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ABSTRACT

Vision transformers have demonstrated remarkable success in classification by
leveraging global self-attention to capture long-range dependencies. However,
this same mechanism can obscure fine-grained spatial details crucial for tasks
such as segmentation. In this work, we seek to enhance the segmentation per-
formance of vision transformers after being trained using the usual image-level
classification objective. More specifically, we present a simple yet effective add-
on for vision transformers that improve their performance on segmentation tasks
while retaining their image-level recognition capabilities. In our approach, we
modulate the self-attention with a learnable Gaussian kernel that biases the at-
tention toward neighboring patches. We further refine the patch representations
to learn better embeddings at patch positions. These modifications ensure mean-
ingful representations at spatial positions and encourage tokens to focus on lo-
cal surroundings, while still preserving the model’s ability to incorporate global
information. Experiments demonstrate the effectiveness of our modifications,
evidenced by substantial segmentation gains on three benchmarks (e.g., over
6% and 4% on ADE20K for ViT Tiny and Base), without changing the train-
ing regime or sacrificing classification performance. The code is available at
https://anonymous.4open.science/r/LocAtViTRepo/.

1 INTRODUCTION

Vision transformers (ViT, Dosovitskiy et al., 2021) have emerged as powerful visual backbones by
modeling images as sequences of patch tokens, processed with self-attention. Unlike convolutional
neural networks (CNN, LeCun et al., 2015), which aggregate local information in a restricted recep-
tive field, ViTs can capture long-range dependencies at any layer. This global attention mechanism
has proven highly effective for image classification, enabling ViT models to surpass CNN perfor-
mance when sufficient data is available (Touvron et al., 2021a). A key factor behind this success is
the ability to integrate global context that leads to more uniform and holistic representations across
layers, which enhances the recognition of high-level image semantics (Raghu et al., 2021).

The same global focus that makes ViTs excel in classification, however, poses challenges for dense
prediction tasks such as semantic segmentation. These tasks require precise localization and fine-
grained spatial detail, properties that convolutional inductive biases naturally encourage but vanilla
ViTs lack (Hassani et al., 2023). As a result, the design of spatial attention and feature hierarchy
has been found critical for adapting transformers to dense tasks (Wang et al., 2021; Liu et al., 2021).
Still, a tension remains between capturing global context and preserving local detail. Global atten-
tion can dilute local cues, whereas purely local schemes may miss long-range dependencies needed
for holistic understanding. Besides, the classification objective used by models often neglects the
necessities of dense prediction, motivating a need for a “segmentation-in-mind” pretraining. Empir-
ically, we show in Appendix G that, in a ViT trained for classification, patch tokens progressively
lose distinct local structure and become increasingly aligned with the [CLS] token.

More recently, foundation models trained at large-scale (Radford et al., 2021; Oquab et al., 2023),
which learn versatile visual representations, have seen broad adoption in a breadth of visual tasks.
Despite the availability of more intricate designs, these models still mostly adopt vanilla ViT due to
its simplicity and ease of integration. This widespread reliance underscores the practical value of
enhancing ViT’s capabilities rather than pursuing more complex new designs. A prominent example
is CLIP (Radford et al., 2021), which couples a ViT-based image encoder with a text encoder to align
image-text representations, enabling zero-shot classification and open-vocabulary recognition. Such
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Figure 1: Qualitative evaluation on the attention maps. The final attention map of ViT and
LocAtViT for the [CLS] token and three patches are illustrated for an image with label school bus.

representations can be repurposed for dense predictions, for instance, by comparing local features
to text prompts, but this adaptation is non-trivial. Furthermore, recent studies try to harness CLIP’s
knowledge for segmentation without any task-specific training (Zhou et al., 2022; Wang et al., 2024;
Hajimiri et al., 2025). However, as CLIP and similar models are not trained for quality local repre-
sentations, their features often lack the spatial granularity needed for precise dense prediction.
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Figure 2: LocAt considerably
enhances different baselines in
segmentation, while preserving or
even improving classification.

Contributions. In this paper, we propose a modular
Locality-Attending (LocAt) add-on, which incorporates two
ideas: (i) We modulate the attention logits with a learnable
Gaussian kernel centered on each query token’s location, en-
suring that patches closer to the query receive higher attention.
This acts as an explicit inductive bias encouraging each token
to attend to its local neighborhood while still allowing global
interactions. We denote the resulting self-attention module as
the Gaussian-Augmented (GAug) attention (Sec. 4.1). (ii) We
enhance patch representations for segmentation by introducing
minor changes prior to the classification head, preserving the
meaningfulness of spatial tokens, that are most important for
dense prediction. We term this procedure as Patch Represen-
tation Refinement (PRR) that addresses the gradient flow issue
in ViTs for segmentation, which is overlooked in the litera-
ture (see Sec. 4.2). Hence, LocAt refers to the combination of
GAug and PRR. Figure 2 demonstrates that it improves differ-
ent baselines, yielding significant segmentation performance
gains (arrows pointing upward), while preserving or improv-
ing classification accuracy (no arrow pointing to the left). The proposed add-on also enhances the
quality of attention maps, as illustrated in Fig. 1. LocAt is a lightweight and objective-agnostic add-
on, also compatible with self-supervised pretraining. Importantly, the minimal architectural changes
required to integrate LocAt make it readily applicable to any ViT with marginal changes, facilitating
its usage in foundation models. To the best of our knowledge, we are the first to offer this perspective
on ViT pretraining: designing pretraining with downstream dense prediction in mind, while being
faithful to vanilla ViT’s training regime and architecture.

2 RELATED WORK

Hierarchical ViT backbones for dense prediction. While the original ViT targets image classi-
fication and produces low-resolution features with weak locality priors (Dosovitskiy et al., 2021),
dense prediction has motivated backbones that retain or recover spatial detail across stages. Some
works use pyramid and token-merging designs to introduce multi-scale features and lightweight de-
coders for segmentation (Wang et al., 2021; Xie et al., 2021), while others build parallel branches
for local and global processing (Chu et al., 2021). These works show that topology substantially
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helps dense tasks. However, they typically require non-trivial architectural changes (new stages or
merging blocks) and may rely on local window attention that limits full-image interaction.

Convolution-based hybrids. Another line injects convolutional priors either inside attention or in
the feed-forward network to encourage local bias while keeping global modeling. Works use con-
volutional projections (Wu et al., 2021a), add gated positional self-attention to softly bias toward
convolutional behavior (d’Ascoli et al., 2021), couple local convolutional features with global rep-
resentations (Peng et al., 2021), or add convolutions in the feed-forward network (Li et al., 2021).
These hybrid models add extra modules that require tuning, and they can reduce plug-and-play
compatibility with off-the-shelf ViTs, as they often introduce branches or replace core components.
Besides, convolution offers a spatially-shared kernel which is independent of patch information.

Locality mechanisms inside attention. Orthogonal to backbone design, many papers modify the
attention pattern itself to introduce locality. Many of the works use fixed or structured windows (Liu
et al., 2021; Dong et al., 2021; Yang et al., 2021). Other ideas include utilizing sliding or dilated
neighborhoods to expand receptive fields efficiently (Hassani et al., 2023; Hassani & Shi, 2023),
sampling content-relevant keys (Xia et al., 2023), selecting regions using dynamic sparse rout-
ing (Zhu et al., 2023), or using explicit global-local mixers to balance context with locality (Ding
et al., 2022; Tu et al., 2022; Chen et al., 2022; Hatamizadeh et al., 2023). Most of these approaches
restrict or mask interactions (using windows or patterns) or add mixing subsystems that complicate
design, impeding their widespread adoption.

Positional encodings that strengthen locality. Beyond absolute embeddings, relative positional
encoding (RPE), and rotary positional encodings (RoPE) improve spatial awareness in ViTs (Shaw
et al., 2018; Liu et al., 2021; Wu et al., 2021b; Su et al., 2021; Heo et al., 2024). These approaches
are orthogonal to attention locality, and we briefly mentioned them to emphasize that they encode
locality as well. Our work complements rather than replaces them, as we show in the experiments.

Improving token representation. Recent work on register tokens augments ViTs with dedicated
auxiliary tokens that absorb non-informative computation and yield smoother feature maps helpful
for dense prediction (Darcet et al., 2024). Unlike this approach, we do not require auxiliary tokens,
and we also address the issue of gradient flow to spatial patch outputs, overlooked in the prior work.
CaiT (Touvron et al., 2021b) introduces class-attention layers that specialize the last blocks to re-
fining only the class token, while keeping patch tokens fixed in those layers, leading to suboptimal
dense prediction performance. Token-labeling methods (Jiang et al., 2021) require a modified train-
ing regime and assign patch-level pseudo-labels from an external teacher. Finally, pooling heads
such as global average pooling (GAP) and multihead attention pooling (MAP) (Zhai et al., 2022)
aim to produce a stronger pooled representation for classification by aggregating patch tokens, while
our work is explicitly designed for segmentation-in-mind training with an emphasis on improving
the spatial token representations themselves rather than only the pooled vector.

Foundation models for dense prediction. Large pre-trained foundation models, such as
CLIP (Radford et al., 2021), demonstrate impressive zero-shot generalization on image-level recog-
nition by leveraging ViT backbones. The preference for the standard ViT backbone can be attributed
to its strong global attention, predictable scaling behavior with data and model size, and a uniform
architecture that avoids the need for complex stage-wise tuning as the model grows (Zhai et al.,
2022; Alabdulmohsin et al., 2023). However, despite excelling on image-level benchmarks, such
models remain less effective for dense prediction because their representations are predominantly
global and task-agnostic (Shao et al., 2024). As a result, additional adaptation or decoding layers
are usually required to repurpose them for segmentation or detection (Li et al., 2022; Xu et al.,
2023; Luo et al., 2023). While these adaptations yield improvements, they do not fully address
the core issue: foundation-model ViTs—trained with classification objectives—tend to emphasize
global semantics over local detail (Liang et al., 2023).

A ViT backbone that natively preserves both local detail and global context could enable foundation
models to excel at dense prediction without extra adaptation layers or specialized fine-tuning. In
this work, we take a step in that direction by refining the ViT backbone itself. Our approach aims to
potentially bridge the gap between the powerful image-level understanding and the requirements of
pixel-level prediction tasks.
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Mechanism family Intact
backbone Locality type Easily applied

on ViT
Query

adaptive

Conv-based hybrids ✗
Fixed spatial kernels,
shared across patches. ✗ ✗

Local window/block attention ✗
Hard locality within windows,

limited cross-window links. ✗ Partial

Positional encodings ✓
Implicit spatial bias,

no explicit distance decay. ✓ ✗

Gaussian-Augmented (ours) ✓
Soft, continuous decay
over patch distances. ✓ ✓

Table 1: Qualitative comparison of locality mechanisms in ViT architectures. Further details are
provided in Appendix E.

3 PRELIMINARIES

Each ViT layer l takes a sequence of tokens x(l−1) ∈ R(1+hw)×C as input, containing a [CLS]
token and hw spatial patch tokens. Each token is a C-dimensional vector, and h and w denote the
number of patches in each column and row. x(0) is the partitioned and flattened input after adding
the positional embeddings. At each layer l, the following operations are applied, where LN, attn,
and MLP denote layer normalization, self-attention, and feed-forward network, respectively:

x′ = x(l−1) + attn
(
LN(x(l−1))

)
, (1)

x(l) = x′ +MLP
(
LN(x′)

)
. (2)

Each self-attention module (attn) consists of two sets of weight matrices: Wqkv ∈ RC×d×3 to
compute d-dimensional query, key, and value matrices (i.e., q,k,v ∈ R(1+hw)×d) based on the
input, and Wo ∈ Rd×C for the final projection. After obtaining q, k, and v, we calculate:

A = softmax
(
qk⊤/

√
d
)
v. (3)

Matrix A ∈ R(1+hw)×d is then transformed by Wo to form the output of the layer. The attention
logits of a patch p are represented by the pth row of qk⊤/

√
d. Note that for simplicity, we present

the formulation of a single-head self-attention.

4 METHOD

We now present LocAtViT, which enhances ViT with two modular components, GAug attention
(Sec. 4.1) and PRR (Sec. 4.2), and is trained with the same classification objective as ViT.

4.1 GAUSSIAN-AUGMENTED ATTENTION

We aim to introduce explicit local attention into layers of vision transformer (for all tokens but
[CLS]) via adding a patch-specific Gaussian kernel to attention logits. We first discuss the altered
self-attention formulation, followed by details on computation of the kernel, and then the final form
of the attention. Table 1 compares our approach to multiple related work categories, and motivates
our choice of a Gaussian kernel as a simple, query-adaptive locality bias that can be added on top of
vanilla self-attention without modifying the ViT architecture or training objective.

Modified self-attention. At every layer’s self-attention, we add a supplement matrix S to the at-
tention logits, aiming to emphasize the attention of each patch to its surrounding. With this addition,
the self-attention formulation of Eq. (3) is modified as follows, which is also depicted in Fig. 3a:

A = softmax

(
qk⊤
√
d

+ S

)
v. (4)

4
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We construct S so that a patch p attends more to its immediate surroundings, with increment grad-
ually decreasing with distance from p. A natural choice for such a distance-based locality prior
is an unnormalized Gaussian centered at p. A Gaussian kernel provides a smooth, monotone de-
cay of influence with distance, controlled by a variance parameter σ2 (in the isotropic case). This
gives an interpretable handle on the effective receptive field: small σ yields a sharp, highly local
focus, whereas large σ approaches a nearly uniform weighting over patches (more information in
Appendix F). We parameterize the variance of the Gaussian kernel for each patch by a 2D vector,
stored in the pth row of Σ ∈ Rhw×2

+ , controlling the attention span along both axes for each patch.
Since patches might have different needs in how far they should attend to their neighbors, we com-
pute the variances based on the query matrix derived from the input, using a learnable weight matrix
Wσ ∈ Rd×2 (with f being a scaled sigmoid function ensuring positive, bounded values):

Σ = f(qWσ), (5)

Gaussian kernel. For a patch grid of size h× w, we denote the set of coordinate vectors:

P = [i j]
i∈{1,2,...,h}, j∈{1,2,...,w} , (6)

in an hw × 2 matrix. The hw × hw × 2 pairwise squared difference D is computed as:

Dptm =
(
Ppm −Ptm

)2

, for m ∈ {1, 2}, (7)

where p and t denote indices of source and target patch, and m indexes the coordinate dimensions.
Given Σ, the elements in the Gaussian kernel matrix G ∈ R(hw+1)×(hw+1)

+ are calculated as:

Gpt = exp
(
−1

2

2∑
m=1

Dptm

Σpm

)
, (8)

which determines the addition to attention logits from patch p to t. We construct the Gaussian kernel
only over spatial tokens. Since [CLS] has no spatial coordinates, entries involving [CLS] are zero
and only the patch-patch attention logits are augmented. By pre-computing D, i.e., the numerator,
we can efficiently compute G during training.

Supplement matrix. Based on Eq. (8), each entry in G lies in [0, 1]. Directly setting S = G in
Eq. (4) causes a scale mismatch between S and the attention logits. To mitigate this discrepancy,
we assume a learnable weight matrix Wα ∈ Rd×1 that computes the desired scaling for each patch,
based on its q vector. Entries in α scale rows of the Gaussian kernel, more specifically:

α = softplus(qWα) ∈ Rhw
+ , (9)

S = diag(α) G, (10)

in which softplus ensures positive coefficients. Intuitively, α acts as a per-query, row-wise balanc-
ing factor between the original attention logits and the Gaussian locality prior. For tokens where
the network predicts small values of α, the contribution of S is negligible and the behavior ap-
proaches standard global self-attention (weak locality), whereas larger values of α yield a stronger
local bias. This makes our approach a soft, data-dependent locality mechanism rather than a hard
constraint. We empirically analyze the effect of this scaling, as well as parameter-free alternatives,
in Appendix D.3 and D.4. We refer to our modified self-attention as Gaussian-Augmented (GAug)
attention. Figure 3b illustrates the generation process of the supplement matrix.

4.2 PATCH REPRESENTATION REFINEMENT

Problem statement. In a classification task using ViT, only the [CLS] token’s output of the model
is used for computing the loss. While effective for classification, this approach has fundamental lim-
itations for dense prediction from a gradient flow perspective. More concretely, the patch positions’
outputs receive no direct supervision, i.e., it is not important to the model what ViT’s final outputs
are at those positions. However, these output representations are crucial for further dense prediction.
This is problematic because the fine-grained spatial information carried by individual patch tokens
is not effectively learned at the final layer.

5
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Figure 3: Illustration of the Gaussian-Augmented attention for a 3 × 3 grid. For simplicity, the
[CLS] token is not shown. (a) The Gaussian addition, i.e., S in Eq. (4), is obtained based on q and
is added to the attention logits. The p-th row in the attention logits matrix presents the attention of
patch p to all patch tokens. The reshaped matrix illustrates that with the GAug add-on, both local and
global attentions are integrated. (b) The supplement matrix S encourages attending to the locality
and is computed using the pairwise squared difference tensor D from Eq. (7). For simplicity, we fix
the Gaussian variances and scaling coefficients to one for all patches in this visualization.

Some subsequent methods, such as Swin (Liu et al., 2021), remove the [CLS] token and use global
average pooling (GAP) before the classification head. However, this forces an undesirable behavior
from a dense prediction standpoint, i.e., a uniform gradient flow across all positions. For example,
in an image of a bird with other objects in the background, GAP compels the model to match all
patch representations—including background regions—with the classifier’s prototype of bird. The
uniform gradient flow means that all patch tokens receive equal importance, regardless of their
relevance, potentially leading to representations particularly suboptimal for tasks like segmentation.
Moreover, GAP has been shown to reduce localization in higher layers (Raghu et al., 2021).

Proposed solution. To encourage meaningful patch representations at the final layer’s output, x(l),
we propose the following operation before the classification head:

x+ = softmax

(
x(l)x(l)⊤

√
d

)
x(l), (11)

which acts like a parameter-free self-attention. This operation, which introduces no new parameter,
aggregates information from all patch positions in a non-uniform manner, thereby preserving their
unique contributions and ensuring diverse gradient flow across patch locations. The resulting repre-
sentation at the [CLS] token, x+

0 , is then passed to the classification head. We refer to this strategy
as Patch Representation Refinement (PRR). PRR can be seen as an alternative to GAP, suitable for
segmentation-in-mind pretraining.

Our components share the common objective of making ViT representations more suitable for dense
prediction, and they act at different stages. GAug operates inside the backbone, modifying self-
attention to bias information exchange toward local neighborhoods so that patch tokens can better
encode fine spatial details. PRR, in contrast, acts right before the classification head and changes
how tokens are aggregated to explicitly route supervision and gradients to patch outputs. In practice,
each module can be attached independently to a ViT backbone (see ablations in Sec. 5.4). However,
they are coupled through the gradient path: with standard [CLS] classification, adding GAug in the
last block has little effect, because its parameters receive no gradient from the loss, whereas PRR
routes gradients to those GAug parameters so they can be effectively learned.

6
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. For the main experiments, where we assess both classification and segmentation per-
formance, we first train models on ImageNet-1K (Deng et al., 2009; Russakovsky et al., 2015),
which contains 1.28M training images from 1,000 classes. Then, we further utilize these models
for training on segmentation datasets: ADE20K (Zhou et al., 2019), PASCAL Context (Mottaghi
et al., 2014), and COCO Stuff (Caesar et al., 2018; Lin et al., 2014), which contain 150, 59, and 171
semantic categories, respectively. ADE20K and COCO Stuff images are resized to 512 × 512 and
PASCAL Context images to 480× 480. Furthermore, we also assess classification performance on
smaller scale datasets: CIFAR-100 (Krizhevsky & Hinton, 2009) and mini-ImageNet (Vinyals et al.,
2016), a subset of ImageNet-1K, consisting of 100 classes with 500 training and 100 validation
examples each. In all classification experiments, images are resized to 224× 224.

Implementation details. Our method is implemented using the PyTorch Image Models
(timm) (Wightman, 2019) library. We train models on ImageNet-1K for 300 epochs, with initial
learning rate (LR) 0.001, and on CIFAR-100 and mini-ImageNet for 600 epochs, with LR 0.0005.
Global batch size is set to 1024, linear warm-up to 20 epochs, and we use AdamW (Kingma & Ba,
2014; Loshchilov & Hutter, 2019) optimizer with a weight decay of 0.05. As in Ding et al. (2022), a
simple triangular learning rate scheduler (Smith & Topin, 2018) is applied, and the stochastic depth
drop rates (Huang et al., 2016) for the Tiny, Small, and Base backbones are set to 0.1, 0.2, and
0.4, respectively. We follow Liu et al. (2021) for data augmentation and use RandAugment (Cubuk
et al., 2020), Mixup (Zhang et al., 2018), Cutmix (Yun et al., 2019), and random erasing (Zhong
et al., 2020). The sigmoid function f in Eq. (5) is scaled to have a maximum of max(h,w), and
shifted to satisfy f(0) = 1.

For semantic segmentation, we utilize the MMSegmentation toolbox (OpenMMLab, 2020) and em-
ploy a simple 1-layer MLP on top of the frozen classification-trained models. This configuration en-
sures that segmentation performance mainly reflects the discriminative power of the classification-
trained backbone in dense prediction. This setup aligns with our goal of isolating and assessing
patch representation quality under a low-tuning regime (more information in Appendix J). Training
on segmentation datasets is performed over 20K iterations with a batch size of 32.

5.2 MAIN RESULTS

Segmentation performance. The LocAt add-on can be applied on several ViT-based models, and
Tab. 2 evaluates its effect, in terms of classification performance on ImageNet-1K, as well as seg-
mentation performance on three benchmarks, when applied to five models: ViT (Dosovitskiy et al.,
2021), Swin Transformer (Liu et al., 2021), ViTs with registers (denoted as RegViT, we use 4 regis-
ters, Darcet et al., 2024), Rotary Position Embedding for ViTs (denoted as RoPEViT, Heo et al.,
2024), and the recent Jumbo (Fuller et al., 2025). Comparing each baseline with its enhanced
counterpart (gray row below), proves LocAt’s addition is useful in improving the segmentation
performance of all. For instance, LocAtViT Tiny achieves a substantial improvement of +6.17%,
+4.86%, and +5.86%, over ViT on ADE20K, PASCAL Context, and COCO Stuff, respectively.
Importantly, LocAt-enhanced models’ superior segmentation performance is achieved without com-
promising classification performance; in fact, they deliver comparable or even improved accuracy
across different models (e.g., LocAtViT outperforms ViT by +1.55% in Tiny backbone).

LocAt improves baselines that are architecturally close to ViT significantly, e.g., RoPEViT, and
interestingly, it brings improvements over Swin as well. We believe this is not trivial as the add-
on was designed for ViT’s architecture, in which there exists a [CLS] token and the attention
width is not limited, while in Swin the windowed attention mechanism severely affects the extent to
which LocAt can play a role. Furthermore, our add-on incurs a negligible increase in computational
efficiency in terms of number of FLOPs over the corresponding counterparts (measured at 224×224
using Sovrasov, 2018-2024). Additional experiments are presented in Appendix B.

Classification performance. In addition to the ImageNet-1K classification results in Tab. 2, Tab. 3
investigates LocAt’s classification effectiveness on small-scale datasets: mini-ImageNet (Vinyals

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Segmentation performance of models and their counterparts with our LocAt extension (in
gray), along with their classification performance on ImageNet-1K, which the models are initially
trained on. Results demonstrate that (i) LocAt substantially boosts segmentation performance (our
primary focus), while preserving or even improving the classification performance, and (ii) this ef-
fect holds for a variety of methods, for different backbone sizes. Furthermore, (iii) the segmentation
gains appear not only in weaker baselines, but also in strong, high-performing models, where clas-
sification improvements are harder to achieve.

Method Segmentation mIoU (%) Top-1 (%) #Params FLOPs
ADE P-Context C-Stuff ImageNet (M) (G)

Ti
ny

ViT 17.30 33.71 20.29 72.39 6 1.26
+ LocAt 23.47+6.17 38.57+4.86 26.15+5.86 73.94+1.55 6 1.27

Swin 25.58 36.78 28.34 81.18 28 4.50
+ LocAt 26.52+0.94 37.65+0.87 29.09+0.75 81.43+0.25 28 4.51

RegViT 15.98 33.45 19.58 72.90 6 1.29
+ LocAt 24.39+8.41 39.90+6.45 27.38+7.80 74.08+1.18 6 1.30

RoPEViT 19.17 38.16 22.75 73.60 6 1.26
+ LocAt 24.48+5.31 40.79+2.63 27.98+5.23 74.34+0.74 6 1.27

Jumbo 20.33 36.36 22.13 78.71 9 1.40
+ LocAt 21.62+1.29 37.22+0.86 23.87+1.74 78.78+0.07 9 1.42

B
as

e

ViT 28.40 43.10 30.43 80.99 86 17.58
+ LocAt 32.64+4.24 45.35+2.25 33.62+3.19 82.31+1.32 86 17.64

Swin 31.90 40.11 33.60 83.41 88 15.46
+ LocAt 32.89+0.99 41.44+1.33 34.20+0.60 83.43+0.02 88 15.47

RegViT 27.93 41.81 28.99 81.01 86 17.95
+ LocAt 32.71+4.78 46.14+4.33 34.12+5.13 82.19+1.18 86 18.02

RoPEViT 31.38 48.83 34.35 82.16 86 17.58
+ LocAt 34.94+3.56 49.24+0.41 36.37+2.02 82.54+0.38 86 17.64

Jumbo 32.20 47.31 34.65 84.42 130 19.74
+ LocAt 35.69+3.49 49.20+1.89 35.84+1.19 84.43+0.01 130 19.81

Table 3: Classification top-1 accuracy of ViT
and LocAtViT for different backbone sizes,
on mini-ImageNet and CIFAR-100, showcasing
LocAt’s effectiveness on small-scale datasets.

Size mini-ImageNet CIFAR-100
ViT LocAtViT ViT LocAtViT

Tiny 74.94 78.47+3.53 73.84 80.43+6.59
Small 78.98 84.30+5.32 76.33 81.13+4.80
Base 79.91 84.86+4.95 76.90 82.20+5.30

Table 4: Self-supervised performance of Lo-
cAtViT used in DINO, showcasing LocAt’s ef-
fectiveness in the self-supervised regime.

Experiment ViT-S/16 LocAtViT-S/16

Linear classification 65.52 67.65+2.13

Nearest
neighbor

10-NN 61.69 63.96+2.27
20-NN 61.53 63.74+2.21
100-NN 59.30 61.19+1.89
200-NN 57.90 59.78+1.88

et al., 2016) and CIFAR-100 (Krizhevsky & Hinton, 2009). Although designed to enhance segmen-
tation, these results demonstrate LocAt’s classification effectiveness even when trained on small-
scale datasets. LocAt improves ViT’s performance by 3-6% on mini-ImageNet and 4-7% on CIFAR-
100, while only introducing 2, 340 new parameters (0.003% increase for Base). Please note that seg-
mentation results are not included for models trained on these datasets since, due to their scale and
number of classes, representations are not expected to generalize well to segmentation benchmarks.

Foundation models. In the previous sections, we described our interest in improving ViT’s seg-
mentation capabilities without changing their training scheme. Our experiments support that our
minor modifications lead to better dense prediction performance, while performing on par or supe-
rior to the vanilla models in classification. One reason for our interest in the mentioned problem is
that ViTs have been widely used across computer vision foundation models and are the go-to choice
for many of the recent methods (Radford et al., 2021; Kirillov et al., 2023; Caron et al., 2021; Oquab
et al., 2023). One of the popular models that yields versatile image representations and transfers well
to different computer vision tasks is DINO (Caron et al., 2021), which is trained in a self-supervised
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Table 5: Hummingbird dense NN retrieval (mIoU %) on PASCAL VOC and ADE20K.

Method
Tiny Base

PASCAL ADE20K PASCAL ADE20K
Vanilla + LocAt Vanilla + LocAt Vanilla + LocAt Vanilla + LocAt

ViT 39.2 50.3 12.0 15.2 55.8 58.7 19.5 21.5
Swin 45.2 45.3 16.1 16.3 57.6 62.8 23.3 24.6
RegViT 39.4 52.3 12.5 15.9 55.5 60.3 19.4 22.8
RoPEViT 50.7 54.7 16.0 17.5 61.0 61.4 22.4 23.7
Jumbo 40.0 45.5 13.3 14.5 58.5 63.8 21.6 23.7

manner and can serve as a general-purpose backbone. Two of the main evaluation protocols used by
Caron et al. (2021) are learning a linear classifier on top of the frozen backbone and nearest neighbor
classification (k-NN) on top of the features.

We train DINO ViT-S/16 and DINO LocAtViT-S/16 on ImageNet-1K for 50 epochs using the setting
provided in the official repository, and evaluate them on the mentioned tasks. Table 4 demonstrates
that replacing ViT with LocAtViT in DINO actually improves its performance on both linear and
k-NN classification. We report the k-NN performance on k ∈ {10, 20, 100, 200} as advised by
Caron et al. (2021). These findings reveal our objective-agnostic modifications’ effectiveness in
the self-supervised regime and the potential of our method on backbones that learn general-purpose
representations. While interesting, further investigation on larger foundation models is beyond our
computational reach and lies outside the scope of this work.

Hummingbird evaluation. To further assess whether LocAt improves quality of image features,
we evaluate our models using Hummingbird (Balažević et al., 2023), a protocol proposed for evalu-
ating in-context scene understanding in a purely frozen-feature regime. We use the implementation
by Pariza et al. (2024) and follow its dense nearest-neighbor (NN) retrieval setup. Table 5 shows that
LocAt consistently improves NN retrieval performance relative to the corresponding vanilla back-
bones on PASCAL VOC (Everingham et al., 2010) and ADE20K, across architectures, suggesting
that LocAt enhances spatial representations, even without any task-specific fine-tuning or decoder.

5.3 QUALITATIVE ANALYSIS

An interesting implication of our proposed modifications is the refinement of ViT’s patch outputs,
which makes it more suitable for use cases on dense prediction tasks. Figure 1 offers a visual
comparison of attention maps from a vanilla ViT and our LocAtViT, both trained for classification,
for an image labeled as school bus. From the [CLS] token’s attention, we observe that ViT’s
focus is broadly dispersed, whereas LocAtViT shows more concentrated and coherent activation
on key features of the bus. Furthermore, we present the attention maps of three patch tokens to
other patches. For instance, a patch on the bus side attends to nearly the entire bus in LocAtViT,
whereas ViT’s map is harder to interpret. A patch covering the child’s face generates meaningful
attention in both models, but ViT seems to highlight unrelated regions more. Interestingly, for a
patch near the top-right corner, LocAtViT not only focuses on some tree patches, but also extends
attention to the sky and road, all corresponding to the image background. Despite being trained
solely for classification, LocAtViT exhibits an improved ability to detect some scene structures,
suggesting that our proposed local interactions can enrich the model’s contextual understanding
without sacrificing global attention. Further qualitative examples are presented in Appendix C.

5.4 ABLATION STUDY

In this section, we provide an ablation study on the architectural choices we made. We also provide
ablation study on the self-attention module’s design in the Appendix D, and we compare PRR to
pooling heads and class-attention in Appendix H and I.

Effect of GAug and PRR. Part 1 of Tab. 6 ablates on GAug and PRR defined in Secs. 4.1 and 4.2.
Results demonstrate that both GAug and PRR indeed enhance the performance of the model in both
classification and segmentation, and their combination pushes the performance even further.

9
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Table 6: Ablations on model’s architecture. We report segmentation performance (mIoU %) over
three benchmarks and classification accuracy (top-1 %) on ImageNet-1K. PE and GAP stand for
positional embeddings and global average pooling.

Method Tiny Base
ADE P-Context C-Stuff ImageNet ADE P-Context C-Stuff ImageNet

1

ViT 17.30 33.71 20.29 72.39 28.40 43.10 30.43 80.99
ViT + GAug 18.98 34.97 21.51 73.16 30.26 44.36 32.21 82.00
ViT + PRR 21.60 37.93 25.85 73.71 29.89 44.03 32.16 82.19
LocAtViT 23.47 38.57 26.15 73.94 32.64 45.35 33.62 82.31

2
ViT - PE 15.13 31.94 19.35 69.36 24.59 40.18 28.79 79.39
LocAtViT - PE 22.69 38.15 26.05 73.10 29.73 44.69 32.17 82.17

3
ViT 17.30 33.71 20.29 72.39 28.40 43.10 30.43 80.99
ViT + GAP 19.65 34.94 22.86 72.50 27.99 41.97 29.88 81.84
ViT + PRR 21.60 37.93 25.85 73.71 29.89 44.03 32.16 82.19

Effect of positional embeddings. Part 2 of Tab. 6 evaluates the impact of the default absolute
positional embeddings (PE) on our proposed LocAt add-on. For both backbone sizes, LocAtViT
without PE not only outperforms ViT without PE, but also surpasses ViT with PE. This indicates
that LocAt captures the spatial information embedded into PE and more, with much fewer learnable
parameters. It is worth noting that our approach is not an alternative to positional encoding and we
did not intend to propose a new PE method. Therefore, these results are included just to demonstrate
empirically that LocAt indeed captures the spatial information that the default PE captures, which
is the agent for capturing locality in vanilla ViT. We have shown in Tab. 2 that LocAt is applicable
alongside other, newer positional encoding approaches, such as RoPE, as well.

Comparison between PRR and GAP. As discussed in Sec. 4.2, PRR addresses patch locations’
gradient flow issues while overcoming GAP’s limitations in segmentation. Part 3 of Tab. 6 com-
pares how vanilla ViT performs when equipped with PRR versus GAP. PRR shows superior segmen-
tation performance and interestingly, it improves classification accuracy more than GAP. Moreover,
although GAP helps ViT in classification, it hurts the segmentation performance in the Base back-
bone, which is in line with the discussions in Sec. 4.2 about GAP’s problems in segmentation.

6 CONCLUSION

Summary. We present the Locality-Attending Vision Transformer, a modular framework that en-
hances vision transformers for dense prediction while preserving image-level capabilities and inte-
grating seamlessly into existing ViTs. This introduces a segmentation-in-mind pretraining perspec-
tive: by adding GAug attention, our method biases self-attention toward local regions to capture
fine-grained spatial details, while PRR ensures meaningful gradient flow to patch tokens, strength-
ening representations for dense prediction. Extensive experiments across multiple ViT baselines
show that LocAt delivers superior segmentation performance without compromising classification
accuracy. Our objective is not to surpass state-of-the-art architectures, but to improve classification-
trained ViT backbones for segmentation with a method largely orthogonal to prior advancements,
motivated by the trend of them being widely used, e.g., by foundation models. Consistent with Heo
et al. (2024), we therefore emphasize comparisons between baselines and their LocAt-enhanced
counterparts. We hope that these lightweight modifications will be adopted in ViT-based foundation
models.

Limitations. We evaluated our method on multiple classification and segmentation datasets. How-
ever, these datasets all only contain natural images, and we have left evaluation on other domains
such as medical imaging or remote sensing as future work. Furthermore, while we have demon-
strated the effectiveness of LocAtViT used in a small foundation model, evaluation on large founda-
tion models, such as CLIP, has been out of our computational reach.
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LOCALITY-ATTENDING VISION TRANSFORMER
APPENDIX

A TECHNICAL DETAILS

A.1 CODE

Our code is anonymously and publicly available at https://anonymous.4open.science/
r/LocAtViTRepo/. The README.md file provides guidelines on how to set up the environ-
ment, train the models, and perform different evaluations. For ViT (Dosovitskiy et al., 2021), Swin
Transformer (Liu et al., 2021), RegViT (Darcet et al., 2024), and RoPEViT (Heo et al., 2024), we
used the implementation provided by Wightman (2019), and for Jumbo (Fuller et al., 2025) we used
their official repository. All of these models are reproduced. Jumbo is a new work the repository is
incomplete, hence, we used the available code and implemented some of the components based on
the paper.

A.2 COMPUTE RESOURCES

Our experiments were conducted using NVIDIA RTX A6000 48GB, V100 32GB, and A100 40GB
GPUs. The Tiny, Small, and Base backbones of LocAtViT require 15GB, 29GB, and 29GB of GPU
memory with a local batch size of 512, 512, and 256, respectively.

A.3 LLM USAGE

We used LLMs to aid or polish writing. Adhering to ICLR’s author guideline, we include additional
information here. We used LLMs to generate codes for plotting figures, tables, and other code or
LaTeX related issues. We also used LLMs to improve the writing, polish, or shorten the paragraphs,
while double checking the output.

B LOCATVIT COMPARISON WITH RELATED WORK

In Tab. 2, we included five baseline methods and implemented LocAt for each. Table 7 compares
LocAtViT to multiple related works from Sec. 2: CvT-21 (Wu et al., 2021a), Conformer (Peng et al.,
2021), ConViT (d’Ascoli et al., 2021), Twins (Chu et al., 2023; 2021), DaViT (Ding et al., 2022),
and GCViT (Hatamizadeh et al., 2023). We utilized the publicly available code and checkpoints,
and evaluated the models on our segmentation pipeline, as described in Sec. 5. Although LocAtViT
does not achieve the best classification performance, LocAt helps ViT outperform methods like
Twins across all three segmentation benchmarks.

Table 7: Segmentation and classification performance of the Base backbone of related works and
the proposed LocAtViT.

Method Segmentation mIoU (%) Top-1 (%)
ADE P-Context C-Stuff ImageNet

CvT-21 21.40 40.91 29.29 82.50
Conformer 22.11 40.03 26.37 83.83
ConViT 23.08 44.82 25.20 82.30
Twins 30.47 44.55 32.27 82.71
DaViT 30.68 44.87 32.38 84.64
GCViT 30.91 44.71 32.77 84.47
LocAtViT 32.64 45.35 33.62 82.31
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C ADDITIONAL QUALITATIVE EXPERIMENTS

Figure 4 provides three additional images from the mini-ImageNet dataset, alongside the attention
maps of the [CLS] token and several patches for ViT and LocAtViT.

Figure 4: Qualitative evaluation on the attention maps. The final attention map of ViT and
LocAtViT for the [CLS] token and three different patches are illustrated for three different images
from mini-ImageNet with labels: orange, Komondor, and corn.

D ABLATION STUDY ON SELF-ATTENTION

In this section, we perform ablations on the design choices inside the GAug self-attention module.

D.1 GAUSSIAN BASED ON INPUT

In the original ViT, a query vector intuitively determines the information a patch should be looking
for. Since the Gaussian variance controls how far a patch attends to its surroundings, we compute Σ
based on the query matrix in Eq. (5). Table 8 compares this approach to computing Σ based on x,
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Table 8: Ablations on GAug attention components. ∆#Params shows the difference in the number
of the parameters of each model compared to LocAtViT (first row). Experiments are conducted on
mini-ImageNet.

Tiny Base ∆#Params

LocAtViT (Sec. 4) 78.47 84.86 -
Gaussian from x 79.10 85.18 +18, 504, +329, 868

Isotropic Gaussian 78.71 84.66 −780

Fixed
width

σ = 1 75.20 82.81 −2, 340
σ = 5 76.41 82.65 −2, 340
σ = 10 75.53 82.42 −2, 340

No scaling 76.26 83.07 −780
Auto α 78.48 84.54 −780

the self-attention input. While the latter improves performance, it significantly increases the number
of parameters.

D.2 VARIANCE MATRIX

To comply with a more general setting, we assigned separate variances for each image axis. An
alternative is to use a single variance per patch, forming an isotropic Gaussian kernel. This simplifies
Eq. (8) to:

Gpt = exp
(
−
∑2

m=1 Dptm

2σ2
p

)
. (12)

The result of this modification is referred to as Isotropic Gaussian in Tab. 8. This table also com-
pares this approach with another experiment where the Gaussian kernel width is fixed different
constant values, instead of being patch-specific and query-based. These results indicate that an
isotropic Gaussian kernel performs comparably, but a fixed kernel width substantially diminishes
performance, demonstrating the importance of our dynamic input-dependent kernel width.

D.3 NO SUPPLEMENT MATRIX SCALING

In Sec. 4.1, we introduced a learnable scaling vector α to match the scale of the supplement matrix
S to that of the attention logits. To isolate its effect, Tab. 8 reports a variant (No α) in which the
supplement matrix in Eq. (10) is not scaled, i.e., we set S = G (equivalently, α = 1) and directly
add the raw Gaussian kernel to the logits. This no-scaling configuration corresponds to a harder
use of the locality term and consistently reduces accuracy, confirming that unscaled addition of G
is suboptimal and that the learnable scaling is important for balancing global attention with the
Gaussian prior.

D.4 AUTOMATIC SCALING OF THE SUPPLEMENT MATRIX

As mentioned, we motivated the need for scaling the supplement matrix before adding it to the
attention logits in Sec. 4.1. We now propose a parameter-free, input-dependent scheme, Auto α,
that automatically matches the scale of S to that of the original attention logits. Concretely, let
N = 1 + hw, q,k ∈ RN×d, and define the row-wise ℓ2-norm vectors:

r =
[
∥q1∥2, . . . , ∥qn∥2

]⊤
, (13)

u =
[
∥k1∥2, . . . , ∥kn∥2

]⊤
. (14)

Then the standard attention logits satisfy:

qk⊤
√
d

=
(ru⊤
√
d

)
◦ cos

(
q,k

)
, (15)
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where ◦ denotes the Hadamard product, and cos(q,k) ∈ RN×N has entries cos(qi,kj). Hence, if
we set

α =
ru⊤
√
d

∈ RN×N , (16)

then the modified logits in Eq. (4) can be rewritten as

qk⊤
√
d

+ S = α ◦
(
cos(q,k) +G

)
, (17)

where both terms inside the parentheses are bounded (in [−1, 1] and [0, 1], respectively), ensuring
that S scales comparably to the original logits.

However, using α ◦G would independently scale each entry of G, destroying the Gaussian kernel
structure (each row of G is a kernel centered at one patch). To preserve each kernel’s shape, we
average α across columns:

ᾱi =
1

N

N∑
j=1

αij , ᾱ = [ᾱ1, . . . , ᾱn]
⊤ ∈ RN , (18)

and then form:
S = diag(ᾱ)G, (19)

similar to Eq. (10). This row-wise scaling applies a single factor to each Gaussian kernel, preserving
its shape while matching its magnitude to the attention logits.

Auto α performs close to learnable α in the original LocAtViT, with slightly fewer parameters. We
nevertheless keep the learnable α in our main model for simplicity of formulation and to give the
network maximal flexibility in attenuating or amplifying locality where beneficial.

E QUALITATIVE COMPARISON OF LOCALITY MECHANISMS IN VIT
ARCHITECTURES.

In Table 1 we provided a summarized qualitative comparison of locality mechanisms in ViT archi-
tectures, which highlights the benefits of the proposed method. In this section, we provide further
details on the following properties considered in the table: easily applicable on ViT architecture,
and query-adaptive locality.

Easily applicable on ViT architectures. Convolution-based hybrids are not easily applicable, since
they require convolutional stems or intermediate convolutional stages that alter the backbone design.
Local window or block attention also needs architectural changes, such as window partitioning and
shifted windows, which makes them less straightforward to integrate into a standard ViT. Positional
encodings, by contrast, are trivially applicable, as they can be added to the attention mechanism
without modifying the backbone. Our Gaussian-Augmented attention is similarly easy to apply,
since it simply adds a Gaussian bias term to the attention logits and does not require structural
changes.

Query-adaptive locality. Convolution-based hybrids do not provide query-adaptive locality, as
convolutional kernels are fixed after training and shared across spatial positions. Local window or
block attention offers partial adaptivity, where attention weights are content-based, but restricted to
a fixed window, so queries cannot flexibly extend beyond that boundary. Positional encodings are
not query-adaptive, since they impose a static positional bias that does not depend on the query.
In contrast, our Gaussian-Augmented attention is fully query-adaptive: Gaussian parameters are
predicted from each query, allowing the locality radius and decay to vary dynamically depending on
the query content.

F ABLATION STUDY ON ALTERNATIVE DISTANCE-BASED KERNELS

In the main paper we model locality with a Gaussian kernel added to the attention logits (Sec. 4.1).
The choice of a Gaussian is motivated by the desire for a smooth, distance-based attenuation function
with a scale parameter that controls the effective receptive field, and that can be predicted from
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Table 9: Effect of different distance-based attenuation kernels. Segmentation performance
(mIoU %) over three benchmarks and classification accuracy (top-1 %) on ImageNet-1K are re-
ported.

Kernel Tiny Base
ADE P-Context C-Stuff ImageNet ADE P-Context C-Stuff ImageNet

No (ViT) 17.30 33.71 20.29 72.39 28.40 43.10 30.43 80.99
Gaussian 23.47 38.57 26.15 73.94 32.64 45.35 33.62 82.31
Inv-dist 22.18 38.16 25.25 74.00 28.42 43.48 30.82 81.94
Laplace 21.67 37.80 25.56 74.01 29.74 44.10 31.95 82.24

each query token. Nevertheless, other monotone distance-based kernels are also reasonable, and we
compare with two other kernels in what follows.

Let rpt = ∥Pp −Pt∥2 denote the Euclidean distance between patches p and t in the spatial grid. We
construct two alternative kernels by predicting scale parameters γ and λ from the queries:

Lpt = exp (−γp rpt) , (20)

denoting the Laplace kernel, and the inverse-distance kernel denoted as:

Ipt =
1

1 + rpt/λp
. (21)

In both cases, the resulting kernel matrix replaces G in Eq. (10), and the rest of the GAug formulation
(including the scaling with α) is kept unchanged.

Table 9 compares performance of different choices of the kernel. All three locality-augmented
variants improve over the baseline ViT, confirming that introducing a smooth distance-based prior is
beneficial. Among them, the Gaussian kernel delivers the strongest segmentation gains on all three
benchmarks, while remaining competitive in ImageNet-1K accuracy compared to the Laplace and
inverse-distance kernels. This supports the choice of a Gaussian kernel in the main LocAtViT model
as a simple yet effective way to inject adaptive locality into attention.

G LOCAL FEATURE ANALYSIS ACROSS LAYERS

In the main paper, we argue that the global attention mechanism of vanilla ViT tends to obscure
fine-grained local information that is important for dense prediction. Here, we provide a quantitative
analysis of how local patch features evolve across layers in a standard ViT and in our LocAtViT. We
focus on Base models of ViT and LocAtViT trained on ImageNet-1K and evaluate features on the
ImageNet-1K validation set.

Locality score. For each layer l and each spatial patch token, we compute a locality score defined
as the cosine similarity between that patch and its 8 immediate neighbors in the surrounding 3 × 3
window. We then average this score over all spatial locations and all validation images. Intuitively,
a higher locality score indicates that nearby patches share more similar representations, which is
desirable as long as representations do not collapse globally. Figure 5a reports this locality score
per layer. After the third layer, LocAtViT consistently achieves a higher locality score than vanilla
ViT, indicating that its patch features remain more coherent with their spatial neighbors as depth
increases.

Patch-[CLS] similarity. High neighbor similarity alone does not guarantee that meaningful local
structure is preserved: if all patch tokens collapse to the same global representation, their mutual
similarity (including to neighbors) will also be high. To distinguish this degenerate case from gen-
uine locality, we additionally measure, for each layer l, the cosine similarity between every patch
token and the [CLS] token, again averaged over all patches and validation images. Figure 5b
shows that in vanilla ViT this patch-[CLS] similarity steadily increases with depth and peaks in
the final layers, revealing a progressive pull of patch features toward a shared global representation
dominated by the [CLS] token. In contrast, LocAtViT maintains substantially lower patch-[CLS]
similarity across layers, while still achieving a higher locality score.
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Figure 5: Degradation of local features in vanilla ViT. Features in ViT collapse to the global
information in the last layers while in LocAtViT, patch features encode local information.

Discussion. Taken together, these two measurements show that, in vanilla ViT, patch tokens grad-
ually lose distinct local information and become dominated by global [CLS]-like content as depth
grows. LocAtViT, on the other hand, preserves strong locality in patch features without collapsing
them onto the [CLS] token. This behavior aligns with our design goal: to enhance the preservation
of local structure while retaining the benefits of global attention, thereby producing representations
that are better suited for dense prediction.

H COMPARISON WITH CLASSIFIER-SIDE REFINEMENT METHODS

We compared PRR to GAP in Sec. 5.4. To further isolate the classifier-side refinement, we compare
PRR against several standard pooling heads: max pooling, AvgMax (average + max pooling), and
multihead attention pooling (MAP). Table 10 reports the performance of these pooling mechanisms
with comparable capacity with ViT Tiny backbone size (6M). PRR achieves the best performance
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across segmentation and classification among the pooling heads, indicating the effectiveness of ex-
plicitly refining patch representations.

Table 10: Comparison of PRR with standard pooling heads. on a Tiny backbone. We report
segmentation performance (mIoU %) over three benchmarks and classification accuracy (top-1 %)
on ImageNet-1K.

Pooling ADE P-Context C-Stuff ImageNet

GAP 19.7 34.9 22.9 72.5
Max 19.2 34.7 23.3 71.9
AvgMax 20.1 35.6 24.2 72.3
MAP 20.2 36.3 23.1 73.0
PRR 21.6 37.9 25.9 73.7

I COMPARISON TO CAIT AND CLASS-ATTENTION

CaiT (Touvron et al., 2021b) introduces dedicated class-attention layers in the last blocks that pro-
cess only the class token, while patch tokens remain fixed, and are primarily designed to stabilize
optimization and improve classification in very deep transformers. Table 11 compares ViT+PRR
Tiny and Base to CaiT backbone of similar size in both classification and segmentation. For a fair
comparison, CaiT models are trained with the same data, augmentations, and optimization settings,
and we evaluate all models in our segmentation pipeline as described in Sec. 5. In this setting,
PRR consistently outperforms CaiT on both ImageNet-1K classification and all three segmentation
benchmarks. We attribute this gap to a structural difference in how the final layers are used. In
CaiT, the last class-attention blocks exclusively update the class token while keeping patch tokens
fixed, so a fraction of the backbone capacity is devoted solely to refining a shallow class embedding.
In our ViT+PRR design, all blocks maintain full self-attention among patch and class tokens, and
PRR then applies one additional parameter-free self-attention over all tokens. This symmetric use
of capacity allows the final layers to refine patch features and the class token jointly, which appears
better aligned with the demands of dense prediction while remaining superior in classification.

Table 11: Comparison between PRR and CaiT at similar parameter budgets (i.e., 6M and 86M
parameters for Tiny and Base). We report mIoU (%) on three segmentation benchmarks and top-1
accuracy (%) on ImageNet-1K.

Method Tiny Base
ADE P-Context C-Stuff ImageNet ADE P-Context C-Stuff ImageNet

ViT+PRR 21.6 37.9 25.9 73.7 29.9 44.0 32.2 82.2
CaiT 16.9 30.2 18.7 69.6 27.8 41.9 30.1 79.1

J FULL FINE-TUNING ON ADE20K

The segmentation results in Tab. 2 use a simple MLP decoder on top of a frozen backbone in order
to keep the head lightweight and make performance primarily reflect the backbone representations.
We adopt this pipeline deliberately to isolate the effect of the backbone representations: a strong
decoder and long full fine-tuning can partially mask differences between pretraining strategies. To
check that the gains of LocAt also hold under a standard segmentation protocol, we additionally
attach a UperNet (Xiao et al., 2018) decoder to ViT and LocAtViT and fine-tune all parameters on
ADE20K for 50K iterations. As shown in Tab. 12, LocAt improves mIoU over ViT in both Tiny and
Base backbone sizes, confirming that the locality bias introduced by GAug and PRR yields more
effective representations even when the entire network is trained end-to-end for segmentation.
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Table 12: End-to-end ADE20K fine-tuning with a standard UperNet decoder. We report
mIoU (%) after fine-tuning all parameters for 50K iterations.

Tiny Base

ViT 35.7 41.2
ViT + LocAt 36.9 45.2

K COCO DETECTION AND INSTANCE SEGMENTATION

To further assess the generality of LocAt beyond semantic segmentation, we conduct experiments
on COCO 2017 object detection and instance segmentation using a Mask R-CNN (He et al., 2017)
head. We use Swin Tiny backbone and evaluate two training regimes: (i) full end-to-end fine-tuning
(FT), and (ii) frozen-backbone training where only the detection head is updated. Both settings
follow a standard 1× schedule. Table 13 reports bounding-box AP and mask AP. LocAt improves
performance in both FT and frozen settings, confirming that the locality-preserving representations
produced by GAug and PRR benefit spatial localization tasks as well.

Table 13: COCO 2017 object detection and instance segmentation using a Mask R-CNN head.
We report bounding-box AP (APb) and mask AP (APm) under both full fine-tuning (FT) and frozen-
backbone settings.

APb APb
50 APb

75 APm APm
50 APm

75

FT Swin 42.3 65.0 46.0 38.9 61.9 41.7
Swin + LocAt 42.8 65.4 46.7 39.3 62.5 42.0

Frozen Swin 28.9 52.9 28.1 29.3 50.7 30.3
Swin + LocAt 29.7 54.2 28.7 30.0 51.6 30.9

L STABILITY OF LEARNED STANDARD DEVIATIONS

The per-patch Gaussian variances are predicted from the queries through a bounded nonlinearity
in Eq. (5), ensuring numerical stability; however, in principle these values could collapse to the
lower or upper end of the admissible range. Figure 6 analyzes the mean and percentile ranges of the
learned standard deviations across layers for a LocAtViT Base model trained on ImageNet-1K. We
find that the predicted variances remain well inside the allowed interval and do not cluster near the
bounds. Instead, they form non-trivial depth-dependent patterns: early layers tend to use narrower
kernels, whereas deeper layers gradually broaden their spatial extent. These observations indicate
that GAug learns meaningful locality scales rather than degenerately switching the Gaussian bias
“off” (very small variance) or “fully on” (maximal variance) everywhere.

M HIGHER RESOLUTION OVERHEAD

We quantify the overhead introduced by LocAt when moving from the common 224× 224 training
resolution to a higher 512 × 512 setting, and report in Tab. 14, wall-clock time and peak GPU
memory usage for one epoch of training on mini-ImageNet using a single A100 GPU with batch
size 16.

N FAILURE MODES AND LIMITATIONS OF THE GAUSSIAN BIAS

Our design goal for the Gaussian augmentation is to gently bias attention toward local structure,
rather than to hard-enforce locality. Empirically, across the backbones and tasks reported in the
main paper, we observe performance gain when adding GAug and PRR. However, the magnitude
of the gains depends on the underlying attention topology. The largest improvements appear on
backbones with unrestricted patch-patch attention (e.g., ViT, RegViT, RoPEViT, Jumbo), whereas

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12
Layer

0

2

4

6

8

10

12

14

St
an

da
rd

 d
ev

ia
tio

n

Statistics of standard deviation over layers
10th percentile
median
mean
90th percentile

Figure 6: Standard deviation of GAug’s Gaussian over layers

Table 14: Training wall-clock (minutes per epoch) and peak memory usage (GB) on mini-ImageNet
for Tiny and Base backbones under different input resolutions. Batch size is 16 and all experiments
use a single A100 GPU.

Size Image side Wall-clock time (m) Memory (GB)

Tiny 224 2.0 1.2
512 6.1 6.7

Base 224 3.1 4.1
512 21.1 25.0

the gains on a windowed-attention backbone such as Swin are noticeably smaller. This suggests that
GAug is most effective when attention is globally connected and locality is not already hard-coded
by the architecture.

To further probe this limitation, we also applied our approach on top of GCViT (Hatamizadeh et al.,
2023), a stronger windowed-attention model with attention confined to small grids. In this setting
we did not obtain improvements in the performance. We attribute this negative result to the fact
that when attention is restricted to narrow windows, the additional Gaussian bias has little room
to meaningfully reshape the locality pattern. In contrast, even for powerful unrestricted-attention
models such as Jumbo, there remains enough flexibility for GAug and PRR to provide noticeable
benefits.
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