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ABSTRACT

Data-driven benchmarks have led to significant progress in key scientific modeling
domains including weather and structural biology. Here, we introduce the Zebrafish
Activity Prediction Benchmark (ZAPBench) to measure progress on the problem of
predicting cellular-resolution neural activity throughout an entire vertebrate brain.
The benchmark is based on a novel dataset containing 4d light-sheet microscopy
recordings of over 70,000 neurons in a larval zebrafish brain, along with motion
stabilized and voxel-level cell segmentations of these data that facilitate develop-
ment of a variety of forecasting methods. Initial results from a selection of time
series and volumetric video modeling approaches achieve better performance than
naive baseline methods, but also show room for further improvement. The specific
brain used in the activity recording is also undergoing synaptic-level anatomical
mapping, which will enable future integration of detailed structural information
into forecasting methods.

1 INTRODUCTION

In the natural sciences, a fundamental test of understanding a system is the ability to predict its
future behavior based on past observations. This principle has driven progress in fields ranging
from celestial mechanics to meteorology. We propose to apply the same rigorous standard to the
vertebrate brain, by posing a simple yet fundamental question: given C seconds of observed neuronal
activity as context, how accurately can we predict the subsequent ∼30 seconds? More generally,
what are the fundamental limits of predictability in this complex system? To encourage exploration of
these questions, we introduce a dataset and associated benchmark, the Zebrafish Activity Prediction
Benchmark (ZAPBench), which enables rigorous evaluation of any simulation or forecasting method
that produces neural activity predictions at single-cell resolution.

Formal benchmarks that quantify progress on prediction tasks have served a critical dual purpose in
applied computer science by both identifying broadly superior prediction techniques compared to
previous state of the art (Krizhevsky et al., 2012) as well as driving landmark domain-specific results
that catalyze scientific discovery (Jumper et al., 2021). Advances have generally been driven by
machine learning techniques, which themselves rely on several key ingredients: significant quantities
of data; a formal metric to quantitatively compare techniques; and computing power sufficient to
efficiently utilize the underlying data. Neuroscience has long been at the forefront of the collection,
curation, and analysis of large-scale datasets (e.g., Ahrens et al., 2013; Nguyen et al., 2016; Aimon
et al., 2019; MICrONS Consortium et al., 2021; International Brain Laboratory et al., 2023). Here,
we show that recent progress has enabled a prediction-oriented view of whole-brain neural activity in
vertebrates. Specifically, the transparent zebrafish larva (Danio rerio) permits simultaneous optical
recording of all neural activity within the brain at single-neuron resolution over multiple hours.

Larval zebrafish are the only vertebrate species in which whole-brain activity at cellular resolution can
currently be obtained. We recorded such activity during nine behavioral tasks, and then extensively
postprocessed the resulting 4d video dataset by mitigating motion artifacts, segmenting individual
neuron somas using supervised deep learning methods, and mapping each neuron’s activity to a
1d time series ("activity trace"). We established a training/validation/test split within the data, and
defined and implemented a reference evaluation scheme. ZAPBench provides the full activity data
and associated code to make computational modeling of this data highly accessible. See Fig. 1 for a
high-level overview of dataset and benchmark.
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Figure 1: Dataset and Benchmark. A. Whole-brain activity of a larval zebrafish at cellular resolution
was recorded with a light-sheet microscopy setup, while the fish experienced a range of visual stimuli
(Vladimirov et al., 2014). In addition to the light-sheet (LS) 4d-dataset, a synapse-resolution electron
microscopy (EM) 3d-dataset was acquired from the same animal. B. We propose a novel forecasting
benchmark in which neural activity is predicted from past activity, using both time series and
volumetric video models. Predicted activity (PA) is compared to ground truth (GT), and performance
is scored by computing the mean absolute error (MAE) between both.

A major goal of this effort is to enable comparison of a wide variety of modeling approaches. As
an initial step in this direction, we provide a set of baseline results using both time-series methods
that exclusively focus on 1d representations, as well as a neural network trained to directly input and
output large-scale 3d video frames, capable of exploiting information lost in the conversion to 1d time
series. We do not place any constraints on the types of models allowed in the benchmark, and initially
focus on purely data-driven "black box" models prioritizing accuracy over biological plausibility
or interpretability. We look forward to the development and evaluation of additional techniques on
ZAPBench, including novel ML methods, "white box" biophysically grounded approaches (Kunert
et al., 2014; Hines and Carnevale, 1997; Deistler et al., 2024), and more recent "grey box" hybrid
schemes (Lappalainen et al., 2024; Mi et al., 2022).

Among forecasting benchmarks, an example of a recent successful effort is WeatherBench (Rasp
et al., 2020; 2024), which accelerated the development of machine learning weather prediction.
Benchmarks on neuron activity data have also been proposed before, but ZAPBench marks the first
time a forecasting challenge has been posed with this level of coverage for a vertebrate brain. The
Sensorium competition (Turishcheva et al., 2023), BrainScore (Schrimpf et al., 2020), and the Neural
Latents Benchmark (Pei et al., 2021) are prior related works of particular note. Crucially, all of these
previous efforts analyzed only a small fraction of the brain which they studied. For example, the
Sensorium competition dataset covers less than 0.1% of the neurons in the mouse brain from which it
was acquired.

Finally, a unique aspect of ZAPBench is that the underlying physical wiring diagram (connectome) of
the specific animal analyzed in the benchmark is under reconstruction and will ultimately be available
to augment modeling efforts in the future. This is the first time a whole-brain activity recording will
be paired with a whole-brain structural reconstruction in a vertebrate.

In summary, we make the following contributions:

1. A dataset of whole-brain activity of a larval zebrafish recorded at single cell resolution, with
extensive postprocessing including alignment and segmentation.

2. A forecasting benchmark with clearly defined metrics on multivariate activity traces with
much higher dimensionality than typical for time-series forecasting contests (e.g., Makri-
dakis et al., 2022), and which, for the first time, introduces a four-dimensional volumetric
dataset (i.e., 3d images + time) in the biomedical domain for forecasting purposes.

3. Forecasting results spanning simple non-parametric baselines, representative time-series
models, and a volumetric video prediction model. Our comparisons show that models
generally outperform naive baselines, but there is room for improvement. Among other
insights, we find that the time series models we benchmarked may underutilize cross-neuron
information, while video models demonstrate the best overall performance. Qualitative
analyses reveal that model errors are not uniformly distributed across the brain.

4. Public release of all relevant code, including a web-based viewer for interactively visualizing
whole-brain activity at single cell resolution, and training code for all discussed models.
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Figure 2: Lightsheet data and postprocessing. A. Frames of the raw calcium activity at different
Z-depths and time points. Brightness encodes fluorescence, i.e., activity. Last two panels compare
beginning and end of experiment at the same depth, which is misaligned at cellular resolution. B. Flow
fields estimated to correct for deformations in the volume. Color encodes magnitude of flow field in
Y-direction, with more saturated colors indicating larger magnitude. There is more deformation at the
end of the session relative to the beginning. C. Segmentation at different depths, which we used to
extract activity traces from the aligned volume.

2 DATASET

2.1 EXPERIMENTAL SETUP

Data was collected from a larval zebrafish (Danio rerio, 6 days post fertilization) placed in a virtual
reality environment. During the experimental session, lasting about two hours, the fish was subject to
nine different visual stimulus conditions (GAIN, DOTS, FLASH, TAXIS, TURNING, POSITION, OPEN
LOOP, ROTATION, and DARK) designed to probe a range of different behaviors. For example, in
the first ten minutes of the experiment, visuomotor gain adaptation was probed: a drifting forward
moving sine grating was projected underneath the fish, to which the fish responded by swimming—as
if trying to move against a water current. Throughout the entire experiment, the fish was head fixed
but able to move its tail. By recording electrical signals from the tail and using that to estimate the
strength of the swimming activity, the velocity of the stimulus was coupled to and manipulated in
real-time based on the behavior of the fish. The fish adapted its swim strength according to a stimulus
gain factor which was varied in this condition.

During such fictive behavior, whole-brain activity was recorded at cellular resolution using a
light-sheet fluorescence microscope (LSFM) containing two laser beams and an overhead cam-
era (Vladimirov et al., 2014). Briefly, light-sheet calcium imaging in genetically modified zebrafish
expressing GCaMP (Dana et al., 2019) works by illuminating a thin plane of tissue with a laser light
sheet that rapidly moves across the brain in the axial (Z) direction. When neurons in this plane are
active, calcium influx triggers the GCaMP protein to fluoresce. Note that this is an indirect measure-
ment of brain activity, as changes in calcium levels are a proxy for neuronal spiking, compared to
directly recording the membrane voltage.
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Figure 3: Activity traces. A. Time series for 71,721 neurons extracted from whole-brain calcium
recording lasting two hours. Color represents normalized activity (∆F/F ) with brighter colors
indicating higher activity. White lines denote changes of stimulus condition, the short name of which
is on top. Neurons are ordered by similarity, using rastermap (Stringer et al., 2023). Note that this
representation squeezes the neuron dimension relative to the time dimension. The original aspect
ratio of neurons to timesteps is approximately 9:1, whereas in the figure it is 1:2 for presentation
purposes. B. Per-condition training/validation/test set splits.

Full details regarding the experiment, including light-sheet imaging, virtual reality, and stimulus
conditions are in Appendix A.

2.2 LIGHTSHEET DATASET AND POSTPROCESSING

The raw video of whole-brain activity during fictive behavior is a 4-dimensional volume of
2048×1328×72×7879 voxels in XYZT imaged at 406 nm×406 nm×4 µm×914 ms resolution.
Frames at different depth and time points are shown in Fig. 2A. We extensively postprocessed
this dataset: aligned it to correct for elastic deformation, segmented the neuron cell bodies, and
extracted per-neuron activity traces. We briefly comment on these aspects below. Full technical
details are in Appendix B.

Alignment. Over the recording period, the volume deformed such that the spatial location of neurons
in the beginning of the session did not match their location at the end. We found that neither global
nor piece-wise 2D affine transformations were sufficient to correct for the misalignment. Therefore,
we developed a custom alignment pipeline in which dense optical flow fields were estimated per time
step, with example frames shown in Fig. 2B. Flow fields were regularized with an elastic spring mesh
and used to warp each frame.

Segmentation. The goal of ZAPBench is to accurately predict per-neuron activity traces, for
which a voxel-level cell segmentation is required. We found neither simple heuristic methods (e.g.,
thresholded correlation maps) nor pre-trained segmentation approaches (such as Stringer et al., 2021)
to be sufficiently accurate. Instead, we manually annotated around 2,000 neurons as training data
using the [reference omitted for blind review] protocol for a customized segmentation pipeline based
on one-shot Flood Filling Networks (FFNs; Januszewski et al., 2018). We segmented a total of 71,721
putative neurons (see Fig. 2C for examples).
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Activity traces. Using the segmentation and a standard normalization of the activity in which
baseline fluorescence was subtracted (∆F/F ), we obtained per-neuron traces, shown in Fig. 3A.
Over the course of the experiment, the fish was exposed to nine different visual stimulus conditions.
For most of the conditions, repetitive structure is apparent. This can be explained, in part, by the
periodicity of the stimuli. For instance, in the FLASH condition, light and dark images were shown
alternately every 30s for a total of 10min.

2.3 STRUCTURAL RECONSTRUCTION IN PROGRESS

After conclusion of the activity recording session, a synapse-resolution (4× 4× 30 nm3 voxel size)
structural volume of the brain of the fish was acquired using volume electron microscopy (EM).
The EM volume, once fully analyzed, will make it possible to see detailed morphology of all cells
within the brain of the fish together with their chemical synapses, and to match these structural
reconstructions to the activity traces. The initial stages of the automated analysis of the EM volume
have been completed and it is currently undergoing manual proofreading by a team of specialists.

3 BENCHMARK

We propose a novel forecasting benchmark: the Zebrafish Activity Prediction Benchmark (ZAP-
Bench), the goal of which is to predict future neural activity from past activity. Specifically, we
consider the task of predicting the next half a minute of activity in two regimes: given either a short
(few seconds) or a long (several minutes) context window of immediately preceding activity. We use
the Mean Absolute Error (MAE) to measure how close predictions are to the actual recorded values.
We consider forecasting models taking either activity traces (time series) or volumetric video as input,
but always use trace predictions to compute errors. We also define two naive baselines for calibration.

3.1 SETUP

The goal of the benchmark is to predict held-out snippets of future neural activity Â over a prediction
horizon H given past neural activity A over a context window C. This can be formalized as finding
functions that map:

f
(
A1:C

)
= ÂC+1:C+H , (1)

where At1:t2 denotes a time slice of neural activity in the range [t1, t2]. For time series forecasting,
A is a matrix with time and neuron dimensions (7879×71721). For volumetric video models, A is a
4d tensor with time and spatial dimensions XYZ.

The prediction horizon is H = 32 steps, meaning that snippets of 32× 0.9 s ≈ 0.5 min duration of
future activity are to predicted. The context size is C = 4 or C = 256 steps, to which we refer as
short and long context, respectively.

Forecasting models can make use of covariate information: available covariates include information
about the stimulus shown in the context window (past covariates, P1:C), the stimulus shown in
the prediction horizon, which follows the context (future covariates, FC+1:C+H ), as well as spatial
locations of neurons (static covariates, S):

f
(
A1:C ,P1:C ,FC+1:C+H ,S

)
= ÂC+1:C+H . (2)

We divide the dataset by stimulus condition, splitting each condition into 70% training data, 10%
validation data for model selection, and 20% test data for evaluation. We completely hold-out one
condition, TAXIS, and only use it for testing (see Fig. 3B).

3.2 EVALUATION

For evaluation, models make predictions of length H on test data, which are compared against ground
truth activity. We denote a snippet of H steps of predicted activity starting at some absolute time
point t in the experiment by Ât

1:H . For each condition, a set of predictions is made, for all contiguous
snippets of length H in its respective test time range:

Pcond. =
{
Ât

1:H with t ∈ Tcond.
}
, (3)
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where Tcond. contains all time indices of a condition’s test set starting from which a full snippet of
H steps can be predicted. Similarly, we define a set Gcond. containing corresponding ground truth
activity snippets At

1:H .

We calculate mean absolute error (MAE) to quantify model performance:

MAEh
cond.

(
Pcond.,Gcond.

)
=

1

|Tcond.|
∑

t∈Tcond.

1

N

N∑
n=1

∣∣Ât
h,n −At

h,n

∣∣, (4)

where N is the number of neurons, and h ∈ {1 . . . H}, so that MAEs are calculated per condition
and per step h predicted ahead in the horizon.

3.3 MODELS

We evaluated a representative set of models on ZAPBench, covering time-series models, volumetric
video models, as well as naive baselines. Our selection was biased towards simple but state-of-the-art
models and exploration of different classes of input-output mappings. We briefly introduce the models
here and provide full details including our hyperparameter choices in Appendix C.

3.3.1 TIME-SERIES FORECASTING

Linear. Zeng et al. (2023) found that simple linear models can outperform state-of-the-art transformer
architectures on multiple forecasting benchmarks. Inspired by these results, we included linear
forecasting models, which map

fLinear
(
a1:C,n,φ

)
= âC+1:C+H,n, (5)

where at1:t2,n denotes a time slice of neural activity in the range [t1, t2] of a single neuron n out of
N total neurons. Note that a single set of parameters φ is used to predict all time series, which is
why this type of model is also referred to as a global univariate model. The model uses a single linear
transformation to map C inputs to H outputs. We optionally use the normalization proposed in Zeng
et al. (2023) by which values at step C are subtracted from the input and added back to the output.

TiDE. Proposed by Das et al. (2023), Time-series Dense Enoder (TiDE) is a global univariate
Multi-Layer Perceptron (MLP) architecture, with nonlinearities and covariates,

fTiDE
(
a1:C,n,P1:C ,FC+1:C+H ,S,φ

)
= âC+1:C+H,n. (6)

For past and future covariates, P and F, we encoded information about the stimulus, as detailed in
Appendix B. For static covariates S, we used sine-cosine embeddings to encode the spatial locations
of neurons.

TSMixer. Rather than making univariate predictions per neuron, TSMixer (Chen et al., 2023) is a
multivariate forecasting model,

fTSMixer
(
A1:C ,φ

)
= ÂC+1:C+H . (7)

TSMixer processes time and neuron dimensions in an alternating fashion: a block includes an MLP
applied along the time dimension (time-mixing), followed by transposition and two MLPs applied
along the feature, i.e. neuron, dimension (feature-mixing).

Time-Mix. A variation of TSMixer without feature-mixing. Since individual time series in the
activity matrix cannot influence each other, Time-Mix, can be viewed as mapping

fTime-Mix
(
a1:C,n,φ

)
= âC+1:C+H,n, (8)

i.e., a global univariate model, similar to fLinear in Equation 5.

3.3.2 VOLUMETRIC VIDEO FORECASTING

Instead of extracting the traces from the volumetric video, we can also apply models directly to it
and use the segmentation mask for the loss and output. In particular, for video models we have a
four-dimensional A where each time step has spatial dimensions 2048×1152×72 in XYZ. We used
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the volume from which traces were extracted in Sec. 2.2 but slightly cropped it in the Y-axis for
computational reasons.

U-Net. To construct the function,

fU-Net
(
A1:C , h,φ

)
= ÂC+h, (9)

we use a variation of the U-Net (Ronneberger et al., 2015) with modifications for scalability to the
volumetric case with 18M weights φ. This model is naturally multivariate. Down- and upsampling
schemes are described in Appendix C. We condition every block on a lead time h between 1 and 32,
as proposed by Andrychowicz et al. (2023) for weather forecasting, using FiLM layers (Perez et al.,
2018). Therefore, the output layer maps to a single three-dimensional frame that forecasts the video
for the given lead time. We use the neuron mask to compute and optimize the same MAE loss as on
the traces. Similarly, we use traces extracted from forecasts for evaluation. Extensive model selection
and pretraining results for this model are in Anonymous (2024).

3.3.3 NAIVE BASELINES

To calibrate performance of time series and video models, we define two naive, parameter-free
baselines which do not require any training.

Mean. The mean baseline makes predictions based on averaging past activity of each neuron

fMean
(
aC−W :C,n

)
= âC+1:C+H,n, (10)

where the hyper-parameter W defines the length of the window of past activity that fMean averages
over: the average is repeated for all H steps in the prediction horizon. Evaluating performance for
different choices of W ≤ C, we find that short W are better when predicting few steps ahead, and
longer W are better when predicting steps later in the horizon (supplementary Fig. S1). Based on
validation set performance, we use W = 4 for C = 4. For C = 256, we use a model that uses
W = 4 for steps 1 . . . 10 in the prediction horizon, and W = 128 for steps 11 . . . 32.

Stimulus. As described in Sec. 2.2, some of the repetitive structure in the trace matrix can be
attributed to stimuli that are presented multiple times. We formulate a stimulus-evoked baseline to
capture this:

fStimulus
(
FC+1:C+H

)
= ÂC+1:C+H , (11)

where fStimulus describes the lookup based on stimulus phase at test time. More specifically, we
chunked conditions by stimulus repeats, aligned repeats, and computed the average response per
neuron and return this stimulus-evoked response (Fig. S2) as a prediction.

4 RESULTS

From our experiments, we gain a number of insights, and identify opportunities for future work. First,
we analyse performance relative to naive baselines:

#1: Models largely outperform naive baselines. Comparing models across short and long context
for different horizons in Fig. 4, we find that models mostly outperform naive baselines in terms of
grand average MAE (taken across all conditions except the held-out one).

#2: Baselines facilitate comparisons across conditions. A more nuanced view of results is provided
in Fig. S3 and Fig. S4 for short and long context, respectively: rather than calculating the grand
average, we report MAE per condition. Comparing conditions, we observe that performance greatly
varies in terms of absolute MAE. Different conditions activate different fractions of neurons in
the brain, which, in turn, translates to changes in mean activity levels and error magnitude. Naive
baselines such as our mean and stimulus baseline thus help calibrate performance across conditions.

#3: Stimulus baseline can be competitive. Although simple, we find that the stimulus baseline can
be competitive in some settings. This is reflected in the grand average results for short context, 32
steps ahead (Fig. 4). Considering per-condition short context results, we e.g. find that less than half
of the models outperform the stimulus baseline at 32 steps predicted ahead (53 out of 120 runs),
and that the stimulus baseline is particularly strong on conditions FLASH, TURNING, and ROTATION
(Fig. S3). This suggests room for improvement since stimulus covariates can be used by forecasting
models. Note that this finding does not apply to long context (Fig. S4).
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Figure 4: Grand average results for short and long context. To compare overall performance, we
take the grand average MAE (lower is better) across conditions for short (C = 4) and long context
(C = 256). Error bars indicate variability due to random number generator seeding, excluding
variability across conditions (95%-confidence intervals; 3 random seeds). Values are clipped to axis
limits. The dotted black line indicates performance of the mean baseline, the solid line is the stimulus
baseline. Per-condition results are reported in the supplement.

Contrasting different context lengths, we find that:

#4: Long context improves predictions further ahead. Models given long context tend to perform
better than ones given short context. The difference is greater with more steps predicted ahead
(Fig. 4). Note that long context is not always advantageous, in particular, when predicting only a
single step ahead we find that U-Net performs worse with long context. We speculate that this is due
to effectively having more examples in the training dataset when C = 4.

#5: Differences between models are minor in long context setting. For short context, we see more
variability between models than for long context. For long context, performance of TiDE, TSMixer,
Time-Mix, and U-Net is very similar, while Linear is worse (Fig. 4, Fig. S4). Time-Mix is the simplest
architecture performing well on long context, a global univariate model without covariates.

Finally, we highlight three key findings with opportunities for future work:

#6: Cross-neuron information may be underutilized for time-series models. For TiDE, we found
that a variant without static covariates, i.e., spatial positions of neurons, performed best (Fig. S7).
Contrasting TSMixer and Time-Mix, we do not see a clear pattern suggesting that mixing time-
series to utilize cross-neuron information helps. Difficulty in utilizing high-dimensional multivariate
information has also been a point of discussion in recent forecasting literature (e.g., Zeng et al., 2023;
Nie et al., 2023). We view this as an opportunity to explore new approaches. Future availability of
the connectome will also enable the use of additional model classes, e.g., graph-based ones.

#7: Video model ranks best for short context. Overall, the U-Net model ranks best on short context,
as evidenced by grand average and per-condition results. The relative difference to other models is
largest for single step ahead predictions in the short context setting. Looking at the hold-out condition
(Fig. 5), we also find an advantage across different context length for single step ahead predictions,
but not for longer horizons. Attempting to find time-series models that match or outperform these
results is an interesting avenue for future work.

#8: Errors are not evenly distributed across the brain. To facilitate qualitative comparisons
between models, we developed a web-based 3d visualization tool: [Link omitted for double-blind
review. See Fig. S10 for a screenshot and description, and uploaded supplementary material for
a video demonstration.]. Visualizing the spatial location of errors, we observed that they tend to
cluster, rather than being evenly distributed across the brain. For instance, we observed a tendency for
higher MAEs in the dorsal-anterior part of the brain (pallium), which is considered homologous to
the mammalian hippocampus (Yáñez et al., 2022) and thus likely plays a role in learning and memory
formation, and for which there is some evidence of supporting quantity discrimination (Messina et al.,
2022). Additional analyses of MAE variations may benefit from incorporating data from standard
zebrafish atlases (Randlett et al., 2015; Kunst et al., 2019).
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Figure 5: Hold-out condition results for short and long context. Performance on TAXIS, held-out
from training, measured by MAE (lower is better). Points are individual runs (3 random seeds per
model). Values shown are clipped to axis limits. The dotted black line indicates performance of the
mean baseline. Note that the poor performance of TiDE can be explained by its reliance on stimulus
covariates, which are out-of-distribution for this condition.

5 CONCLUSIONS AND FUTURE WORK

We presented ZAPBench, a novel whole-brain activity prediction benchmark. The dataset used in
the benchmark represents the current state-of-the-art in experimental and postprocessing techniques.
Potential limitations remain, which we discuss in more detail in Appendix B.

Our initial results show that while selected approaches based on recent literature are sufficient to
outperform naive baselines, significant room for improvement remains. We see multiple avenues
for exploration. Our results suggest that cross-neuronal information may currently be underutilized.
Graph-based approaches and latent variable models that explicitly account for multivariateness and
correlations between activity traces may be promising directions to explore. Models may also benefit
from the incorporation of known biological inductive biases and from probabilistic approaches which
quantify forecast uncertainty and allow sampling multiple future trajectories.

MAE, the benchmark metric, is commonly used for evaluating forecasting models, but it provides
only a very limited measure of activity distribution characteristics. Scientifically useful models of
brain activity should not only accurately predict immediate future states but also realistically represent
the underlying generative processes and their statistical distributions. In the future, it might therefore
be necessary to incorporate additional metrics such as Continuous Ranked Probability Scores (CRPS;
Gneiting and Raftery, 2007), as well as metrics that assess the "physical realism" of predicted brain
activity, such as measures of auto-correlation, or power spectral density.

Because the brain is a stochastic system, there is also a minimal non-zero level of error beyond which
even a perfect forecasting model could not improve. The numerical value corresponding to this
"performance ceiling" is not known, and there is no gold standard forecasting model to compare to.
Stochasticity of brain activity arises from inherent biophysical and biochemical sources of randomness
(e.g. probabilistic vesicle release in synaptic transmission, random binding of neurotransmitters
to postsynaptic receptors), unobserved processes (e.g. neuromodulation, intrinsic cell excitability
varying over time) and sensory stimuli other than visual that are not under precise control (e.g.
olfactory, auditory, mechanoception).

The future availability of the connectome will help mitigate the latter sources, as sensory cells
could then be distinguished from cells focused on internal computations and therefore used as input
(covariates) rather than prediction targets in the benchmark. More importantly, the connectome will
enable more approaches, such as white- and grey-box models that directly incorporate the structural
connectivity information and combine mechanistic insights with data-driven modeling. It will also
make possible additional investigations such as inference of structure from function.

We hope ZAPBench will serve as a catalyst for the development of increasingly accurate and
sophisticated models of brain activity and stimulate innovation in predictive modeling.
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REPRODUCIBILIY STATEMENT

Our experimental setup is described in full detail in Appendix A, data acquisition and postprocessing
in Appendix B, and technical details on models and hyperparameters are in Appendix C. Datasets,
all relevant code, and interactive visualizations will be made publicly available through a dedicated
project website following double blind review, see Appendix D for additional information.
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A EXPERIMENTAL SETUP

A.1 EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments were conducted in accordance with the guidelines of the National Institutes of Health.
Animals were handled according to IACUC protocol 22-0216 [reference omitted for blind review].
We used a 6 dpf zebrafish with a nuclear-targeted GCaMP variant for our experiments (Tg(elavl3:H2B-
GCaMP7f); Tg(gfap:jRGECO1a); Tg(elavl3:Gal4-VP16),(UAS:jRGECO1b). The sex of the fish is
indeterminate at this age. Fish were raised in shallow Petri dishes, on a 14 h light, 10 h dark cycle
at around 27 ◦C, and fed ad libitum with paramecia after 4 dpf. The experiment was done during
daylight hours (4−14 h after lights on). All protocols and procedures were approved by [omitted for
blind review].

A.2 LIGHT-SHEET IMAGING

To perform light-sheet imaging of whole-brain activity, we used a light-sheet microscope described
previously (Vladimirov et al., 2014). We used two 488 nm laser beams that were scanned through
low-NA objectives in the horizontal and vertical directions to generate the light sheet and move it
dorsally and ventrally in the brain. One light sheet (side laser) entered the brain from the left side of
the head, while the other (front laser) entered the brain from the front of the head, between the eyes.
The front laser was swept such that illumination was restricted to the region between the eyes. The
side laser was switched off when it swept in front of the eyes to prevent excitation of the retina. For
every plane, an GCaMP7f fluorescence image was acquired using a 16x/0.8 NA detection objective
(Nikon), Nikon tube lens, 525/550 nm detection filter (Semrock), and a camera (Orca Flash 4.0 v2,
Hamamatsu). After each plane was acquired, the detection and illumination objectives were moved
dorsally by 4 µm to collect the next plane, until the entire span of the brain was imaged at around 1
volume/second.

A.3 VIRTUAL REALITY SETUP AND FICTIVE BEHAVIOR

We used a previously published protocol for virtual reality fictive behavior (Vladimirov et al., 2014).
Briefly, the larval zebrafish were paralyzed with the nicotinic acetylcholine receptor blocker α-
bungarotoxin (Sigma-Aldrich #203980) (immersion in 25 µM toxin in external solution for 10−30 s).
The fish was then embedded on an acrylic platform in a custom square behavioral chamber. Agarose
was removed around the head of the fish and over the dorsal part of the fish‘s tail. Large-barrel glass
pipettes (tip diameter ∼60 µm) were attached to the left and right dorsal sides of the fish’s tail via
gentle suction to record motor nerve electrical activity. The electrical activity was amplified and
filtered using a MultiClamp 700B amplifier. The 10 ms-rolling standard deviation of the signal was
calculated and defined to be the swim signal used to quantify behavior and provide visual feedback.

Visual stimuli were projected underneath the fish using a video projector (MP-CD1, Sony). In closed
loop configurations, swim signals above 2.5 standard deviations of baseline triggered backwards
movement of visual stimuli with a speed proportional to swim power (stimulus velocity = drift speed
- gain × swim power).

A.4 VISUAL STIMULI FOR VIRTUAL-REALITY BEHAVIOR

We used the following list of stimuli during our experiments:

1. Gain: To probe gain adaptation (Ahrens et al., 2012; Kawashima et al., 2016), animals
were subject to periods of two different visuomotor gains, low gain and high gain, that
alternated every 30 seconds, for a total of 10 minutes (i.e. 10 trials each of high and low
gain). During these periods, the animal was subject to a sine-grating visual stimulus that
would drift forward with a constant velocity when the animal was not swimming, in order to
evoke the optomotor response (OMR; Orger et al., 2000; Naumann et al., 2016). When the
animal emitted a swim, the sine grating would move backwards with velocity proportional
to the vigor and to the visuomotor gain. The gain during the high gain periods was two
times stronger than during low gain periods.
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2. Dots: To probe evidence accumulation and decision-making (Bahl and Engert, 2020),
animals were subjected to a series of variable-coherence random dot, open-loop optic flow
stimuli. Briefly, during baseline periods, animals were shown small flickering dots (dot
lifetime 200 ms). During three stimulus periods, 100% of the dots moved rightward for 20s.

3. Flash: To probe animals’ light and dark flash-evoked startle responses (Burgess and Granato,
2007), we alternated delivery of whole-field light and dark stimuli every 30s for a total of 10
minutes.

4. Taxis: To probe animals’ phototactic behavior (Brockerhoff et al., 1995; Wolf et al., 2017;
Chen et al., 2021), we alternated the left and right visual hemifields to be either light or dark,
cycling over the following (left, right) combinations: (light, light), (dark, light), (dark, dark),
(light, dark), (light, light), (light, dark). Each combination lasted for 20s and was repeated a
total of 5 times.

5. Turning: To drive turning behavior, we delivered drifting sine gratings in an open loop
configuration, cycling between forward, leftward, rightward, and backwards motion. Motion
lasted for 30s with 30s of stationary gratings in between trials. Each direction was repeated
5 times.

6. Position: We probed positional homeostasis as previously described (Yang et al., 2022).
Briefly, we delivered a 1 s long forward pulse of a sine grating, followed by a delay period
of various lengths (3s, 6s, or 9s), followed by a 30s period of open loop forward grating. We
performed 3 trials of each delay period.

7. Open loop: To probe futility-induced passivity (Mu et al., 2019), we delivered constant-
velocity, open-loop forward drifting sine gratings for 15 min. The animal‘s swimming did
not result in any visual feedback.

8. Rotation: To probe neural activity response to rotational stimuli, we delivered sine grating
stimuli that rotated with constant angular velocity. We cycled between clockwise and
counterclockwise rotations, with each rotation direction lasting for 30 s for a total of 10 min.

9. Dark: To measure spontaneous brain activity, all visual stimuli were turned off in this
condition.

3



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B DATASETS AND POSTPROCESSING

B.1 ACQUIRED LIGHT-SHEET DATASETS

Using the experimental setup detailed in Appendix A, lightsheet functional imaging was used to
acquire whole-brain activity and anatomy datasets.

Functional activity volume. Whole-brain activity during fictive behavior was im-
aged at 406 nm×406 nm×4 µm×914 ms resolution in XYZT, yielding a volume of size
2048×1328×72×7879 voxels.

Functional anatomy volume. In addition, a volume with higher Z-resolution and longer exposure
was captured at the beginning of the session. This functional anatomy dataset was imaged at
406 nm×406 nm×1 µm×6.82 s resolution in XYZT. Ten frames were taken, yielding a volume of
size 2048×1328×301×10 voxels.

For our analyses, we discarded the first 13 frames in Z of the functional anatomy dataset, so that this
volume has four times more frames in Z as compared to the activity dataset.

B.2 ALIGNMENT

Since the acquired activity data shows significant spatio-temporal deformation, we developed a
pipeline to align it—using elastic alignment preceeded by translational pre-alignment.

Static reference. The anatomy light-sheet volume was postprocessed to serve as a static reference for
alignment: we rescaled its intensity values for each frame to double precision, computed the temporal
average over frames, and applied Contrast Limited Adaptive Histogram Equalization (CLAHE), using
a kernel of size 128×128×16 in XYZ, and 1024 bins.

Translational pre-alignment. For pre-alignment, we estimated per-timestep translational offsets
in XYZ to align the activity dataset against our static reference, using phase cross-correlation as
implemented in scikit-image (van der Walt et al., 2014). For this, we linearly upsampled the activity
volume four-fold in Z so that its size matched the reference. We temporally filtered the resulting
offsets with a median filter of size 128 (to avoid jitter in the estimates), and warped with a spline
interpolation order of three.

Elastic alignment. To address remaining misalignment, we estimated per-timestep optical flows
between the translationally pre-aligned volume against the static reference using the SOFIMA toolbox
(Januszewski et al., 2024). We performed two rounds of elastic alignment at varying granularity, each
of which consisted of the following consecutive steps:

1. Estimation: Flow fields were estimated using cross-correlation between patches while
masking out background. Background was estimated heuristically using an active contours
model and morphological operations. For round 1, patches of size 128×128×64 extracted
with step sizes 32×32×16 in XYZ were used. These sizes were halved for round 2.

2. Filtering: We filtered the resulting flow fields for local consistency. More specifically, we
discarded patches that exceeded our threshold for absolute maximum movement magnitude
(more than 20 voxels), absolute deviation from the 3×3 window median (more than 10
voxels), as well as ones for which the correlation peak did not fulfill our sharpness criterion
(lower than 1.0).

3. Relaxation: We modeled each frame of the functional activity volume as a cuboid 3d
mass-spring mesh system, with the nodes of the mesh separated by 32×32×16 voxels in
XYZ. We used the filtered flow field to connect every mesh node with at most one virtual
0-length Hookean spring with a rest position at the location indicated by the flow field vector.
We then allowed the system to relax using the FIRE algorithm (Bitzek et al., 2006) and the
following settings in SOFIMA: k0 = 0.05, k = 0.1, dt = 0.001. We used the relaxed mesh
as a coordinate map representation of the transform warping the frames into alignment with
the anatomical reference volume.

For final alignment, we combined all transforms into a single coordinate map and warped the raw
data with spline interpolation order three.
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B.3 NORMALIZATION

We estimated baseline fluorescence in the aligned dataset by calculating the 8th percentile of each
voxel using a temporal window of 400 steps (∼ 6 min). We spatially median filtered the percentile
volume with a 3× 3 kernel, yielding the baseline volume F0 of the same size as the aligned volume
F . We then normalized each voxel in the aligned fluorescence data by calculating ∆F/F , i.e.:

∆F/F =
F − F0

F0
.

We used clipping to eliminate extreme outliers in the resulting value, with lower bound -0.25, and
upper bound 1.5, to obtain the normalized activity dataset.

B.4 SEGMENTATION

To segment individual neurons in the dataset, we used a modified versions of flood-filling networks
(FFNs; Januszewski et al., 2018). We applied FFNs to the functional anatomy data, training them on
subvolumes of densely annotated neurons that were labelled manually, using the software Amira.

Postprocessing. The anatomy light-sheet volume was postprocessed for segmentation: as for
alignment, we rescaled its intensity values for each frame to double precision, computed the temporal
average over frames, and applied Contrast Limited Adaptive Histogram Equalization (CLAHE), using
a kernel of size 128×128×16 in XYZ, and 1024 bins. For FFN training, we additionally normalized
this volume by 1) applying ln(x+ 1), 2) z-scoring, and 3) scaling each voxel by 0.5.

Training data. We manually labelled neurons in three subvolumes taken from the postprocessed
functional anatomy data, where each subvolume has a size of 100×100×288 voxels in XYZ. A
total of 2,176 neurons were labelled across the three subvolumes, selected to cover dense regions
of varying data quality (e.g., different amount of blurriness), following the protocol described in
[reference omitted for blind review].

We used the volumetric annotations to generate examples for FFN training as follows: positive
example center points were generated for all labeled (non-zero) voxels after applying binary erosion
twice to the annotated neuron segments; negative example center points were taken for all unlabeled
(background) voxels after dilating the annotated neurons twice.

Network architecture. We used a residual convstack architecture (Januszewski et al., 2018) with a
33×33×33-voxel field of view (FOV), 8 residual modules, 32 feature maps in all internal convolu-
tional layers, and layer normalization after the first convolution, at the beginning of every residual
module, and before the final layer.

Training. We trained the FFN using the AdamW optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 0.01, batch size of 64. Training examples were formed by loading 33×33×33-voxel
subvolumes centered at the locations described above. We chose a smaller training example size and
did not use a FOV movement policy ("one-shot training") unlike Januszewski et al. (2018), because a
single FOV was sufficiently large to fully contain even the largest somas.

Inference. We selected the checkpoint with the lowest variation of information between segmentation
and ground truth annotations. We created a binary mask consisting of voxels with normalized intensity
values > 0.5, eroded it twice and considered all its voxels as seed point locations for FFN inference.
This yielded a segmentation of size 2048×1328×288, with a total of 82,536 putative neurons.

Postprocessing. We heuristically filtered out neurons, excluding any fragments that were smaller
than 250 voxels. We excluded neurons whose bounding boxes intersected the first 17 sections in Z
because of rendering artifacts in the corresponding layers of the aligned functional data. In addition,
we manually screened out 113 segments that were located outside of the brain. The postprocessed
segmentation contains a total of 71,721 putative neurons.

To evaluate the quality of our segmentation, we manually annotated 1,358 cells across eight evaluation
subvolumes (held out from training; Fig. S8) and report metrics in Table S1.
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B.5 TRACE EXTRACTION

To extract traces, we 4x-downsampled the segmentation to the Z-resolution of the normalized activity
data. We then extracted a time series for each neuron by averaging voxels falling into the respective
segmentation mask, yielding a 7879×71721 trace matrix (time×neurons).

We sorted traces by similarity using rastermap (Stringer et al., 2023) for visualization purposes. We
used 100 clusters, 200 PCs, a locality parameter of 0.1, and time lag window parameter of 5.

B.6 STIMULUS FEATURE ENCODING

The visual stimulus shown to the fish is recorded in two channels during the entire experiment. For
models to utilize this information, we encode these channels into a covariate matrix X of shape
7879×26, where individual conditions are separated so they can be distinguished. All stimuli are
sufficiently different, and, hence, no shared encoding of variables is possible. After every encoding,
there is a single binary dimension that indicates the condition identity. For example, dimension 2 is 1
if the GAIN condition is active and otherwise 0.

1. Gain: encode in the first dimension as either low with −1 or high with 1.
2. Dots: encode in the third dimension as either −1 or 1 for two present settings of orientation

and coherence.
3. Flash: encode in the fifth dimension as −1 for dark and 1 for bright.
4. Taxis: encode in dimensions 7 and 8 as −1 for dark and 1 for bright on the left and right

side, respectively.
5. Turning: encode velocity in dimension 10 and a sine-cosine encoding of the direction of

the sine gratings in dimensions 11 and 12.
6. Position: dimensions 14 to 16 encode the grating type in a one-hot fashion, and dimension

17 encodes the delay in the range [0, 0.9].
7. Open loop: fixed stimulus so no encoding except the condition indicator in dimension 19.
8. Rotation: encode the direction of the rotation in dimension 20 as −1 and 1 for right and

leftward rotation, respectively.
9. Dark: only indicator variable in dimension 22 as for open loop.

The last four variables of the covariate matrix are used to track specimen identity and are not
meaningful in the benchmark context.

B.7 LIMITATIONS

Our dataset reflects current best practices in experimental design and data postprocessing, however, it
does have a number of limitations.

Acquisition. Constraints of phototoxicity limited the duration of experiment, and thus the total
amount of activity data recorded. Because of the microscope’s finite voxel throughput budget, there
is a fundamental trade off between the signal-to-noise-ratio, and the temporal and spatial resolutions
(particularly in the axial direction). We optimized the latter to be able to resolve individual cells,
leaving us with a volume scan rate of ∼1 Hz, two orders of magnitude lower than the highest known
action potential frequencies in zebrafish. We attempted to mitigate this by using a nuclear-targeted
GCaMP variant, optimized for the slower kinetics of calcium in the nucleus. A side benefit of this
choice is that the somas, which in zebrafish predominantly cluster in dense groups, were easier to
segment and to later match to the reference structural EM volume. Overall, our dataset should be
considered to represent a low-pass filtered version of the underlying high frequency electrical activity
within the brain. Optical depth limitations of the imaging system also meant we could not image the
complete brain, and some cells on its ventral side are thus not part of the LSFM volume. Finally,
the substantial cost and effort necessary to process the volume EM data resulted in only a single
specimen being imaged in both modalities.

Postprocessing. While elastic alignment of all frames to the anatomical reference volume elim-
inated any visually noticeable large-scale deformation, occasional spatially and temporally local
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misalignments might remain as the experiment was done with an animal whose brain was still
actively developing (we observed rare events of cell birth and migration). Since no proofreading
was performed on the cell segmentation we are using to extract activity traces, our putative soma
segments are expected to suffer from a low rate of split and merge errors (Table S1). These should be
resolved once the EM volume reconstruction is available and aligned to the LSFM data, since somas
can be unambiguously detected in EM images.

Signal. Visual inspection of the LSFM data reveals widely present structured noise in the form
of vertical stripes oscillating at a high frequency, comparable or higher than that of the volume
acquisition rate. The stripe widths are on the order of a typical soma diameter. The genesis of these
stripes is thought to have to do with instabilities in the illumination system in the microscope. They
can distort the extracted activity trace signals, though we expect their impact to be limited due to the
disparity between their frequency and the characteristic timescales of the calcium dynamics.

We have attempted to filter them out with heuristic and machine learning-based approaches, as well
as simple frequency band filtering, but were not able to obtain a visually satisfying result for which
we were also confident that all relevant underlying signal was retained.

In addition to the spurious oscillations and correlations induced by the stripes, scattered fluorescence
from adjacent cells might cause some amount of signal mixing, even though our segmentation assigns
voxels to cells in a binary manner.

Generalizability. We used standard behavioral assays for fictive behavior, as outlined in subsec-
tion A.4. These do not probe the full behavioral repertoire of larval zebrafish, but were selected to
accommodate the limits of the experimental setup. Specifically, only visually evoked behaviors were
tested over a limited time period of about 2 h. The reflexes tested in the experiment are universal
for zebrafish, but might not apply to other fish species. The zebrafish neural architecture is not
fully stereotyped and is expected to differ between specimens. Neuronal activity forecasting models
trained for the ZAPBench data are therefore likely to lose predictive power when directly applied to
recordings from other specimens.

B.8 PROGRESS ON ELECTRON MICROSCOPY VOLUME RECONSTRUCTION

The electron microscopy volume has been aligned and segmented, and is currently undergoing
proofreading (manual correction of reconstruction mistakes) by an expert team. The volume covered
by the EM images is a superset of that recorded by the lightsheet microscope. We identified about
190,000 putative somas within the volume, which includes both neurons and other cell types, like
glia. We performed a preliminary registration of the two volumes, obtaining good quality matches
(within 10 µm of a semi-automatically placed correspondence point) for about 45,000 cells (Fig. S9).
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C MODELS

C.1 LINEAR

The linear model consists of a single dense layer. We also implemented the normalization proposed
for the NLinear model in Zeng et al. (2023), but did not find this to increase performance. We use
the AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate of 10−3, weight decay of
10−4, and early stopping on the validation set loss.

C.2 TIDE

For the TiDE model (Das et al., 2023), we use a hidden layer size of 128, 2 encoder and decoder
layers, a decoder output dimensionality of 32, and no layer or reversible instance norm. We use the
AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate of 10−3, weight decay of 10−4,
and early stopping on the validation set loss.

Based on the ablations in Fig. S7, we report TiDE without past and static covariates in the main text,
as this variation showed best overall performance.

C.3 TSMIXER

For TSMixer Chen et al. (2023), we compared different numbers of blocks, MLP dimensions, and
normalization schemes on the validation set. Based on these results, we selected an architecture with
2 blocks, MLP dimension of 256, and no instance norm for C = 4, and 2 blocks, MLP dimension
128, and reversible instance norm for C = 256. We use the AdamW (Loshchilov and Hutter, 2017)
optimizer with a learning rate of 10−3, weight decay of 10−4, and early stopping on the validation
set loss.

C.4 TIME-MIX

Time-Mix is a version of TSMixer in which feature mixing modules are ablated. Similar to TSMixer,
we performed hyperparameter selection based on the validation set. For C = 4 and C = 256 we
used an architecture with 5 blocks. We used reversible intance norm for C = 256 but not for C = 4.
We use the AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate of 10−3, weight
decay of 10−4, and early stopping on the validation set loss.

C.5 U-NET

The U-Net downsamples the input video by a factor of 4 in XY using area-averaging to 512×288×72,
which greatly reduces computational requirements and statistically performs equally well as models
with full resolution input. We use three-dimensional convolutions throughout the network, and treat
the temporal context C as input features instead of the grayscale channel. The first resampling block
uses factor 2 in XY and does not downsample Z to achieve roughly isotropic resolution in the three
dimensions. We then use three further resampling blocks with factor 2 in all three spatial dimensions
down to a voxel resolution of roughly 26 µm3 and shape of 32×18×9. We use three residual blocks at
each resolution, except at the lowest resolution where we use four, and fix 128 features throughout the
U-Net. Each block uses a pre-activation design (He et al., 2016), with each two group normalization
layers (Wu and He, 2018) using 16 groups, Swish activations (Ramachandran et al., 2017), and
33 convolutions. For the output, we upsample twice to obtain the original resolution, and use one
residual block per resolution, but with a reduced feature dimension of 32.

We condition every block on a lead time between 1 and 32, as proposed by Andrychowicz et al.
(2023) for weather forecasting, using FiLM layers (Perez et al., 2018). Therefore, the output layer
maps to a single three-dimensional frame that forecasts the video for the given lead time.

We use the neuron mask to compute and optimize the same MAE loss as on the traces, and use the
AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate of 10−4 decayed to 10−7 over
500, 000 steps for C = 4 and 250, 000 steps for C = 256. For C = 256, we use only the initial
downsampling and no further U-Net blocks because we found that these lead to overfitting.
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D DATA AND CODE RELEASE

Datasets, all relevant code for the benchmark, and interactive visualizations will be made publicly
available through a dedicated project website upon publication.

D.1 DATASETS

Raw datasets as well as postprocessed versions are each terabyte-sized. We host them on cloud
storage and, in principle, can monitor access (e.g., IP addresses when requesting data). In order to
adhere to ICLR’s requirements for double blind reviewing, we decided to only make datasets publicly
available upon publication.

Datasets are stored such that they enable streaming access. This enables visualization with Neu-
roglancer (Maitin-Shepard et al., 2021), a web-based viewer for volumetric datasets. A screenshot is
in Fig. S11. We will provide links for browser-based views of all volumes, including the raw version,
aligned data, and segmentation upon publication.

To enable distributed volumetric data postprocessing, we developed a custom framework based on
TensorStore (TensorStore developers, 2024). More specifically, we used TensorStore’s virtual views
feature in combination with Beam (Apache Beam developers, 2024). We open-sourced this framework
as part of [redacted for blind review]. Upon publication, all configuration files implementing the
steps described in Appendix B will be released.

D.2 BENCHMARK

All forecasting models used in this paper were implemented in jax (Bradbury et al., 2018). Upon
publication, we will release all relevant code under the Apache 2.0 license. We implemented custom
data loaders on top of Grain (Grain developers, 2024), which are easily usable with frameworks such
as jax and PyTorch (Ansel et al., 2024). Utility code is open-sourced as part of [redacted for blind
review].

To interactively visualize forecasts, we developed a custom web-based viewer on top of three.js
(Three.js developers, 2024). An example view is in Fig. S10 and a video demonstration is uploaded as
supplementary material along with the submission. Links to visualizations for all individual models
that have been benchmarked will be made accessible upon publication through a project website.
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E SUPPLEMENTARY TABLES

Table S1: Evaluation of segmentation on eight manually annotated subvolumes in terms of counts and
variation of information (VOI) metrics. See Fig. S8 for spatial locations and extent of subvolumes.

Subvolume Annotated Count Predicted Count VOI Split ↓ VOI Merge ↓ VOI Total ↓

E1 112 158 0.719 1.342 2.060

E2 258 324 0.359 0.685 1.044

E3 214 131 0.548 4.137 4.685

E4 168 181 0.648 1.331 1.979

E5 166 168 0.502 2.085 2.587

E6 150 176 0.644 1.733 2.377

E7 128 123 0.603 1.519 2.121

E8 162 189 0.758 1.884 2.642
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F SUPPLEMENTARY FIGURES
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Figure S1: Naive baseline. Mean baseline with varying window length W evaluated on validation
set MAE across conditions (lower is better).
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Figure S2: Stimulus-evoked response. A. For each condition, we computed the stimulus-evoked
response by aligning activity according to stimulus phase and computing the average (excluding
periods in the test set). Here, we repeat this evoked response for each repetition in the condition.
Color represents normalized activity (∆F/F ) with brighter colors indicating higher activity. The
original aspect ratio of neurons to timesteps is approximately 9:1. Note that this representation
squeezes the neuron dimension relative to the time dimension. Conditions are separated by white
vertical lines. Alternating colors on horizontal line below traces indicate stimulus repeats for a given
condition. B. Activity traces for comparison to the evoked response. Unlike Fig. 3, neurons are not
sorted by similarity.

12



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.015

0.020

0.025

0.030

0.035

M
A

E
ga

in

0.015

0.020

0.025

0.030

0.035

M
A

E
do

ts

0.015

0.020

0.025

0.030

0.035

M
A

E
fla

sh

0.015

0.020

0.025

0.030

0.035

M
A

E
tu

rn
in

g

0.015

0.020

0.025

0.030

0.035

M
A

E
po

si
tio

n

0.015

0.020

0.025

0.030

0.035

M
A

E
op

en
 lo

op

0.015

0.020

0.025

0.030

0.035

M
A

E
ro

ta
tio

n

0.015

0.020

0.025

0.030

0.035

M
A

E
da

rk

1 step ahead 2 steps ahead 4 steps ahead 8 steps ahead 16 steps ahead 32 steps ahead

lin
ea

r

tid
e

ts
m

ix
er

tim
e-

m
ix

un
et

lin
ea

r

tid
e

ts
m

ix
er

tim
e-

m
ix

un
et

lin
ea

r

tid
e

ts
m

ix
er

tim
e-

m
ix

un
et

lin
ea

r

tid
e

ts
m

ix
er

tim
e-

m
ix

un
et

lin
ea

r

tid
e

ts
m

ix
er

tim
e-

m
ix

un
et

lin
ea

r

tid
e

ts
m

ix
er

tim
e-

m
ix

un
et

Figure S3: Short context results per condition. Points are individual runs (3 seeds per model).
Performance of the naive baseline is marked by the black line. MAE values are clipped to axis
limits. The dotted black line indicates performance of the mean baseline, the solid line is the stimulus
baseline. Short context results evaluated on mean squared error (MSE) are reported in Fig. S5.
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Figure S4: Long context results per condition. Points are individual runs (3 random seeds per
model). Performance of the naive baseline is marked by the black line. MAE values are clipped
to axis limits. The dotted black line indicates performance of the mean baseline, the solid line is
the stimulus baseline. Long context results evaluated on mean squared error (MSE) are reported in
Fig. S6.
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Figure S5: Short context results per condition by mean squared error (MSE). Points are indi-
vidual runs (3 random seeds per model). Performance of the naive baseline is marked by the black
line. MSE values are clipped to axis limits. The dotted black line indicates performance of the mean
baseline, the solid line is the stimulus baseline.
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Figure S6: Long context results per condition by mean squared error (MSE). Points are indi-
vidual runs (3 random seeds per model). Performance of the naive baseline is marked by the black
line. MSE values are clipped to axis limits. The dotted black line indicates performance of the mean
baseline, the solid line is the stimulus baseline.
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Figure S7: TiDE ablations. We focused model selection on variants without past stimulus covariates.
We skipped the full model for C = 256, as C = 4 results did not suggest superiority of the full
model.
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Figure S8: Evaluation subvolumes. Locations of eight evaluation subvolumes selected for manual
annotation. Cells in these volumes were annotated across the entire Z-depth (1358 cells total). Results
are reported in Table S1.
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x
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Figure S9: Registration and reconstruction of the electron microscopy volume. Top two panels:
cross sections through LSFM data overlaid on top of EM data. Bottom panel: sample neuron
reconstructions throughout the brain.
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Figure S10: Fluroglancer screenshot. Predictions of all benchmarked models are stored such that
they can be visualized interactively using a custom browser-based viewer we built for this purpose.
Trace-based predictions are projected on the location of neurons in 3 dimensions, where each neuron
is displayed as a circle with color indicating activity. Panels show ground-truth, predicted activity,
and MAE respectively. The viewer will be publicly accessible upon publication through a dedicated
project website, see Appendix D for details. A screen capture to demonstrate the viewer is uploaded
as supplementary material.
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Figure S11: Neuroglancer screenshot. All volumes are stored such that they can be browsed
interactively, using neuroglancer, WebGL-based viewer for volumetric data (Maitin-Shepard et al.,
2021). To ensure double-blind review, the datasets will only be publicly accessible upon publication,
see Appendix D for details.
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