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Abstract— Currently, deep reinforcement learning algorithms
require large amounts of training data to learn a specific
task, which makes them infeasible to train directly on real
robotic systems. To overcome this obstacle, one usually relies on
training in simulation and randomizes aspects of the simulation
to compensate for the mismatch between the simulator and the
real system. However, it is not always clear which aspect of the
simulation requires randomization and usually enabling an ad-
ditional randomization parameter or simulation modifications
require model retraining from scratch. To address this problem,
in this paper we explore how continual state representation
learning can be combined with parameter randomization for
vision-based reinforcement learning of robotic tasks, to min-
imize the need for complete model retraining. To this end,
we use variational autoencoder (VAE) to continually learn to
reconstruct invariant image representation from sequentially
randomized/augmented simulation images. Independently, a
reinforcement learning model is trained on the invariant image
representation to solve a robotic manipulation task. Then, the
VAE is used to translate randomized/augmented simulation
images or real-world images to the invariant representation
images on which the RL agent can operate. Initial results show
that the VAE can continually learn reconstruction to invariant
images and it can also be used to bridge the sim2real gap by
reconstructing correctly real camera images.

I. INTRODUCTION

Reinforcement learning in combination with deep learning
has the potential to provide a general framework for learning-
based robot control from raw input data, like camera images.
However, drawbacks related to sample inefficiency of the
current algorithms or safety implications when training trial-
error approaches on real robotic systems lead to simulation-
based training. While the shift to simulation-based training
can circumvent the sample inefficiency or unsafe training
problems, due to the mismatch between the simulated and
the real system the applicability of the simulation-trained
models remains challenging for real-world applications and
widespread use in robot control. Methods like domain ran-
domization [1] [2], [3] are often used to widen the training
distribution with the expectation that the true parameters of
the real system would be covered in the training phase, yet,
there is no guarantee for success, and the widening of the
randomization ranges can lead to sub-optimal performance
[4].

On the other hand, continual learning methods are de-
signed to work under the assumption that the underlying
distribution might shift during training, that previous training
data might become unavailable, and that the model should
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adapt to the new distribution during training without com-
pletely forgetting the previous data distributions. In this
paper, we combine domain randomization with continual
learning of invariant image representation for a specific
robotic task, in order to investigate whether they can be
used effectively for sim2real transfer and mitigate problems
like changes in the underlying distribution or subsequent
RL model retraining from scratch. To this end, we propose
an approach that uses a variational autoencoder (VAE) to
continually learn invariant image mapping from a random-
ized image observation in a given robotics simulator, where
the visual input is augmented by different domain ran-
domization techniques. Separately, a reinforcement learning
agent is trained to solve a robotic task on the invariant
(non-randomized) image input, in order to avoid the need
for RL model retraining under changing environment and
the risk of sub-optimal performance when the RL model
is directly trained on randomized simulations with inap-
propriate randomization ranges. We evaluate the proposed
architecture both in simulation environments with different
simulation settings and in the real lab environment in terms
of sim2real transfer. The preliminary results show that the
combined state representation learning and reinforcement
learning components can alleviate the need for RL model
retraining and can help in smooth sim2real transfer.

II. RELATED WORK

With the early success of deep reinforcement learning
algorithms in video games [5] or simple 2D simulation
environments like the ones provided in OpenAI Gym [6] it
became more relevant to use robotic simulations and transfer
RL agents from simulation to control real robotic systems.
Since then, more complex robotic simulators and benchmarks
[7], [8], [9] were introduced, however transferring models
to real systems remains challenging. One direction to take
is to make the simulated environment similar to the real
environment to the greatest extent possible, e.g, by using
high-quality rendering and the depth information of the
image like in [10] or performing system identification [11]
[12]. But there is a consensus that further improvements
in simulation accuracy only cannot improve the sim2real
transfer quality [13]. An alternative approach is to randomize
parameters that cannot be precisely measured, simulated, or
might vary w.r.t. the real system, like in [1] [2]. Building
on domain randomization, James et al. [14] introduced
Randomized-to-Canonical Adaption Networks to leverage
neural networks to learn canonical representations of the ac-
tual environment from randomized environments. However,



naive randomization with inappropriate randomization ranges
might hinder the learnability of a task [4]. To circumvent
this problem, in [15] the authors use Automatic Domain
Randomization, where the randomization increases gradually
during training, making the training distribution wider and
therefore the task more difficult only after the agent is
performing well on the less-randomized setting. As not all
randomization parameters are equally important, concepts
like Active Domain Randomization [16] can reduce the cost
of searching the most important and effective parameters that
should be randomized.

Nevertheless, previous approaches assume that the simula-
tor can already randomize all important parameters and that
there is a strict separation between training and inference.
On the other hand, continual learning, which can be applied
in the context of robotics [17] relaxes these assumptions and
offers a general framework to address changes in the data
distributions, e.g. when the simulation or the task domain
changes [18]. In this direction, defining the simulated and
the real environment as two different tasks for an agent
to learn, [19] uses continual learning for sim2real transfer
and for effective reduction of the amount of training on the
real system necessary during domain adaptation. Combining
continual learning and state representation learning, [20]
showed that VAE combined with generative replay achieves
promising results when an agent continually learns naviga-
tion tasks in two different environments. Following that, the
authors in [21] introduced a method to automatically detect
the environment change, then allows VAE to self-trigger
generative replay, which is more similar to the human way
of learning. A deep generative replay framework is presented
in [22] that is able to easily sample training data on previous
tasks and interleave these data for new tasks.

III. METHODOLOGY

Fig. 1. The proposed model structure. On the left side of the figure VAE
trained using continual learning with different randomized image datasets
is shown. On the top right side the reinforcement learning setup for training
is shown, where the agent is trained on non-randomized simulation. On the
bottom right the inference phase is shown, where the observation for the
RL agent is processed by the VAE to reconstruct non-randomized image
from a real-world image on which the RL agent can operate.

The problem we want to solve can be described as the
following: Given a real-world camera image as an input, a
state representation learning model pretrained in simulation
should reconstruct an invariant image representation, which
is suitable for an RL agent trained in simulation to solve
a robotic manipulator task. In the same time, the need for

retraining any part of the model from scratch should be min-
imized in cases when simulation modifications, finetuning
or domain adaptation with real world images is needed. To
achieve this, we propose combining domain randomization
and continual state representation learning components with
a reinforcement learning agent trained on non-randomized
simulations as described below and presented in Figure 1.

A. Domain randomization

We define datasets of non-randomized simulation images
or simulation images with different types of randomization
applied to them as different tasks. A state representation
model should learn reconstructions from these datasets to
a non-randomized simulation image continually, as shown
in Figure 2. The Task 0 dataset consists of the original
simulaton images obtained directly from the top-view camera
without randomization. The Task 1 dataset images are based
on the original images with the addition of the randomization
w.r.t. the camera pose, background colors and scene lighting.
The Task 2 dataset is generated by post-processing the non-
randomized images and applying different types of noise
(whitenoise, saltNoise, posterize and sharpness) using the
Imagaug library [23]. For each task, the target image to be
reconstructed is the original (not-randomized) image.

Fig. 2. Sample images from the different datasets used for training the
State Representation Learning Model.

B. Continual State Representation Learning

Variational autoencoders (see Fig. 3) are used to learn
the state representation from the simulation image datasets.
Additional fully connected layers are used to reconstruct
auxiliary input (e.g., target coordinates for the target reaching
task) from the embedding vectors, which helps to reconstruct
task-specific image details better. The loss function of the
VAE is defined as

Loss = αlossreconstruction + βlossauxiliary + γLossKL,
(1)



Fig. 3. The structure of the variational auto-encoder.

where α, β and γ are the hyperparameters to be tuned.
KL annealing is applied to help VAEs to learn to reconstruct
the images in the early stages of training [24].

Two replay-based continual learning approaches are im-
plemented to learn the state representation of the images
continually:

1) Experience replay (ER) [25].
2) Dark experience replay (DER) [26].
In ER, sample data from past tasks is repeatedly presented

to the state representation model when the model is trained
on a new task. As en extension of ER, DER attempts to
encourage the learning model to mimic its original responses
for past samples by adding an extra loss term, thus promoting
consistency between current and past models. For DER, in
addition to sample data from past tasks, it requires also the
previous task models to be kept in memory.

C. The Complete Model Structure

The complete model consists of one VAE and one RL
model, as shown in the bottom right corner of Fig. 1. The
VAE is trained from Task 0 to Task 2 to learn the non-
randomized image representation from the images. The RL
model is trained in simulation to perform robotic reaching
tasks from simulated non-randomized images. At inference
time, the input to the VAE is switched to real camera images,
whose reconstructions are then passed to the RL agent as
observations.

IV. EXPERIMENTS

Firstly, the comparisons between different VAEs on the
three task datasets are reported in terms of invariant image
reconstruction quality. Then the performance of the VAEs on
the RL agent is evaluated by combining the same RL model
with different VAEs. Finally, the evaluation of the sim2real
transfer is conducted.

A. VAE Reconstruction Evaluation

To compare the VAE-based continual state representa-
tion learning models, three baseline models are trained to

demonstrate the performance, advantages, and disadvantages
of continual learning models. These models are described as
follows:

• Vanilla VAE for a single task: Ideally, training a new
VAE model separately for each task dataset allows the
most accurate reconstruction of the specific task. As
one of the baseline models, vanilla VAEs for each task
separately are trained, to potentially give the upper limit
of the VAE model used for image data reconstruction.

• Fine-tuning VAE: As a naive continual learning base-
line, the fine-tuning model uses weights of the trained
model from previous task as initialization for the next
task. Here, fine-tuning VAE means taking the VAE
trained on task 0 and then continuing with the training
on Task 1 only and subsequently on Task 2 only images.

• Joint training VAE: Joint training VAE means that the
data from all tasks is used at the same time during
the training. Note that for joint training, each dataset
from different tasks is sub-sampled and then combined
to make a joint training dataset.

Each task dataset contains 10,000 images in which only
the first two joints of the robot arm can move and the target is
placed at a random position. All VAE models are trained for
a total of 450 epochs. For the fine-tuning VAE, the VAE is
trained firstly for 250 epochs on Task 0 to converge, then the
model is fine-tuned on Task 1 and on Task 2 for 100 epochs
each. For the continual learning (ER or DER) training, the
same VAE trained on task 0 with 250 epochs is used as the
starting model, and then trained for 100 epochs on Task 1
and 100 epochs on Task2 respectively to reach a total of
450 epochs. The joint training dataset also contains 10,000
images, with each of the three tasks accounting for one-third
of the dataset.

Fig. 4. Evaluation of the VAEs by the mean square error. Each model
is evaluated on three test datasets for the three defined tasks. The single
task means the model is trained on a single dataset only. The MSE loss
is calculated by accumulating the loss on every pixel of the test dataset.
Notice that, these three test datasets share a common ground truth dataset.

We evaluate every VAE model quantitatively on three
test datasets, which correspond to the three tasks (see Fig.
4). As expected, the models trained on a single dataset
have generally the best performance, except the model for
Task 2. We hypothesize that this might be due to the task



Fig. 5. Reconstruction of sample test images from the three tasks with the
different VAEs trained on all tasks. Rows from top to bottom represent test
images from Task 0 to Task 2 respectively.

specifications, namely it might be easier for the model to
learn to reconstruct invariant image representations from
noise-free images initially, compared to a training where
noise-enabled (Task 2 images) are available from the start.
Another interesting observation is that the finetuning model
and continual learning models have similar performances on
Task 0, but the fine-tuning model reconstructs the images
much worse than the other two models on Task 1 due to
”catastrophic forgetting”, while all three models perform
about the same on Task 2. On Task 2, DER has a better
performance than any other model. Qualitative results of the
reconstruction for sample test images from each task are
presented in Figure 5.

B. Sim2real Transfer Evaluation

To evaluate whether the VAE reconstructions can be used
as inputs to an RL agent trained on non-randomized images,
we use a setup similar to [4] to train an RL agent for
target reaching task, where the agent should learn to control
the joint velocities of the robot’s first 2 joints, using RGB
images as observation and the negative distance of the end-
effector to the target as reward. The RL agent is trained
on non-randomized images only. In our experiments we
use the Proximal Policy Optimization (PPO) [27] algorithm
implementation from StableBaselines3 [28].

The preliminary results show that reconstruction images
of the VAE trained on task 0 (non-randomized images) only
show that this model cannot reconstruct a realistic image and
it tends to output similar robot arm reconstruction regardless
of the input image, although it can reconstruct the target
location correctly (see Figure 6). As a consequence, the robot
arm keeps making meaningless swings. On the other hand,
the joint training VAE reconstructs the real images as the
images in the simulator, but the robot fails to reach the
target. VAEs trained sequentially on all three datasets using
the continual learning (ER and DER) methods reconstruct
the images better which helps the robot reach the target.

Fig. 6. Reconstruction of the real images in several time steps. VAE task
0 reconstructs meaningless images. The other three models can reconstruct
the images similar to the real images, where the robot arm and the target
are correctly rebuilt.
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