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Abstract

Off-policy reinforcement learning (RL) algorithms can take advantage of samples
generated from all previous interactions with the environment through "experience
replay". Such methods outperform almost all on-policy and model based alter-
natives in complex tasks where a structured or well parameterized model of the
world does not exist. This makes them desirable for practitioners who lack domain
specific knowledge, but who still require high sample efficiency. However this high
performance can come at a cost. Because of additional hyperparameters introduced
to efficiently learn function approximators, off-policy RL can perform poorly on
new problems. To address parameter sensitivity, we show how the correct choice
of non-uniform sampling for experience replay can stabilize model performance
under varying environmental conditions and hyper-parameters.

1 Introduction

Deep reinforcement learning (RL) represents a unique approach on how to produce programs that
can take gathered experience, and turn it into policies able to complete complex tasks. What’s
more, its practical applications in autonomous vehicles, video-games and compiler optimization have
proven its economic utility. However, alongside these potential applications lay a host of practical
issues which stem from complicated algorithms, poor theoretical understanding, and the fundamental
difficulty of the problem. To take full advantage of these methods as a research community, we
need to better understand how these methods work, and why. To make this question more tractable,
in this work we review a special class of RL algorithms known as “off-policy“ algorithms, which
have in recent years proven to be the most performant class of methods in deep RL (Haarnoja et al.,
2019; Fujimoto et al., 2018; Lee et al., 2021a). These algorithms use experience gathered from all
interactions with the environment to produce a better estimate of the expected cumulative reward; this
contrasts with on-policy methods which only uses the most recent environment interaction or model
based approaches which simulate examples using an internal model of the world. However, using
this cache of experience effectively can be difficult in practice due to computational constraints and
the bootstrapping error introduced by off-policy algorithms. These sources of error make changes to
how interactions are added to replay buffer, and how previous interactions are sampled, important
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questions when presented with a new control problem; particularly in continuous control where both
simulation and real world interactions can quickly become expensive.

We therefore consider how the sampling scheme affects performance of one of the most popular
off-policy algorithms, Soft Actor-Critic (SAC) (Haarnoja et al., 2018). SAC is one of the most
common baselines in deep reinforcement learning algorithms tailored to continuous control, and
as we show below, can often be improved by properly chosen combinations of sampling methods
and their hyper-parameters. We have chosen continuous control, because unlike discrete problems
such as Atari, which have seen extensive experimentation across different sampling schemes, the
effects of non-uniform sampling (NUS) on continuous control have remained largely ignored. In fact
outside of broader sensitivity analyses which either exclude NUS (Islam et al., 2017; Henderson et al.,
2018; Duan et al., 2016), or have focused specifically on on-policy methods (Engstrom et al., 2020;
Andrychowicz et al., 2021), a modern practical survey on NUS for continuous control seems non-
existent. Generally, the community has focused on the exploration method in the continuous control
setting and assumes samples will be taken uniformly at random from the memory induced by the
behavioral policy. Where to contrast with discrete control, PER has been shown to outperform other
sampling schemes (Hessel et al., 2018; Schaul et al., 2016) across almost all standard benchmarks. To
tackle this inconsistency, this paper covers the two broad classes of sampling algorithms for continuous
control: generic priority based algorithms such as prioritized experience replay (PER) (Schaul et al.,
2016), and recency based algorithms such emphasizing recent experience (ERE) (Wang & Ross,
2019). Picking the most popular variants of these two approaches, we answer the following questions:

1. Which sampling methods are most effective in the deterministic continuous control setting,
and are any robust in the stochastic feedback setting?

2. How does the memory capacity, the maximum number of examples stored in the replay
buffer, affect the performance of the algorithm. And can NUS improve performance in the
low-capacity setting?

3. How do code-level design choices in NUS methods affect performance?
4. Which sampling methods are most robust to changes in hyper-parameters?
5. Can classic NUS algorithms like prioritized experience replay (Schaul et al., 2016) be

improved through the use of different priority metrics?

In answering these questions, this paper first shows that while no individual sampler performs better
then others across tasks in the deterministic setting, PER outperforms both uniform and ERE in most
stochastic settings. Next we show that the memory capacity, independent of the NUS algorithm
chosen, can destroy performance. And finally, we show that careful tuning of parameters like mini-
batch size and number of policy updates can yield non-trivial improvement at a small increase in
computational cost, while mixed sampling approaches for both the actor and critic networks beat the
standard combined sampling approaches most commonly used in practice.

2 Background

2.1 Markov Decision Processes and Reinforcement Learning

We define a Markov decision process (MDP), MΦ(S,A,R, T0, T ,ΠΦ), as a stochastic process
which produces a sequence of tuples τt := {at, st, st+1, rt}, for a particular set of states st ∈ S,
actions at ∈ A, initial state distribution p(s0) ∈ T0, transition distribution p(st+1|st, at) ∈ T ,
reward function rt : S ×A× S → R, and policy πφ ∈ Πφ : S → A parameterized by φ ∈ Φ. The
generative model for this finite horizon process is defined:

qπφ(τ) = p(s0)
∏T

t=0
p(st+1|st, at)πφ(at|st). (1)

We denote the marginal distribution with respect to a state s, under the trajectory distribution given in
equation 1, as qπφ(s). In the finite horizon MDP setting, RL seeks to recover the policy πφ, which
maximizes expected cumulative reward over the trajectory induced, through seeking the solution
of φ∗ = arg maxφ∈Φ Eqπφ (τ)

[∑T
t=0 rt(st, at)

]
. We can extend this problem class to an infinite

horizon setting through the use of a discount factor which signifies the non-zero probability of
termination after every time-step. In this setting it is common to arrive at a policy through the solution
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of a fixed point equation known as the bellman equation (Bertsekas, 2019; Sutton & Barto, 2018), by
solving the following optimization problem:

φ∗ = max
φ∈Φ

Es∼dπφ ,a∼πφ [Qπφ(a, s)], where dπφ(s) = (1− γ)

∞∑
t=0

γtqπφ(st = s) (2)

and Qπφ(a, s) = Es′∼p(s′|s,a)

[
r(s, a) + γ E

πφ(a′|s′)
[Qπφ(a′, s′)]

]
. (3)

Here the distribution over states, dπφ(s) in Equation 2, defines the state occupancy, while the function
in Equation 3 defines the Q function. For practical purposes, the Q function is generally parameterized,
and learned in an offline manner. In this offline setting the target of the Q function shifts from directly
targeting the expected reward ahead of the current policy, and instead targets the expected reward
ahead of a pessimistic approximation which is defined as the mixture over all previous behavior
policies used to interact with the environment.

2.2 Soft Actor-Critic

One popular variant of this framework is known as soft actor-critic (SAC). This algorithm is similar
to most off-policy actor critic algorithms, in that it learns to estimate the expected reward ahead given
the state and action (the Q-function), using the bellman error:

F (θ) = E
(at,st,st+1)∼D

[(
Q
πφ
θ (at, st)−

(
r̂t + E

at+1∼πφ(at+1|st+1)

[
γQ̄

πφ
θ (at+1, st+1)

]))2
]

(4)

Here, D defines the set of examples gathered from the environment under a behavioral policy, or a
sequence of behavioral policies. The primary distinction between SAC and other AC algorithms (Mnih
et al., 2016; Fujimoto et al., 2018) however, is that rt is replaced with a surrogate r̂t = rt − Ht,
whereHt indicates the policy entropy at state st. Additionally in this setting, the bar over Q indicates
a target network, generally defined by the use of parameter averaging (Mnih et al., 2013; Wang
et al., 2016), a model ensemble (Chen et al., 2017), or both (Hessel et al., 2018). Using this Q
function estimate, we can iteratively update our policy to match the so called “softmax-optimal"
policy (Haarnoja et al., 2018, 2019; Levine, 2018). This approach defines its policy objective based
on a divergence between the current policy and a normalized target Q function:

Jθ(φ) = E
st∼D

[
E

at∼πφ(at|st)

[
Q
πφ
θ (at, st) + α log

(
π0(at|st)
πφ(at|st)

)]]
, (5)

Here the gradient is evaluated using the reparametrization trick (Le et al., 2017) in cases where the
distribution over actions is reparameterizable (e.g. normal, gamma ect.), and with reinforce (Williams,
1992) otherwise. A description of SAC is included in Algorithm 1.

2.3 Prioritized Experience Replay

Prioritized Experience Replay (PER) (Schaul et al., 2016) is one of the most well known sampling
methods in off-policy RL (Hessel et al., 2018), and was originally proposed for deep Q-learning (Hes-
sel et al., 2018). PER assigns priorities to transition examples using absolute temporal difference(TD)
error. The larger the absolute TD-error, the more likely the associated example is to be sampled.
More specifically, the probability assigned to a transition is:

P (i) =
p(i)α∑
k p(k)α

, where p(i) = E
D

[∣∣∣Qπφθ (at, st)−
(
rt +E

πφ

[
γQ̄

πφ
θ (at+1, st+1)

])∣∣∣] (6)

In the original paper by Schaul et al. (2016), two prioritization schemes based on the above function are
considered: a proportional prioritization, and a rank-based based prioritization. For the proportional
prioritization p(i) = |δi|+ ε for the ith transition, where |δi| is the absolute TD-error and ε a small
positive constant that ensures that p(i) > 0 ∀ i. In rank-based prioritization p(i) = 1

rank(i) , where
the rank(i) is sorted based on the absolute TD-error |δi|. This work only considers proportional
scoring scheme, as (Schaul et al., 2016) showed that, on average, it performed better than its ranked
counterpart. Lastly, PER incorporates importance sampling to make the method more robust to noisy
data, this is done by re-weighting the loss function by wi = ( 1

N · 1
P (i) )β . Here N is the number of

samples stored in the buffer and β is an annealing parameter which determines how close to uniform
the sampler will be. The full PER algorithm is described in Algorithm 2.
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2.4 Emphasizing Recent Experience

Emphasizing Recent Experience (ERE) (Wang & Ross, 2019) increases the importance of recently
observed data by sampling more aggressively from recent experiences. This is done by uniformly
sampling from the most recent ck data points in the replay buffer, where for the implementation
discussed in this paper, ck = max(N · ηk 1000

K ,M). Here, N defines the number of observations
stored in the replay buffer total, while η ∈ (0, 1] determines how aggressively to sample from recent
data. K is included in cases where multiple (K) mini-batch updates are taken per environment
interaction. The parameter M provides a fixed range of η values per update cycle, and helps to avoid
over-fitting in small replay buffers. A more detailed description of the version of ERE used in this
paper is included in Algorithm 3.

3 Related Work

Investigation into the effects of design decisions in experience replay has in recent years been sparse,
with some exceptions. Notably for tabular and discrete settings, Zhang & Sutton (2017) explored
the relationship of the size of the buffer capacity and model performance, while Liu & Zou (2018)
explored the both effects of the buffer capacity and mini-batch size. Additionally, Fedus et al. (2020)
studied the buffer capacity, and the effect of the model update frequency and demonstrated that larger
buffers with higher update to sample ratio performed better on average in the Atari Arcade Learning
Environment (Bellemare et al., 2013). To our knowledge, only a few extensions to continuous
control have been made. Of these works, Wang & Ross (2019) studied the effects of replay buffer
capacity on SAC (Haarnoja et al., 2018) where they found that decreased capacity again decreased
in performance, while Islam et al. (2017) varied the batch size and found inconclusive results with
respect to performance. Importantly, these studies were limited only to the uniform sampling, where
we consider NUS methods.

Crucially for this paper, significant work has been done to find more suitable sampling schemes for
different environmental settings. Hessel et al. (2018) reported PER (Schaul et al., 2016) as being one
of the most significant modular improvements for DQN-like algorithms (Hessel et al., 2018; Mnih
et al., 2013), with variations of it found in Lee et al. (2021b); Fujimoto et al. (2020). Other work like
Ramicic & Bonarini (2017) defines new priority metrics for PER based on the perceived entropy of
the state space, while Zha et al. (2019) and Oh et al. (2021) employed deep neural networks as a
prioritization function to score stored transitions, learning both from local and global features. Other
sampling schemes incorporate recency prioritization: Wang & Ross (2019) takes subsets of the buffer
during mini-batch updates to increase the sampling frequency of more recent data, while Kong et al.
(2021) samples over a half-normal distribution centered at the latest observation, and Zhang & Sutton
(2017) includes the latest observation during model updates. More specialized sampling methods
include Andrychowicz et al. (2017) and Fang et al. (2019), which are aimed to improve performance
in challenging sparse environments using goal conditioning.

4 Experiments

Using Deepmind’s Control Suite(Bellemare et al., 2013) we test Uniform, PER, and ERE sampling
methods with SAC on 6 different tasks (WalkerWalk, CheetahRun, HumanoidStand, HumanoidRun,
QuadrupedRun, HopperHop) using 5 random seeds for 1 · 106 environment interactions. The
experiments are broken down into the following four subsections, which start with creating a baseline
of algorithm performance for each sampling method (4.1). Next we consider sampling methods
in the stochastic setting (4.2) where noise is added to the reward to measure relative performance
from deterministic baselines. We then explore the sensitivity of standard replay buffer hyper-
parameters(4.3) by varying: the buffer capacity, batch size, initial exploration steps, and number of
policy updates. Lastly, we consider one possible degree of freedom with respect to implementation
by varying priority metrics and splitting sampling procedures between actor and critic networks(4.4).

4.1 Baseline performance in Continuous Control

Starting with performance tests for Uniform, PER, and ERE with SAC on the Deepmind Control
Suite Tassa et al. (2018) using standard hypeparameters found in Table 2. As shown in Figure 1,
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no single sampling method outperforms all the others across environments, though both ERE and
PER seem to provide examples in which they significantly out-perform the other two samplers on a
per-environment basis. In this setting, it seems clear that provided you search over NUS schemes,
you can get non-trivial increases in performance over the uniform baseline.

CheetahRun HumanoidStand WalkerWalk QuadrupedRun HumanoidRun HopperHop
Environments
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Figure 1: Baseline performance using Uniform, PER, and ERE sampling methods with SAC on 6
Deepmind Control tasks trained for 106 environment interactions. We report the log average reward
and 95% confidence interval.

4.2 Sampling Methods in Stochastic Setting

Following the work of Romoff et al. (2018) we introduce noise in the reward function to each
environment by sampling from three different noise distributions: Gaussian, Uniform and Sparse. For
the Gaussian Noise example, we sample from a normal distribution Ψ ∼ N(0, σ2) with increasing
variance of σ ∈ {0.1, 0.2, 0.3, 0.4} such that the new reward rgt at step t is calculated rgt = rt + ψ.
For the Uniform and Sparse noise the new rewards rut and rst are calculated respectively:

ru
t =

{
ξ, with probability εu
rt, with probability (1− εu)

, rs
t =

{
0, with probability εs
rt, with probability (1− εs) (7)

With ξ ∼ U(−1, 1) and probabilities εu ∈ {0.1, 0.2, 0.3, 0.4} and εs ∈ {0.6, 0.7, 0.8, 0.9}. We
compare the results by measuring the relative gain from the baseline which is calculated as

100× [Stochastic Environment Performance]− [Deterministic Environment Performance]

|[Deterministic Environment Performance]| (8)

Each of the noise levels across 6 environments are included in Figure 2. This experiment, as expected,
shows that the performance of each sampling method deteriorates as the noise becomes larger in
magnitude. Interestingly, within the Gaussian Noise experiment QuadrupedRun environment σ = 0.1,
and Sparsity experiment HopperHop environment with ε = 0.6, PER and ERE respectively report
a net positive gain, actually performing better than their respective noise-free baseline shown in
Figure 1. This could indicate that some regularization might benefit learning in certain environments
depending on the reward structure, or that additional seeds are required. Other than these anomalies,
almost any noise appears to be catastrophic to the learning performance, though amongst sampling
methods PER seems to perform the best in general. It should be noted however that PER does
seem to be especially susceptible to the uniform noise regime, while both ERE and uniform are not.
However the difference in performance in this one instance is somewhat negligible in comparison
to the performance gains we see in other distributions of noise. This experiment therefore implies
that without any prior knowledge of the distribution of noise which might apply to your environment,
PER is the best choice of NUS algorithm.

4.3 Replay Buffer Hyperparameter Sensitivity Analysis

We now conduct a hyperparameter sensitivity analysis of replay buffers and their effect in Uniform,
PER and ERE sampling methods. More specifically we will be considering the following settings:

• Decreasing Replay Buffer Capacity Nb to 105, 104, and 103
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Figure 2: Relative gain of Uniform, PER, ERE sampling methods with added Gaussian, uniform
and sparse noise on the reward function following Equation 7. Each example is trained for 106

environment interactions, and normalized using Equation 9. As noise intensity increases the learning
performance of the algorithms drops substantially.

Average Relative Gain
Parameter Value Uniform PER ERE

Gaussian Reward Noise

σ = 0.1 -36.72 -32.48 -36.74
σ = 0.2 -53.19 -48.82 -55.09
σ = 0.3 -52.12 -52.89 -54.98
σ = 0.4 -62.12 -59.51 -59.07

Uniform Reward Noise

ε = 0.1 -49.46 -52.06 -54.40
ε = 0.2 -55.62 -60.89 -52.04
ε = 0.3 -63.32 -66.75 -64.30
ε = 0.4 -65.87 -75.51 -64.87

Sparse Reward Noise

ε = 0.6 -22.48 -9.66 -33.40
ε = 0.7 -30.35 -24.89 -46.51
ε = 0.8 -47.26 -35.60 -51.35
ε = 0.9 -55.65 -63.42 -56.34

Table 1: Average relative gain of Uniform, PER, ERE sampling methods for different reward noise
parameters over 6 Deepmind Control tasks shown in Figure 2
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• Varying exploration steps Es to 1000, 5000, 10000 ,and 25000

• Varying mini-batch size Bs to 128, 256, 512, and 1024

• Varying number of Policy updates Pu to 1, 3, 5, and 10
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Figure 3: Varying mini-batch size (Bs = (128, 256, 512, 1024)) for Uniform, PER, ERE sampling
methods on 6 Deepmind Control tasks trained over 106 environment interactions. Uniform and ERE
benefit greatly from bigger mini-batch size, while PER handles smaller batches better.
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Figure 4: Varying replay buffer size (Nb = (103, 104, 105, 106)) for Uniform, PER, ERE sampling
methods on 6 Deepmind Control tasks trained over 106 environment interactions. On average a larger
replay buffer results to better learning performance.

These experiments confirm some of the existing hypothesis within the literature for continuous control
in off-policy RL, while showing that these hypothesis do not quite hold for all NUS algorithms.
Looking at the mini-batch size first, we see that while ERE and Uniform see monotonic improvement
in the batch-size, there is a very negligible effect in the context of PER. This indicates that PER
might be best suited to large models for which low batch sizes are required. Next, considering the
size of the replay buffer, we can see that this is clearly one of the most important hyper-parameters
of SAC independent of the sampling algorithm used. We also consider the effect of multiple policy
steps per update where we find that there is approximately monotonic improvement as one increases
the number of policy updates, though the improvement is generally negligible. This means that
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Figure 5: Varying the number of policy updates per environment interaction (Pu = (1, 3, 5, 10)
for Uniform, PER, ERE sampling methods on 4 Deepmind Control tasks trained over 0.25 · 106

environment interactions. Training steps were reduced relative to other experiments for computational
efficiency. On average results show that more policy updates per environment interactions improve
training performance.
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Figure 6: Varying initial exploration steps (Es = (103, 5 · 103, 104, 2.5 · 104) for Uniform, PER,
ERE sampling methods on 6 Deepmind Control tasks trained over 106 environments. There are
is no apparent trend throughout the sampling methods, showing the possible sensitivity of this
hyperparameter.
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throughout training, we are both targeting a useful objective, and that our policy remains close
to the optimum (for any intermediate Q function) at any given step. The last plot, which varies
exploration steps does not exhibit any major trends, indicating that tuning this parameter will be
situation dependent.

4.4 Separate Sampling Methods and Varying Priority Metrics

In the final experiment we explore different variations of sampling method pairs. A central replay
buffer is used for all variations, while each method per pair samples from this buffer independently
from the other. We also explore different priority metrics for PER, like the mean-squared error from
the critic’s loss function, and the KL divergence from the actor’s loss function. The results can be
found in Figure 4 and are sorted by performance. Interestingly enough, a combination of ERE in the
policy and uniform in the critic performs the best on average across standard benchmarks.
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Figure 7: Log average reward of standard sampling methods (Uniform, PER, ERE), seperate sampling
method per Actor-Critic network (Uniform-PER, Uniform-ERE, PER-Uniform, PER-ERE, ERE-
Uniform, ERE-PER), and varying priority metrics for PER instead of TD-errror: PER using KL-
Divergence (PER+KL), PER using Mean Squared Error (PER+MSE). Tested on 6 Deepmind Control
tasks (WalkerWalk, CheetahRun, HumanoidStand, QuadrupedRun, HopperHop, HumanoidRun) over
106 environment interactions for 5 random seeds. Sampling methods are sorted by ascending order
based on their average learning performance over the 6 tasks.

5 Conclusion

In this paper we investigated the behavior of NUS methods in off-policy RL. Our experiments showed
the following results: first, in the deterministic setting no individual sampling method performed
significantly better for all tasks. Second, in the stochastic setting PER performed significantly better
then all other sampling methods considered. Third, changing hyper-parameters, particularly the
memory capacity, can drastically change the relative performance of each algorithm. Lastly, by
varying the types of samplers used for the actor and critic networks we gain non-trivial improvement
in each of the environments over the single sampler baselines, indicating the optimal sampler used to
update both the actor and critic networks might not be the same.
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