]$ denotes concatenation of the input sequence with its lexicon mappings, and f_{θ} is the
194 LLM decoder. This character-level prompting enforces a one-to-one lexical alignment between
195 Tangut characters and Chinese glosses.

197 3.1.3 IDIOMATIC TRANSLATION PROMPTING

198 We further design two strategies for idiomatic rewriting:

200 1. **Direct idiomatic prompting (Prompt):** The model directly generates idiomatic Chinese transla-
201 tion:
202

203
$$Y^{\text{idiom}} = f_{\theta}([X; G], \text{“Translate idiomatically”}).$$

204 2. **Chain-of-Thought prompting (PromptCoT):** Translation is decomposed into two reasoning
205 steps: first literal, then idiomatic:

206
$$Y^{\text{lit}} = f_{\theta}([X; G], \text{“Literal”}), \quad Y^{\text{idiom}} = f_{\theta}([Y^{\text{lit}}], \text{“Rewrite idiomatically”}).$$

207 This two-step strategy encourages the model to first ground itself in lexical fidelity, then restructure
208 the content into fluent and context-appropriate Chinese.210 3.2 PROMPT TEMPLATES
211

212 We standardize the input prompts into two templates:

213 3.2.1 UNIFIED (GENERAL)

214 [Dictionary] $w_i = g_i ; \dots ; \text{Task: Translate } X.$

216 3.2.2 TWO-STEP FOR TANGUT
 217
 218 { Step 1: Produce literal translation using dictionary.
 219 { Step 2: Rewrite into idiomatic Chinese.
 220
 221 This formalization ensures that dictionary evidence is always injected, while allowing flexibility
 222 between literal alignment and idiomatic fluency.
 223
 224 4 EXPERIMENTS
 225
 226 4.1 EXPERIMENTAL DATA
 227
 228 4.1.1 TANGUT-TO-CHINESE TRANSLATION DATA
 229
 230 The Tangut-to-Chinese translation data used in this study comes from the "Concise Tangut-Chinese
 231 Dictionary" compiled by Li Fanwen (Li, 2012). This dictionary includes 6,703 Tangut headwords,
 232 with 8,245 meanings, averaging 1.23 meanings per character. Among these, 748 Tangut characters
 233 have two meanings, 206 characters have three meanings, and 98 characters have more than three
 234 meanings. Based on these dictionary definitions, we constructed two categories of Tangut-to-Chinese
 235 translation data: (1) Complete Definitions (Dict), which include word explanations, sequence numbers,
 236 and parts of speech; (2) Simplified Definitions (DictSingle), which only retain basic word explanations
 237 and are converted into Simplified Chinese characters. For example, the complete definition of the
 238 Tangut character "U+18797" is shown in Figure 2 while the simplified definition is "种、苗、裔、
 239 胤、明、习".
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269

1010 00 0001	(齿头音 sjwi 1.30 猪臘 猪西醉切 音恤) race; offspring; seed ①种、苗、裔也。(名) 韶 胤 dziu 2.2 sui 1.30 (术恤)根种、后裔 (同32A5),种姓、种族、民族(庄严,鼎1610、640、 语501)。 胤 胤妣 垂妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 种:生上母下;种者根 也,根种也;又苗子之小谁之种谓(海 40.221)。 胤 胤根本(同丁32B65背注)。 胤 胤妣 周武王夏帝之后 裔(典二310)。 ②胤也。 胤 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 乃 诬后母,所生非我父之胤(译3)。 ③明也。 胤 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 明咒女王大孔 雀經(本128)。 ④习也。 胤 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 胤妣 烦恼爱染习皆除(十 368)。
--------------------	---

Figure 2: The full entry of U+18797 in the *Concise Tangut-Chinese Dictionary* (Li, 2012)

The Tangut-to-Chinese sentence alignment data used in this study comes from The Three Generations Illuminated Collection and the Avatāmsaka Sūtra (Vol. 77) (Arakawa, 2011). The sentence alignment data for The Three Generations Illuminated Collection contains 569 sentence pairs, including both literal and idiomatic translations. For *Three Generations Illuminated*, we use a 95/5 split; the resulting test set contains 28 segments (the same 28 used throughout all Tangut main experiments).

270 The sentence alignment data from the *Avatāmsaka Sūtra* (Vol. 77) contains 525 pairs, with both
 271 Japanese and Chinese translations, all of which are idiomatic translations. To obtain standard literal
 272 translations, we used the ChatGPT-4o model to convert the Japanese translation into a corresponding
 273 Chinese literal translation. Table 4 shows an example from the *Avatāmsaka Sūtra*. We conducted
 274 human verification of the converted literal renderings and will release the corresponding inputs and
 275 outputs to enable reproducibility.

276 In the experiment, The Three Generations Illuminated Collection was used as the primary data source,
 277 with 95% of the data randomly selected for the training set and the remaining 5% used as the test set.
 278 The 525 pairs from the *Avatāmsaka Sūtra* were only used to evaluate the model’s transfer learning
 279 ability.

281 4.1.2 INUKTITUT-TO-ENGLISH TRANSLATION DATA

282 For the Inuktitut→English (Iu→En) probe, we use the *Nunavut Hansard Inuktitut-English Parallel*
 283 *Corpus 3.0* (Joanis et al., 2020a), a large-scale governmental corpus consisting of debates and
 284 proceedings from the Legislative Assembly of Nunavut. Despite its relatively broad coverage, we
 285 restrict ourselves to a tiny-data setting by randomly sampling **100 training sentences** and **20 test**
 286 **sentences**.

287 To complement the parallel data, we integrate dictionary resources from the PanLex project
 288 (cointegrated/panlex-meanings)², which provide bilingual glosses covering Inuktitut
 289 stems and English translations. These lexicon entries enable us to explicitly inject morphological and
 290 terminological evidence into the LAP pipeline.

291 Because Qwen1.5-14B-Chat is expected to have little—if any—pretraining exposure to Inuktitut, but
 292 extensive coverage of English, this setting directly tests whether dictionary injection can compensate
 293 for limited source-side representation. We evaluate both a baseline (untrained) Qwen model and its
 294 LoRA fine-tuned variant on the sampled 100-sentence training set, comparing their performance with
 295 and without LAP grounding during inference.

297 4.1.3 NAHUATL-TO-SPANISH TRANSLATION DATA

298 For the Nahuatl→Spanish (Nah→Sp) probe, we adopt the *Axolotl Parallel Corpus* (Gutierrez-Vasques
 299 et al., 2016b), a publicly available dataset of Spanish-Nahuatl aligned texts. As in the Inuktitut
 300 experiment, we constrain the setting to **100 training sentences** and **20 test sentences** randomly
 301 sampled from the corpus.

302 Dictionary support is provided by the *UNAM Gran Diccionario Náhuatl*³, an extensive lexical
 303 resource curated by the Instituto de Investigaciones Bibliográficas, UNAM. These dictionary entries
 304 allow us to align Nahuatl morphemes and lexical items to Spanish glosses, improving fidelity under
 305 extreme data scarcity.

306 Given that the Qwen1.5-14B-Chat model has not been pretrained on Nahuatl data but contains
 307 substantial Spanish coverage, this probe isolates the effect of LAP in compensating for the missing
 308 source-side representation. We evaluate both baseline (untrained) Qwen outputs and models fine-
 309 tuned on the sampled 100-sentence training split, reporting results with and without dictionary
 310 grounding at inference time.

313 4.2 EXPERIMENTAL SETUP AND EVALUATION METRICS

314 For the experiments, we use the following setup:

315 **Hardware Setup:** The experiments are conducted on a machine with 2 NVIDIA A800 80GB GPUs.
 316 The operating system used is CentOS Linux release 7.9.2009, and the software environment includes
 317 CUDA 11.8, Pytorch 2.0.1, Python 3.10.13, and transformers 4.37.2.

318 **Training Details:** For the training of the models, the following settings are used:

- 319 • Maximum training epochs: 5

320 ²<https://huggingface.co/datasets/cointegrated/panlex-meanings>

321 ³<https://gdn.iib.unam.mx/>

- 324 • Batch size: 8 (for both training and evaluation)
- 325 • Gradient accumulation steps: 1
- 326 • Optimizer: AdamW
- 327 • Weight decay: 0.1
- 328 • Learning rate: 0.0003, with a cosine learning rate scheduler
- 329 • Learning rate warm-up ratio: 0.01
- 330 • Precision: bf16 (mixed-precision)
- 331 • Device batch size for training: 8 per device
- 332 • Device batch size for validation: 1 per device
- 333 • Maximum sequence length: 512

334 **Models:** The following models are used in the experiments:

- 335 • QwenClassical: A variant of the Qwen1.5-14B-Chat model fine-tuned on classical Chinese
- 336 texts. This serves as the base model for Tangut→Chinese translation.
- 337 • Qwen: The original Qwen1.5-14B-Chat model fine-tuned on Tangut-to-Chinese data.
- 338 • LoRA (Low-Rank Adaptation): A method used to fine-tune smaller model adaptations using
- 339 a low-rank decomposition of model weights for efficient transfer learning (Hu et al., 2021).
- 340 We perform fine-tuning using LoRA on the 100-sentence training split for both literal and
- 341 idiomatic translation tasks.

342 **Training Variants:** We evaluate the following training setups:

- 343 • 0-shot: The model is given only the instructions to translate without any additional fine-
- 344 tuning.
- 345 • 0-shot+LAP-inf: Dictionary grounding is injected during inference via LAP without any
- 346 fine-tuning.
- 347 • LoRA(100): LoRA fine-tuning is applied using 100 training sentences.
- 348 • LoRA(100)+LAP-inf: LoRA fine-tuning combined with LAP dictionary grounding during
- 349 inference.

350 **Evaluation Metrics:** We evaluate the translation models using the following metrics:

- 351 • SacreBLEU (Post, 2018): a standardized wrapper for BLEU (Papineni et al., 2002) that
- 352 ensures comparable tokenization and reporting.
- 353 • chrF/chrF++: Character-level F-score metrics especially useful for morphologically rich
- 354 languages, computed over character (and optionally word) n-grams; we report chrF (Popović,
- 355 2015) (and, when indicated, chrF++ (Popović, 2017)).
- 356 • Terminology Hit Rate: This metric measures the percentage of source terms that appear in
- 357 the dictionary whose translations match the target gloss.

358 **Statistical Analysis:** To assess the statistical significance of our results, we use paired bootstrap

359 confidence intervals (CIs) and segment-level win/tie/lose analysis with sign tests. These techniques

360 help evaluate the robustness of the models, particularly when working with small test sets. We report

361 95% CIs for SacreBLEU, chrF, and Term Hit, as well as the win/tie/lose counts for each model

362 configuration.

363 We follow standard practice for significance testing in MT (Koehn, 2004); for broader guidance on

364 statistical testing in NLP, see (Dror et al., 2018).

365 5 RESULTS

366 5.1 MAIN: TANGUT-TO-CHINESE

367 The LAP method is highly effective for this logographic, low-resource setting. On the character-

368 aligned literal translation task, the best configuration (QwenCLASSICAL+DICTSINGLE) reaches a

378 **BLEU-4 score of 72.33.** For the more complex idiomatic translation task, using a two-step CoT
 379 prompt, the model achieves a **BLEU-4 score of 64.20.**
 380

381 5.2 PROBE A: INUKTITUT-TO-ENGLISH 382

383 The results for the Inuktitut→English (Iu→En) translation task are presented in Table 1. We observe
 384 that LAP significantly improves performance across all metrics compared to the baseline 0-shot
 385 setup. The use of dictionary grounding during inference (LAP-inf) results in a substantial increase in
 386 chrF and Terminology Hit Rate, with a **SacreBLEU score of 11.6** and **38.4 chrF** when using LoRA
 387 fine-tuning combined with LAP.
 388

389 System	390 SacreBLEU	391 chrF	392 Term Hit (%)	393 Seg. Wins
390 0-shot	391 2.7 ± 1.4	392 22.1 ± 2.8	393 15 [6,32]	394 —
391 0-shot+LAP-inf	392 6.9 ± 2.0	393 30.8 ± 3.1	394 41 [24,59]	395 15/20
392 LoRA(100)	393 8.8 ± 2.3	394 33.9 ± 3.0	395 50 [32,68]	396 14/20
393 LoRA(100)+LAP-inf	394 11.6 ± 2.6	395 38.4 ± 3.2	396 66 [46,82]	397 17/20

395 Table 1: Iu→En (Nunavut Hansard 3.0; 100 train / 20 test). Mean \pm 95% CI via paired bootstrap;
 396 term-hit CI via Clopper-Pearson.
 397

398 5.3 PROBE B: NAHUATL-TO-SPANISH 399

400 The Nahuatl→Spanish (Nah→Sp) translation results, shown in Table 2, demonstrate that LAP
 401 significantly boosts performance across all models. The best configuration, using LoRA fine-tuning
 402 combined with LAP (**LoRA(100)+LAP-inf**), achieves a **SacreBLEU score of 21.5** and **52.4 chrF**.
 403 The use of LAP not only improves accuracy in translation but also boosts Terminology Hit Rate,
 404 reaching an impressive **81%**.
 405

406 System	407 SacreBLEU	408 chrF	409 Term Hit (%)	410 Seg. Wins
407 0-shot	408 11.1 ± 2.5	409 34.6 ± 3.4	410 39 [22,58]	411 —
408 0-shot+LAP-inf	409 15.4 ± 2.7	410 41.2 ± 3.5	411 63 [43,80]	412 16/20
409 LoRA(100)	410 18.6 ± 2.9	411 48.9 ± 3.2	412 71 [52,86]	413 15/20
410 LoRA(100)+LAP-inf	411 21.5 ± 3.1	412 52.4 ± 3.3	413 81 [62,93]	414 17/20

412 Table 2: Nah→Sp (Axolotl; 100 train / 20 test). Mean \pm 95% CI via paired bootstrap; term-hit CI via
 413 Clopper-Pearson.
 414

415 5.4 TRAINING SET SIZE AND MODEL PERFORMANCE 416

417 We investigate the effect of training set size on model performance by varying the number of training
 418 examples. We randomly sample between 100 and 500 sentence pairs from the training set and
 419 evaluate the models on a fixed 28-sentence test set. The results, shown in Table 3, reveal that model
 420 performance improves steadily as the training set size increases. Notably, even with as few as 100
 421 training sentences, the models exhibit strong performance, indicating the model’s ability to learn
 422 from small datasets.
 423

424 Training Set Size	425 BLEU-4 (Literal)	426 BLEU-4 (Idiomatic)
425 100	426 62.83	427 59.53
426 200	427 70.06	428 62.34
427 300	428 69.57	429 62.73
428 400	429 71.31	430 65.94
429 500	430 73.41	431 66.05

431 Table 3: Effect of Training Set Size on Model Performance.

432 5.5 TRANSFER LEARNING AND MODEL GENERALIZATION
433

434 We assess transfer by incrementally adding {40, 80, 120, 160, 200} *Avatāmsaka* sentence pairs from
435 this new domain to the *training set only*; validation uses the same dev split as the main experiment,
436 and the test set remains the fixed 28-segment set from *Three Generations Illuminated* (no *Avatāmsaka*
437 segments enter validation or test). As shown in Table 4, performance improves as more domain-
438 specific data is added, reaching the best results at 200 pairs with **BLEU-4 = 30.62** (literal) and
439 **Idiomatic BLEU-4 = 37.00**.

440 Additional Data Size	441 BLEU-4 (Literal)	442 BLEU-4 (Idiomatic)
442 40	443 23.88	444 30.92
443 80	444 24.58	445 32.62
444 120	445 25.45	446 34.76
445 160	446 27.28	447 35.49
	448 200	449 30.62
		450 37.00

446
447 Table 4: Impact of Adding New Domain-Specific Data on Model Performance.
448449 5.6 COMPARISON WITH FEW-SHOT LEARNING METHODS
450

451 To evaluate the necessity of fine-tuning, we compare our approach with popular few-shot learning
452 models: ChatGPT-4o, DeepSeek V3, and Gemini-2.0-Flash. We test the models with 5 random
453 examples from the training set and evaluate their performance on the Tangut→Chinese test set. As
454 shown in Table 5, our approach outperforms the few-shot learning models in both literal and idiomatic
455 translation tasks, with a significant margin in BLEU-4 and Terminology Hit Rate.

456 Model Name	457 BLEU-4 (Literal)	458 BLEU-4 (Idiomatic)
458 ChatGPT-4o	459 20.13	460 14.96
459 DeepSeek V3	460 38.85	461 24.33
460 Gemini-2.0-Flash	461 32.07	462 19.68
461 This Work	462 72.33	463 64.20

464
465 Table 5: Comparison with Few-Shot Learning Methods.
466467 6 DISCUSSION
468

469 The results demonstrate that LAP significantly enhances both literal and idiomatic translation tasks
470 in low-resource settings. By grounding the translation process in bilingual dictionary evidence, LAP
471 provides better control over the translation process, leading to improved accuracy and fluency. The
472 method’s ability to work with small datasets further emphasizes its utility for languages with limited
473 resources.

474 7 CONCLUSIONS

475 In this work, we propose *Lexicon-Aligned Prompting* (LAP), a methodology that integrates dictionary
476 evidence into LLMs for low-resource machine translation tasks. We demonstrate the effectiveness
477 of LAP through experiments on Tangut-to-Chinese, Inuktitut-to-English, and Nahuatl-to-Spanish
478 tasks. Our results show that LAP achieves strong performance even with minimal training data, and
479 improves translation quality with the use of bilingual dictionaries.

480 8 FUTURE WORK
481

482 Future work will explore expanding the lexicons to include more languages, refining prompt inte-
483 gration strategies, and integrating LAP with document-level translation. We also aim to explore
484 multimodal approaches that combine textual and glyph-based representations, improving the transla-
485 tion of historical languages like Tangut.

486 REFERENCES
487

488 Waleed Ammar, George Mulcaire, Yulia Tsvetkov, Guillaume Lample, Chris Dyer, and Noah A.
489 Smith. Massively multilingual word embeddings. *arXiv preprint arXiv:1602.01925*, 2016.

490 J. Richard Andrews. *Introduction to Classical Nahuatl*. University of Oklahoma Press, rev. ed.
491 edition, 2003.

492 Shintaro Arakawa. Annotated translation of the princeton university collection of tangut huayan sutra
493 chapter 77. *Journal of Asian and African Studies*, 81:147–305, 2011.

494 Jinze Bai, Shuai Bai, Yunfei Chu, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*,
495 2023.

496 Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. The hitchhiker’s guide to testing
497 statistical significance in natural language processing. In *Proceedings of ACL 2018 (Tutorial
498 Abstracts)*, pp. 7–12, Melbourne, Australia, 2018. Association for Computational Linguistics.

499 Ximena Gutierrez-Vasques, Manuel Mager, and Ivan Meza-Ruiz. Perplexity-based evaluation of
500 language models for under-resourced languages: The case of nahuatl. In *Proceedings of the 10th
501 International Conference on Language Resources and Evaluation (LREC)*, pp. 3060–3064, 2016a.

502 Ximena Gutierrez-Vasques, Gerardo Sierra, and Isaac Hernandez Pompa. Axolotl: a web accessible
503 parallel corpus for spanish–nahuatl. In *Proceedings of the Tenth International Conference on
504 Language Resources and Evaluation (LREC’16)*, pp. 4210–4214, Portorož, Slovenia, 2016b.
505 European Language Resources Association (ELRA). URL <https://aclanthology.org/L16-1666>.

506 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
507 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
508 arXiv:2106.09685*, 2021.

509 Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing Wang, Shuming Shi, and Zhaopeng Tu. Is
510 chatgpt a good translator? yes with gpt-4 as the engine. *arXiv preprint arXiv:2301.08745v4*, 2023.

511 Eric Joanis, Rebecca Knowles, Roland Kuhn, Samuel Larkin, Patrick Littell, Chi-kiu Lo, Darlene
512 Stewart, and Jeffrey Micher. The nunavut hansard inuktitut–english parallel corpus 3.0 with preliminary
513 machine translation results. In *Proceedings of the Twelfth Language Resources and Evaluation
514 Conference (LREC’20)*, pp. 2562–2572, Marseille, France, 2020a. European Language Resources
515 Association (ELRA). URL <https://aclanthology.org/2020.lrec-1.312>.

516 Eric Joanis, Samuel Larkin, Roland Kuhn, and Chi-kiu Lo. The nunavut hansard inuktitut–english
517 parallel corpus 3.0 with preliminary machine translation results. In *Proceedings of the 12th
518 Language Resources and Evaluation Conference (LREC)*, pp. 2562–2572, 2020b.

519 Philipp Koehn. Statistical significance tests for machine translation evaluation. In *Proceedings of
520 EMNLP 2004*, pp. 388–395, Barcelona, Spain, 2004. Association for Computational Linguistics.

521 Xianghui Kong. The construction and research of tangut corpus from the perspective of corpus.
522 *Northwestern Journal of Ethnology*, (4):199–205, 2018.

523 Yolanda Lastra. *Las Areas Dialectales del Náhuatl Moderno*. Universidad Nacional Autónoma de
524 México (UNAM), 1986.

525 Fanwen Li. *Concise Tangut-Chinese Dictionary*. China Social Sciences Press, Beijing, 2012.

526 Kaiwen Lu, Yating Yang, Fengyi Yang, Rui Dong, Bo Ma, Aihetamujiang Aihemaiti, Abibilla
527 Atawulla, Lei Wang, and Xi Zhou. Low-resource language expansion and translation capacity
528 enhancement for llm: A study on the uyghur. In *Proceedings of the 31st International Conference on
529 Computational Linguistics*, pp. 8360–8373, Abu Dhabi, UAE, 2025. Association for Computational
530 Linguistics.

531 Fuchang Luo. *A Brief Account of Tangut Official Documents*. Dongshan Xueshe, Kyoto, 1914.
532 Original lithographic edition.

540 Manuel Mager, Ximena Gutierrez-Vasques, Ivan Meza-Ruiz, and Katharina Kann. Challenges of
 541 language technologies for the indigenous languages of the americas. In *Proceedings of the 27th*
 542 *International Conference on Computational Linguistics (COLING)*, pp. 55–69, 2018.

543

544 Jack Martin, John Chen, and Donald Beck. From rules to statistics: A comparison of two approaches
 545 to inuktitut morphological analysis. In *Proceedings of the 2003 Conference of the Canadian*
 546 *Linguistic Association*, 2003.

547

548 John Micher. Improving coverage of an inuktitut morphological analyzer using a segmental recurrent
 549 neural network. In *Proceedings of the 2nd Workshop on the Use of Computational Methods in the*
 550 *Study of Endangered Languages (ComputEL-2)*, pp. 103–107, 2017.

551

552 Nikolai Nevsky. *Tangut Philology: Research and Dictionary*, volume 1–2. Oriental Literature
 553 Publishing House, Moscow, 1960.

554

555 Kishore Papineni, Salim Roukos, Todd Ward, and Weijing Zhu. Bleu: A method for automatic
 556 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association*
 557 *for Computational Linguistics*, pp. 311–318, 2002.

558

559 Maja Popović. chrf: character n-gram f-score for automatic mt evaluation. In *Proceedings of the*
 560 *Tenth Workshop on Statistical Machine Translation (WMT15)*, pp. 392–395, Lisbon, Portugal,
 2015. Association for Computational Linguistics.

561

562 Maja Popović. chrf++: words helping character n-grams. In *Proceedings of the Second Conference*
 563 *on Machine Translation (WMT17)*, pp. 612–618, Copenhagen, Denmark, 2017. Association for
 564 Computational Linguistics.

565

566 Matt Post. A call for clarity in reporting BLEU scores. In *Proceedings of the Third Conference on Ma-*
 567 *chine Translation (WMT18)*, pp. 186–191, Brussels, Belgium, 2018. Association for Computational
 568 Linguistics.

569

570 Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation mod-
 571 els with monolingual data. In *Proceedings of ACL 2016*, pp. 86–96, Berlin, Germany, 2016.
 572 Association for Computational Linguistics.

573

574 Elina Stüssi and Phillip Ströbel. Part-of-speech tagging of 16th-century latin with gpt. In *Proceedings*
 575 *of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social*
 576 *Sciences, Humanities and Literature (LaTeCH-CLfL 2024)*, pp. 196–206, St. Julians, Malta, 2024.
 577 Association for Computational Linguistics.

578

579 Bojun Sun. The current situation and future of literature research in the western xia regime. *Journal*
 580 *of Southwest Minzu University (Humanities and Social Science)*, 44(1):14–21, 2023.

581

582 Yaqing Wang, Quanming Yao, James Kwok, and Lionel M. Ni. Generalizing from a few examples:
 583 A survey on few-shot learning. *ACM Computing Surveys*, 53(3):1–34, 2020.

584

585 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
 586 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
 587 *Advances in Neural Information Processing Systems*, volume 35, pp. 24824–24837, 2022.

588

589 Peng Yu and Xin Wang. Bert-based named entity recognition in chinese twenty-four histories. In
 590 *Proceedings of the International Conference on Web Information Systems and Applications*, Cham,
 591 2020. Springer International Publishing.

592

593 Barret Zoph, Deniz Yuret, Jonathan May, and Kevin Knight. Transfer learning for low-resource
 594 neural machine translation. In *Proceedings of the 2016 Conference on Empirical Methods in*
 595 *Natural Language Processing*, pp. 1568–1575, Austin, Texas, 2016. Association for Computational
 596 Linguistics.

594 **A ETHICS STATEMENT**
595596 Images reproduced from published dictionaries are used under academic fair use (non-commercial,
597 scholarly purposes). We clearly cite the source and include only the minimal material necessary for
598 discussion. Permissions or licenses are documented when required.599 All the data used in this research are compiled, cleaned, and annotated by the authors themselves.
600 The dataset mainly consists of Tangut (Xixia) materials collected from published dictionaries and
601 historical sources. The authors confirm that no sensitive personal data or harmful content is involved.
602 We will release the Tangut data publicly to facilitate future research and ensure transparency.
603604 **B REPRODUCIBILITY STATEMENT**
605606 To ensure reproducibility, we will make the Tangut dataset openly available upon publication. Other
607 datasets, due to copyright restrictions, cannot be released, but they can be easily obtained from the
608 sources cited in the paper. Detailed descriptions of the experimental setup, including hyperparameters
609 and evaluation protocols, are provided in the main text. This will allow other researchers to replicate
610 and extend our results without restriction.
611612 **C USE OF LLMs**
613614 Large language models (LLMs) were used solely as experimental subjects in this research: we
615 fine-tuned and evaluated LLMs to obtain the reported results. No LLMs were used to write or revise
616 the manuscript; the paper was written entirely by the authors. Automated tools were limited to
617 standard utilities such as spell-checkers, citation managers, and L^AT_EX packages.
618619 In addition, we used ChatGPT-4o only for data preparation—specifically, to convert Japanese transla-
620 tions in Avatāmsaka Sūtra (Vol. 77) into Chinese literal renderings used as auxiliary references; these
621 generated outputs were not used to write or edit the manuscript.
622623 **D EVALUATION & STATISTICAL REPRODUCIBILITY**
624625 We report standard SacreBLEU and chrF++ and assess significance with paired bootstrap and sign
626 tests; decoding is deterministic unless noted.
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647