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Abstract

Acquiring expertise in a task is often thought of as an automatic process that follows inevitably with
practice according to the log-log law (aka: power law) of learning. However, as Ericsson, Chase, and
Faloon (1980) showed, this is not true for digit-span experts and, as we show, it is certainly not true
for Tetris players at any level of expertise. Although some people may simply “twitch” faster than
others, the limit to Tetris expertise is not raw keypress time but the techniques acquired by players
that allow them to use the tools provided by the hardware and software to compensate for the game’s
relentlessly increasing drop speed. Unfortunately, these increases in drop speed between Tetris levels
make performance plateaus very short and quickly followed by game death. Hence, a player’s success
at discovering, exploring, and practicing new techniques for the tasks of board preparation, board
maintenance, optimal placement discovery, zoid rotation, lateral movement of zoids, and other tasks
important to expertise in Tetris is limited. In this paper, we analyze data collected from 492 Tetris
players to reveal the challenges they confronted while constructing expertise via the discovery of new
techniques for gameplay at increasingly difficult levels of Tetris.
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1. Introduction

The best illustrations of mental functions at their limit of efficiency are to be found
among those occupations of work or play [in which] excellence … is sought with great
zeal and intelligence. The championship ’records’ in typewriting, shorthand, telegraphic
sending, golf, billiards, and the like, show approximations to the limits of improvement
… (Thorndike, 1913, p. 178)

Our task is TetrisTM, a real-time, dynamic decision-making task in which “even the hes-
itation must be decided” (Lec, 1962). We examine the core set of simple tools provided by
the game’s designers as well as how players at different levels of expertise use these tools
to execute different techniques. As we discovered, even in the age of YouTubeTM videos,
mastering the techniques of tool use may require days, months, or years of focused practice.
Indeed, contrary to the expectations of readers who were weaned on the log-log or power law
of learning for individual players, skill acquisition in Tetris is not a smooth ascent but is better
described as a series of Plateaus, Dips, and Leaps (Gray & Lindstedt, 2017).

Techniques are easier to name than they are to describe and they are easier to describe than
they are to master. If the tool is in the hands of a skilled performer, a Eddie Van Halen, Serena
Williams, or, perhaps, a Jonas Neubauer, difficult techniques that took months or years to
acquire may appear extremely simple. That false sense of simplicity is well captured in this
quote from Tetris Master Alex Kerr:

I found Harry Hong’s first max-out video impressive, but still operated under the
assumption that … it was a feat of physical ability as much as it was of Tetris prowess. It
wasn’t until Jonas Neubauer’s uploads and the comments he wrote in response to ques-
tions that solid information on how to conquer Nintendo Tetris without hypertapping
began to surface. (Alex Kerr as quoted in Smith, 2014, p. 2)

Following Alex Kerr, and contrary to the opinions of most non-players and many casual
players, Tetris achievement is not limited by a person’s twitch speed (i.e., simple reaction
time). Indeed, in prior work comparing human play with that of machine models (e.g., Sibert
& Gray, 2018; Sibert, Gray, & Lindstedt, 2017), we assumed that human response times for
Tetris players were about the same as for other individuals. In some cases, it will clearly be
the case that players speed up both their movement times and decision-making times as the
drop speed increases. However, in other cases, it is equally clear that the better players are the
ones who have developed and mastered not faster, but better, techniques.

1.1. An overview of tetris basics

Tetris is structured into 30 levels of play. As explained in Section 2.2, The Events of Tetris,
except for the rate at which the Tetris zoids (i.e., pieces) drop, each level is mostly identical
(see Fig. 1). Visually, the biggest differences across levels are in the color schemes of the
zoids that, of course, have no effect on gameplay. Conceptually, the biggest difference across
games of Tetris is that for each game, the sequence of pieces is determined by a different
random seed. Hence, across games, the seven zoid shapes appear, with replacement, in an
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Fig. 1. Left-side: Tetris game screen showing a falling T-zoid (one of seven zoid shapes), the Preview Box (upper-
right) holding the “next” zoid that will drop after the currently dropping zoid stops, and the pile that reflects the
accumulation of zoids that have dropped but have not been “cleared.” Beneath the next box, the player sees her
current game score, the number of lines cleared (none yet), as well as the level number (in this example, level 0,
as this is the beginning of a new game). Right side: example of Tetris boards in which either 1, 2, 3, or 4 lines can
be cleared by placing one piece.

unpredictable sequence, and “droughts” are possible in which one of the seven zoid shapes
may not reappear until a longer-than-expected-by-the-player series (sometimes 20 or more)
of other-shaped zoids have dropped.

Mastering the tools and techniques of Tetris may require months, years, or decades; hence,
the study we present in this paper will not be a longitudinal one. Rather, we sample exper-
tise across players and attempt to determine the set of techniques which players who make
it through say, level n possess that those who died at level n − 1 did not. We will also limit
ourselves to 492 student players. The analyses we present require much data for each com-
parison and at this time, we have not analyzed enough data from our CTWC players to permit
us to draw firm conclusions.

1.2. Changes with increasing expertise

The number of techniques which players must master to succeed at Tetris increases with
player expertise. This may seem like an odd statement to make about a simple game in which
the same seven pieces continually drop, one at a time, from the top to the bottom of the
playboard and in which the only controls available to players are designed to either rotate the
piece clockwise or counterclockwise, move it left or right, or drop it so it falls slightly faster
than it falls when left to itself. The veracity of this assertion is one of the things that will be
demonstrated in this paper.
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Tetris requires “learning-by-doing.” Skilled performance in Tetris requires knowing where
to place a zoid, how to move it to that place, and when to initiate the various rotations, trans-
positions, and drops that might be required to get it there. That is to say, learning-by-doing
requires acquiring the right moves and applying them at the right times. A paradigmatic exam-
ple for Tetris is provided by Jonas Neubauer’s “spin class” in which he shows the YouTube
viewer the visual cues and millisecond timing required to master the “turn-and-tuck” tech-
nique, whereas different zoids are turned and tucked as they drop so as to fit into spaces that
most, if not all, of our 492 student players would deem impossible to fit.

To be clear, learning-by-watching-YouTube explains what to do and how to do it but, by
itself, will not produce skilled Tetris performance. Although the techniques of the experts
can be mastered at the lower speeds, these techniques are not required at these lower lev-
els. Rather, the lower levels require the mastery of skills that are pre-requisite to playing at
the higher levels. Indeed, as the game speeds up, what is needed by our student players, is
a learning-by-doing approach that engages the player in a process of active exploration to
acquire the predictive processes (Hommel, 1998; Hommel, Musseler, Aschersleben, & Print,
2001) required for coordinating movements with perceptions.

1.3. Whats to come

In Section 2.1, our first background section, How Does the Perception of Action Affect
Action Control?, we briefly review the history of Ideo-Motor Action, along with recent
thought on perceptual learning, Predictive Processing, and Event-Predictive Cognition
(EPCog) to provide the cognitive psychology background for what occurs during the acquisi-
tion of dynamic skilled performance. Our second background section (Section 2.2) introduces
and discusses the major events which players must master if they are to achieve intermediary
levels of expertise in that game.

After these background sections, we move to a detailed discussion of the Methodology (see
Section 3) used for collecting our data, deciding which people and games to include, random
number seeds, and the various steps of data preparation.

We report our analyses in four sections. Section 4 discusses feature extraction and the six
factors we found which account for most of the variance in our data. Section 5 introduces
our logistic regression models used to distinguish between beginner, intermediate, and expert
players at various levels of gameplay. As not every player who makes it to a given level applies
the same tools and techniques in the same sequential order, in Section 6, we apply linear
models to determine which factors yield differences among players at the same expertise
level. Finally, as we use a limited set of random seeds in our games, in Section 7, we discuss
the variation in skill requirements by different seeds and their effect on player performance.
Also note that in these three sections, we use the terms of statistics, such as factors, rather
than terms such as event, tool, and technique.

After discussing the details and highlights of our results in Section 8, we summarize our
project (Section 9), and try to clearly state our conclusions (Section 10). Finally, for those
who want more details as to what we did and how we did it, we hope that you will find the
answers you seek in our six Appendix sections (Appendices A–F).
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2. Background

2.1. How does the perception of action affect action control?

Maintaining fixation rather than moving the eyes can draw upon executive control. An
interesting extension of this idea applies to tennis playing. The very best tennis players
direct their gaze differently than less skilled players … the best players keep their gaze
where the racquet made contact with the ball after the ball was hit. Less skilled tennis
players tend to follow the ball with their eyes (Lafont, 2007). Planning to maintain
fixation may confer the advantage of focusing attention more fully on hitting the ball in
just the right way. (From Rosenbaum, 2010, p. 194)

Champion Tetris players during the Classic Tetris World Championships (CTWC) appear
not to move their eyes as they play. Less skilled players, such as the 492 we sampled for our
study, definitely move their eyes (Gray et al., 2015a) with the more novice student players
moving their eyes in different patterns than the slightly more expert ones.

The study of Perceptual-Motor Skill has always been a strong part of the study of human
expertise with some of our current theories and controversies tracing their roots back to the
early 19th century (as discussed by, Shin, Proctor, & Capaldi, 2010) and with a strong con-
tinuing focus in the motor learning community (e.g., Wulf, 2013). In the last two decades,
much attention has turned to (a) theories of event coding (Hommel, 1998, p. 143), (b) event
structure and event segmentation (Zacks & Swallow, 2007; Zacks & Tversky, 2001), and
(c) event-predictive cognition (EPCog) (Baldwin & Kosie, 2021; Butz, Achimova, Bilkey, &
Knott, 2021; Kuperberg, 2021; Loschky, Larson, Smith, & Magliano, 2020). Each of these
three is important for understanding the nature of skill in Tetris.

2.1.1. Theory of event coding
Our title for Section 2.1, How Does the Perception of Action Affect Action Control?, is

taken from a question posed by Hommel (1998), but the question itself is puzzling … how
could the “event” of perceiving an action affect something which comes before it; namely,
the action itself? Answering this answer is both the focus and the contribution of the Theory
of Event Coding (TEC) (Hommel, 2019; Hommel et al., 2001).

The theory’s three most general assumptions (Hommel, 2019) are that goals for perception
and action are (a) each coded the same way (the common coding assumption), (b) through
distributed feature codes, and (c) which refer to distal features of the represented event. The
challenge of the “common coding” assumption is the claim that part of the re-afferent signal
comes from the movement itself, for example, from a hand movement or a head movement,
and that such goal-directed movements can be made without any conscious knowledge about
the motor system.

Part 2 of the above, the distributed feature code assumption, is that; “The integration of
motor patterns with codes of re-afferent effects renders the latter effective primes of the for-
mer, so that an agent can simply reactivate …the action-effect codes which then tend to reac-
tivate the motor patterns they are integrated with” (Hommel, 2019, p. 240). Although initially
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counter-intuitive, on further thought the logic is compelling. As Hommel emphasizes, percep-
tion and action are always closely linked. Almost anything that we perceive can be attributed
to some prior movement/action on our part. Even an eye-saccade to an object or to a location
is a movement and that movement is what makes the subsequent perception possible. Hence,
by Hommel’s account, perception and action are different parts of one two-stage event where
the first part executes a particular movement to produce a particular sensory event. When we
speak about the perception, we emphasize the produced event. When we speak about how we
produced an event, we emphasize the action.

2.1.2. Event segmentation
Johansson, Hofsten, and Jansson (1980) moved the term event perception away from its

older focus on “object motion in a passive perceiver” to “motion and space perception in
connection with action” (p. 28). Cutting (1981) followed close behind Johansson with his
“Six tenets for event perception;” namely,

(1) events have underlying structure;
(2) two classes of invariants divide event structure: topographic and dynamic;
(3) dynamic invariants divide into those of wholes and those of parts;
(4) dynamic invariants divide according to a minimum principle;
(5) dynamic and topographic invariants yield a center of moment; and
(6) centers of moment are perceptually useful.

All seems to have moved slowly in the study of event perception until two decades later
when Zacks and coauthors, in a flurry of four papers published in 2001 (Zacks, 2001; Zacks
et al., 2001; Zacks & Tversky, 2001; Zacks, Tversky, & Iyer, 2001) reinvented and reinvig-
orated the study of Event Perception for the new century. Perhaps, most importantly, for our
current narrative, 2001 was the year in which Hommel et al. (2001) published “The Theory
of Event Coding (TEC): A framework for perception and action planning” and Zacks pub-
lished a small commentary on that paper as “Scaling up from atomic to complex events,”
which asked whether the claims made by TEC with brief events had implications for longer
events, especially those longer events that are the focus of goal-directed activity. Hommel
et al. (2001) had made two claims for the use of distal features; namely, that “action planning
based on proximal features is inefficient” and that the “prediction of future stimulus input is
easier with distal features.” Zacks concluded his brief essay by saying, “the implications of the
TEC view for complex events have been more or less assumed in the literature . . . apparently
because the arguments for distal features become overwhelming as they scale up (p. 910).”

Event-Predictive Cognition is the offspring of a happy marriage between the Theory of
Event Coding and Event Segmentation. The surge of interest in EPCog has resulted in an
important collection of 16 interdisciplinary papers and commentaries recently published in
this journal (see Butz et al., 2021, for the introduction and overview to this recent spe-
cial issue). In its essence, “EPCog sets out to explore the extent to which event-predictive
encodings and processes foster the development of abstract, conceptual, compositionally
recombinable structures from sensorimotor experiences. It links event-predictive, conceptual
structures to both sensorimotor and language structures” (Butz et al., 2021, p. 12).
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2.1.3. The anticipatory behavior of expert performers
As one example of the ubiquity of EPCog and its importance for understanding variations

in real-time, perceptual-motor expertise (including the game of Tetris), we focus on repre-
sentational momentum (RM) (Blättler, Ferrari, Didierjean, & Marmèche, 2011; Didierjean,
Ferrari, & Blättler, 2014; Hubbard, 2019).

An observer’s memory for the final position of a previously viewed moving target is
often displaced forward in the direction of target motion. This displacement has been
suggested to reflect the implied momentum of the target and has been referred to as
representational momentum (Hubbard, 2005, p. 822).

Expert fighter pilots versus novice pilots RM produces different effects for experts than
for novices. Indeed, experts often show the effect and novices often do not. For example,
Blättler et al. (2011) found that expert pilots were more likely than novice pilots to make
errors in judgment due to RM. Their study compared data from 21 novices (never in a cockpit
and never in a flight simulator) with 15 expert pilots (French Air Force pilots).

After familiarization with the task, subjects were shown videos simulating the pilot’s view
of a landing. They were told that a black screen would briefly interrupt each video and that
when the video resumed they would either be jumped ahead in time or back in time. Their
task was to press the red key if they thought they had been jumped backward or the blue key
if they had been jumped forward. However, they were not told that on some trials, no jumps
would occur and, of course, that is the heart of this study.

As shown in Fig. 2, the Experts but not the Novices, misperceived: Experts made errors
that were in anticipation of forward shifts of movement. Interestingly, these forward errors
made by the experts are in contrast to their performance in estimating backward-shifts that
showed no differences when compared to the novices.

The experimenters were surprised that the novices made pretty much no forward displace-
ments and conducted two further experiments with only novices. In their conclusions, they
speculate that two types of anticipatory processes may be at work. The expert pilots had avail-
able to them high-level semantic and strategic knowledge that could be used to “extrapolate
the visual scene continuity.” In contrast, without this knowledge, novices relied on sensory
information “arriving at the retina when the cut occurs.”

Expert versus novice in rugby, tennis, and tetris In a very description title, Anderson,
Gottwald, and Lawrence (2019) study, representative momentum in the expertise context and
find support for the theory of event coding (TEC) as an explanation for action anticipation in
the game of Rugby. Of course, unlike Tetris, Rugby is a game played with teammates against
an intelligent adversary; namely, the members of the opposing team. However, despite these
differences, there are similarities between these two games that we find essential. For exam-
ple, Anderson and colleagues point out that, “supporting evidence for the TEC (Hommel
et al., 2001) also suggests that experience in action planning facilitates the tendency to antic-
ipate similar actions of others toward distal effects when these actions are congruent with
those previously learned” (Anderson et al., 2019, p.2).
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Fig. 2. Percentage of backward responses, by expertise level, shift direction, and shift distance in Experiment 1.
PSE = point of subjective equality. (Figure and caption from Blättler et al., 2011.)

The key point for our paper is the commonality of some form of, “anticipatory behavior
that is developed as a function of action planning experience.” The commonality of antic-
ipatory behavior is expected by TEC (Hommel et al., 2001) and expert-novice differences
in anticipatory behavior have been found in Beach Volleyball (Cañal-Bruland et al., 2011),
as well as Basketball and Volleyball (Vicario, Makris, & Urgesi, 2017), and (as per our dis-
cussion of Blättler et al., 2011) in Expert Pilots. Murphy, Jackson, and Williams (2018) put
an interesting twist on this question by showing that skilled players can pick up information
from the motions of their opponent and/or the movements of the ball.

Later in this paper, we present several statistical analyses that support the notion that, simi-
lar to the pilots and the more expert Rugby (Anderson et al., 2019), Beach Volleyball (Vicario
et al., 2017), and Basketball and Volleyball (Murphy et al., 2018) players, our best student
Tetris players have high-level semantic and strategic knowledge that allows them to think
further ahead in the game than the lesser skilled players.

2.1.4. Section summary
In the title to this section we asked, How Does the Perception of Action Affect Action Con-

trol? and then followed that title with Rosenbaum’s anecdote that suggested that tennis play-
ers of differing skills vary greatly on where they look after the racquet hits the ball. We then
discussed the rise of EPCog from its roots in TEC and Event Segmentation. After that, we

 17568765, 2021, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tops.12575 by T

est, W
iley O

nline L
ibrary on [09/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



618 W. D. Gray, S. Banerjee / Topics in Cognitive Science 13 (2021)

Table 1
The events of Tetris

Event Label Description Initiated by

Event 1 Episode Zoid enters screen, falls until stops System
Event 2 Rotation Zoid rotated CW1 or CCW2 Player
Event 3 Translation Zoid moved left/right Player
Event 4 Forced drops Holding the down key increases drop rate Player
Event 5 Filling Plugging holes in the pile to clear 1-4 rows Player
Event 6 Level change Clearing 10 rows triggers level increase System
Event 7 Speed ups Drop rate increases from one level to next System
Event 8 RNG Sequence generation System

1CW—clockwise.
2CCW—counterclockwise.

shifted focus to Blättler et al. (2011) work on representational momentum that, like Rosen-
baum’s anecdote, strongly suggests that experts and novices look at or perceive different
types of information. This discussion brought us to representational momentum in the exper-
tise context (Anderson et al., 2019) that led us to a brief discussion of TEC’s expectations and
expert-novice differences in anticipatory behavior in Beach Volleyball (Cañal-Bruland et al.,
2011), Basketball and Volleyball (Vicario et al., 2017), and movements of opponents and/or
the ball in Tennis (Murphy et al., 2018).

Perhaps paradoxically, as a culture we seem to think of jet pilots, racing car drivers, expert
tennis, basketball, and volleyball players as people who are “faster than us.” However, as
our discussion in this section shows and as Alex Kerr warned us, “twitch speed” is not the
limit of expertise; rather, human expertise is not a matter of doing the same thing faster but
of doing the same thing differently; that is, mastering our tools is a process of acquiring the
right techniques.

2.2. The events of tetris

Tetris is a simple game that can be defined by its events. These events or, at least, the ones
encountered by our student players, are shown in Table 1. In common with many human
events (e.g., pitching a tent, going for a hike, cooking a meal, or playing a board game), the
event structure of Tetris was designed (Cooper, 2021; Zacks, 2020; Zacks, Speer, Swallow,
Braver, & Reynolds, 2007; Zacks & Swallow, 2007).

2.2.1. Episodes
Although the order of events in Table 1 is nominal, in many senses, the event type we list

first, the Episode, is the most basic. As Tetris is played, the zoid falls from top-to-bottom
while being acted on by the player. The drops are step-like and if a given zoid were to fall
all 20 rows from top-to-bottom, it would pause 20 times. In the case of an empty or nearly
empty board, a zoid could fall all 20 rows, coming to a stop once it hit the bottom of the
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Fig. 3. Time pressure in Tetris: The drop rate increases as the play level increases. The figure shows how far the
same zoid will drop in one second at four different levels.

board. However, most zoids stop before they hit bottom, by running into a zoid that is already
in the pile.

As shown in Fig. 3, at level 1, the zoid will drop at the rate of 1.25 rows/s and, as there is no
zoid accumulation shown in our example board, it will land at the bottom of the board in 16 s
(see also Table 2). Not shown on the board and not further discussed in this paper is that from
levels 19–28 the same zoid falls from top-to-bottom in 0.67 s, while for level 29 and above,
it falls top-to-bottom in 0.33 s. Human performance at speeds like this is common during the
annual CTWC but none of our 492 student players came closer than level 14 (see Table 2).

2.2.2. Player initiated movements: Rotations, translations, filling (rows cleared), and forced
drops

Events 2–5 of Table 1 form the category of Player Initiated Movements. Three of these
four movements are illustrated in Fig. 4. Event 2 requires the player to press one of two keys
(or to use the keying options on the specially designed NEStm controller, see Fig. 7) that will
“translate” the zoid to the left or to the right. Event 3 requires pressing one of two keys that
will rotate zoids (other than the square that does not rotate) clockwise or counterclockwise.
Event 4 is evoked by holding the “down button” that hastens the rate at which the zoid drops.
Event 5, Filling, which is not shown in our figure, consists of plugging a hole in the pile to
clear one to four rows.

Interestingly and, perhaps, confusingly, in Classic Tetris, the zoids do not rotate as a naive
user might think they should. As illustrated in Fig. 5, rather than rotating around the exact
middle of the zoid, in Tetris, the rotation is lopsided. This is not a design flaw; indeed, expe-
rienced Tetris players, especially those at tournament levels of proficiency, view this as a
positive feature. Suffice it to say that many, if not most, non-tournament-level players do
not know that clockwise versus counterclockwise rotations may produce asymmetric results.
Indeed, non-tournament level players when asked about “rotation direction” often report that
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Table 2
The Tetris Drops Table for difficulty levels 1–16. As the level increases the seconds for a zoid to fall from top to
bottom decreases as does the number of players who are able to play at that speed. Dashed lines separating levels
10–12 and 13–15 emphasize that there are no speedups between the three levels in these groups. Also, note that
none of our 492 players make it beyond level 14

Difficulty Level Sec to Fall Speed Up % Players Left % Lost fr Prior Lvl % Cum Total Lost

0 16.0 0 492 0.0 0
1 14.3 10.4 485 1.4 1.4
2 12.7 11.6 455 6.2 7.5
3 11.0 13.2 405 11.0 17.7
4 9.3 15.2 344 15.1 30.1
5 7.7 17.8 277 19.5 43.7
6 6.0 21.8 231 16.6 53.0
7 4.3 27.8 161 30.3 67.3
8 2.7 38.3 68 57.8 86.2
9 2.0 25.1 26 61.8 94.7
10 1.7 16.5 11 57.7 97.8
11 1.7 7 36.4 98.6
12 1.7 5 28.6 99.0
13 1.3 20.4 1 80.0 99.8
14 1.3 1 0.0 100
15 1.3 0
16–18 1.0 24.8 0
19–28 0.67 50.0 0
29–30 0.33 100.0 0

they try to simplify their life by always rotating all Tetris zoids in the same direction (i.e.,
either all clockwise or all counterclockwise). (Also see Fig. 6.)

A more experienced player (one who routinely qualifies for a seat in the CTWC playoffs),
kindly explained to us that he, too, used to rotate all zoids in the same clockwise direction
and it was not until he was good enough to routinely reach and die at levels 15 and 16 that
he realized the error in his ways. He also reports that one of the most grueling parts of his
life as a Tetris player was the 6 months he spent unlearning strict clockwise rotations and
learning to always rotate each piece in the direction that used the least clicks for his planned
zoid placements.

2.2.3. Rows cleared and speed ups
Each Tetris row is 10 blocks wide. As shown in Table 1, by filling in all of the empty

spaces, Event 5 can clear one to four rows. However, the better the player, the more likely
she is to attempt to build a solid wall of zoids from, for example, columns 1–9 while holding
column 10 open. If a player can hold open one column that spans four contiguous rows, and
if an I-beam drops while that column is being held open, then a four row “wall” of zoids will
dissolve and the player will score eight times as many points as she would by filling one row,
by itself, four times—this maneuver is called a Tetris and is what gives the game its name.
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Fig. 4. Player-initiated movements. The figure illustrates left-to-right translation, rotations (clockwise or counter-
clockwise), and drops.

The sixth Event of Tetris shown in Table 1 is the level change. As Table 2 shows in column
2, completing each of the first 10 levels of Tetris increases the drop speed of the zoids. Hence,
at level 6, a zoid would take 6 s to drop from the top to the bottom of an empty board, whereas
at level 7, it would take only 4.3 s to drop that same distance.

2.2.4. The tool of tetris
One of two types of tools are usually used for controlling Tetris. At its simplest, a com-

puter keyboard can be used with actions mapped, typically, to the “a” and “d” key (for use
by the left hand to translate the zoid left or right), the “k” and “l” key (for rotating a zoid
counterclockwise or clockwise, usually using the right hand), and the “s” key (for dropping
the piece faster than it would otherwise fall—also using the right hand). However, the tool of
choice for those who frequently play Tetris is the NES Game Controller, as shown in Fig. 7.
This tool also enables the five movements described above. More recent Game Controllers
also exist. These duplicate the functionality described above but have the advantage of a more
ergonomically engineered, two-handed grip. Popular in this category is the XBox controller.
The hand-held ergonomics of this device seem superior to even the casual player.

2.2.5. Random number generation—The tortoise and hare in tetris
One of the most important but seldom discussed attributes of Classic Tetris is the random

number generator (RNG) that creates a randomized stream of numbers 0–6, with each number
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Fig. 5. The J and L piece each have four orientations and, for intermediate players under pressure at the limits
of their skill (generally around levels 12–16), each are confusingly similar. The figure shows that three counter-
clockwise clicks are needed to rotate the zoid from its top orientation to the rightmost orientations. In contrast, the
player could achieve the same results with one clockwise click (see the leftmost J in the top row). (From Smith,
2015, with permission, page 7.)

representing one of the seven types of zoids. The stream of zoids generated by Classic Tetris
differs from that generated for many other versions of Tetris in that, for those versions, each
number 0–6 appears once in each string of seven numbers. In contrast, for Classic Tetris,
the number stream is as random as the RNG can make it. The downside of this for CTWC
Tournament play is that the best players always try to keep a deep “well” open (usually in
the right-most column) so that if an I-beam appears they can plug the well and score many
points. Games can be lost if players cannot maintain a clear “well” for the I-beam or if the
well becomes clogged near the top of the screen so that other pieces pile up to the top of the
screen. As CTWC players build to maximize points, they are usually trying to build walls of
zoids with one column empty so that when a I-beam comes along they can drop it into this
column and score big points.
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Fig. 6. The O (or square) is a static zoid that does not rotate. The S-, Z-, and I-beam each have two orientations.
Pressing left or right to rotate has the same effect. The T, L, and J each have four orientations. At drop speeds
higher than level 15, the wrong decision to rotate clockwise or counterclockwise can cost the player the game by
increasing the rotation time. See also Fig. 5.

Fig. 7. NES Game Controller—containing a variety of tools for controlling Tetris.

In a study that, in part, examined the influence of the RNG, Sibert and Gray (2018) ran
1,771,561 games of Tetris by systematically varying 11 weights on each of six features for
two different game lengths. In the short length condition, all models were run either until they
died or until they had played 506 zoids. In the long length condition, all models ran until
they died.

After the fact, we named the longest playing model the Tortoise model and the highest
scoring short model, which played 506 zoids, the Hare model. The best Tortoise model scored
34,847,635,400 points by clearing 125,829 lines. It was nearly 10 billion points higher than
the next highest scoring model (27,572,380,920) that had cleared 107,934 lines. For our short
game (i.e.,“human length”) game, the best Hare model scored 240,900 points, clearing 199
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Fig. 8. Tasks, tools, techniques: Tasks require tools and tools may be manipulated by variety of taught or discov-
erable techniques.

lines. This score is close to the highest human score we have collected in our dataset of 492
Rensselaer students that we discuss in the Methodology and Results sections of this paper.

2.2.6. The events of tetris: Summary and conclusions
As suggested by Fig. 8, in common with many human tasks, Tetris can be considered

as a task or set of subtasks, with tools that are used for performing the tasks, and different
techniques available (or discoverable) for using the tools for performing those tasks. Within an
episode (see, Event 1, Table 1), within each step of each zoid’s fall, there can be one instance
of one of the four types of player initiated movements. Players can rotate the zoid clockwise
or counterclockwise (rotations), move it left or right (translations), force an early drop, or
fill in a gap in the row (which briefly creates one to four solid lines of filled-in rows and
then dissolves). These first three movements usually occur in combination with each other,
and as the last event (filling in one to four rows) stops the zoid from falling, it always ends
the episode.

The number of levels for Tetris begins at level 0 and increments by one for each 10 rows
cleared. The level change is made salient by changes in the level indicator (beneath the score
and lines indicators in Fig. 1) and by changes in the color schemes for the seven zoids. Inter-
estingly, many advanced players have memorized the correspondence between color scheme
and level number. However, for the student players we study, the color scheme per se is not
especially important.

The fifth type of events is speedups in the drop rate (see Table 2); however, for other than
our 17 best players, speedups are synonymous with level changes. That is, for the first 10
levels of play, levels 0–9 (see Table 2) each change in level results in an increase in drop rate
(and a color change). But, as Table 2 shows, although all level changes result in color changes,
above level 9, not all level changes result in speed increments. As very few of our 492 college
players make it beyond level 9, the intricacies of this fifth level of event structure are largely
ignored in this paper. Tetris supports player events other than those shown in Table 1; however,
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those other events represent Extreme Expert maneuvers that our laboratory players either do
not know or cannot execute.

3. Methodology

Tetris data were collected from undergraduate students at Rensselaer Polytechnic Insti-
tute between Fall 2014 and Spring 2019 during 50-min gameplay sessions using the Meta-T
software (Lindstedt & Gray, 2015). Game state information was logged at 30 Hz and player
actions were recorded at 60 Hz. Data from 240 of these players were reported by Lindstedt
and Gray (2019). However, in addition to considering different research issues than the Lind-
stedt and Gray (2019) study, the current study (a) reports, (b) segments, and (c) analyzes data
differently than those of Lindstedt and Gray (2019). Hence, in addition to containing more
than twice as many players, our current study also includes data that allow us to address new
sets of research questions.

3.1. Participants

Players were recruited from the Cognitive Science Department’s Undergraduate Subject
Pool. All experimental procedures were reviewed and approved by Rensselaer’s IRB.

3.2. Task

Games of Tetris are of variable length. Players play each game until they die, and they
always die. However, the higher skilled players take longer to die than the lesser skilled ones;
hence, in the 50-min play period, lesser-skilled players play more, but shorter, games of Tetris.

All our players used Meta-T (Lindstedt & Gray, 2015), which implements a version of
Tetris that is close to the original Nintendo Entertainment System (NES) Tetris. Meta-T is
implemented in Python that results in minor visual differences between it and NES Tetris.
Software experts at the CTWC have examined Meta-T and confirmed that, behaviorally, it
is a faithful version of Classic Tetris up to level 19. At level 19 and above, there are subtle
hardware and software differences between Meta-T running on a modern computer and the
original Tetris cartridge running on a 1980s-era NES machine (as used by the CTWC) that
have proven difficult to duplicate. However, these differences can be ignored since, as shown
in Fig. 2, very few players from our pool of participants managed to cross level 9, and among
those who did, the maximum level reached was level 15.

3.3. Random number seeds

In collecting the data, to ensure that each participant played the exact same set of games in
the exact same order, the same ordered sequence of 10 random seeds was used across game
sessions for all student players. For players who played more than 10 games, beginning at
game 11, Meta-T would cycle back to the first seed and keep cycling through the sequence
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Fig. 9. Flowchart for data preparation and feature extraction.

until the end of the 50-min gameplay session. Finally, to be very clear, each player played as
many games during their 50 min gameplay session as they could. The weaker players played
more but shorter games, whereas stronger players played fewer, but longer games.

3.4. Gameplay

All games were played in the CogWorksLab’s Acoustic Pods that ensured that each player
was isolated from any and all lab noises. At the end of each game, players were required to
click on an icon to start the next game. They were also encouraged to take breaks, between
games, when and if needed. All sessions entailed 50 min of gameplay and all game actions
were controlled using an NES controller connected to the computer’s USB port through
an adapter. Most players were eyetracked; however, eyetracking results will be the subject
of a future report. After the game session, players completed a brief exit survey and were
debriefed.

3.5. Data preparation and feature extraction

The steps in our data preparation are shown in the top row of Fig. 9 and the steps in feature
extraction are shown in the bottom row. Before data preparation, our complete corpus of
Meta-T Tetris contained 2772 games collected from 499 players.
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3.5.1. Data preparation steps
(1) Tetris is an unforgiving game and most players, even those who play in the annual

CTWC, make slips that create play sequences that spiral out of control and quickly
end the game. To exclude such early death games, our analyses only consider the top
four games played during game sessions that were, at least, five games long. This
resulted in the elimination of seven players.

(2) Ranking players: Level-based and score-based ranking
(a) To meet the needs of our logistic regression models, we established a level-

based ranking measure based on the levels reached in each player’s top four
games (as discussed in Section 4.2).

(b) To meet the needs of our linear regression models, we used a score-based rank-
ing system that took the mean score of each player’s top four games as their
criterion score (as discussed in Section 6.1).

(3) Games that ended at Tetris level 0 or 1 were excluded, since they were deemed to
contribute more noise than useful information to the analysis.

(4) Data for the last level of gameplay (the level at which the player died) were removed
to ensure that we were only looking at stable performance data.

Data preparation and extraction ended with 1962 games played across 494 sessions for 492
players. The reader will note that we had two more sessions than players. For these players,
the software running the session somehow failed but was restarted by the experimenter while
the player remained in the Acoustic Pod. For our analysis, we merged the data from the two
session files corresponding to each player and treated the merged data as a single session
(which it was) and performed steps 1 through 4 for each merged session.

3.5.2. Gameplay features
In Table 1, we introduced eight high level events that can be used to describe the behav-

ior of the Tetris system and players during the game. In contrast, our statistical analyses of
Tetris play is based on 35 features that can be combined and analyzed to describe the various
states which these events may assume during the game. All readers are encouraged to turn to
Appendix A to glance over our list of features; however, no reader should feel compelled to
read this list or to read any other of our appendices unless they desire a deep dive into both
data and features.

Many features were either adapted or wholly adopted from Lindstedt and Gray (2019),
whereas most of the remainder are based on Smith (2014) excellent guide, Tricks of the Clas-
sic NES Tetris Masters. All features fall into two broad categories: (a) Board state: during
gameplay, the Tetris board changes dynamically. A few dimensions by which the board state
can vary include; mean board height, empty space (or gaps) that are surrounded by pieces,
and construction by the player of empty spaces reserved for certain Tetris pieces, such as
leaving open the rightmost column in the hopes of plugging it with an I-beam, and (b) player
behavior: as a zoid falls, players can move it laterally, rotate it, and/or force it to drop faster
than it would otherwise fall (see also Table 1, The Events of Tetris, Events 2–5).
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The between-player variations in board state and actions reveal player plans and strategies
that enable us to characterize player expertise based on the types of skills players present.

3.5.3. Aggregating gameplay features
The data preparation steps (Section 3.5.1) provided a set of 35 feature values for each

episode of gameplay. Although this allows us to access very fine-grained data, Tetris players
often make slips and such slips can introduce unwanted noise for certain episodes. Hence, to
mitigate this noise, for each game of each player, we averaged the values of our 35 features
across each difficulty level (see the leftmost column of Table 2 and the bottom nodes of
Fig. 9). The resulting level-averaged features were used to perform our analysis. Appendix A
lists all 35 level-averaged features along with their descriptions, and information about how
they were calculated.

3.6. Section summary

The methodology reported in this section has been a stable feature of our laboratory since
prior to the publication of Lindstedt and Gray (2015). We refer to this initial hour of Tetris
play as our Population Study. After playing Tetris for an hour, many of our players go on to a
second or third session in which we use the Population Study data to calibrate each player’s
level of Tetris skill. By obtaining performance data during the Population study, we have
been able to assign players of approximately equal Tetris skill to different conditions in those
other studies.

Some of these data have formed the basis of more specialized studies that compare human
performance with machine learning models (e.g., Sibert, 2015, 2019; Sibert & Gray, 2020;
Sibert, Gray, & Lindstedt, 2015; Sibert, Lindstedt, & Gray, 2014; Sibert, Speicher, & Gray,
2019), whereas others have focused on the role of eye movements during Tetris play (Gray,
Hope, Lindstedt, & Destefano, 2014; Gray, Hope, Lindstedt, & Sangster, 2015b; Gray et al.,
2015a, 2018). Destefano et al. (2011) revealed that epistemic action is, at least for the game
of Tetris, a novice, not an expert ploy as had been assumed (Kirsh & Maglio, 1994). Also,
many studies resulted in unpublished undergraduate theses. The Lindstedt and Gray (2019)
paper, mentioned above, is the immediate predecessor of the current study.

4. Establishing the basis of expertise differences between beginner, intermediate, and
expert players

To identify the latent factors (a linear combination of the features) that account for most of
the variance in the data, EFA was applied to the set of feature values averaged by level. Each
selected factor is associated with a specific type of skill based on the features that constitute
it. After these factors are extracted, to verify whether they are useful for explaining differ-
ences in player expertise, two types of multivariate regression models were used. First, we
applied linear models to identify factors that discriminate among players belonging to a spe-
cific expertise group. Second, after the linear models, we applied logistic regression models
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to identify factors that might explain differences between expertise groups. (As discussed in
Section 3.5.1, above, the expertise level for each player was calculated by taking the mean of
the final level of gameplay for their top-four games.)

The best linear models were derived using a bidirectional step-wise model selector based
on the Akaike information criterion (AIC). AIC entails an iterative process of input variable
selection based on the significance of the information each variable contributes to model
fit. Finally, further analyses were performed to determine the influence of random seeds on
gameplay (these analyses will be discussed in Section 7).

4.1. Exploratory factor analysis

Fig. 10 shows the correlation matrix constructed from the level-averaged feature values
in the data. The heat-map for the correlation matrix is shown on the left side of the figure
with the numbers for each entry shown on the right side. These values provide the input to
our EFA. Appendix A lists all 35 level-averaged features along with their descriptions, and
information about how they were calculated.

Factor analysis finds sets of correlated features and uses these sets to form individual fac-
tors. The method used here for identifying latent factors (Costello and Osborne, 2005) is
principal component analysis (PCA). PCA finds linear combinations of features in the orig-
inal data, called components. The weight/contribution of each feature for a component is its
loading value (see Figure 11).

The first component captures the highest amount of variance in the distribution of the data,
the second component captures the second highest variance in the data, and so on (Wold,
Esbensen, & Geladi, 1987). By default, these components are orthogonal to each other, which
means that there is no collinearity present among the components.

In general, it can be difficult to clearly determine the type of information each component
carries. However, rotation of components solves this problem, as the components become
factors that represent linear combinations of subsets of the original features. The loadings of
other less important features are awarded near-zero values, which can then be ignored. By
examining the features that constitute each rotated factor, it is possible to specify the kind of
information the factor carries. For our rotations, we used varimax-rotation, which is one of
the most commonly used forms of orthogonal-rotation (Jackson, 2005).

Our PCA used level-averaged features (explained in Section 3.5.3). One of the com-
monly recommended methods for selecting the number of to-be-retained factors is the Kaiser
rule, that is, select all factors whose eigenvalue is greater than 1 (Kaiser, 1960). However,
Costello and Osborne (2005) warn that this method often leads to suboptimal results (because
analysts end up retaining too many factors) and suggest other methods for the selection pro-
cess. Interestingly, the human eye is generally considered at least as accurate as an algo-
rithm for this process so that the most common method entails plotting the data to then look
for the inflection point (as per the Fig. 12 plot for our current data set). In such plots, the
horizontal line represents an eigenvalue of 1 (serves as a reference line, factors below that
should not be selected for analysis) and the vertical line is the point at which the slope
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Fig. 10. Combined heat-map and numeric weighting of the correlation matrix (Kendall’s Tau) for all 35 derived
features. The numeric weightings provide the correlation values (shifted by two decimal places) for the heat-map.
A quick scan of the heat-map reveals several small clusters of positively correlated features and a small number
of (strong) negative correlations. Some combination of features belonging to each of these clusters correspond to
the higher level behaviors of our players. The exploratory factor analysis (EFA) defines composite factors based
on linear combinations of the correlated features.

of the curve inflects. For these data, the inflection point supports a decision to retain the
first six factors and discard the rest. In our case, these six factors explain a total of 52.6%
of the total variance, with each explaining 12.1%, 10.4%, 9%, 7.4%, 7%, and 6.7% of the
variance.
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Fig. 11. Flowchart showing the steps in our exploratory factors analysis (EFA) (top line) and the various types and
functions of regression analyses used (bottom line).

The loadings for our 35 features for each of the six factors are presented in Appendix B.
From these loadings, we conclude that the factors contain the following information:

(1) Factor 1 (planning-efficiency): How fast players can decide the best placement posi-
tion for a zoid and react by taking the necessary actions. Lower values of this factor
are indicative of faster planning and action, whereas higher values indicate slower
performance.

(2) Factor 2 (pile-management): How well can the player manage the pile of zoids. Bad
pile management includes too many holes, deep crevices, a central spire or hanging
structures, and greater pile heights. Such messy piles result from bad zoid placements
and make line-clears difficult. Higher values on this factor are associated with bad pile
configurations.

(3) Factor 3 (zoid-control): For each zoid placement, there is a minimum number of
rotations and translations that are needed to move the zoid to its final position.
A high value for this factor indicates that the player is performing more than the
minimum rotations and/or horizontal movements needed to move the zoid to its
destination.

(4) Factor 4 (pile-uniformity): The shape of the top of the pile (depressions and spikes)
is a very important part of Tetris gameplay. Piles that are “too flat” make it difficult to
place zoids, especially the asymmetric zoids (i.e., J, L, Z, and S). Concurrently, piles
with deep wells tend be hard to manage, because such wells can be difficult to fill up.
Piles that are smooth at the top are indicated by a lower score for this factor, while
higher scores imply more jaggedness.
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Fig. 12. Scree plot of eigenvalues of all 35 components of the PCA.

(5) Factor 5 (minimum-line-clears): This factor tells us the extent to which players make
more one or two line clears as opposed to three or four line clears. Fewer line clears
generate less score and are mostly seen when players struggle to maintain their pile.
For this factor, a higher value indicates more single or double line clears.

(6) Factor 6 (rotation-corrections): Of the seven Tetris zoids, the Square neither flips
nor rotates, three (the S, Z, and I) flip, and three (the T, L, J) rotate both clockwise
and counterclockwise (see Fig. 6). If a slip is made so that the zoid overrotates, the
rotation-correction factor penalizes the player for having to make extra corrective
rotations to achieve the desired orientation. A high value on this factor indicates fewer
unnecessary rotations.

4.2. Defining player classes

Our logistic regression model allows us to determine differences in skill among groups
of players. To rank player expertise, we averaged the final level of Tetris gameplay for the
player’s top four games, rounded to the nearest integer. For example, if the top four games of
a player ended at levels 8, 9, 10, and 10, their expertise level would be rated at 9.

Fig. 13 shows the distribution of expertise levels among our 492 players. The distribution
is right skewed because there were very few players who were able to survive at level 9 or
higher. Indeed, only two of our players were rated higher than level 10. (See also the Difficulty
Level and Players Left column of Table 2.)
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Fig. 13. Distribution of expertise levels in the data. Beginners players correspond to expertise level 3 (62 players),
intermediate players are at expertise level 6 (87 players), and our experts are everyone who belong to expertise
level 9 or higher (22 players).

We used a clustering algorithm to define distinct groups of players based on expertise, for
comparison of skills. Clustering is a collection of unsupervised classification algorithms that
divide any given data into groups of similar data-points, based on dimension(s) of variation
in the data. (See Appendix F for more details about our clustering process.)

In this case, we use the k-means clustering algorithm, which divides the data into k clus-
ters (value of k supplied by the analyst). A challenge posed by this algorithm is defining the
correct value of k. A favorite choice for selecting an optimal value for k is the elbow method
(Marutho, Hendra Handaka, Wijaya, & Muljono, 2018); which we also used for factor selec-
tion in PCA (above).

For cluster analysis, the y-axis represents the sum of squared error (SSE) for the data as a
function of the number of clusters (x-axis). The data were divided into at least 2 to a maximum
of 10 clusters, and the SSE was calculated in each case. An elbow was observed at k = 3
clusters, so we divided our data into three clusters. The results were also subjected to other
verification processes to confirm we indeed had the optimal number of clusters (discussed in
detail in Appendix F). The verification process supported 3 as the optimal number of clusters
for our data. From the results of the clustering process, we determined three player groups for
comparison (see Fig. 14):

(1) Beginners: Players with an expertise level of 3.
(2) Intermediates: Players with an expertise level of 6.
(3) Experts: Players with an expertise-level of 9 or higher.
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Fig. 14. Black bars represent expertise levels that were selected for the analysis.

Table 3
Distribution (mean and standard deviation) of the number of games played (during each session) and final game
level (for each game) for players from each expertise level

Expertise-Level Mean (Game Count) Std. Dev. (Game Count) Mean (Final Level) Std. Dev. (Final Level)

Beginner 11.27 4.71 1.64 1.48
Intermediate 8.27 1.57 4.06 2.37
Expert 7 1.28 6.96 2.91

Expertise groups were defined on specific expertise levels to widen the gap between the
groups, for example, players from expertise level 4 and 5 were purposefully left out (from
beginner or intermediate groups), because, in all likelihood, it would be very difficult for
statistical models to differentiate between skills of expertise level 4 and expertise level 5
players (for a detailed explanation, refer to Appendix F.) Readers should also note that Fig. 14,
which shows the player groups selected for analysis, is derived from Fig. 13. For our sample,
there are 62 beginners (level 3), 87 intermediate (level 6), and 21 expert players (the sum of
expertise levels 9–12). Finally, Table 3 presents the distribution for number of games played
by players from each expertise level and the length of the games (expressed as the highest
level of gameplay for each game). In general, beginners play more but shorter games, whereas
experts play fewer but longer ones.
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5. Two at a time: Using logistic regression to compare player groups

Logistic regression models (also called generalized linear models or logit models) are often
used for classifying categorical binary data. As we are trying to compare two groups of players
with each model, logistic regression is perfect for our use-case. These models first perform
a linear combination of input variables and then feed the output into an activation function,
which converts the values into binary outputs. The models are first trained to fit the data, and
then the goodness-of-fit is determined by calculating the mean squared error.

5.1. Overview of analyses

We fed our regression models the six factor values (defined in Section 4) as input and
trained each model to classify players as belonging to one of two classes. (For example, for
model 1, factor 1, the best fit for planning-efficiency was −0.225. Also, note that the sign,
positive or negative, is not important; the best model is the one with the greatest absolute
size.) The best version of each model was determined through bidirectional, step-wise model
selection based on AIC. Four logistic regression models were trained:

• Model 1: Trained to distinguish between beginner and intermediate players, from factor
values corresponding to gameplay at level 0.

• Model 2: Trained to distinguish between beginner and intermediate players, from factor
values corresponding to gameplay at level 2 (last level of stable gameplay for beginner
players, on average).

• Model 3: Trained to distinguish between intermediate and expert players, from factor
values corresponding to gameplay at level 0.

• Model 4: Trained to distinguish between intermediate and expert players, from factor
values corresponding to gameplay at level 5 (last level of stable gameplay for interme-
diate players, on average).

It should be noted that as we move from model 1 to 2 and model 3 to 4 (models that are fit
to the same population but at different levels of gameplay), we still retain the same sample of
players but the number of games per player reduces. This is because beginners do not survive
level 2 for all of their games and intermediate players do not always make it beyond level
5. In general, only a subset of the games considered by models 1 and 3 (at level 0) is also
considered for models 2 and 4 (levels 2 and 5).

5.2. Results

The model fits were evaluated using 10-fold cross-validation for predictive performance
(mean squared error). Table 4 lists the results for the model fits.

Model 1 uses data collected from Beginner and Intermediate players at level 0. Even at
level 0, the pattern of performance of these two levels of players differ on planning efficiency
(Factor 1), zoid control (Factor 3), pile uniformity (Factor 4), and minimum lines cleared
(Factor 5).
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Model 2 was collected from the same population as Model 1 but looked at data collected
during performance at level 2. Three of the same factors are significant here as for level 0.
However, the Intermediate players are superior at pile management—a factor that becomes
more important as the game speeds up. Interestingly, for Model 2, the minimum number of
lines cleared (Factor 5), no longer differentiates the Beginners from the Intermediates, perhaps
indicating that the stress of the faster drop rates at level 2 (16 s to fall at level 0 vs. 12.7 s
to fall at level 2) is enough to diminish the small advantage that the Intermediate players had
over the beginners.

Model 3 compares the Intermediate against the Expert players at level 0. Skill differences
between these expertise levels seem to be determined by all factors except Factor 2 (pile-
management). The lack of a significant difference for pile-management between Intermedi-
ate and Expert players suggests that pile-management is a skill which Intermediate players
have mastered.

Model 4 compares Intermediate with Expert players at level 5. This is a complex com-
parison that suggests that, with the exception of pile-uniformity (Factor 4), the other five
factors have lost the power to discriminate between expert and intermediate players. For
pile-uniformity, the four largest contributing Game Features are WellDepth_mean (0.823),
Gt4_DepthWells (0.650), 4_DepthWells (0.633), and 3_DepthWells (0.584) (see Appen-
dices A and B). The significant pile-uniformity factor suggests that experts have learned more
about curating the board to avoid or remove gaps or holes, and more about setting up the board
so that they can remove one, two, three, or four lines at a time.

Fig. 15 demonstrates how players adapt their behaviors to changing task demands, which
explains why differences in skill between Intermediate (orange) and Expert players (green)
(which are relevant at level 0, Model 3) disappear at level 5 in Model 4. For two of the most
important features in planning-efficiency (i.e., ResponseLatency and DecisionLatency), the
plot shows changing group behavior with increasing game difficulty; however, this factor
becomes irrelevant in Model 4 (i.e., around game level 5 of Fig. 15).

The overlap of error bars (between groups) might be thought to undermine the significance
of the differences in mean values. However, that would be an incorrect assumption, since
partial overlap of standard deviation bars should not be interpreted as evidence against sig-
nificance of group differences (Krzywinski & Altman, 2013). Also, our purpose for plotting
standard deviations is to show the distribution of the values for each group; that is, we do not
intend it as a tool for measuring significance of differences between groups.

As difficulty increases, the group means allow us to understand the overall trend in behav-
ioral changes for each group. The trends indicate that both beginners and intermediate
players adapt with increasing task demands, in this case speeding up their response and deci-
sion times. However, based on the results of our regression models, intermediate players can
change their behavior to match the skills of experts, while beginners are unable to adapt to
the extent required to close their gap with intermediate players. This is revealed by the large
number of factors that lose discriminatory power between models 3 and 4 (comparing inter-
mediates and experts) as opposed to only one factor from model 1 becoming irrelevant in
model 2 (comparing beginners and intermediates). Combining all this information leads us to
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Fig. 15. Changes in response latency (top) and decision latency (bottom) with game level. Means and SDs of
response (a) and decision (b) latencies (ms) of three-player categories across game difficulty levels (Y-labels use
the feature names described in Appendix A). Trends in mean values show adaptive behavior for all players. For
detailed analyses, see Section 5.2.
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conclude that intermediate players are capable of playing with near expert skills when forced
to, but it is not their default behavior.

Patterns of individual skills also reveal interesting trends. Planning-efficiency, zoid-control,
and pile-uniformity remain significant discriminators for our first three models, perhaps
because expertise in each of these skills vary over a broad spectrum. Pile-management does
not contribute to group differences at level 0 (Models 1 and 3), between any of the player
groups (see Table 4). Implying, when players are not pressed for time, anyone can build a
clean pile (without gaps or holes). At level 2 (Model 2), however, pile-management becomes
significant, likely because the increased time pressure is enough to push beginners into sur-
vival mode that results in poor pile states. The time pressure at this level also seems to be
enough to disrupt the intermediate player’s ability to perform higher line clears compared to
beginners (indicated by the change in significance of factor 5 from Model 1 to 2).

Pile uniformity remains a significant factor across all models, possibly because it is a diffi-
cult skill to master, but players start using it even at very early stages of expertise. The ideal
configuration for the top of a pile is somewhere between a very jagged and perfectly smooth
pile, with slots that accommodate various zoid types without degrading the pile configuration.
Finally, rotation corrections only seem to be useful when comparing intermediate players to
experts. It is currently difficult to reach any conclusions about this observation, as the distri-
butions of this factor at level 0 seem to converge with increasing expertise (see Appendix C
for plot).

These changes in the significance of factors across the four models are also reflected in the
model plots shown in Appendix C, in which they are manifested as differences in the average
factor values among player categories. (NB, the Appendix C plots represent factor values for
games played by the top three players across each of our three-player categories.)

6. Comparing expertise levels across game levels: A factor distribution approach

For our logistic regression models in Section 5, the expertise level of each player was used
as the outcome variable. In contrast, for Section 6, we use our linear models to determine
factors that contribute to differences among players at the same expertise level.

6.1. Criterion scores

Up to now, we used expertise level to differentiate among groups. However, we now exam-
ine differences among players within each expertise level. To do so, we return to the criterion
score measure favored by Lindstedt and Gray (2019) and compute the mean of each player’s
score on their four highest scoring games.

This decision raises a new difficulty as scores in Tetris are skewed from level to level. That
is, the distribution of games by game score is not normal, but is skewed due to the occurrence
of many short, low-scoring games and fewer long, high-scoring games. This skewness is
clearly apparent in Figure 16(a).
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Fig. 16. Distribution of criterion scores (a) and normalized (natural log) criterion scores (b) for all players.

We solve our problem and normalize the game score distribution by taking the natural log of
data plotted in Figure 16(a) that produces the relatively normal curve shown in Figure 16(b).
This transformation normalizes criterion scores and makes it a reasonable outcome variable
for our linear regression model.

6.2. Linear regression model

As per our logistic regression models, the six retained factors were fed as predictor vari-
ables to these models as well. In this case, however, to ensure that the models were able
to distinguish between individual players (within each group), criterion scores were used
as outcome variables for model fit (since groups are defined on expertise levels). Step-
wise model selection using AIC was then used to determine the best set of factors for each
model. The models were used to evaluate which factors are necessary to differentiate between
players who belong to the same expertise level. To this end, the following models were
developed:

• Model 1: Fit to the data for all players at level 0 of gameplay.
• Model 2: Fit to the data for expert players at level 0 of gameplay.
• Model 3: Fit to the data for expert players at level 8 of gameplay (last level of stable

gameplay for expert players, on an average).
• Model 4: Fit to the data for intermediate players at level 0 of gameplay.
• Model 5: Fit to the data for intermediate players at level 5 of gameplay (last level of

stable gameplay for intermediate players, on an average).
• Model 6: Fit to the data for beginner players at level 0 of gameplay.
• Model 7: Fit to the data for beginner players at level 2 of gameplay (last level of stable

gameplay for beginner players, on an average).
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6.3. Results

The goodness-of-fit for each model, after going through the model selection process (AIC
based), is reported as adjusted R2. The results for the model fits are presented in Table 5 (the
Normal Q-Q plots for the fitted models are available in Appendix D).

Table 5 shows distinct behaviors within player groups. The R2 values of model fits are the
lowest for intermediate players (Models 4 and 5) perhaps because there is a large amount of
variance in how intermediate players use the limited number of skills that do capture the vari-
ation in this group. Also, the right skew observed earlier (Figure 16) could not be completely
resolved for intermediate and expert populations. This is indicated by the deviations of data
points from the reference line, seen toward the right ends of the Q-Q plots in Appendix D, for
models of intermediate and expert populations. While the model fits for the beginner popula-
tion (Models 6 and 7) are higher than our intermediate population, expertise for these players
varies across a broader range of skills. Also, the R2 values for the expert models (Model 2 and
Model 3) are the highest of the three-player categories, which could imply a convergence of
skills for expert players.

Interestingly, at higher game levels, model fits get worse for expert and intermediate play-
ers, while the reverse is true for beginners. We speculate that beginners are likely to start
off by exploring many different strategies (which might explain the poor fit for Model 6)
but when the game becomes difficult for them (at level 2, Model 7), their strategies converge
(higher R2). As the intermediate and expert players have already explored and discarded many
possible strategies, the converse is true for them. Indeed, perhaps, “strategy” is too grand a
word to be applied to what the beginners are doing. Perhaps, a more fitting phrase would be
something like exploration of the state space that, of course, is a very basic strategy. Indeed,
the tendency of beginners in a complex task to explore various options to see what they do
has been recently noted by Rahman and Gray (2020) as well as Anderson, Bettsa, Bothella,
and Lebiere (2021).

Rotation-correction (Factor 6) is not a useful discriminator for any of our groups, except
for beginners at level 0 (likely experimenting with new strategies for rotation). In contrast,
planning-efficiency (Factors 1) and min-line-clears (Factor 5) remain relevant predictors in
most models, suggesting a greater variability in the development of these skills at all three
stages of expertise. Zoid-control and pile-uniformity (Factors 3 and 4) seem to be mostly
useful for determining skill variation among beginners (Models 6 and 7).

Finally, the effects of time pressure are clearly observed in case of experts as pile-
management and minimum-line-clears (Factors 2 and 5) no longer account for any signifi-
cant variation when the experts are trying to survive at level 8 (Model 3) compared to level
0 (Model 2). Such effects are least apparent for beginners as most factors remain significant
at both game levels 0 and 2 (Models 6 and 7), with the exception of pile-management. The
pile-management exception is interesting since, under time pressure, it becomes a priority
for beginners at level 2 but is not a priority in level 0. While the reverse is true for experts
to whom it loses priority at higher levels. Perhaps, this reversal implies that basic pile man-
agement skills of experts are “good enough” for survival. Perhaps, when time permits them,
experts attempt these highly skilled moves but, when pressed for time, revert back to their
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basic skills for quick decisions. In contrast, for beginners, surviving under pressure requires
them to step up their pile-management skills.

7. Randomness does not seem random: Analyzing random seeds

Each game has a random seed that dictates the sequence of zoids for that game. Figure 17
shows the distribution (cumulative percentage) of various zoid types (by episode) for seeds
111 and 666. The use of the cumulative percentage allows us to demonstrate two properties
of the RNG. First, over the short term, say between the first zoid in a game and the 50th, one
zoid type can be very frequent, while another can be very infrequent. Second, over the long
term, for example, episode 300, as in Figure 17(b) for seed 666, the cumulative frequency
each zoid type settles into what we would expect; namely, each appears in approximately
15% of the episodes by episode 300. However, in other cases, as for seed 111, the cumulative
variations in individual zoids by trial 350 are still unevenly ranging from approximately 17%
for the J-zoid to about 11% for the S-Zoid.

The colored vertical lines in the two plots in Figure 17 represent the episodes at which
each of our top six players (based on criterion score) die. The color-coding remains constant
across the two plots; for example, the reddish-orange vertical line in both plots represents the
same player. A careful observer might notice that these vertical lines tend to cluster around
certain episodes. A likely explanation for this is, for each seed, zoid distributions preceding
certain episodes lead to challenging game conditions that sometimes overwhelm even our best
players to the point of failure. Not much can be done by players if a key piece simply does not
come. Indeed, during CTWC tournaments, “waiting for an I-beam,” sometimes adds to the
drama of the game, so much so, that the organizers keep count, in real time, of the number of
“other” zoids played since the last I-beam dropped. It is not unusual for this count to go into
the 20’s (i.e., more than 20 other than I-beam zoids drop) before a new I-beam finally appears.

Comparing relevance of each of our six factors from Table 5 to games created by different
seeds reveals the differences in skills needed to survive each game. Linear regression models
were fit to level 0 gameplay data for all players, as before. However, in this case, each model
represents the best fit for data corresponding to a specific seed. The step-wise model selector
(based on AIC) was used to select the best set of factors for each model. The results for the
model fitting process are presented in Table 6. Only the first six seeds were analyzed, since
sufficient data were not available from our student experts for games beyond the sixth. The
following models were trained:

• Model 1: Fit to the data (corresponding to seed 111) for all players at level 0 of
gameplay.

• Model 2: Fit to the data (corresponding to seed 222) for all players at level 0 of
gameplay.

• Model 3: Fit to the data (corresponding to seed 333) for all players at level 0 of
gameplay.
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Fig. 17. Distribution (cumulative percentage) of the seven Tetris zoids for seeds 111 (top) and 666 (bottom). The
value of a zoid-type at any point represents the percentage of episodes in which the zoid is encountered up to that
episode. For example, the value for the z-zoid at 50 episodes (for seed 111) is 8%, which means that the z-zoid
showed up in 4 of the first 50 episodes. (Note that the vertical lines running through the plots each represent the
episode at which one of our top six players [based on criterion score] died.)
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• Model 4: Fit to the data (corresponding to seed 444) for all players at level 0 of
gameplay.

• Model 5: Fit to the data (corresponding to seed 555) for all players at level 0 of
gameplay.

• Model 6: Fit to the data (corresponding to seed 666) for all players at level 0 of
gameplay.

As per Table 6, the three factors that remain relevant across all seeds (with the exception
of model 5) are planning-efficiency, zoid-control, and minimum-line-clears. The significance
of our other factors change with seeds. This suggests that certain seeds create gameplay con-
ditions that force players to rely more heavily on one set of skills or another.

A deeper analysis of the zoid distribution for each seed and the effect it has on player
decisions is likely to generate interesting conclusions and raise more interesting questions
about human behavior. Although such an analysis is beyond the scope of the current study, it
might be addressed in future research.

8. Discussion

In Section 2.2, we defined the eight events of Tetris with which our non-tournament, stu-
dent players grappled. Knowledge of these events guided our considerations in identifying
and naming the features found in our three analyses. In this section, we briefly review and
summarize the major findings for each of these analyses.

8.1. Establishing the basis of expertise differences: Feature extraction (Section 4)

In Section 4, we perform principal component analysis (PCA) on 35 features of
Tetris gameplay to identify various dimensions (the components of a PCA process) of
player skill. The top six dimensions were retained for the analyses. After rotation, we
named the new dimensions for qualities suggested by their dominant features; namely,
planning-efficiency, pile-management, zoid-control, pile-uniformity, minimum-line-clears,
and rotation-corrections.

Player groups were defined on expertise level (EL), a grade awarded to each player by aver-
aging the last level of gameplay for their top four games. Three player groups were defined
for the study: beginners (EL 3), intermediates (EL 6) and experts (>= EL 9). Players belong-
ing to other expertise levels were left out so as to ensure gaps in expertise between adjacent
groups. We believe that these gaps have helped to emphasize the differences in skill between
our three analyzed groups of players (EL 3, EL 6, and EL >= 9).

The six skills established by our feature extraction were used as metrics to distinguish
between groups (Section 5) and among individuals within groups (Section 6).
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8.2. Finding important differences among player groups: Logistic regression models
(Section 5)

Based on the six skills established in Section 4, Section 5 focused on group differences at
various levels of gameplay. Logistic regression (logit) models were trained to perform binary
classification on adjacent pairs of player groups (beginners vs. intermediate and intermediate
vs. expert). Four logit models were trained, two for the beginner and intermediate populations
(gameplay at level 0 [Model 1] and level 2 [Model 2]), and two more for the intermediate and
expert populations (gameplay at level 0 [Model 3] and level 5 [Model 4]).

The results yield significant skill differences between the beginner and intermediate pop-
ulations at level 0 and at level 2 and also between the intermediate and experts popula-
tions at level 0 and at level 5. Our findings suggest that all players adapt with the chang-
ing game demands of the higher difficulty levels. However, unlike intermediate players, who,
when forced, are able to perform nearly at expert levels of skill, beginners are unable to
close their gap with intermediate players through adaptation. The implication we draw is
that the leap in skill needed for players who routinely survive level 3 to be able to survive
level 6 is far greater than the leap needed for those who survive level 6 to also survive at
level 9.

Certain skills, when investigated independently, also lead us to interesting conclusions.
Pile-uniformity remains a significant discriminator across all models, which could mean that
it is a difficult skill to master. Learning the optimal amount of pile jaggedness takes time and
practice, and even if the players do manage to figure that out, as additional zoids keep raining
down, they need to have high levels of foresight and planning to incorporate these zoids into
their pile configuration.

On the other side of the spectrum, pile-management does not seem to be a skill that helps
differentiate any of our player groups at level 0. Implying that, given enough time, even our
worst players are able to build clean piles.

Finally, rotation-corrections only seem to be useful when comparing intermediate players
to experts at level 0. Without more information, we can only speculate that at least some of
our players begin experimenting with bidirectional rotation (see Figure 5 and Figure 6). This
flirting with rotation may be important as the players who participate at CTWC demonstrate
advanced execution of rotation skills. Perhaps, some of our student players begin to acquire
rotation skill by correcting over (i.e., extra) rotations.

8.3. Looking for skill differences within each expertise group: Factor distribution (Section 6)

After identifying skill differences between groups, we turned our attention to within-group
variations in skill. For this analysis, we trained seven linear regression models, on gameplay
data for: (a) All players at level 0, (b) One for each of the three-player groups at level 0, (c)
Beginners at level 2, (d) Intermediate players at level 5, and (e) Experts at level 8. The models
were trained to predict the criterion score of a player based on the six factor values.

In brief, we found that beginners have the widest variation in skill; five of the six identified
skills remain significant across both levels (level 0 and level 2) of gameplay; and model fits
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for beginners improve at higher levels of gameplay, whereas they get worse for the other
two groups. These findings signal a tendency towards exploratory behavior among players in
this category. While beginners vary across a broad spectrum of skills, intermediate players
vary with greater magnitudes in each skill type but across fewer dimensions. This variation
manifests as poor model-fits for intermediate players.

Experts seem to have achieved pile-management skills where their base skill is enough for
them to survive even under pressure. For beginner and intermediate players, these skills start
to diverge with growing time pressure. Experts also likely use the extra time they have at early
levels of gameplay, to explore more advanced pile-management strategies.

Finally, an inspection of individual skills reveals that planning-efficiency and minimum-
line-clears remain significant in almost all cases implying that, compared to the other skills,
these skills exist on a broader spectrum of development across various stages of expertise.

8.4. Controlled randomness and its effect on player performance (Section 7)

In the final section of analysis, we introduced the concept of random seed as a control factor
for the dynamic nature of the Tetris environment. All players who use the same random seeds
are exposed to the same set of dynamic test environments in the same serial order, a form of
pseudorandomization. Random seeds are responsible for randomization of the sequence of
zoids that players receive over the course of a game. Advanced players who plan their actions
based on the possibility of getting specific zoids to execute special moves are particularly
affected by extreme distributions (too much or too little availability of a zoid type).

Linear regression models were trained on data corresponding to various seeds. The models
were trained to predict the criterion score for each player (based on their six factor values) for
gameplay at level 0 across all players. The results reveal that each seed creates unique game
conditions where some skills may become more important than others. Future research can
dive deeper into the data to identify how seeds affect player performance, and how specific
seeds compare with each other.

8.5. Converging analyses: Comparing player groups and across game levels

Combining results from our analyses in Sections 5 and 6 help us understand the distri-
butions of the six skills, both across and within groups. Planning-efficiency, pile-uniformity,
and minimum-line-clears are the three most reliable predictors of expertise for players within
the same group. Planning-efficiency shows similar predictive power when comparing play-
ers from different groups. In contrast, minimum-line-clears loses discriminatory power for
between group comparisons at higher levels of gameplay.

Pile-uniformity remains a significant predictor of performance across the board for both
between-group and within-group comparisons, with the exception of within-group differences
for expert players. This suggests that expert players have already converged on this skill, while
both beginner and intermediate players continue to refine the skill as they get better at playing
the game. Zoid-control remains a significant factor for our between-group comparisons, but
fails to distinguish between players within the same group.
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Finally, based on the trends for the pile-management factor in both analyses, experts seem
to have mastered the skill to the point that they show optimal behavior in the skill even when
they are close to death, at level 8. Also, they might be utilizing the extra time they have at
lower levels for experimenting with more advanced strategies.

9. Conclusions: Revisiting the anticipatory behavior of expert performers

We began our paper with a quote from Thorndike (1913) in which he recommends that
those interested in studying the limits “of efficiency” of mental functions should examine,
“those occupations of work or play” in which “excellence … is sought with great zeal and
intelligence.” Of course, our candidate for that type of study was the computer game Tetris.

Overcoming plateaus, dips, and leaps (Gray & Lindstedt, 2017) in human performance
is more difficult for Tetris than in many other tasks as all Tetris games end in failure and
all necessitate restarting the game from its beginning. That statement is true of every Tetris
player whether she is a Jonas Neubauer (the seven times Classic Tetris World Champion) or
a first time player.

If Tetris were “merely a twitch” game, then movements would occur in response to a
change in game state. Although this seems like a reasonable statement, the reality is that such
a system would be too slow to interact with a dynamic world. For Blättler et al. (2011) French
Air Force pilots (discussed in Section 2.1, page 7), in a situation where the world literally
stops moving, the experts make “forward errors”—the pilots indicated a shift in target location
forward to where it would have appeared if the world had continued to move. These expert
pilots were trained to look (and presumably aim and fire) at where their targets would be in a
few milliseconds, not where they are now. This type of predictive processing (Hommel, 1998,
2019) and EPCog (Baldwin & Kosie, 2021; Butz et al., 2021; Cooper, 2021; Kuperberg,
2021) seems emergent in our data. We also drew on a variety of studies that compared
expert with novice performance in team games such as Rugby, Tennis, Beach Volleyball, and
Basketball.

Without having to take a position on how these differences arise, it is clear that each of
our three classes of Tetris players (beginners, intermediates, and expert) perform the same
tasks differently from the others. For example, our logistic regression models (see Section 5,
Table 4) show differences in the factor information for models trained to distinguish between
beginner and intermediary players at level 0, and those trained to distinguish between the play
of the same set of players at level 2. Likewise, our linear regression models from Section 6
(see Table 5) show us that, at level 0, our Experts, Intermediates, and Beginners not only
have different weights on some of the same features but also have different combinations of
features (e.g., compare Model 2 with Model 6 or Model 4 with both Model 2 and Model 6).
These are complex differences and, without having to understand (let alone to explain) how
these differences arise, we are happy to conclude that expert performance in Tetris is not
simply a matter of innate twitch speed or of any other single factor, but arises, somehow, from
a complex combination of factors that are caught like ancient flies in the amber of our factor
analyses.
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10. Summary: League-stepping habits

Now, the ability to take league steps in receiving telegraphic messages, in reading, in
addition, in mathematical reasoning and in many other fields, plainly depends upon the
acquisition of league-stepping habits. No possible proficiency and rapidity in elementary
processes will serve. (Bryan & Harter, 1899, p. 375)

Does success as a Tetris player depend on a person’s twitch speed? That is, is it simply a
matter of how fast they can move their fingers? Although our closing quote is over 121 years
old, the myth of superior performance as due to innate individual differences in speed, in
ignorance of the acquisition of league-stepping habits, stubbornly persists.

10.1. The data

In this paper, we have taken up the story of 492 college students, all of whom had some
prior familiarity with the game of Tetris. As they are young and, generally, in good physical
condition, if superior twitch speed were the secret to Tetris success then surely this would
be a successful group. However, the key to their play lies not in simple response time but
in the way in which the various components of EPCog load onto the 35 factors listed in our
Appendix A (and detailed in Appendix Table B, PCA Loadings).

Even our beginner players are doing things other than responding fast. They quickly realize
that while clearing one line scores points, points escalate if two or more lines are simulta-
neously cleared. Hence, rather than just clearing the bottom line as soon as it fills, they are
beginning to build solid, multiple line, walls with a vertical gap someplace that can be plugged
to remove two, three, or four lines at once (depending on their success at wall building). Our
intermediates and experts start filling in their walls in a fashion that allows them to handle
awkward zoids. For example, once a wall starts to rise, deciding where to place a square zoid
becomes not simply an immediate decision but an event with consequences that must be han-
dled correctly, so the square zoid fits in well with the rest of the pile right now but, also, so
its placement can prepare the board to best fit the next zoid as well as the next-next zoid, and
so on. If Tetris were a twitch game these sorts of factors would not be considerations. Indeed,
there would be little difference in strategy, planning, or skill acquisition between Tetris and
extended training on, for example, the Hick-Hyman task (Hick, 1952; Hyman, 1953).

10.2. Tasks, tools, and techniques

As suggested by Figure 8, in common with many human tasks, Tetris can be considered
as a task or set of subtasks, with tools that are used for performing the tasks, and different
techniques available (or discoverable) for using those tools. Within an episode (see, Event 1,
Table 1), within each step of each zoid’s fall, there can be an instance of one of the four types
of player initiated movements. Players can rotate the zoid clockwise or counterclockwise
(rotations), move it left or right (translations), force an early drop, or fill in a gap in the row
(which, if done with some forethought and planning, may briefly creates one to four solid lines
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of filled-in rows and then dissolve). These first three movements usually occur in combination
with each other, and as the last event (filling in one to four rows) stops the zoid from falling,
it always ends the episode.

The techniques our players develop for using their tools were revealed by the various anal-
yses performed in Sections 4– 7. Those techniques have a direct correspondence to the tools
available in Tetris. Interestingly, techniques continue to change, develop, and be invented even
(or perhaps, especially) at the higher levels of Tetris play. Indeed, during the 2020 CTWC
competition, the champions of the Tetris world were divided by their choice of one of two
types of techniques for bringing a new zoid onto the board; namely, Hypertapping versus
DAS. Each of these is a maneuver favored by different groups of tournament level players.
We are safe in saying that none of our 492 players used either of these two techniques.

10.3. What’s next? Above beginners and beyond tetris

Why do players die? Specifically, in Tetris, players play until something happens and they
lose control of their boards. An orderly board enables growth and control. But at some point,
whether due to player slips, “bad luck” with their random seed, or relentlessly increasing
drop speed, all players die. In this, as in prior reports, we avoided any attempt to analyze the
death level and only focused on levels which the player completed. However, the question of
how they lose control and how or whether our differently skilled players; that is, our experts,
intermediates, and beginners lose control in different ways is an outstanding question that we
plan to pursue.

What about the good players? The really good players? The ones who make it into the
annual CTWC?? As unbelievable as this may sound to all 492 of our student players, Tetris
as played at CTWC starts at level 18 where a zoid will drop from top-to-bottom in 1 s and
then it gets fast—at level 19, the same zoid will drop from top-to-bottom in 2/3’s of a second
(see Table 2). Although we mention these incredible CTWC players often in this report, until
recently, we have been able to collect only modest amounts of data from them and we have
never amassed much data, from any of them, beyond level 18. But, that was then and this is
now, and perhaps, there really is always a good side to everything, even the pandemic. The
2020 CTWC was played remotely and streamed over Twitch (https://www.twitch.tv/directory/
game/Tetris). For a new research effort, we are busily translating Tetris play files collected by
the CTWC organizers into file structures similar to those used in the raw data for this report.

10.4. Concluding thoughts: The control of anticipated action

There is much going on in our study of the simple game of Tetris and many words have
been spent in this paper explaining details of the game’s events and of the analyses that take
us beyond events into the mixture of factors that change across levels of play as well as across
the acquisition of expertise. Behaviorally, it is probably not surprising that most (if not all)
Tetris players reach points in the game where they become very quiet with their full attention
locked on the screen of this “simple twitch game.”
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It is, indeed, difficult to describe complex tasks like Tetris in terms of what we observe in
the psychology laboratory where simple tasks, which are not all that dissimilar from classic
tasks such as Hick–Hyman (Hick, 1952; Hyman, 1953), tend to rule the 1-h per subject exper-
imental psychology lab. Such tasks have provided the basis of our modern understanding of
dynamic decision-making and perceptual-motor behavior. Time and again, going back into
the lab to work out what we think we see happening in more complex tasks has proven to be
a vital strategy. Indeed, our work has directly benefited from the thoughts, theories, and con-
clusions of studies such as those by Henry and Rogers (1960), Hommel (1998), Kunde, Koch,
and Hoffmann (2004), Zacks and Swallow (2007), Anderson and Fincham (2014), Hommel
(2019), Butz et al. (2021), Cooper (2021), Kuperberg (2021), and many others. Similarly, our
research strategy profits from advice given by the late Allen Newell in his seminal paper, “You
can’t play 20 questions with nature and win” (1973). Three of his several suggestions we have
taken to heart are, (a) to know the method your subject is using to perform the experimental
task, (b) never average over methods, and (c) to accept a single complex task and do all of it.
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Notes

1 Auch zum Zögern muss man sich entschließen.
2 A famed guitar player.
3 The winner of the most matches won at Grand Slams by any male or female player in

tennis history.
4 7-time Classic Tetris World Champion. Jonas also created a series of YouTube videos

which demonstrate advanced Tetris techniques.
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5 Harry Hong was the first player to document “maxing-out” Tetris by scoring
999,999 points.

6 “Hypertapping” is a technique for the repetitive pressing of keys that is much faster
than the normal technique of keypressing. It is not used by players in our sample of 492
student players but is used very frequently by tournament-level players.

7 Although this statement is true of NES Tetris, as we discuss later, in our Meta-T version
of Tetris, we used the same set of random number seeds for each of our 492 players.

8 Note that the statement, “with replacement,” is true of the classic NES Tetris but is not
true for most other Tetris variants.

9 https://www.youtube.com/watch?v=c4l6g8_rei0
10 As we discuss later, in our sample of 492 student players, even our very best student

player would be unable to qualify for CTWC.
11 Re-afferent: sensory signals that occur as a result of the movement of the sensory organ.

This re-afferent signal of motion is compared by the brain to that which would be
expected as a result of the intended movement, and adjustments are made as necessary.
https://dictionary.apa.org/reafference

12 Italics added.
13 Subjectively, “reactivation” may be what happens when we “think of,” “imagine,” or

“simulate” the outcome of an action.
14 Also, for anyone who has been lead to believe that mental rotation plays a role in Tetris,

please see Destefano et al. (2011).
15 I-beams are very important in CTWC play as most players who qualify spend most of

their time building solid walls of zoids that are at least four zoids deep and then waiting
until an I-beam comes along so that they can plug the column to clear all four rows at
once; thereby scoring a Tetris (and gaining eight times as many points as they would by
clearing one line four times).

16 Also see the right-side of Fig. 1.
17 At the time this study was run, 506 zoids constituted the longest Tetris game played by

any undergraduate in our lab. Hence, we took this to represent a strong student player.
18 The exit survey was in support of undergraduate projects and is not further discussed in

this paper.
19 We recognize that these death-level games could be interesting in their own right; how-

ever, we reserve their analysis for a future paper.
20 Each of these two players remained in the lab when the experimenter restarted the game.

Hence, our curated SQL files for these data include this as one session that was treated
the same as the other of 492 player sessions used for these analyses.

21 (An eigenvalue of 1 indicates that a factor explains exactly as much variance as any one
of the original 35 features.)

22 For more information on Logistic Regression models, please see: https://simple.
wikipedia.org/wiki/Logistic_regression

23 This statement comes with one caveat; namely, that in tournament competition, Tetris
play begins at level 18 (see Table 2). However, the spirit of this comment is preserved
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as when the CTWC games are reset, they are reset to the beginning level for tournament
play; which is, of course, level 18.

24 See Macdonald (n.d.) excellent book on all known Tetris moves and strategies.
25 All we will say here is that DAS is conceptually similar to how the repeat key works on

a keyboard.
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Gray and Banerjee show that the transition from novice to expert performance in complex
dynamic tasks is not a smooth ascent. Rather, learning in such tasks involves phase shifts,
where individuals acquire a range of skills along the way. Sets of exploratory factor analy-
ses (EFA) provide detailed examinations of differences between players at various levels of
expertise, whereas other sets of EFAs examine differences among players within the same
level of expertise. Higher performance among players is consistently associated with various
forms of anticipatory behavior.

Appendix A: Game features
Counts, percentages and mean values for features are calculated across all episodes corre-
sponding to each level.

Basic Information:
EpisodeCount: Number of episodes corresponding to each level of gameplay.
Pile-Specific Information:
CreatedOverhangs_Percent: The percentage of episodes where new overhangs

were created.
ClearedOverhangs_Percent: The number of episodes where existing overhangs were

cleared expressed as a percentage of the number of episodes where new overhangs were
created for the current level.
CreatedWells_Percent: The percentage of episodes where new wells were created.
ClearedWells_Percent: The number of episodes where existing wells were cleared

expressed as a percentage of the number of episodes where new wells were created for the
current level.
WellDepth_mean: The mean depth of all wells across all episodes in the level.
<X>_DepthWells [Ex:3_DepthWells]: The average count of ’X’-depth wells present

in each episode across a level. ’X’ can take values 2-4.
Gt4_DepthWells: The average count of wells with depths greater than 4 present in each

episode for a level.
CreatedPits_Percent: The percentage of episodes where new pits were created.
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ClearedPits_Percent: The number of episodes where existing pits were cleared
expressed as a percentage of the number of episodes where new pits were created for the
current level.
PitSize_mean: The average size of all pits across all episodes for a level.
Spire_Percent: Percentage of total episodes in which a central spire was present.
MaxPileHeight: The average height of the peak of the pile, averaged across all episodes

in each level.
RightWell_Score: A custom score for the right well based on well depth and maximum

pile-height at each episode, averaged across levels.
PileScore: A custom scoring function for the pile orderliness averaged across all episodes

in each level. The score at each episode is derived from a combination of the depth of the
rightmost well, pile peak height, shape of the top of the pile, and distribution of overhangs
and pits.

Action-specific information:
RespLatency_mean: The mean time it took (milliseconds) across all episodes (in a level)

to click the first button.
DropDuration_mean: The mean time (milliseconds) across all episodes (in a level) for

how long the zoid was dropped by the player.
DecisionLatency_mean: The mean time it took (milliseconds) across all episodes (in a

level) to place the zoid in its final orientation and horizontal position. Calculated by subtract-
ing the response latency from the time of the final rotation/translation, for each episode.
DecisionLatencyPercent_mean: The mean value of decision latency expressed as a

percentage of the total time available for each episode in a level.
ExtraRotations_mean: The mean number of extra rotations (varies by zoid-type; Ex: for

static zoids any rotation is an extra rotation) made unidirectionally across all episodes (in a
level) to get the zoid to its final orientation.
ExtraRotations_nonzeroPercent: The percentage of episodes that had extra rotations.
DominantRotation_DirectionPercent: The percentage of rotations made in the dom-

inant direction (the direction in which greater number of rotations were made), based on the
all rotations made at each level of gameplay. Ex: if 75 rotations were made in one direction
and 25 in the other, then the feature value would be 75.
CorrectedRotations_mean: The mean number of rotations made in the opposite direc-

tion to fix too many rotations made in one direction across all episodes, to get the zoid to its
final orientation.
CorrectedRotations_nonzeroPercent: The percentage of episodes that had cor-

rected rotations.
CorrectedTranslation_mean: The mean number of translation made in the opposite

direction to fix too many translations made in one direction across all episodes (in a level), to
get the zoid to its final position.
CorrectedTranslation_nonzeroPercent: The percentage of episodes that had cor-

rected translations.
<ZoidType>_responseLatency: The response latency for each zoid type averaged for

the data. ’ZoidType’ can be: ’StaticZoid’, ’FlippingZoid’ or ’RotatingZoid’.
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<X>_LineClearPercentage [Ex: 4_LineClearPercentage]: The number of ’X’
line clears expressed as a percentage of total number of all line clears for a game level. ’X’
can take values 1-4.

Appendix B: PCA loadings
The table shows the contribution of each feature in the six factors that were obtained after rota-
tion. The loading values for each feature specify the contribution of that feature to the factor.

Information about model fits, coefficients, and significance of each factor corresponding to linear regression mod-
els for each seed. Higher R-squared (R-Sq.) Value indicates a better fit

Factor 1: planning-efficiency (pl-eff)
Factor 2: pile-management (pile-m)
Factor 3: zoid-control (zoid-c)
Factor 4: pile-uniformity (pile-u)
Factor 5: min-line-clears (m-l-c)
Factor 6: rotation-corrections (rot-cor)

Features Fact.1
pl-eff

Fact.2
pile-m

Fact.3
zoid-c

Fact.4
pile-u

Fact.5
m-l-c

Fact.6
rot-cor

EpisodeCount 0.213 0.293 0.336 0.246 −0.310
CreatedOverhangs_Percent 0.259 0.449 0.338 0.153
ClearedOverhangs_Percent 0.202 0.452 0.286 0.125
CreatedWells_Percent 0.183 0.412 0.530
ClearedWells_Percent 0.333 0.155
WellDepth_mean 0.823
2_DepthWells 0.241 0.131 0.372 0.354
3_DepthWells 0.187 0.584
4_DepthWells 0.633
Gt4_DepthWells 0.650 −0.213
CreatedPits_Percent 0.682 0.176 0.123
ClearedPits_Percent −0.158 −0.244 0.358
PitSize_mean 0.857 −0.117 0.132
Spire_Percent 0.220 −0.571
RightWell_Score −0.576
PileScore 0.104 −0.842 0.159 −0.172
MaxPileHeight 0.812 0.195 −0.264
RespLatency_mean 0.969
DropDuration_mean 0.148 −0.498 0.422
DecisionLatency_mean 0.771 0.517
DecisionLatencyPercent_mean 0.325 0.138 0.100 0.240
ExtraRotations_mean 0.177 0.711
ExtraRotations_nonzeroPercent 0.175 0.717
DominantRotation_DirectionPercent −0.785

(Continues)
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Features Fact.1
pl-eff

Fact.2
pile-m

Fact.3
zoid-c

Fact.4
pile-u

Fact.5
m-l-c

Fact.6
rot-cor

CorrectedRotations_mean 0.864
CorrectedRotations_nonzeroPercent 0.947
CorrectedTranslation_mean −0.220 0.772 0.134
CorrectedTranslation_nonzeroPercent −0.258 0.747 0.128
StaticZoid_responseLatency 0.726
FlippingZoid_responseLatency 0.899
RotatingZoid_responseLatency 0.902
1_LineClearPercentage 0.145 0.260 −0.271 0.564
2_LineClearPercentage 0.238
3_LineClearPercentage 0.219 −0.254
4_LineClearPercentage −0.120 −0.172 0.139 −0.687

Appendix C: Factor-distribution plots by expertise levels across game levels

Appendix D: Normal Q-Q plots for data at different expertise levels
Normal Q-Q plots obtained from linear-regression model fits for various combinations of
player expertise and game levels. Points well aligned with the line indicate how well the
similar the distribution of the data is to a standard normal distribution.

Appendix E: Normal Q-Q plots for seed-split data
Normal Q-Q plots obtained from linear-regression model fits for various seeds at game level
0. Points well aligned with the line indicate how well the similar the distribution of the data
is to a standard normal distribution.

Appendix F: Defining player categories through clustering
To obtain any observable differences in skill when comparing different groups of players,
players from one group had to be considerably better/worse at playing Tetris than players
from other groups. Comparing players belonging to consecutive expertise levels would not
be useful, since there would be too much overlap, for example a player with expertise-level 4
might have their top four games end at levels 2, 4, 5, and 6, while a player rated at expertise-
level 5 could have their top four games end at levels 2, 4, 6, and 6. Both players in this example
would likely have very similar sets of skills. So first, we had to identify expertise levels that
when compared would present significant differences in skill.

We used criterion scores (see Section 6.1 for a detailed discussion on criterion scores) as
a metric of expertise, to perform the clustering. Criterion scores define expertise at a finer
granularity than expertise level, which helps the clustering algorithm form more precise clus-
ters. We performed a univariate k-means clustering (Wang & Song, 2011) with three clusters,
on the criterion scores for all 492 players. Dividing the data into three clusters was the opti-
mal choice as suggested by the values we obtained for within-cluster SSE (in Section 4.2).
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Fig. C.1. Mean and SD for factor values for each rank of players and changes with game difficulty. (Plots the top
3 players of each rank.)
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Fig. D.1.

However, we wanted to compare the distribution of data points when choosing three versus
four clusters, to verify the results. Figure F.1 is the result of our curiosity. Choosing more
than three clusters resulted in distributions with significant overlap among some clusters,
especially among the last two clusters.

Once the clusters were defined and we knew which players belonged to each cluster, we
could now use the expertise levels of all the players in each cluster to calculate the aver-
age expertise level (cluster average) for each of the three clusters, which when rounded off
resulted in values 3, 6, and 9. This implied that the clusters were centered around players
belonging to expertise levels 3, 6, and 9. To alleviate the possibility of overlap (maximize intr-
acluster homogeneity and intercluster heterogeneity), only players belonging to the average
expertise levels of each cluster were retained for the analysis, with the exception of expertise
levels beyond 9. An exception was made for the higher level players because there were too
few players at level 9 and, considering players with a higher expertise level would not lead to
an overlap of skill with other groups.
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Fig. D.2.
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Fig. E.1.
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Fig. F.1. Cluster distributions when data are clustered into four (top plot) and three (bottom plot) groups. Each
icon in the plot represents a single player and the icon type indicates which cluster the player belongs to. When
the data are divided into four clusters, cluster 3 and cluster 4 almost completely overlap.
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