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Abstract

Blended-target domain adaptation (BTDA), which implicitly mixes multiple sub-
target domains into a fine domain, has attracted more attention in recent years. Most
previously developed BTDA approaches focus on utilizing a single source domain,
which makes it difficult to obtain sufficient feature information for learning domain-
invariant representations. Furthermore, different feature distributions derived from
different domains may increase the uncertainty of models. To overcome these is-
sues, we propose a style adaptation and uncertainty estimation (SAUE) approach for
multi-source blended-target domain adaptation (MBDA). Specifically, we exploit
the extra knowledge acquired from the blended-target domain, where a similarity
factor is adopted to select more useful target style information for augmenting
the source features. Then, to mitigate the negative impact of the domain-specific
attributes, we devise a function to estimate and mitigate uncertainty in category pre-
diction. Finally, we construct a simple and lightweight adversarial learning strategy
for MBDA, effectively aligning multi-source and blended-target domains without
the requirements of domain labels of the target domains. Extensive experiments
conducted on several challenging DA benchmarks, including the ImageCLEF-DA,
Office-Home, VisDA 2017, and DomainNet datasets, demonstrate the superiority
of our method over the state-of-the-art (SOTA) approaches.

1 Introduction

Domain adaptation (DA), whose objective is to transfer knowledge from one or more well-labeled
source domains to a non-labeled target domain, has been studied in recent years [1, 2, 3, 4, 5, 6],
including object classification [1, 2], semantic segmentation [3, 4], and object detection [5]. However,
most DA approaches are based on a setting that has single source domain and single target domain
[1, 2]. In the real world, unlabeled target domains are usually drawn from different distributions.
Therefore, most of the existing single target-based DA approaches may not be the best answer to
address domain shifts in reality.

Fortunately, an increasing number of researchers have focused on the above-mentioned issues, and
multi-target domain adaptation (MTDA) [7, 8, 9] has been studied. MTDA aims to learn a model
that can simultaneously utilize information from single source domain and multiple target domains
and then perform well in multiple target domains. For instance, HGAN [10] adopts a heterogeneous
graph attention network to explore the relations among multiple target domain features. In [11],
multiple expert models employed the corresponding source-target domain pair-groups and were then
aligned by a student model. Although the existing MTDA approaches have made certain progress,
the standard MTDA is still facing challenges because massive amounts of unlabeled data drawn from
different distributions are commonly used in real-world settings. It is time-consuming and expensive
to divide massive data into multiple corresponding distributions (target domains). For example, for
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Table 1: Comparison about different settings of DA.
Settings Source domain number Target domain number Domain labels

UDA/SSDA single single ✓
MSDA multiple single ✓
MTDA single multiple ✓
BTDA single multiple ×

MMDA multiple multiple ✓
MBDA multiple multiple ×

encrypted data stored in a cloud server, due to privacy protection, models cannot directly know the
origins of these data (domain labels), which are drawn from different distributions and are blended
into a large target domain. Based on the above-mentioned case, blended-target DA (BTDA), which is
a more beneficial scenario in real-world settings, has been proposed [12].

Current BTDA approaches [12, 13] are mainly based on three points: 1) the adaptation process
contains single source domain and multiple target domains. 2) During the adaptation process, the
model cannot access both the domain labels and category labels of the target domains. 3) In blended-
target domain, the category labels of each sub-target domain may not follow the same distribution.
Therefore, simply utilizing MTDA or SSDA (single source domain adaptation) methods to handle the
BTDA task may lead to negative transfer because the domain labels of target domains are unseen,
and the category feature space is a hybrid space. As the first deep learning work focused on the
BTDA scenario, AMEAN [12] employs two adversarial learning steps and utilizes meta-learning
to minimize the domain gap between the source domain and the blended-target domain. However,
insufficient information obtained from single source domain makes models difficult to align the
distributions of multiple target domains. Moreover, the presence of different distributions in the
blended-target domain may aggravate negative transfer. Recently, multi-source domain adaptation
(MSDA) [14, 15, 16] has produced impressive results. MSDA approaches can utilize more feature
information from extra source domains to learn domain-invariant representations, effectively solving
negative transfer. However, as far as we know, no related works have been proposed to utilize more
feature information from multiple source domains for BTDA.

In this paper, to further exploit feature information from multiple domains, we pay attention to the
BTDA in the case of multiple source domains, i.e., Multi-Source Blended-Target Domain Adaptation
(MBDA). The comparisons of different DA settings are illustrated in Table 1. At the same time, a
style adaptation and uncertainty estimation (SAUE) method is proposed for MBDA. Different from
previous works, we utilize the style information of the blended-target domain to enhance source
domain features, thus building a better representation space. Specifically, we first simultaneously
extract the source and target style information and then calculate the similarity factors between the
source and target style information. The similarity factors are served as the weighted matrix during
the feature augmentation process. Based on style adaptation, we further analyze the uncertainty in
the classification model and adopt a loss function to eliminate the uncertainty introduced by the
multi-source domains. In addition, as the domain labels of the blended-target domain are unavailable
in MBDA, we construct an adversarial learning scheme for MBDA without the requirement of domain
labels of the target domains.

The main contributions of this work are summarized as follows:

• An approach SAUE is proposed to explore information from multiple source domains for
BTDA. As far as we know, SAUE is the first work that was proposed for MBDA, which
can utilize more feature information from extra source domains to learn domain-invariant
representations.

• To further exploit the style information in the blended-target domain, we propose a similarity-
based style adaptation strategy for MBDA, which selects target styles to enhance the source
representation space.

• We propose an uncertainty estimation technique to enhance the robustness of our method,
which exploits valuable knowledge from multiple source domains. In addition, we construct
a specific adversarial learning strategy for MBDA, which aligns domains without the
requirement of domain labels.
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2 Related Works

Single-source and Single-target DA (SSDA). The objective of SSDA is to learn domain-invariant
representations through the relations between the source and target domains. Based on this objective,
researchers have carried out widespread researches and achieved certain progress [17, 18, 19, 20,
21, 22, 23]. The current SSDA methods are mainly divided into two types: distance metric-based
approaches [17, 18, 19] and adversarial learning-based approaches [20, 21, 22, 23]. Distance metric-
based methods learn domain-invariant representations through feature discrepancy matching by using
a distance metric function. DAN [18] utilizes multi-kernel maximum mean discrepancy (MMD) to
measure the discrepancy between the source and target domains and then minimizes the discrepancy
to learn domain-invariant representations. CAF [19] utilizes sliced Wasserstein distance (SWD)
[24] to measure domain discrepancy. Motivated by the GANs [25, 26], adversarial learning-based
SSDA methods have also been widely researched [20, 21, 22, 23]. Adversarial learning methods
perform min-max two-player games between the category classifier and domain discriminator to
learn domain-invariant representations. DANN [20], which was the earliest work in adversarial
learning-based SSDA, successfully achieves domain-level adaptation via a gradient reverse layer.
Different from DANN, SCDA [22] and DALN [23] remove the discriminator from their networks
and model the adversarial relation between the feature extractor and category classifier. Although
the above-mentioned approaches have achieved great success, due to the limitations of single source
domain features and single target domain features, current SSDA methods still face some challenges
in real applications.

Multiple Domains DA. The motivation of multiple domains DA is to explore more useful knowledge
from multiple domains for the tasks. Many researchers have focused on multiple-domain DA and
proposed many excellent methods [13, 14, 15, 8], including MSDA [14, 15, 27, 28], MTDA [8],
BTDA [13, 12], and MMDA (multi-source and multi-target DA) [29]. M3SDA [14] utilizes moment
matching to align domain distribution. DCA [15] further extracts the multiview features from
multiple source domains and then utilizes multiple classifiers and pseudo-label learning strategy to
align distributions. Meanwhile, in MTDA, CGCT [8] utilizes feature aggregation and curriculum
learning to learn the pseudo-labels of multiple target domains. AMDA [29] constructs multiple
domain discriminators and utilizes attention mechanism to address the MMDA issue.

Recently, a more realistic DA scenario, BTDA, has been studied [12, 13]. For example, MCDA [13]
utilizes the mutual condition to learn domain-invariant representations, which has achieved great
progress in BTDA. However, single source domain in BTDA cannot provide sufficient feature infor-
mation for aligning the source and blended-target domains. Furthermore, the unseen domain labels of
the target domains also aggravate the challenges. Therefore, we consider multiple source domains
in BTDA and utilize the style information of the target domains to optimize the representations of
source features and minimize the model uncertainty, thereby obtaining a better transfer.

3 Method

3.1 Preliminary

In MBDA, we have M labeled source domains S = {Sm}Mm=1 that are drawn from distributions
{PSm

}Mm=1. Sm = {xSm
i , ySm

i }|Sm|
i=1 , where xSm

i ∈ Rd denotes the i-th source sample from the
m-th source domain and ySm

i is the corresponding category label, and d denotes the number of
dimensions. Meanwhile, we have an unlabeled blended-target domain T that consists of N sub-target
domains {Tn}Nn=1, and T = {xT

j }
|T |
j=1. The distributions of sub-target domains are {PTn}Nn=1.

Therefore, the distribution of blended-target domain PT is the mixture of sub-target domains, i.e.,
PT =

∑N
n=1 πnPTn

, where π ∈ [0, 1] and
∑N

n=1 πn = 1. Each of the source and target domains
shares the same category space. The objective of MBDA is to train a model that utilizes multiple
source domain features and performs well on the blended-target domain. Different from MTDA, the
target domain labels are unseen in MBDA. In addition, the analysis in [12] demonstrated that directly
utilizing DA methods to address BTDA transfer tasks may cause increased uncertainty and negative
transfer. Therefore, we utilize the style information of the blended-target domain to augment source
features and minimize the uncertainty of the model. Furthermore, the adversarial learning strategy in
our method without the requirement of domain labels of the sub-target domains is suitable for MBDA
setting. Figure 1 illustrates the overall architecture of SAUE.
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Figure 1: Overview of the proposed SAUE approach. First, the style information of the blended-target
domain is utilized to augment the source features through the similarity factors. Second, we calculate
the uncertainty of the model and optimize prediction uncertainty via the Dirichlet distribution. Finally,
the adversarial learning strategy without discriminator effectively guides the SAUE process to adapt
the blended-target domain without the requirement of domain labels of sub-target domains.

3.2 Style Adaptation from Blended-Target Domain

Since the principal parts of features from different domains remain domain-invariant, the domain-
specific parts, which mainly contain style information, are the main discrepancies between different
domains. In addition, the target feature distributions in MBDA are confused, which may cause
model degradation. Therefore, we try to utilize the style information of blended-target domain to
augment source features, which brings source features closer to target features. Previous work [13]
has demonstrated that low-level features of deep neural networks (DNNs) mainly represent style
information. Some works [13, 30] have utilized the channel-wise mean and variance of the low-level
features to represent the style information of input samples. Thus, for sample xSm

i which from the
m-th source domain, let its low-level feature be zSm

i ∈ Rd×HSm×WSm , where d denotes the channel
and HSm

, WSm
denote the height and width of sample xSm

i . The channel-wise mean and variance of
the low-level feature zSm

i can be defined as follows:

µSm
i =

1

HSm
WSm

HSm∑
h=1

WSm∑
w=1

zSm
i , σSm

i =

√√√√ 1

HSm
WSm

HSm∑
h=1

WSm∑
w=1

(zSm
i − µSm

i )2. (1)

Low-level features mainly represent style information, but different samples contain specific pieces
of style information. Therefore, we adopt feature normalization technique to standardize the feature
zSm
i , and the normalized feature z̃Sm

i is defined as:

z̃Sm
i =

zSm
i − µSm

i

σSm
i + ϵ

, (2)

where ϵ is a small value used to avoid division by zero.

Then, the target features will be utilized to augment the normalized source features. Previous work
[13] randomly augmented source features through target style information, which yielded limited
performance. In our work, we select the target style information according to a weight factor.
Specifically, we leverage the Wasserstein Distance [31] to measure the style distribution discrepancy
wSm

i between the source low-level feature zSm
i and the target low-level feature zTj as follows:

wSm
i = ∥µSm

i − µT
j ∥+ (σSm

i )2 + (σT
j )2 − 2σSm

i σT
j . (3)

Then, we utilize wSm
i to calculate the weight factor as follows:

λSm
i =

exp(1/(1 + wSm
i ))∑M

m=1

∑|Sm|
i=1 exp(1/(1 + wSm

i ))
. (4)
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To ensure that the sum in Eq. (4) equals to 1, we utilize softmax operation to normalize each λSm
i .

Then, we can obtain the weighted target style as follows:

µi =

M∑
m=1

|Sm|∑
i=1

λSm
i µT

j , σi =

M∑
m=1

|Sm|∑
i=1

λSm
i σT

j . (5)

Finally, the low-level source feature augmented by the blended-target style information can be
calculated as follows:

zSmT
i = σiz̃

Sm
i + µi. (6)

Different from previously developed image augmentation method [13], our method directly utilizes
target information with weight factor to augment source features instead of generating specific images.
The low-level feature zSmT

i augmented by diverse target styles further mitigates the impact of the
domain-specific attributes.

3.3 Uncertainty Estimation and Elimination

Although multiple source domains provide additional supervised information for adaptation compared
to a single source domain, they also introduce more domain-specific attributes. This can cause model
degradation, especially when some source domains are significantly dissimilar to the blended-target
domain due to the abundance of domain-specific attributes. Evidential model learning (EDL) [32] is
an interpretable approach that fuses knowledge from multiple domains using the Dempster-Shafer
Rule [33, 34], which is more beneficial to MBDA scenario. Thus, we utilize the Dirichlet-based
evidential model [32] to estimate the uncertainty of our model during the training process. Specifically,
for a sample xi, we have the predictions pi = C(G(xi)) = [pi1, pi2, . . . , piK ], where C and G denote
the classifier and feature generator, respectively. The probability density function of pi is defined as
follows:

D(pi|αi) =

{
1

B(αi)

∏K
k=1 p

αik−1
k for p ∈ UK

0 otherwise
, (7)

where Uk = {pi|
∑K

k=1 pik = 1 and 0 ≤ pi1, ..., piK ≤ 1} is the K-dimensional unit simplex

and αi is the parameter of the Dirichlet distribution. B(αi) =
Γ(

∑K
k=1 αik)∏K

k=1 Γ(αik)
is the K-dimensional

multinomial beta function, and Γ(·) denotes the gamma function.

Previous work [32] has demonstrated that DNNs can generate opinions for classification tasks as
Dirichlet distributions. Therefore, given sample xi, for prediction of class c that generated by DNNs,
the Dirichlet distributions connected with DNNs can be defined as follows:

P (y = c|xi) =
αic∑K

k=1 αik

=
Cc(G(xi))∑K

k=1 Ck(G(xi))
= E[D(pic|αi)]. (8)

The derivation of Eq. (8) is provided in Appendix B.

In this work, for source sample xSm
i , we utilize the prediction of the category classifier as the

evidence vector, and the parameters of the corresponding Dirichlet distribution can be defined as
αSm
i = C(G(xSm

i )) + 1. To eliminate the uncertainty, we force the total evidence to zero when
the model generates an incorrect prediction for the source sample, and the corresponding uniform
Dirichlet distribution is D(pSm

i | ⟨1, . . . , 1⟩). For implementation, we utilize the Kullback-Leibler
(KL) divergence to reduce the impact of incorrectly classified source samples in our loss function,
which is defined as follows:

Lunc(x
Sm) =

|Sm|∑
i=1

KL[D(pSm
i |α̃Sm

i )∥D(pSm
i | ⟨1, . . . , 1⟩)], (9)

where α̃Sm
i = ySm

i + (1 − ySm
i ) ⊙ αSm

i denotes the Dirichlet parameter used to remove the true
evidence from prediction αSm

i . Specifically, the KL divergence is:

KL[D(pSm
i |α̃Sm

i )∥D(pSm
i | ⟨1, . . . , 1⟩)]

= log

[
Γ(
∑K

k=1 α̃
Sm
i )

Γ(K)
∏K

k=1 Γ(α̃ik)

]
+

K∑
k=1

(α̃ik − 1)

Ψ(α̃ik)− Ψ(

K∑
j=1

α̃ij)

 ,
(10)

where Γ(·) and Ψ(·) denotes the gamma function and digamma function, respectively.
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Algorithm 1 SAUE for MBDA

Input: Source domains {Sm}Mm=1 and the corresponding data {xSm
i , ySm

i }|Sm|
i , blended-target

domain data {xT
j }, hyper-parameters λe and λd, maximum iteration I , and mini-batch size

B.
Output: Optimal feature generator G and category classifier C.
1: for i in 1:I do
2: Randomly sample a mini-batch of B source samples and target samples.
3: Augment the source features by utilizing style adaptation, i.e., Eq. (6).
4: Minimize the parameters of the feature generator and category classifier by Lcls.
5: Optimize the uncertainty of model through Lunc.
6: Perform the min-max game between feature generator and classifier with Ld:

min
G

max
C

Ld(x
Sm , xT ).

3.4 Domain Adversarial Alignment without Domain Labels

Existing works [20, 21, 22, 8] have demonstrated that adversarial learning strategy is beneficial in
DA. However, most of the adversarial learning strategies in DA [20, 21] usually request the domain
labels of the source and target domains to train their discriminators, which cannot satisfy MBDA.
Inspired by the intra- and inter-class correlation [35], we design an adversarial learning strategy for
MBDA without discriminator and domain label requirements. Specifically, the category classifier is
reused to discriminate which domain a feature originates from, with the guidance of the Nuclear norm
∥·∥∗. We first measure the distribution difference between the source and blended-target domains
through the nuclear-norm 1-Wasserstein discrepancy (NWD) [23] and then utilize a gradient reverse
layer (GRL) [20] to maximize the discriminative loss of the classifier. Simultaneously, we minimize
the feature generator to play the min-max game with the classifier through the NWD. First, the NWD
loss can be defined as:

Ld(x
Sm , xT ) =

1

|Sm|

|Sm|∑
i=1

∥∥∥C(G(xSm
i ))

∥∥∥
∗
− 1

|T |

|T |∑
j=1

∥∥C(G(xT
j ))
∥∥
∗ . (11)

Then, the adversarial learning strategy between feature generator and classifier is defined as follows:

min
G

max
C

Ld(x
Sm , xT ). (12)

3.5 Model Optimization and Theoretical Analysis

Overall Objective. The overall loss function that optimizes SAUE for MBDA is defined as:

min
G,C

{
Lcls(x

Sm , xT ) + λeLunc(x
Sm) + λd max

C
Ld(x

Sm , xT )
}
, (13)

where λe = min(1, e/λ′
e) ∈ [0, 1] is the annealing coefficient, which prevents Lunc from over-

penalizing the neural network to a uniform distribution in the early training epochs, and e is the
current number of epochs and λ′

e = 40. λd is a hyper-parameter which is initially set to λd = 1 as in
[23]. Lcls is the classification loss, which ensures that the category classifier can correctly classify
samples. With the the cross-entropy loss Lce, the classification loss Lcls is defined as follows:

Lcls(x
Sm , ySm) =

M∑
m=1

1

|Sm|

|Sm|∑
i=1

Lce(C(G(xSm
i )), ySm

i ). (14)

After adversarial training, our model can effectively adapt the blended-target domain without the
requirement of domain labels of sub-target domains. The concrete steps of SAUE are shown in
Algorithm 1.

Theoretical Analysis. Here, we utilize PAC-Bayesian theory [36] to optimize our classification
model with uncertainty estimation and elimination. The full-bound theorem motivated by previous
work [37] is illustrated in Theorem 1 and Lemma 1, and the proofs are provided in Appendix C.
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Theorem 1 [37]. Suppose we have given the m-th source data distribution PSm , a hypothesis set
H, and a prior distribution π over the hypothesis space Θ. For any τ ∈ (0, 1] and λ > 0, with a
probability at least 1− τ over the source samples Sm ∼ PSm , for all posteriors ρ, we have:

Eρ(H)[L(H)] ≤ Eρ(H)[L̃Sm
(H)] +

1

λ

[
KL(ρ∥π) + log

1

τ
+ΨSm,π(λ, n)

]
, (15)

where ΨSm,π(λ, n) = logEπ(H)ESm∼PSm

[
eλ(L(H)− ˜L(H))

]
.

Lemma 1 [38]. The PAC-Bayes bound, involving constants τ and n, as introduced in Theorem 1, is
minimized by the Bayesian posterior p(H), which represents the distribution over Θ.

During uncertainty estimation and elimination, just as in Eq. (9), we utilize D(pSm
i |α̃Sm

i ) as the
posterior distribution and D(pSm

i | ⟨1, . . . , 1⟩) as the prior distribution. Therefore, the upper bound
of the classification model can be expressed as:

M∑
m=1

1

|Sm|

|Sm|∑
i=1

[
Lcls +

1

λ
KL(D(pSm

i |α̃Sm
i )∥D(pSm

i | ⟨1, ..., 1⟩))
]
. (16)

Generalization Bound. In this part, we prove why SAUE performs well on the blended-target
domain via Lemma 2 and Theorem 2. The proofs and derivations are provided in Appendix D.
Lemma 2 [39]. Suppose we have given the probability measures νSm , νT ∈ P(F) of the m-th source
feature fSm and the blended-target domain feature fT , a hypothesis space Θ, and a subspace H̃ ∈ Θ.
Let F denote a fixed representation space and c(fSm , fT ) denote the adaptation cost. For the ideal
classifier h′ ∈ H̃ and any classifier h ∈ H̃ with fSm ∼ νSm and fT ∼ νT , we have:

|ϵSm
(h, h′)− ϵT (h, h

′)| ≤ 1

2
dH∆H(νSm

, νT ), (17)

where ϵSm and ϵT denote the error on the m-th source domain and the error on the blended-target
domain respectively, and ϵT = 1

N

∑N
j=1 ϵTj

. dH∆H denotes the H∆H-distance.

Theorem 2. Based on Lemma 2, with the error of the ideal joint hypothesis η′ = ϵSm
(h′) + ϵT (h

′)
which is a sufficiently small constant, for any δ ∈ (0, 1), with probility at least 1− δ, for every h ∈ H,
ϵT (h) is bounded by the following terms:

ϵT (h) ≤ ϵSm
(h) +

1

2
d̂H∆H(νSm

, νT ) + 4

√
2d log(2b′) + log( 2δ )

b′
+ η′, (18)

where η′ = ϵSm
(h′)+ ϵT (h

′) is the ideal error for the classifier, which is a sufficiently small constant.
b′ is the size of unlabeled samples.

Therefore, the final objective of the MBDA classification task is to reduce the joint domain discrepancy
term

∑M
m=1 |ϵSm

(h, h′)− ϵT (h, h
′)|.

4 Experiments

4.1 Datasets and Implementation Details

Datasets. Four standard benchmark datasets are used to validate the effectiveness of our proposed
method. The ImageCLEF-DA [40] contains 2,400 images and is divided into 4 domains: Bing (b),
Caltech (c), ImageNet (i), and Pascal (p). Each domain has 12 categories, and every category has
50 images. The Office-Home [41] also consists of 4 domains and 15,588 images belonging to 65
categories from four subdomains: Art (Ar), Clipart (Cl), Products (Pr), and Real world (Rw). The
DomainNet [14] is a large-scale dataset in DA that contains 0.6 million images of 345 categories
from 6 domains: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real world (R), and Sketch
(S). Following the protocol used in [29], we select 126 categories and 4 domains (C, P, R, and S) in
our experiments. The VisDA 2017 [42] dataset is a challenging dataset consists of 2 domains (Syn.
and Rel.) and 7 categories.
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Implementation Details. We utilize PyTorch framework [43] to perform our experiments; the
PyTorch version is 1.13.1 and CUDA version is 11.7. We use an ImageNet pre-trained ResNet [44],
replacing the last FC layer with task-specific FC layers. All experiments are run on a single GeForce
RTX-4090 GPU, and the batch size of both the source and blended-target domains are set to 32. The
optimizer is Stochastic Gradient Descent (SGD) with a momentum parameter of 0.9 and a weight
decay of 1e-3. The learning rate is 1e-3 and updated by the LambdaLR [43] during the training
process.
4.2 Comparisons to State-of-the-Art
To evaluate the effectiveness of our proposed method, we conduct extensive experiments and compare
our approach with the state-of-the-art (SOTA) methods in terms of DA classification. The comparison
methods include SSDA approaches, i.e., MCD [45], DAN [18], TSA [46], DALN [23], BIWAA [47],
and SCDA [22]; MSDA methods, i.e., MDAN [48], DCTN [49], and DIDA [50]. MTDA/BTDA
methods: MTDA-ITA [7] and MCDA [13]; and Multi-source Multi-target DA (MMDA), i.e., AMDA
[29] and HTA [51]. The comparison results are presented in Tables 2-4, in which we select two
domains as source domains and combine other two domains to form the blended-target domain. Note
that these approaches do not totally match the MBDA setting. Therefore, we utilize the following rule
for our comparison. For SSDA setting, one column denotes one SSDA task, such as R→C in Table
2. For MSDA methods that contain more than two source domains, we implement those methods
according to their released codes, reset the source domain into two domains, such as R+S→C, and
mark them with “*”. Similarly, under the MTDA and BTDA settings, we reset the target into two
domains and select the highest one in MTDA/BTDA task group that contains the same target domains,
such as R→ C+P and S→ C+P in Table 2. For MMDA setting, two domains are sources, and the
other domains are targets, such as R+S→C+P in Table 2. For better comparison, all results in Tables
2-4 are the averages of two target domains.

Table 2: Accuracy (%) on the DomainNet for MBDA
(ResNet-50).

Method R+S S+P P+R C+S R+C C+P Avg.C+P C+R C+S P+R P+S R+S

DANN[20] JMLR’16 31.4 39.7 26.8 29.3 31.3 31.2 31.6
DAN[18] TPAMI’19 32.8 40.6 28.2 29.8 31.5 32.0 32.5
MDAN[48] NeurIPS’18 54.5 59.0 45.0 58.8 51.7 61.0 54.5
MTDA[7] TIP’20 52.4 48.7 45.5 53.3 51.5 52.0 50.5
AMDA[29] TIP’21 65.8 67.8 56.7 65.1 58.9 66.4 63.4
DALN*[23] CVPR’22 61.2 69.2 64.1 63.5 59.3 64.8 63.7
MCDA*[13] AAAI’23 62.2 68.7 61.7 63.4 61.2 65.4 63.8
DGWA*[52] TMM’24 66.4 71.3 63.4 67.5 64.6 70.2 65.0

SAUE (Ours) 70.8 76.9 67.6 71.9 65.2 73.1 70.9

“*” denotes that the results are obtained by the released code of the corresponding
method. The best results are bolded.

Results on the DomainNet are displayed
in Table 2. Our SAUE method achieves
SOTA performance in most of the experimen-
tal groups and attains the best performance
in terms of average accuracy. Compared to
the BTDA method MCDA in multi-source set-
ting, our method achieves better performance
because the style information of the target do-
main selected by the weight factor can en-
hance the source feature representations. Com-
pared to MMDA method AMDA, although
AMDA can access the domain labels of the
target domains, our method still overpasses
AMDA in terms of average classification accuracy (overpass 7.5%) and without the requirement of
the domain labels of the target domains. Furthermore, both AMDA and our method are adversarial
learning methods, and the comparison results further demonstrate the effectiveness of our adversarial
learning strategy. These obtained improvements are mainly due to the uncertainty optimization
process and the style information derived from target features.

Table 3: Accuracy (%) on the (a) Office-Home and the (b) ImageCLEF-DA for MBDA (ResNet-50).
(a) Office-Home

Method Rw+Pr Cl+Rw Pr+Cl Rw+Ar Ar+Pr Cl+Ar Avg.Ar+Cl Ar+Pr Ar+Rw Cl+Pr Cl+Rw Pr+Rw

DANN[20] JMLR’16 53.5 61.9 53.5 55.6 57.1 60.1 57.6
DAN[18] TPAMI’19 53.4 60.1 52.2 54.3 52.2 58.7 56.3
MTDA[7] TIP’20 51.9 64.9 60.3 59.4 58.2 62.4 59.5
MDAN[48] NeurIPS’18 55.4 69.1 61.2 61.5 55.9 70.4 62.2
SCDA[22] CVPR’21 64.1 74.7 70.0 68.3 68.7 77.6 70.1
AMDA[29] TIP’21 61.4 77.0 72.3 67.4 64.9 77.4 70.0
HTA[51] Appl. Intell.’23 62.2 78.9 75.0 68.7 66.2 79.0 71.9
MCDA*[13] AAAI’23 63.6 74.9 70.0 68.7 68.1 78.1 70.6
DGWA[52] TMM’24 63.7 78.6 73.9 70.7 66.9 78.8 72.1

SAUE (Ours) 65.6 79.9 75.2 70.1 71.8 79.3 73.7

“*” denotes that the results are obtained by the released code of the corresponding

(b) ImageCLEF-DA

Method i+p p+c c+i b+p i+b b+c Avg.b+c b+i b+p c+i c+p i+p

DANN[20] JMLR’16 76.4 72.4 69.1 87.9 82.9 79.3 77.9
DAN[18] TPAMI’19 78.3 74.8 70.3 91.5 85.0 78.8 79.8
CDAN*[21] NeurIPS’18 78.3 76.8 68.2 92.8 85.9 82.3 80.6
AMDA[29] TIP’21 78.8 77.3 71.7 92.3 85.2 83.8 81.5
SCDA*[22] CVPR’21 78.9 77.2 71.8 93.9 85.5 85.0 82.1
DIDA*[50] TIP’22 78.9 77.9 72.0 92.2 86.8 85.1 82.2
HTA[51] Appl. Intell.’23 79.3 78.2 72.3 92.8 85.6 84.9 82.2
MCDA*[13] AAAI’23 77.4 79.1 70.3 91.8 86.2 83.8 81.4
DGWA[52] TMM’24 79.7 79.1 72.7 93.8 86.0 84.5 82.7

SAUE (Ours) 80.8 80.2 73.8 94.9 88.6 87.2 84.3

method. The best results are bolded.

Results on the Office-Home are shown in Table 3a. The experimental results are compared with
those of the SOTA methods, illustrating that our proposed method achieves dramatic improvements
in most comparison groups and achieves the highest average classification accuracy (73.7%). Note
that the Rw domain contains a total of 34,856 images, which is far more numerous than the other
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Table 4: Accuracy (%) on the (a) default version of DomainNet dataset and (b) VisDA-2017 dataset
(ResNet-101).

(a) DomainNet

Method C+P+Q C+P+R C+P+S C+Q+R C+Q+S C+R+S P+Q+R P+Q+S P+R+S Q+R+S Avg.R+S Q+S Q+R P+S P+R P+Q C+S C+R C+Q C+P

MCDA 54.6 28.5 39.1 50.3 52.9 30.6 53.2 60.1 34.2 56.2 46.1
SCDA 54.2 31.0 40.5 51.8 56.2 30.4 54.9 59.3 36.0 57.0 47.1
DGWA 54.7 31.3 40.7 52.2 56.8 30.7 55.3 59.6 36.2 57.5 47.4

SAUE (Ours) 57.7 34.6 42.9 54.7 59.2 36.9 56.0 63.6 37.1 58.7 50.2

Method R+S Q+S Q+R P+S P+R P+Q C+S C+R C+Q C+P Avg.C+P+Q C+P+R C+P+S C+Q+R C+Q+S C+R+S P+Q+R P+Q+S P+R+S Q+R+S

MCDA 40.0 54.6 50.2 33.4 41.2 52.9 45.3 40.2 48.3 41.2 44.7
SCDA 41.2 54.7 50.2 33.8 41.3 54.2 46.5 39.3 49.4 42.1 45.4
DGWA 41.5 55.1 50.7 34.3 42.6 54.7 46.9 39.7 49.8 42.6 45.8

SAUE (Ours) 43.3 57.7 53.1 37.7 44.6 57.5 50.5 41.2 51.3 45.3 48.2

(b) VisDA-2017

Method Syn.→Rel.

MCD 71.9
SWD 76.4
BNM 70.4
TSA 78.6
SCDA 79.7
DALN 80.6
DGWA 80.3

SAUE(ours) 81.5

three domains. Therefore, the adaptation task faces larger domain shifts and extremely unbalanced
classes. The proposed method still achieves 2.8% improvements over AMDA and achieves dramatic
improvements in the Rw+Pr→Ar+Cl and Rw+Ar→Pr+Cl tasks. These results occur because the
proposed method decreases the impact of unbalanced classes by enhancing the feature representations
and optimizing the prediction uncertainty.

Results on the ImageCLEF-DA are provided in Table 3b. Compared with the SOTA methods, our
proposed method achieves an average accuracy of 84.3%, outperforming the existing approaches.
Note that all four domains in ImageCLEF-DA contain 600 images. Therefore, the experimental
results further demonstrate that our proposed method is effective when all the domains contain the
same samples and classes.

Results on the Default Version of DomainNet and VisDA 2017. To evaluate the effectiveness of
SAUE in different numbers of the source and target domains. We perform comparisons on the default
version of the DomainNet dataset and the VisDA 2017 dataset, respectively. The default version of
the DomainNet dataset consists of 5 domains, leading to the division of transfer tasks for MBDA
into two categories: C+P+Q→R+S and R+S→C+P+Q. As shown in Table 4, SAUE outperforms the
comparison methods across all transfer tasks, achieving the highest average classification accuracy.
These results from large-scale datasets further demonstrate the superiority and flexibility of SAUE.

4.3 Experiment Analysis
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Figure 2: The analysis of the SAUE parameters.

Choices λd =0.1 λd =0.5 λd =1.0 λd =1.5 λd =2.0

λe =10 96.5 96.7 96.8 96.6 96.5
λe =20 96.8 97.0 97.1 97.0 96.9
λe =40 97.0 97.2 97.3 97.2 97.2
λe =60 94.7 94.9 95.2 95.1 94.9
λe =80 88.7 93.3 93.4 93.2 89.8

(a) b+i → c

Choices λd =0.1 λd =0.5 λd =1.0 λd =1.5 λd =2.0

λe =10 77.5 77.6 78.1 77.9 77.4
λe =20 77.7 78.1 78.2 78.0 77.9
λe =40 78.2 78.3 78.3 78.2 78.1
λe =60 77.7 77.9 78.0 77.8 75.9
λe =80 76.2 77.3 77.9 76.2 74.8

(b) b+i → p
Table 5: The detailed numerical results corresponding to the relevant tasks.

Sensitivity Analysis. We evaluate the model’s performance under different hyperparameter choices.
Note that the hyperparameters in our method are the adversarial learning balance parameter λd and
annealing parameter λe. As shown in Figure 2, we test different parameter groups to analyze the pa-
rameter sensitivity of our method, where λd = {0.1, 0.5, 1.0, 1.5, 2.0} and λe = {10, 20, 40, 60, 80}.
The corresponding numerical results of Figure 2 are illustrated in Table 5. In Figure 2, our method is
not sensitive to λd and the best parameter choice is λd = 1.0, but very sensitive to λe (with λe = 40
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working best); if λe too small, the model will suffer from tremendous degradation due to the model is
over-penalized by uncertainty loss.

Table 6: Ablation study of SAUE on the Domain-
Net.

Source R+S S+P P+R C+S R+C C+P Avg.Target C+P C+R C+S P+R P+S R+S

w/o SA 68.4 72.1 64.2 70.0 60.8 70.1 67.6
w/o Lunc 69.7 75.0 65.8 71.2 64.8 72.6 69.9

w/o both 65.1 71.9 63.8 68.8 60.2 69.3 66.5
w/o WD 70.2 77.0 66.3 71.6 64.1 71.5 70.1

SAUE 70.8 76.9 67.6 71.9 65.2 73.1 70.9

Ablation Study. As listed in Table 6, we con-
duct ablation experiments to demonstrate the
effectiveness of the style adaptation module
and the loss function of the uncertainty opti-
mization process. We test three experimental
groups in the DomainNet dataset, including
that: 1) remove the style adaptation (SA) mod-
ule, 2) remove the uncertainty loss Lunc, and
3) remove both of the above-mentioned items.
The results illustrate that both style adaptation and prediction uncertainty optimization are useful
for MBDA. Furthermore, we explore different style adaptation techniques. We directly change the
Wasserstein Distance (WD) to randomly selected style information and report the obtained results
in the fourth row of middle part of Table 6. Compared with the random augmentation methods, our
proposed method can better select the style information through weight factors, which enhances
the feature representations of the source domains and reduces the impact of domain shifts. More
experiment analysis is provided in Appendix E.

Table 7: Comparison about the SA module on the DomainNet dataset with different backbones.
Setting C+P+Q C+P+R C+P+S C+Q+R C+Q+S C+R+S P+Q+R P+Q+S P+R+S Q+R+S Avg.R+S Q+S Q+R P+S P+R P+Q C+S C+R C+Q C+P

without SA (ResNet-50) 51.2 28.6 36.7 49.6 52.9 30.2 51.0 57.8 30.3 51.1 43.9
with SA (ResNet-50) 53.9 30.7 39.8 51.3 55.7 33.7 52.8 60.4 33.7 55.3 46.7 (+2.8)

without SA (ResNet-101) 56.1 33.7 41.3 53.1 57.3 35.1 54.8 61.2 36.4 56.7 48.6
with SA (ResNet-101) 57.7 34.6 42.9 54.7 59.2 36.9 56.0 63.6 37.1 58.7 50.2 (+1.6)

Setting R+S Q+S Q+R P+S P+R P+Q C+S C+R C+Q C+P Avg.C+P+Q C+P+R C+P+S C+Q+R C+Q+S C+R+S P+Q+R P+Q+S P+R+S Q+R+S

without SA (ResNet-50) 39.5 53.2 47.3 33.2 40.1 52.4 45.8 38.2 45.3 40.5 43.5
with SA (ResNet-50) 41.1 55.3 49.8 35.6 42.5 54.7 48.3 39.5 47.7 43.2 45.8 (+2.3)

without SA (ResNet-101) 42.1 56.5 51.6 35.2 43.8 57.0 49.4 39.9 50.7 43.1 46.9
with SA (ResNet-101) 43.3 57.7 53.1 37.7 44.6 57.5 50.5 41.2 51.3 45.3 48.2 (+1.3)

Effectiveness of the SA Module with Different Backbones. We have analyzed the performance of
our method using the ResNet-50 and ResNet-101 backbones in the default version of the DomainNet
dataset in Table 7. The experimental results show that our method achieves significant performance
gains when utilizing powerful backbones (ResNet-101). We compared the performance gains of the
style adaptation module with standard backbone (ResNet-50) and powerful backbone (ResNet-101).
The results indicate that the performance gains (+2.8% and +2.3%) of the style adaptation module
when integrated into the ResNet-50 backbone surpass those (+1.6% and +1.3%) when integrated into
the ResNet-101 backbone.

Table 8: Comparison about different backbones on
the Office-Home dataset.

Method Rw+Pr Cl+Rw Pr+Cl Rw+Ar Ar+Pr Cl+Ar Avg.Ar+Cl Ar+Pr Ar+Rw Cl+Pr Cl+Rw Pr+Rw

ResNet-50 65.6 79.9 75.2 70.1 71.8 79.3 73.7
ViT-B/16 69.2 83.1 79.1 73.6 74.5 83.7 77.2

Effectiveness of the SAUE with ResNet
and ViT backbones. We further evaluate
the model’s performance using different back-
bones, as shown in Table 8. When using ViT
as the backbone, SAUE outperforms its per-
formance with the ResNet-50 backbone. This
performance gain is primarily due to the larger number of tunable parameters in ViT-B/16, demon-
strating that our method effectively leverages these additional parameters to exploit transferable
knowledge from multiple domains.

5 Conclusion
In this paper, we propose a SAUE approach for MBDA, which utilizes information from multiple
source domains to adapt a blended-target domain. In particular, the style adaptation process utilizes
similarity factors to select target style information to enhance the representations of the source features.
The uncertainty estimation procedure utilizes the Dirichlet distribution to estimate the uncertainty
of the model and then adopts the KL divergence measure to optimize the prediction uncertainty.
The discriminator-free adversarial learning strategy is beneficial for MBDA. Extensive experimental
results demonstrate the superior performance of SAUE to that of the competing methods.
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Appendix Contents

This supplementary material provides more details that are not presented in the main paper due to
space limitations. The organization is as follows:

A Broader Impacts & Limitations

B provides the derivations of P (y = c|xi) = E[D(pic|αi)].

C provides the proof and derivations of Theorem 1.

D provides the proof and derivations of the generalization bound.

E provides additional experiment analysis on the ImageCLEF-DA dataset.

A Broader Impacts & Limitations

Our work focuses on the problem of multi-source blended-target domain adaptation (MBDA), which
aims to train a model that generalizes well on an unlabeled and distribution-confused target domain
by leveraging multiple labeled source domains. The effectiveness of our method on several real-world
datasets suggests that it can benefit relevant applications and communities dealing with domain
shifts, such as encrypted data analysis, medical imaging, and autonomous driving. Nevertheless, we
should also be cautious about potential failures of our method when encountering more significant
distribution shifts, such as an increased number of source or target domains. In the future, we plan
to incorporate more sub-domains into our experiments for further verifying the performance of our
method.

B Derivations of P (y = c|xi) = E[D(pic|αi)]

Given sample xi, for prediction of class c that generated by DNNs can be calculated as:

P (y = c|xi)

=

∫
ρ(y = c|pi)ρ(pi|xi)dpi

=

∫
pic · ρ(pi|xi)dpi

=

∫ ∫
· · ·
∫

pic · ρ(pi1, pi2,...,piK
|xi)dpi1dpi2 · · · dpiK

=

∫
pic · ρ(pic|xi)dpic,

(1)

where pi = C(G(xi)) = [pi1, pi2, . . . , piK ] and pic is the c-th element of pi. Then, given ρ(pi|xi) ∼
D(pi|αi), we have ρ(pic|xi) ∼ Beta(pic|αic, αi0 − αic), where αi0 =

∑K
k=1 αik. Thus, we further

have:

ρ(pic|xi) =
1

B(αic, αi0 − αic)
pαic−1
ic (1− pic)

αi0−αic−1, (2)

where B(·, ·) is the K-dimensional multinomial beta function, and B(αic, αi0 − αic) =
Γ(αic)Γ(αi0−αic)
Γ(αic+αi0−αic)

, Γ(·) denotes the gamma function. Based on this, we can further obtain the following
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derivation:

P (y = c|xi) =

∫
pic · ρ(pic|xi)dpic

=

∫
pic ·

[
1

B(αic, αi0 − αic)
pαic−1
ic (1− pic)

αi0−αic−1

]
dpic

=
B(αic + 1, αi0 − αic)

B(αic, αi0 − αic)
·∫

1

B(αic + 1, αi0 − αic)
pαic
ic (1− pic)

αi0−αic−1dpic

=
B(αic + 1, αi0 − αic)

B(αic, αi0 − αic)
· 1

=
Γ(αic + 1)Γ(αi0)

Γ(αi0 + 1)Γ(αic)

=
αicΓ(αic)Γ(αi0)

αi0Γ(αi0)Γ(αic)
=

αic∑K
k=1 αik

=
Cc(G(xi))∑K

k=1 Ck(G(xi))

= E[D(pic|αi)].

(3)

In our work, the outputs of classifier are adopting the exponential function. Thus, following [53], the
outputs of DNNs in SAUE can be viewed as the expectation of Dirichlet distribution.

C Proof of Theorem 1

Theorem 1 [37]. Suppose we have given the m-th source data distribution PSm
, a hypothesis set

H, and a prior distribution π over the hypothesis space Θ. For any τ ∈ (0, 1] and λ > 0, with a
probability at least 1− τ over the source samples Sm ∼ Pn

Sm
, for all posteriors ρ, we have:

Eρ(H)[L(H)] ≤ Eρ(H)[L̃Sm
(H)] +

1

λ

[
KL(ρ∥π) + log

1

τ
+ΨSm,π(λ, n)

]
, (4)

where ΨSm,π(λ, n) = logEπ(H)ESm∼Pn
Sm

[
eλ(L(H)− ˜L(H))

]
.

Lemma 1 [38]. The PAC-Bayes bound, involving constants τ and n, as introduced in Theorem 1, is
minimized by the Bayesian posterior p(H), which represents the distribution over Θ.

Proof. The Donsker-Varadhan’s change of measure states that for any measurable function ϕ : Θ −→ R,
we have:

Eρ(H) ≤ KL(ρ∥π) + logEπ(H)[e
ϕ(H)]. (5)

Thus, with ϕ(H) := λ(L(H− L̂(θ,Sm) and ∀ρ over hypothesis space Θ, we have:

Eρ(H)
[
λ(L(H)− L̂(H,Sm))

]
= λ

(
Eρ(H)[L(H)]− Eρ(H)[L̂(H,Sm)]

)
≤ KL(ρ∥π) + logEπ(H)[e

λ(L(H)−L̂(H,Sm))].
(6)

For the non-negative random variable ζπ(Sm) := Eπ(H)[e
λ(L(H)−L̂(H,Sm))], we apply Markov’s

inequality on it, and have:

P
(
ζ ≤ 1

τ
ESm∼Pn

Sm
[ζπ(Sm)]

)
≥ 1− τ. (7)

This impiles that with probability at least 1 − τ over the choice of Sm ∼ Pn
Sm

, we have ∀ρ over
hypothesis space Θ:

P

(
Eρ(H)[L(H)] ≤ Eρ(H)[L̂Sm(H)] +

1

λ
[
KL(ρ∥π) + log 1

τ +ΨSm,π(λ, n)
]) ≥ 1− τ, (8)

where ΨSm,π(λ, n) = logEπ(H)ESm∼Pn
Sm

[
eλ(L(H)− ˜L(H))

]
, and we prove the statement of the

Theorem 1.

15



D Generalization Bound

Lemma 2 [39]. Suppose we have given the probability measures νSm
, νT ∈ P(F) of the m-th source

feature fSm
and the blended-target domain feature fT , a hypothesis space Θ, and a subspace H̃ ∈ Θ.

Let F denote a fixed representation space and c(fSm
, fT ) denote the adaptation cost. For the ideal

classifier h′ ∈ H̃ and any classifier h ∈ H̃ with fSm
∼ νSm

and fT ∼ νT , we have:

|ϵSm
(h, h′)− ϵT (h, h

′)| ≤ 1

2
dH∆H(νSm

, νT ), (9)

where ϵSm
and ϵT denote the error on the m-th source domain and the error on the blended-target

domain respectively, and ϵT = 1
N

∑N
j=1 ϵTj

. dH∆H denotes the H∆H-distance.

Proof. By the definition of H∆H-distance, we have:

dH∆H(νSm
, νT ) = 2 sup

h,h′∈H
|Prx∼νSm

[h(x) ̸= h′(x)]− Prx∼νT [h(x) ̸= h′(x)]|

= 2 sup
h,h′∈H

|ϵSm
(h, h′)− ϵT (h, h

′)| ≥ 2|ϵSm
(h, h′)− ϵT (h, h

′)|.
(10)

Theorem 2. Based on Lemma 2, with the error of the ideal joint hypothesis η′ = ϵSm(h′) + ϵT (h
′)

which is a sufficiently small constant, for any δ ∈ (0, 1), with probility at least 1− δ, for every h ∈ H,
ϵT (h) is bounded by the following terms:

ϵT (h) ≤ ϵSm(h) +
1

2
d̂H∆H(νSm , νT ) + 4

√
2d log(2b′) + log( 2δ )

b′
+ η′, (11)

where η′ = ϵSm(h′)+ ϵT (h
′) is the ideal error for the classifier, which is a sufficiently small constant.

b′ is the size of unlabeled samples.

Proof. From Lemma 2, we can obtain the following terms:

ϵT (h) ≤ ϵT (h
′) + ϵT (h, h

′)

≤ ϵT (h
′) + ϵSm

(h, h′) + |ϵT (h, h′)− ϵSm
(h, h′)|

≤ ϵT (h
′) + ϵSm

(h, h′) +
1

2
dH∆H(νSm

, νT )

≤ ϵT (h
′) + ϵSm

(h) + ϵSm
(h′) +

1

2
dH∆H(νSm

, νT )

= ϵSm
(h) +

1

2
dH∆H(νSm

, νT ) + η′

≤ ϵSm(h) +
1

2
dH∆H(νSm , νT ) + 4

√
2d log(2b′) + log( 2δ )

b′
+ η′.

(12)

Finally, the expected error on the blended-target domain can be bounded by utilizing the expected
measures of NWD on the joint distribution of multiple source and blended-target domains.

E Additional Experiment Analysis

In this part, we present more visualization results with extra comparison methods including DANN
[20] and AMDA [29]. All experiments are performed on task b+c−→i+p of the ImageCLEF-DA [40].

Distribution Analysis. The t-SNE [54] feature visualization results of extra comparison methods
are illustrated in Figure 1. Note that different color dots denote different domains. Compared to
ResNet-50, due to the domain adversarial learning, DANN can better align the source and target
domains. Furthermore, AMDA achieves better performance through multi-source and multi-target
domain features. Due to style adaptation and uncertainty estimation and elimination, SAUE achieves
the best performance. The features from the same class generated by SAUE are better clustered while
those belonging to different classes are better separated.

Confusion Matrix. The comparison of confusion matrices with extra methods are illustrated in
Figure 2. Although DANN and AMDA achieve significantly progress compared to ResNet-50,
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(a) ResNet-50 (b) DANN (d) SAUE(c) AMDA

Figure 1: Visualization analysis of SAUE in task b+p→c+i. (Zoom in for clear visualization)

(a) ResNet-50 (b) DANN (d) SAUE(c) AMDA

Figure 2: Confusion matrices of SAUE and comparison methods in task b+p→c+i. (Zoom in for
clear visualization)

Figure 3: Loss functions with the increasing of iterations.

they still misclassified some classes, e.g., class “bike” is misclassified into class “motobike”. In
contrast, benefiting from the style adaptation and uncertainty estimation, SAUE generates more
correct predictions which located on the main diagonal elements of confusion matrix.

Convergence. We further analyze the evolution of different loss functions with increasing iterations.
The results are shown in Figure 3. The graphical representation illustrates that all the loss functions
in our approach effectively converge as the training iterations increased. This convergence showcases
the adaptability and reliability of our approach in MBDA tasks.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims of this paper can be found in the abstract and introduction,
which accurately reflect the paper’s contributions and scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are discussed in the Appendix A.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the theoretical analysis of the proposed method in Section 3.5 and
the related proofs on Appendices B and C.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The source code of SAUE is provide in the Supplementary Material.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code of SAUE is provide in the Supplementary Material.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details, please refereed to Section
4.1.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments, please refer to Section 4.2.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: The paper provides sufficient information on the computer resources, which
are included in the Section 4.1.
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work in Appendix A.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This submission poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the code and dataset utilized in this work are publicly available and are
only intended to compare the performances of different algorithms on classification tasks.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This submission poses no such risks.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This submission poses no such risks.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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