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Abstract. Semi-supervised abdominal multi-organ segmentation is a
challenging topic. In recent years, many methods for automatic seg-
mentation based on fully supervised deep learning have been proposed.
However, it is very expensive and time-consuming for experienced med-
ical practitioners to annotate a large number of pixels. Therefore, more
researchers focus on semi-supervised learning in abdominal organ and
tumor segmentation. In this paper, we adopt a classical Teacher-student
semi-supervised strategy to perform the task of abdominal organs and
tumor segmentation. Unet is used as the architecture for the segmenta-
tion network. Based on the Unet network structure, we add the Incep-
tion block and SEBlock to achieve more accurate segmentation. Inception
block is its ability to simultaneously capture features at multiple different
scales. By introducing SEBlock, the model can better focus on specific
information relevant to the task while reducing attention to noise or ir-
relevant information. Besides, we combine Cross Entropy Loss and Dice
Loss as loss functions to improve the performance of our method. We
apply a teacher-student model with exponential moving average (EMA)
strategy to update the network model parameters. The organs and tumor
mean DSC on the public validation set was 85.39%, 18.30% respectively,
the organs and tumor mean NSD was 89.36%, 6.44% respectively. And
the average running time and the area under GPU memory-time curve
35.54 s, 38175.35.
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1 Introduction

The field of abdominal multi-organ segmentation has witnessed significant ad-
vancements in recent years, primarily driven by the rise of fully supervised deep
learning methods. However, the reliance on fully annotated datasets, which de-
mand considerable time and expertise from medical professionals, has become
a bottleneck in further progress[18]. Semi-supervised learning uses existing la-
beled samples to pseudo-label the remaining unlabeled data, thus mining useful
information from unlabeled samples[2,4],which is more practical for the cur-
rent background.Therefore, more and more researchers begin to pay attention
to semi-supervised learning
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In this paper, we present a novel approach that leverages the classical Teacher-
student semi-supervised strategy to tackle the intricate task of segmenting ab-
dominal organs and tumors. Our methodology is founded on the robust archi-
tecture of U-Net[15], a popular choice for image segmentation tasks. Based on
the U-Net framework, we introduce Inception block[17] and SEBlock[7] to enable
our model to fully understand the belly structure and effectively filter out noise
and irrelevant data, thus selectively focusing on relevant information needed for
segmentation tasks.

Moreover, we employ a combined loss function approach, merging Cross En-
tropy Loss and Dice Loss, aimed at augmenting the performance of our method.
To facilitate the learning process, we adopt a teacher-student model enriched
with an exponential moving average (EMA) strategy for network parameter up-
dates.We evaluated our proposed method on the MICCAI FLARE 2023 challenge
dataset, and the experimental results demonstrated the validity of the individual
components of our method.

The main contributions of this work are summarized as follows:

– We adopt a two-stage segmentation method, which utilizes a coarse model
and a fine model, and adopt a Teacher-Student training strategy of semi-
supervised learning to improve the utilization of unlabeled data to achieve
robust segmentation results.

– We added Inception blocks and SEBlocks to enhance the ability of the net-
work to capture features at different scales, while enabling the network to
learn useful features more efficiently.

2 Method

2.1 Teacher-Student Model

We propose a method as shown in Fig. 1. We use the coarse model to obtain
approximate segmentation results from the input CT scan, and then obtain the
region of interest(ROI) coordinates of the abdomen from the coarse segmenta-
tion. Then we crop the area, and use the fine model for segmenting, and finally
restore the inference results to the original cropped area according to the ROI
coordinates. In previous deep learning works, network structure and parameters
often need to be adjusted according to practical application. U-Net can achieve
good results in most cases. Therefore, we respectively constructed two Unet[15]
structural networks with the same architecture and different initial parameters
as our coarse model and fine model.

In order to leverage the unlabeled data, we adopt the Mean Teacher model
training strategy to achieve semi-supervised learning. Specifically, we first train
a teacher model using labeled data and then predict segmentation results for un-
labeled data with the trained teacher model as pseudo-labels. Then the student
model training in labeled and unlabeled data set with labels and pseudo-labels.
The EMA algorithm is used to update the teacher model parameters during the
training process.
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Fig. 1. Coarse-to-fine segmentation framework. Coarse and Fine are model inference
processes: crop means cutting the approximate position of the organ from the original
image according to the result of coarse segmentation, and restore means place the result
back to the position before cropping.

2.2 Preprocessing

We regroup the 2200 labeled samples and 1800 unlabeled samples to form two
datasets. The first dataset containing all 1800 samples is used to train the teacher
model, and the second dataset containing only the 4000 labeled and unlabeled
samples is used to train the student model for coarse and fine segmentation.

– Reorientation image to target direction.
– For two datasets, we adjust the window width to [-325, 325]. Then the inten-

sities of each CT sample are normalized to have a mean of 0 and a variance
of 1 using the individual mean and standard deviation.

2.3 Proposed Method

Network architecture. We use a UNet structure model as our model as shown
in Fig. 2. For the coarse segmentation model, the dimensions are first adjusted to
16 by a 3D convolution. Then, the number of channels after each downsampling
is [32, 64, 128, 256], and the input patch size of [160, 160, 160]. For the fine
segmentation model, the dimensions are first adjusted to 16 by a 3D convolution.
Then, the number of channels after each downsampling is [64, 128, 256, 512], and
the input patch size of [192, 192, 192]. The down-sampling is composed of two 3D
convolution operations, the first convolution stride is set to 2. The features are
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one-half size smaller after the convolution. The up-sampling operation first goes
through an interpolation operation, concatenates the features retained during
down-sampling through skip connections, and then a 3D convolution operation
to adjust the number of channels.

3D Conv Block
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Down-Sampling
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Fig. 2. Network architecture. A UNet structure is used and the outputs are used to
compute loss. For the coarse segmentation model and the fine segmentation model,
we use the same model architecture, but we use different parameters above the model
parameters, for the fine segmentation model, we use a deeper model to extract higher
dimensional information in the data.

For the segmentation of abdominal organs, which are numerous and vary
greatly in size, we propose a method that combines the Inception block and SE-
Block with the final segmentation head to enhance the model’s feature-capturing
ability at different scales. As shown in Fig .3. One of the primary advantages of
the Inception block is its ability to simultaneously capture features at multiple
different scales. This is highly beneficial for processing images of organs, ranging
from small to large, and contributes to enhancing the model’s understanding
and segmentation performance on abdominal images. The fundamental concept
of SEBlock involves adaptively adjusting the weights of each channel to enable
the model to more effectively learn useful features. It consists of two main steps:
Squeeze (Compression): In this step, SEBlock calculates importance scores for
each channel through global pooling operations. This means it considers the av-
erage value of each channel across the entire feature map to obtain a weight
vector. Excitation: In this step, SEBlock employs a small feedforward neural
network (typically a fully connected layer) to learn how to adjust the feature re-
sponses of each channel based on their importance scores. This learning process
can adaptively increase or decrease the weights of each channel. By introducing
SEBlock, the model can better focus on specific information relevant to the task
while reducing attention to noise or irrelevant information.

Loss function. we use the summation between Dice loss and cross-entropy
loss because compound loss functions have been proven to be robust in various
medical image segmentation tasks [9].

Training strategies. First, train a teacher model on all the labeled data Dl.
During the training process of the student model, for the labeled data (xl, yl) ∈
Dl, input it into the student model obtain ŷl, calculate the loss, and update
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the network parameters. For unlabeled data xu ∈ Du, input it into the teacher
model to obtain pseudo-labels yp, and then input it into the student model to
obtain predictions ŷu. Calculate the loss using these predictions and pseudo-
labels, and then update the parameters of the student network. The parameters
of the teacher model are updated using the Exponential Moving Average (EMA)
algorithm. And the student model is used in the inference process.

Strategies for using partially labeled and unlabeled data. For the par-
tially labeled data, we don’t incorporate pseudo-tags provided by the organizer.
For unlabeled data, we input it into the teacher model to obtain pseudo-labels.

Improve inference speed and reduce resource consumption. The
anisotropic convolution, anisotropic pooling and coarse-to-fine strategy are used
to reduce inference time and GPU memory usage.

2.4 Post-processing

To avoid the impact of noise, the connected component analysis is used, and we
choose the maximum connected component as the final segmentation results.

(b) SEBlock(a) Inception Block

Fig. 3. Inception block and SEBlock. Inception block is its ability to simultaneously
capture features at multiple different scales. By introducing SEBlock, the model can
better focus on specific information relevant to the task while reducing attention to
noise or irrelevant information.
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3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [11][12],
aiming to aim to promote the development of foundation models in abdomi-
nal disease analysis. The segmentation targets cover 13 organs and various ab-
dominal lesions. The training dataset is curated from more than 30 medical
centers under the license permission, including TCIA [3], LiTS [1], MSD [16],
KiTS [5,6], and AbdomenCT-1K [13]. The training set includes 4000 abdomen
CT scans where 2200 CT scans with partial labels and 1800 CT scans without la-
bels. The validation and testing sets include 100 and 400 CT scans, respectively,
which cover various abdominal cancer types, such as liver cancer, kidney cancer,
pancreas cancer, colon cancer, gastric cancer, and so on. The organ annotation
process used ITK-SNAP [19], nnU-Net [8], and MedSAM [10].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings. The development environments and requirements are
presented in Table 1.

Training protocols. The Training protocols and details are presented in
Table 2 and Table 3

Data processing.We regroup the 1800 labeled samples and 2200 unlabeled
samples to form two datasets. For two datasets, we adjust the window width
to [-325, 325]. Then the intensities of each CT sample are normalized to have a
mean of 0 and a variance of 1 using the individual mean and standard deviation.

Data augmentation. We adopt the common random enhancement of con-
trast and random rotation as our data augmentation methods.

ROI Detection strategy. We identify organ regions according to the out-
put results of the coarse model, and then the proper RoI can be inferred by
calculating the weighted average coordinates and distribution scope of the pre-
dicted organ voxels.

Optimal model selection. Regarding the selection of the optimal model,
we did not set the validation set in the experiment, and we selected the network
parameters saved in the last epoch as our optimal model.

4 Results and discussion

4.1 Quantitative results on validation set

Table 4 shows the results of this work on the validation set. Among the evaluated
organs, the liver and spleen demonstrate outstanding segmentation accuracy,
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Table 1. Development environments and requirements.

System Ubuntu 20.04.1 LTS
CPU Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
RAM 4×32GB
GPU (number and type) 2*NVIDIA 3090 24G
CUDA version 12.0
Programming language Python 3.7
Deep learning framework Pytorch (torch 1.8.2)
Specific dependencies SimpleITK, numpy
Code https://github.com/code-Porunacabeza/flare23

Table 2. Training protocols for the coarse model.

Network initialization "he" normal initialization
Batch size 2
Patch size 160×160×160
Total epochs 150(pretrain on labelled dataset 50 epochs)
Optimizer SGD with nesterov momentum(µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule Halved by 50 epochs
Training time 34 hours
Loss function Cross-entropy loss, Dice loss

Table 3. Training protocols for the fine model.

Network initialization "he" normal initialization
Batch size 2
Patch size 192×192×192
Total epochs 200(pretrain on labelled dataset 50 epochs)
Optimizer SGD with nesterov momentum(µ = 0.99)
Initial learning rate (lr) 0.001
Lr decay schedule Halved by 50 epochs
Training time 58 hours
Loss function Cross-entropy loss, Dice loss
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Table 4. Quantitative evaluation results.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 96.81 ± 1.84 95.28 ± 4.85 95.84 94.42 95.21 93.77
Right Kidney 89.56 ± 20.26 87.88 ± 21.03 90.02 88.27 93.42 91.56
Spleen 95.48 ± 7.45 95.10 ± 9.78 92.66 92.23 93.74 93.09
Pancreas 78.33± 12.53 89.58 ± 12.87 76.19 87.77 77.52 87.23
Aorta 94.95 ± 4.77 96.49 ± 5.97 95.03 96.91 95.75 97.86
Inferior vena cava 88.22 ± 14.70 88.41 ± 16.29 87.38 87.45 87.46 87.89
Right adrenal gland 80.14 ± 18.61 90.19 ± 19.80 80.03 90.95 68.33 76.50
Left adrenal gland 81.95 ± 14.57 91.94 ± 14.60 79.75 89.10 75.14 82.65
Gallbladder 76.78 ± 28.12 77.66 ± 28.07 77.92 78.24 78.23 79.40
Esophagus 77.10 ± 19.65 86.27 ± 20.94 77.88 87.26 82.42 91.26
Stomach 85.70 ± 15.60 86.97 ± 15.66 86.24 87.32 87.47 88.20
Duodenum 76.38 ± 12.34 89.14 ± 11.52 74.74 86.84 76.11 87.85
Left kidney 89.09 ± 19.72 86.78 ± 21.16 89.34 87.04 92.09 90.89
Tumor 18.30 ± 25.14 6.44 ± 9.62 16.23 5.72 18.22 6.83
Average 80.59 ± 25.16 83.44 ± 27.32 79.95 82.79 79.73 82.20

with DSC scores exceeding 95%, indicating precise delineation of these critical
structures. However, challenges arise in the segmentation of pancreas, gallbladder
and tumors, reflected by DSC scores below 80%. This suggests opportunities for
further refinement of the segmentation model for improved tumor detection. On
average, our method achieves a commendable DSC score of 80.59% ± 25.16%
and NSD score of 83.44% ± 27.32% across all organs and tumors, highlighting
the effectiveness of our approach.

Table 5. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption.

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 29.61 3080 298264
0051 (512, 512, 100) 16.77 3096 235758
0017 (512, 512, 150) 36.28 3100 396605
0019 (512, 512, 215) 30.03 3130 493118
0099 (512, 512, 334) 32.07 3134 550114
0063 (512, 512, 448) 43.88 3154 776612
0048 (512, 512, 499) 49.49 3110 890207
0029 (512, 512, 554) 58.49 3300 1056456

4.2 Qualitative results on validation set

Fig.4 shows some representative good segmentation results. In Case 0029 and
Case 0073 examples, our method successfully identified all organs, and the final
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predictions are almost the same with the ground truths. The poor segmentation
results are shown in Fig.5. In Case 0043 and Case 0059, we can see that there
are some under-segmentation and over-segmentation errors in our prediction
results. We believe that these poor segmentation results from the ambiguous
boundaries of the lesion. Our method performs well in segmenting organs. For
healthy organs, we can segment each organ relatively accurately. However, for
tumors, our method does not perform well. This may be because tumors are
easily confused with organs, leading to the wrong segmentation of organs as
tumors.

Case #FLARETs_0029(slice 294, 328, 358)

Image Ground Truth Prediction

Case #FLARETs_0073(slice 119, 146, 177)

Image Ground Truth Prediction

Fig. 4. Good segmentation results

4.3 Segmentation efficiency results on validation set

In this paper, our segmentation efficiency evaluation is obtained in the develop-
ment environment shown in the table 1.The segmentation efficiency results are
shown in the table 5. The computing resources and time required for samples
of different sizes vary. Case 0051 is the fastest at 16.77 s and Case 0029 is the
slowest at 58.49 s. This highlights the trade-off between segmentation speed and
image complexity, and a similar situation applies in terms of total GPU memory
consumption.

4.4 Ablation study

Table 6 shows the ablation study results of this work on the validation set. We
trained on the first dataset and verified our segmentation results on the validation
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Case #FLARETs_0043(slice 84, 120, 135) Case #FLARETs_0059(slice 84, 98, 110)

Image Ground Truth Prediction Image Ground Truth Prediction

Fig. 5. Bad segmentation results

Table 6. Ablation study on public validation.

Target Without unlabeled With unlabeled
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 96.11 92.26 96.81 95.28
Right Kidney 88.54 86.65 89.56 87.88
Spleen 92.46 89.67 95.48 95.10
Pancreas 79.18 89.82 78.33 89.58
Aorta 93.81 95.20 94.95 96.49
Inferior vena cava 88.06 88.12 88.22 88.41
Right adrenal gland 80.01 90.14 80.14 90.19
Left adrenal gland 81.82 91.92 81.95 91.94
Gallbladder 74.58 75.97 76.78 77.66
Esophagus 76.64 85.91 77.10 86.27
Stomach 85.35 84.90 85.70 86.97
Duodenum 74.04 89.35 76.38 89.14
Left kidney 86.97 84.00 89.09 86.78
Tumor 11.36 2.52 18.30 6.44
Average 79.21 81.89 80.59 83.44

Table 7. Ablation study of SEBlock and Inception Block on public validation training
with unlabeled data.

Variant Modules DSC
SEBlock Inception Block Organs Tumor

Baseline ✕ ✕ 84.63 16.77
w/o SEBlock ✓ ✕ 85.07 17.62

w/o Inception Block ✕ ✓ 85.12 18.39
Full Version ✓ ✓ 85.38 18.30
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set, our method achieves a mean DSC of 79.21% and an NSD of 81.89%. On
the second dataset, the semi-supervised training strategy of the teacher-student
model is adopted, and both DSC and NSD are improved, achieving mean DSC
of 80.59% and NSD of 83.44%. As shown in Table 6, by using unlabeled data,
both DSC and NSD are significantly improved and the indicators of all organs
improved. It shows that unlabeled data and semi-supervised learning can make
the model achieve better performance.

We verified the SEBlock and Inception Block separately using three different
network configurations. We summarize the experimental results in Table 7. We
used Unet as the Baseline, compared with w/oSEBlock, the DSC of the organs
and tumors was improved. This is due to the channel attention of SEBlock,
which makes the model focus on the relevant channels that can improve the
segmentation performance. The addition of InceptionBolock enables the model to
effectively capture image features at different scales and improves the expressive
power of the network, making it more adaptive and able to learn complex image
features. The DSC of the DSC of the organs and tumors improve to 85.07% and
18.39%, respectively.

4.5 Results on final testing set

The test results are shown in Table 4. In the test dataset, we achieved an av-
erage DSC of 84.46% and NSD of 88.0% for all organs. At the same time, the
average inference time of our method is less than 30s with 44236 GPU memory
on average. However, for tumor segmentation, we achieved DSC of 18.22% and
NSD of 6.83%. There is still much for improvement.

4.6 Limitation and future work

The proposed method works well in most organs. However, the segmentation
results of tumors are still unsatisfactory, it has large room to be further improved.
Perhaps treating tumor segmentation as a separate task and designing multiple
decoders is an effective solution, which is left for future work.

5 Conclusion

In this paper, we adopt a Teacher-Student semi-supervised strategy for the ab-
dominal organ segmentation task. We develop and test the whole framework on
the FLARE 2023 challenge dataset. The network consists of a coarse segmenta-
tion model and a fine segmentation model. We adopt a Teacher-Student semi-
supervised learning strategy to leverage a large amount of unlabeled data. We use
Unet as the basic network framework and the Inception block[17] and SEBlock[7]
combined with the Unet network. The whole framework of our method acquires
79.95% mean DSC and 82.79% mean NSD on the FLARE 2023 challenge vali-
dation dataset.
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