
Preview Tools before Using: Enhancing Tool Documentation with
Multi-Tool Exploration

Anonymous ACL submission

Abstract001

Enhancing the task-solving capabilities of large002
language models (LLMs) through utilizing003
tools has garnered increasing attention. To en-004
able LLMs to use tools accurately, developers005
often provide documentation of the tools in006
the LLMs’ context. However, such documenta-007
tion has various issues, such as incomplete tool008
descriptions and insufficient descriptions of pa-009
rameters or responses. To address this problem,010
we propose ToolBFS+, a method to revise tool011
documentation by exploring the use of tools.012
ToolBFS+ adopts a Breadth-First Search (BFS)013
strategy to explore various tool usage scenar-014
ios and collects the information obtained from015
the exploration to revise the tool documenta-016
tion, ultimately improving the model’s ability017
to accurately utilize the tools. Extensive exper-018
iments on multiple datasets demonstrate that019
the ToolBFS+ method can substantially reduce020
errors, such as the selection of incorrect tools,021
and improve the capability of LLMs to use tools022
accurately1.023

1 Introduction024

As large language models (LLMs) become increas-025

ingly popular (Achiam et al., 2023; Touvron et al.,026

2023; Kim et al., 2024), the tool learning task is pro-027

posed to further enhance the capabilities of LLMs028

(Shen et al., 2024; Schick et al., 2024; Cai et al.,029

2023). These methods enhance LLMs’ capabilities030

by enabling them to utilize external tools for real-031

world interaction, thereby enhancing their ability032

to address diverse problems (Zhuang et al., 2024;033

Qin et al., 2023). To help LLMs understand the034

tools, developers often provide tool documentation035

within the model’s context (Song et al., 2023; Yang036

et al., 2024). LLMs rely on their in-context learn-037

ing capabilities to understand the tools from the038

context and utilize them accurately. Thus, docu-039

mentation quality is crucial for enabling the LLMs040

to effectively utilize tools (Hsieh et al., 2023).041

1https://anonymous.4open.science/ToolBFS

Question: How could I get a list of the top 10 McDonald's
restaurants in the USA

"name": "restaurantchainname",
 "type": "string",
"description": "",
 "default": "kfc"

matching_results": "int",
"restaurants": {
"id": "int",
"restaurantName": "str",}

{
 "operation": "GET",
 "path": "https://fast-food-restaurants-usa-top-50-chains.p.rapidapi.com/
restaurants-top/{restaurantchainname}/location/{page}",
 "description": "**10 results per request. Use page number for Pagination.**",
 "parameters": [
 {
 "name": "restaurantchainname",
 "type": "string",
 "description": "",
 "default": "kfc"
 },
 {
 "name": "page",
 "type": "NUMBER",
 "description": "",
 "default": "0"
 }
],
 "response": {
 "matching_results": "int",
 "restaurants": [
 {
 "id": "int",
 "restaurantName": "str",
 "address": "str",
 "zipCode": "str",
 "phone": "str",
 "website": "str",
 "latitude": "str",
 "longitude": "str",
 "stateName": "str",
 "cityName": "str",
 "hoursInterval": "str",
 "cuisineType": "str",
 "_list_length": 10
 }
]
 },
 "api_name": "GET all Restaurants by {Chain}",
 "name": "restaurants_by_chain_for_fast_food_restaurants_usa_top_50_chains",
 "tool_name": "Fast Food Restaurants USA - TOP 50 Chains",
 "experience": []
}

Original
Documentation
{
 "operation": "GET",
 "path": "https://fast-food-restaurants-usa-top-50-chains.p.rapidapi.com/
restaurants-top/{restaurantchainname}/location/{page}",
 "description": "**10 results per request. Use page number for Pagination.**",
 "parameters": [
 {
 "name": "restaurantchainname",
 "type": "string",
 "description": "",
 "default": "kfc"
 },
 {
 "name": "page",
 "type": "NUMBER",
 "description": "",
 "default": "0"
 }
],
 "response": {
 "matching_results": "int",
 "restaurants": [
 {
 "id": "int",
 "restaurantName": "str",
 "address": "str",
 "zipCode": "str",
 "phone": "str",
 "website": "str",
 "latitude": "str",
 "longitude": "str",
 "stateName": "str",
 "cityName": "str",
 "hoursInterval": "str",
 "cuisineType": "str",
 "_list_length": 10
 }
]
 },
 "api_name": "GET all Restaurants by {Chain}",
 "name": "restaurants_by_chain_for_fast_food_restaurants_usa_top_50_chains",
 "tool_name": "Fast Food Restaurants USA - TOP 50 Chains",
 "experience": []
}

{
 "operation": "GET",
 "path": "https://fast-food-restaurants-usa-top-50-chains.p.rapidapi.com/
restaurants-top/{restaurantchainname}/location/{page}",
 "description": "**10 results per request. Use page number for Pagination.**",
 "parameters": [
 {
 "name": "restaurantchainname",
 "type": "string",
 "description": "",
 "default": "kfc"
 },
 {
 "name": "page",
 "type": "NUMBER",
 "description": "",
 "default": "0"
 }
],
 "response": {
 "matching_results": "int",
 "restaurants": [
 {
 "id": "int",
 "restaurantName": "str",
 "address": "str",
 "zipCode": "str",
 "phone": "str",
 "website": "str",
 "latitude": "str",
 "longitude": "str",
 "stateName": "str",
 "cityName": "str",
 "hoursInterval": "str",
 "cuisineType": "str",
 "_list_length": 10
 }
]
 },
 "api_name": "GET all Restaurants by {Chain}",
 "name": "restaurants_by_chain_for_fast_food_restaurants_usa_top_50_chains",
 "tool_name": "Fast Food Restaurants USA - TOP 50 Chains",
 "experience": []
}

All tools descriptions

Current tool's parameters

Current tool's responses

Tool Selecting

Parameter
Filling

Response
Parsing

Description are
too vague!!

I can't
understand the

meaning of
parameter.

I don't know
where the

information I
required.

ToolBFS+

"matching_results": {
 "description": "The total number
of matching results.",},
"restaurants": {
 "description": "A list of fast-food
 restaurant data, including id, name,
 address...",
},...

Get a list of top 10 restaurants for
a specific fast-food chain in the
USA. Use the page parameter for
pagination. The response includes
the restaurant's name, address,
phone, website, and location details
.

 [{
 "name": "restaurantchainname",
 "type": "string",
 "description": "The name of the
fast-food restaurant chain, e.g., 'kfc'.",
 "default": "kfc"
 }, ...
]

All tools descriptions Current tool's parameters Current tool's responses

Tool Selecting Parameter
Filling

Response
Parsing

10 results per request. Use
page number for Pagination.

I get the answer!!

Figure 1: The figure illustrates issues in the original tool
documentation, including incomplete tool descriptions,
inadequate parameter explanations, and insufficient re-
sponse details. The documentation can be revised by
our ToolBFS+to be more comprehensive and accurate
for better tool usage.

Typically, when acquiring a tool, the corre- 042

sponding documentation is provided to facilitate 043

its use (Hsieh et al., 2023). However, this docu- 044

mentation frequently exhibits various issues (Yuan 045

et al., 2024; Qin et al., 2023). As illustrated in Fig- 046

ure 1, the original tool documentation suffers from 047

incomplete descriptions, inadequate parameter ex- 048

planations, and insufficient response details. These 049

issues can result in errors when the model attempts 050

to utilize the tools. 051

While manually revising the incomplete docu- 052

mentation could entail substantial costs (Zhuang 053

et al., 2024), some work (Yuan et al., 2024) at- 054

tempts to have LLMs complete this process by 055

prompting the LLMs to revise the tool documen- 056

tation. However, solely depending on LLMs to 057

infer the incomplete documentation details without 058

1

https://anonymous.4open.science/r/ToolBFS--64C1

concrete tool-use information (e.g., full tool invo-059

cation, including parameters, responses, etc.) may060

potentially lead to inaccuracies in the documenta-061

tion. To incorporate concrete tool-use information062

for a more accurate documentation revision, we063

propose ToolBFS+ method that utilizes multi-tool064

Breadth-First Search (BFS) exploration to enhance065

the tool documentation. Specifically, our method066

consists of three stages:067

1. Multi-Tool Scenario Generation. Specific tool-068

use scenarios are crucial for acquiring tool-use in-069

formation. In this stage, LLMs are prompted to070

select several functionally related tools, thoroughly071

understand each tool’s functionalities, and subse-072

quently generate a multi-tool scenario for further073

exploration in the next stage. Multi-tool scenarios074

refer to specific problems that require the collab-075

oration of multiple tools to solve. These scenar-076

ios better mimic the complex demands of the real077

world.078

2. Multi-Tool BFS Exploration. Tool-use infor-079

mation can be plentiful, but some of it may be080

meaningless or low-quality, providing no valuable081

information (e.g., empty tool responses caused by082

incorrect tool parameters). We consider the solu-083

tions of the scenarios as tool-use information. To084

obtain high-quality solutions in generated scenar-085

ios, we design the Tool-BFS algorithm to search086

for solutions through exploration. By viewing the087

exploration process as a graph search, considering088

each tool invocation as a node and starting from the089

root node with no tool invocations, we use a BFS090

strategy to iteratively search through all possible091

paths until the correct answer is found. We consider092

the path from the root node to the node containing093

the correct answer as a high-quality solution. The094

BFS strategy ensures both the correctness and effi-095

ciency of the solution.096

3. Tool Documentation Revision. To incorpo-097

rate concrete tool-use information from the solu-098

tions into the tool documentation, we consider the099

following two aspects: (1) Using a single node100

with complete tool invocation, including param-101

eters, responses, etc, to revise the corresponding102

tool’s documentation, filling in the incomplete or103

unclear content. (2) Viewing the tool selections104

in the solutions as an experience that can guide105

which tool to select in specific scenarios. We incor-106

porate this experience into the corresponding tool107

documentation.108

We conduct extensive experiments on Rest-109

Bench (Song et al., 2023) and ToolBench (Qin 110

et al., 2023). The results show substantial im- 111

provements using our proposed documentation en- 112

hancement method. These improvements are vis- 113

ible across various tool-use methods and datasets, 114

validating the effectiveness of our approach. 115

Our main contributions are as follows: 116

1. We propose ToolBFS+, a multi-stage tool docu- 117

mentation enhancement method that can revise 118

the documentation for more accurate tool uti- 119

lization of LLMs. 120

2. We design the Tool-BFS algorithm, which al- 121

lows for a thorough exploration of the scenarios 122

and the discovery of high-quality solutions in a 123

BFS strategy. 124

3. We conduct extensive experiments on three 125

datasets and show the effectiveness of our 126

ToolBFS+ method in improving the quality 127

of tool documentation and tool-use ability of 128

LLMs. 129

2 Related work 130

Tool-augmented language models. Enhancing 131

the capabilities of LLMs through external tools 132

has been proven effective (Schick et al., 2024; Jin 133

et al., 2024; Li et al., 2023; Patil et al., 2023). Some 134

methods enhance a model’s tool-use ability through 135

fine-tuning on specific datasets, involving dataset 136

construction and a training process (Schick et al., 137

2024; Gao et al., 2024; Tang et al., 2023; Wang 138

et al., 2024, 2022). However, these methods require 139

additional training data, can only be applied to 140

open-source models, and involve high fine-tuning 141

costs (Qin et al., 2023). 142

Consequently, some researchers aim to opti- 143

mize the process of utilizing tools to enhance the 144

model’s ability to use them. These methods lever- 145

age the in-context learning abilities of LLMs by 146

incorporating tool documentation and demonstra- 147

tions into the context. By designing specific work- 148

flows, they enable the model to use tools to accom- 149

plish tasks (Yao et al., 2022; Lu et al., 2024; Song 150

et al., 2023). Although this approach eliminates 151

the need for training, it is susceptible to the quality 152

of tool demonstrations and documentation (Yuan 153

et al., 2024; Shi et al., 2023). To address this prob- 154

lem, we propose an approach that enhances the 155

quality of tool documentation, thereby improving 156

the model’s ability to use tools. 157

2

R

Stage 1: Multi-Tool Scenario Generation

Stage 2: Multi-Tool BFS Exploration

Stage 3: Tool Documentation Revision

/search
/movie

/movie
/movie_id
/credits

/person
/person_id

 /images

Revise

Root

Wrong

Experience
Summarize

Experience

Experience

Revise

Revise

Upated Tool Documentation

Toolset

Tools

What does the lead action
of Iron Man look like?

Scenario
Generate

Summarize

Summarize

Irrelevant Right

Tool 1 Tool 2 Tool 3

Tool 4 Tool 5 Tool 6 Tool 7

Tool 8 Tool 9

Tool: person/person_id/images
Use Case: query, parameters and
responses in tool invocation
Base Tool Documentation:
Operation: Get
Path: person/person_id/images
Description: Get the images...
Parameters:{person_id, page}
Responses: The image url

Revised Tool Documentation:
Operation: Get
Path: person/person_id/images
Description: Get the images for a
person based on ...
Parameters: {person_id: The id for
a person, page: The page num you
want}
Responses: Json format response
with description.

/search/movie
/movie/movie_id/credits

/person/person_id/
imagesSelect

Least Used

Related

scenario
right plan wrong plan

known info

parameter
tool planhistory
response

What does the lead action of Iron Man look like?

Figure 2: The overall process of our ToolBFS+ consists of three stages: (1) Multi-Tool Scenario Generation, where
functionally related tools are selected and multi-tool scenarios are generated to mimic real-world scenarios; (2)
Multi-Tool BFS Exploration, employing a BFS strategy to explore and find high-quality solutions; and (3) Tool
Documentation Revision, using solutions from the exploration to revise and enhance tool documentation, improves
accuracy of tool usage.

3 Methodology158

3.1 Method Framework159

In this section, we detail the ToolBFS+, enhancing160

the tool documentation by multi-tool BFS explo-161

ration. As shown in Figure 2, our approach con-162

sists of three main stages: (1) Multi-Tool Scenario163

Generation, (2) Multi-Tool BFS Exploration, and164

(3) Tool Documentation Revision. In the Multi-165

Tool Scenario Generation stage, we select several166

functionally related tools from the toolset T and167

generate a tool-use scenario for these tools. The168

scenario is then passed to the Multi-Tool BFS Ex-169

ploration stage for further exploration to get the170

tool invocation path as the solution. In the Tool171

Documentation Revision stage, we will revise the172

tool documentation using the information obtained173

from the exploration stage.174

3.2 Multi-Tool Scenarios Generation175

This stage is designed to generate multi-tool sce-176

narios on the toolset T = {t1, t2, . . . , tn}. The177

stage includes two steps: tool selection and sce-178

nario generation. During the tool selection step, we179

initially allow the LLMs to select functionally re-180

lated tools, but we found that LLMs tend to prefer181

simpler tools (e.g., search/movie, which has sim-182

ple tool description and require fewer parameters)183

and overlook more complex ones (e.g., /discover/tv, 184

which involve multiple parameters and difficult to 185

use). To avoid this, we record the frequency of tool 186

selection and ensure that the least-used tool is se- 187

lected each time. This is achieved by incorporating 188

the least-used tool into the LLMs’ output during 189

the selection step. Subsequently, the LLMs select 190

functionally related tools based on the least-used 191

tool. Then, we prompt LLMs to generate a multi- 192

tool scenario, which involves the coordinated use 193

of selected tools. For example, as shown in stage 194

1 in Figure 2, the LLMs are provided the least- 195

used tool, /person/person_id/images. They then 196

select related tools like /search/movie and /movie/- 197

movie_id/credits, and generate the scenario: “What 198

does the lead actor of Iron Man look like?", which 199

is passed to the next stage for further exploration. 200

3.3 Multi-Tool BFS Exploration 201

After scenario generation, we aim to explore the 202

generated scenarios to obtain high-quality solutions 203

that provide the correct answer and meaningful tool 204

invocations. We also summarize the experience 205

regarding tool selection from the solutions. 206

Tool-BFS Algorithm. To get solutions, we spe- 207

cially design the Tool-BFS Algorithm. As shown 208

in stage 2 in Figure 2, we prompt the model to 209

explore solutions using a BFS strategy. Specifi- 210

3

cally, by viewing the exploration process as a graph211

search, we consider each tool invocation as a node212

and start from the root node initially containing no213

tool invocations. Each time, we select a node from214

the current level to explore downwards until all215

nodes at the current level have been selected. Then,216

we proceed to the next level to continue the explo-217

ration. Every node records the invoked tools his-218

tory, the currently invoked tools, parameters, and219

response. To make the child nodes more diverse220

and expand the search space, we explicitly inform221

the model about the next tool plans in the nodes it222

has generated and encourage it to generate differ-223

ent plans. When LLM give “Final Answer” in the224

tool plan, we consider that the LLMs have either225

found the answer or can no longer proceed with the226

tools. Then, we prompt LLMs to judge whether the227

current solution and answer are correct by using228

predefined rules. The rules are manually written229

and specific to the dataset e.g., “the model should230

return a reasonable answer”; “fabricating specific231

parameters during reasoning is not allowed”. The232

algorithm stops when the correct answer is found or233

the maximum depth limit is reached. We consider234

the path from the root node to the correct node235

as the solution. The pseudo-code of the overall236

algorithm is given in Appendix A.3.237

After completing the BFS exploration and find-238

ing a solution, we categorize the nodes in the BFS239

tree into three types: “Right”, “Wrong”, and “Irrel-240

evant”. These respectively refer to the nodes along241

the solution, the nodes along the wrong paths, and242

the nodes that do not intersect with the solution.243

We do not take any action on the Irrelevant nodes.244

Subsequently, we extract the Right nodes for later245

documentation revision.246

Experience Summary. The tool selection in the247

solution can be considered as an experience that248

guides which tool to select in specific scenarios.249

The “Wrong” nodes also contain meaningful infor-250

mation as they store the mistakes the model tends251

to make. Therefore, we explicitly store this guid-252

ance and mistake as a type of experience within the253

corresponding tool documentation. This kind of ex-254

perience consists of four parts: the scenario, known255

information, the right plan, and the wrong plan. We256

summarize this experience at the locations where257

the model generates “Wrong” nodes and “Right”258

nodes, indicated by gray blocks in Figure 2. For259

example, tool 6 and tool 7 are summarized as one260

experience. This experience includes the current261

scenario “What does the lead action of Iron Man 262

look like”, the known information (i.e., the execu- 263

tion result of tool 3), the right plan (i.e., tool 7), and 264

the wrong plan (i.e., tool 6). It will be integrated 265

into Tool 3’s documentation in next stage. 266

3.4 Tool Documentation Revision 267

After generating and exploring different scenarios, 268

we aim to incorporate concrete tool-use informa- 269

tion from the solution into the tool documentation 270

in two aspects: (1) using the complete tool invoca- 271

tion from the solution to revise the corresponding 272

tool documentation, filling in the incomplete or un- 273

clear content. (2) integrating the experience sum- 274

marized from the previous stage into corresponding 275

tool documentation as guidance for tool selection. 276

For the first aspect, we revise the documentation 277

using nodes at three key points: tool’s functionality 278

description, parameters, and responses. For the tool 279

functionality description section, we use the scenar- 280

ios, required parameters and execution results to 281

revise the tool’s functionality description. By doing 282

so, we provide a clear understanding of when and 283

how to use the tool. For the tool parameters section, 284

we utilize specific parameters and responses from 285

tool invocations to clarify the specific functions of 286

each parameter. This helps in providing concrete, 287

clear explanations of how each parameter affects 288

the tool’s behavior. For the tool response section, 289

we leverage actual responses from tool invocations 290

to explain the structure and details of the responses. 291

This ensures that LLMs can comprehend the output 292

format and content accurately. By integrating these 293

elements into the LLMs’ context, we can revise the 294

documentation more effectively, making it clearer 295

and more comprehensive for LLMs. 296

For the integration of experience, we designed 297

a mechanism to avoid having too many redundant 298

experiences. This mechanism checks if a new ex- 299

perience already exists in the tool experience set 300

when adding new experiences. Specifically, we 301

prompt the LLMs to check whether the current ex- 302

perience to be added matches or is similar to any 303

experience in the tool’s experience set based on 304

known information and scenario. For the use of 305

experience, for example, in Figure 2, when other 306

tool-use methods use tool3, we expose the experi- 307

ence set of tool3 to the LLMs, allowing them to 308

determine if there is any experience that fits the 309

current scenario and known information. If so, the 310

experience is incorporated into the context to guide 311

the selection of tools. 312

4

4 Experiment Setup313

4.1 Datasets and Evaluation Metrics314

Datasets. We conduct experiments on below315

datasets: (1) RestBench (Song et al., 2023): A316

benchmark with two sub-datasets: the TMDB317

dataset, containing 57 real APIs related to movies318

and actors, and the Spotify dataset, comprising319

40 real APIs for operations such as retrieving and320

playing songs. (2) ToolBench (Qin et al., 2023):321

A benchmark has a wide range of user requests322

and many Rapid APIs, with 49 categories available323

through the RapidAPI hub. We filter a high-quality324

dataset from Toolbench’s I2 category Food subset325

and named it Toolbench-Food. This dataset is de-326

signed to match the format and size of RestBench327

and contains information related to food recipes328

and more. We detail the specific dataset construc-329

tion in Appendix C.330

Evaluation Metrics. In evaluating the tool-use331

methods performance on two RestBench datasets,332

we use two evaluation metrics following (Song333

et al., 2023): (1) Correct Path Rate (CP%), which334

considers a tool call path as correct if the path of the335

golden answer is a subpath of the model-generated336

path, and (2) Success Rate (Success%), which as-337

sesses whether the model accurately completes the338

query by human evaluation. For the ToolBench-339

Food dataset, we follow ToolBench’s evaluation340

metrics. Include (1) Pass Rate (Pass), the propor-341

tion of successful instructions completed within a342

limited budget, and (2) Win Rate (Win), ChatGPT’s343

preference between two solutions (Qin et al., 2023).344

4.2 Baselines345

We conduct extensive experiments across various346

tool-use methods to demonstrate the effectiveness347

of our ToolBFS+ method. These tool-use methods348

include: (1) React (Yao et al., 2022), a method349

that utilizes a chain-of-thought approach within the350

Thought-Action-Observe framework. (2) Reflect351

(Gou et al., 2023), which employs a feedback and352

self-correction mechanism based on tool responses.353

(3) Chameleon (Lu et al., 2024), a method that di-354

rectly generates multi-step plans for tool usage and355

then sequentially executes the plan. (4) RestGPT356

(Song et al., 2023), which adopts a multi-agent col-357

laboration strategy integrating roles such as planner,358

selector, caller, and parser. These diverse frame-359

works allow us to comprehensively evaluate the360

effectiveness of our proposed method.361

For the documentation used in the above tool- 362

use methods, we adopt three settings. (1) Original: 363

Using the documentation provided in the bench- 364

mark, which may have various issues. (2) Easy- 365

Tool: Using documentation that has been improved 366

by EasyTool(Yuan et al., 2024). (3) Ours: Using 367

our tool documentation enhanced by Multi-Tool 368

BFS Exploration. 369

4.3 Implementation Details 370

We employ OpenAI’s gpt-3.5-turbo2 as the back- 371

bone to implement our proposed method and 372

all tool-use methods. Additionally, we conduct 373

experiments on the open-source model Mixtral- 374

8x7B (Jiang et al., 2024) to validate our method’s 375

performance on open-source models. 376

In the Multi-Tool BFS Exploration stage (§ 3.3), 377

we set the width to 3 and the maximum depth to 378

8. For the tool-use method in exploration in § 3.3, 379

we employ a three-stage process, planning, calling, 380

and parsing, to complete a tool invocation. To 381

determine whether the solution and the answer are 382

correct, we design a set of rules and prompt the 383

model to judge their correctness. We provide the 384

specific details of the judgment in Appendix A.4 385

5 Result and Analysis 386

5.1 Main Result 387

Overall Performance. Table 1 presents our exper- 388

imental results. Our ToolBFS+ method enhanced 389

documentation achieves the best performance in 390

all tool-use methods on three datasets. Specifically, 391

on the RestBench-TMDB dataset, our enhanced 392

tool documentation with the React method achieves 393

64.0 in Correct Path Rate metric and 62.0 in Suc- 394

cess Rate metric. This substantially improves per- 395

formance compared to the Original and EasyTool 396

baselines and approach the performance of Rest- 397

GPT on the original documentation. The similar 398

improvement is observed on the RestBench-Spotify 399

and ToolBench-Food datasets. The reason is that 400

our multi-tool exploration and documentation revi- 401

sion method improves the quality of the tool doc- 402

umentation by incorporating concrete tool usage 403

information. This improvement is manifested in 404

more comprehensive tool descriptions and more 405

detailed parameter explanations, etc. The enhanced 406

tool documentation provides more information and 407

improves performance for the four tool-use meth- 408

ods mentioned above. 409

2https://openai.com/chatgpt

5

https://openai.com/chatgpt

Method Docs Type RestBench-TMDB RestBench-Spotify ToolBench-Food

CP% Success% CP% Success% Pass Win

React (Yao et al., 2022)
Original 56.0 56.0 52.6 43.6 51.85 -
EasyTool 60.0 59.0 - - 59.25 53.66
Ours 64.0 62.0 57.8 54.4 68.52 62.50

Reflect (Gou et al., 2023)
Original 55.0 53.0 50.9 49.1 48.14 47.50
EasyTool 58.0 56.0 - - 64.81 59.32
Ours 60.0 60.0 56.1 52.6 66.67 61.02

Chameleon (Lu et al., 2024)
Original 64.0 63.0 56.1 54.4 46.30 46.88
EasyTool 69.0 69.0 - - 59.25 54.29
Ours 72.0 71.0 61.4 59.6 61.11 56.25

RestGPT (Song et al., 2023)
Original 65.0 63.0 71.9 68.4 62.96 60.34
EasyTool 74.0 70.0 - - 64.81 62.06
Ours 76.0 73.0 77.2 70.1 70.37 65.51

Table 1: The results on three datasets. The CP% represents the Correct Path Rate metric, while the Success%
indicates the Success Rate metric. The Pass metric denotes the proportion of successful queries completed. Win
is calculated by comparing each model’s output to React Original. The best result for each tool-use method is
underlined, and the best overall result across all methods is in bold.

Method RestBench-TMDB RestBench-Spotify

CP% Success% CP% Success%
Mixtral-8x7B

React Original 51.0 40.0 38.6 35.1
React Ours 54.0 46.0 45.6 40.4
RestGPT Original 62.0 49.0 61.4 59.7
RestGPT Ours 70.0 52.0 66.7 63.2

Table 2: The results of using Mixtral-8x7B as the back-
bone with different tool-use methods. We report CP%
and Success%.

Both the EasyTool method and our method410

yield substantial improvements compared to using411

the original documentation. Compared to Easy-412

Tool’s documentation, our approach performs bet-413

ter in every experiment setting. This is because,414

compared to EasyTool, our approach provides more415

concrete tool-use information, including parame-416

ters and concrete examples of responses, when re-417

vising documentation. This information can better418

assist LLMs in revising tool documentation.419

Performance with the Open-Source LLMs. Fol-420

lowing the above experiment settings, we alternate421

our backbone LLMs with the open-source model422

Mistral-8x7B (Jiang et al., 2024) and further vali-423

date the effectiveness of our approach. As shown424

in Table 2, under the RestBench-TMDB setting,425

our method increases the Success Rate from 40%426

to 46% using the React method and from 49% to427

52% using the RestGPT method, demonstrating the428

effectiveness with the open-source model.429

Document Type RestBench-TMDB RestBench-Spotify

CP% Success% CP% Success%
React

Original 56.0 56.0 52.6 43.6
Ours 64.0 62.0 57.8 54.4
-w/o multi-scenario 61.0 60.0 54.4 50.9
-w/o exp 63.0 61.0 54.4 52.6
-w/o doc 61.0 61.0 56.1 56.1

RestGPT
Original 65.0 63.0 71.9 68.4
Ours 73.0 70.0 77.2 70.1
-w/o multi-scenario 71.0 67.0 71.9 64.9
-w/o exp 72.0 69.0 73.7 66.7
-w/o doc 69.0 68.0 75.4 68.4

Table 3: The results of Ablation study on the RestBench-
Spotify and RestBench-TMDB datasets.

5.2 Ablation Study 430

To further illustrate the impact of different com- 431

ponents in our method, we conduct the following 432

experiments: 433

-w/o multi-scenario: We replace the multi-tool sce- 434

nario in § 3.2 with a single-tool scenario (e.g., 435

/search/movie, search the movie Iron Man, only 436

one tool is needed), then explore the single-tool 437

scenario and revise the documentation. 438

-w/o exp. We remove the experience in § 3.4 Tool 439

Documentation Revision to test if it affects tool 440

selection. 441

-w/o doc: We implement this by retaining the expe- 442

rience but replacing the enhanced tool documenta- 443

tion with the original tool documentation in § 3.4. 444

We conduct ablation experiments on Rest- 445

Bench’s two datasets using the React and RestGPT 446

methods with the ablated documentation. Our full 447

6

method still retains the best performance on two448

metrics. The -w/o multi-scenario setting signifi-449

cantly reduced effectiveness across datasets and450

methods. This indicates that exploring multi-tool451

scenarios is crucial for enhancing tool documenta-452

tion, as the information obtained from single-tool453

scenarios is insufficient to revise tool documenta-454

tion.455

On the TMDB dataset, the -w/o doc setting456

causes the most significant performance decline,457

while on the Spotify dataset, the -w/o exp setting458

causes the most significant performance decline.459

This is because the original TMDB dataset has rel-460

atively limited documentation content, with more461

incomplete tool descriptions and insufficient expla-462

nations for parameters and responses. However, the463

quality of the Spotify documentation is relatively464

high, and experience guidance plays a major role465

in documentation enhancement.466

5.3 Case Study467

We conduct a comprehensive case study and find468

that our enhanced documentation allows the model469

to better understand the tools, enabling it to select470

correct tools, fill in the correct parameters, and471

parse required information from the responses. We472

also provide examples to illustrate the difference473

between our enhanced documentation and original474

documentation in tool-use methods performance.475

More details can be found in Appendix B.476

6 Discussion477

Figure 3: The efficiency analysis of the RestGPT
method on different documentation, where we count
the distribution of input and output token consumption
and the average consumption µ.

Efficiency analysis. Due to the intensive inference478

costs associated with tool-use methods (Song et al., 479

2023), we further explore whether our documenta- 480

tion method would result in efficiency reductions. 481

Using the same settings as Table 1, we compare 482

the token consumption between using the original 483

documentation and our enhanced documentation 484

on the RestBench-TMDB dataset. 485

In Figure 3, we present histograms showing the 486

frequency and mean value µ of token consump- 487

tion for input and output tokens using different 488

documentation. Notably, output token calculations 489

are typically more complex and time-consuming 490

than input token calculations (Vaswani et al., 2017). 491

Our findings indicate that the number of output 492

tokens remains almost consistent with the origi- 493

nal documentation, and there was no significant 494

increase in input token consumption. This suggests 495

that our method achieves significant performance 496

improvements while maintaining a similar token 497

consumption as the original documentation. 498

0% 25% 50% 75% 100%

React Original Docs

React Our Docs

RestGPT Original Docs

RestGPT Our Docs

Caller ErrorPlan Error Parser Error No Error

Figure 4: Error statistics in React and RestGPT with
different documentation.

Error analysis. We conduct an error analysis ex- 499

periment to further analyze how our enhanced docu- 500

mentation improves the model’s performance. This 501

experiment, conducted under the experimental set- 502

tings of Table 1, checks the distribution of differ- 503

ent errors in React and RestGPT by using differ- 504

ent documentation. In Figure 4, errors are catego- 505

rized into Plan Error, Caller Error, and Parser Error. 506

Specifically, Planning Errors denote the selection 507

of an incorrect tool, Caller Errors involve the use 508

of wrong parameters, and Parser Errors arise when 509

the required information is not parsed from the tool 510

responses. 511

Figure 4 illustrates that our method substantially 512

reduces the Planning Error compared to using the 513

original documentation. This improvement stems 514

from the revised tool descriptions and guidance of 515

experience. Furthermore, improvements are also 516

7

Method Correct ∆Len Tool-Calling Success

React 74.47% 2.36 86.99%
DFSDT 87.23% 2.42 87.80%
Tool-BFS 89.36% 2.19 95.65%

Table 4: The solution analysis of three different search
strategies on the ResetBench-TMDB dataset.

Document
Type

Selector Caller Parser

GPT4 Human GPT4 Human GPT4 Human
RestBench-Tmdb
Original 1.70 1.72 2.04 2.03 2.16 2.16
Ours 2.00 1.92 2.13 2.11 2.59 2.51
RestBench-Spotify
Original 1.70 1.65 1.58 1.49 1.82 1.75
Ours 1.92 2.04 1.68 1.59 2.25 2.14

Table 5: The direct evaluation results of documenta-
tion quality on the RestBench-TMDB and RestBench-
Spotify datasets.

observed in correctly filling parameters and parsing517

responses, which benefits from more clear and com-518

prehensive parameter and response descriptions.519

Analysis of the BFS strategy. To demonstrate520

the superiority of the BFS approach in finding521

high-quality solutions, we compare three different522

search strategies: React, DFSDT, and Tool-BFS.523

React (Yao et al., 2022) is a tool-use method that524

follows the Thought-Action-Observation frame-525

work. DFSDT (Qin et al., 2023) enhances LLMs526

with the Depth First Search-based Decision Tree527

(DFSDT) to select tools to solve tasks. We con-528

duct experiments under the generated multi-tool529

scenarios of RestBench-TMDB. To evaluate the530

quality of the solutions, we design three metrics:531

Correct, ∆ Len, and Tool-Calling Success, which532

respectively represent the percentage of finding the533

correct answer (i.e., the method mentioned in § 3.2534

that prompts LLMs to determine the correctness of535

the current answer), the average length of solutions,536

and the rate of successful tool usage in the solu-537

tions. This evaluation is grounded in the simple538

intuition that high-quality solutions should ensure539

correctness and efficiency.540

The results in Table 4 demonstrate that React541

underperforms compared to search-based methods542

in terms of Correct. Both DFSDT and Tool-BFS543

methods show similar performance for Correct.544

However, the Tool-BFS method greatly surpasses545

the DFS method regarding ∆Len and Tool-Calling546

Success, validating the efficiency of our approach547

in utilizing tools to seek high-quality solutions.548

Fine-grained analysis of quality of documenta-549

tion. Current evaluation metrics lack a direct as- 550

sessment of tool documentation quality, i.e., eval- 551

uating the tool documentation itself rather than 552

indirectly evaluating the performance over other 553

tasks. To address this, we design a direct evalua- 554

tion method for documentation quality. 555

Existing tool-use methods utilize tool documen- 556

tation mainly in three stages: planning, invocation, 557

and parsing (Yao et al., 2022; Song et al., 2023; 558

Qin et al., 2023). We assess tool documentation 559

quality across these three stages: Planning: The 560

model selects a tool based on tool descriptions and 561

user queries. Therefore, we rate documentation 562

based on the comprehensiveness and conciseness 563

of the tool functional description. Invocation: The 564

model fills in parameters based on tool’s parame- 565

ter section. Hence, We rate documentation based 566

on the completeness and clarity of parameter de- 567

scriptions. Parsing: The model parses the required 568

execution results based on the response description 569

in the tool documentation. Thus, we rate documen- 570

tation based on structural accuracy (e.g. standard 571

and complete json format) and completeness of 572

response descriptions. For accuracy, we use both 573

GPT-4 and human evaluations. 574

We use a three-point scale for the rating with 575

detailed rules provided in Appendix E. As illus- 576

trated in Figure 5, both sets of evaluations indicate 577

a consistent preference for our enhanced documen- 578

tation across all three metrics, demonstrating the 579

effectiveness of our approach in improving quality 580

of tool documentation. 581

7 Conclusion 582

In this work, we propose a method called 583

ToolBFS+, which improves the quality of tool doc- 584

umentation by integrating specific tool usage in- 585

formation obtained through multi-tool BFS explo- 586

ration, thereby improving the performance of dif- 587

ferent tool-use methods. Our method consists of 588

three stages: (1) Multi-Tool Scenario Generation, 589

(2) Multi-Tool BFS Exploration, and (3) Tool Doc- 590

umentation Revision. By conducting BFS explo- 591

ration on the generated multi-tool scenarios, we 592

obtain high-quality solutions. We then integrate 593

the concrete tool usage information from these 594

solutions into the corresponding tool documenta- 595

tion, thereby enhancing the tool documentation. 596

Extensive experiments on various tool-use meth- 597

ods and datasets demonstrate the superiority of our 598

ToolBFS+ method. 599

8

Limitations600

Our current implementation of Multi-Tool BFS Ex-601

ploration, based on LLMs, as discussed in § 3.3,602

may encounter efficiency challenges. Specifically,603

the process can involve exploring irrelevant nodes604

to arrive at high-quality solution. However, it’s im-605

portant to note that this documentation is intended606

for one-time generation with no subsequent modifi-607

cations. In the future, we plan to integrate heuristic608

path search methods to enhance the efficiency of609

our exploration process.610

Ethics Statement611

This paper proposes a method to enhance tool doc-612

umentation by addressing existing issues in the tool613

documentation to improve the model’s ability to614

use the tools. All the tools used in our experiments615

are provided by open-source platforms, including616

TMDB, Spotify, and Rapid API.617

9

References618

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama619
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,620
Diogo Almeida, Janko Altenschmidt, Sam Altman,621
Shyamal Anadkat, et al. 2023. Gpt-4 technical re-622
port. arXiv preprint arXiv:2303.08774.623

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,624
and Denny Zhou. 2023. Large language models as625
tool makers. arXiv preprint arXiv:2305.17126.626

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen627
Fang, Xin Xin, Pengjie Ren, Zhumin Chen, Jun628
Ma, and Zhaochun Ren. 2024. Confucius: Itera-629
tive tool learning from introspection feedback by630
easy-to-difficult curriculum. In Proceedings of the631
AAAI Conference on Artificial Intelligence, pages632
18030–18038.633

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,634
Yujiu Yang, Nan Duan, and Weizhu Chen. 2023.635
Critic: Large language models can self-correct636
with tool-interactive critiquing. arXiv preprint637
arXiv:2305.11738.638

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa639
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-640
ishna, and Tomas Pfister. 2023. Tool documentation641
enables zero-shot tool-usage with large language642
models. arXiv preprint arXiv:2308.00675.643

Albert Q Jiang, Alexandre Sablayrolles, Antoine644
Roux, Arthur Mensch, Blanche Savary, Chris645
Bamford, Devendra Singh Chaplot, Diego de las646
Casas, Emma Bou Hanna, Florian Bressand, et al.647
2024. Mixtral of experts. arXiv preprint648
arXiv:2401.04088.649

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.650
2024. Genegpt: Augmenting large language models651
with domain tools for improved access to biomedical652
information. Bioinformatics, 40(2):btae075.653

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.654
2024. Language models can solve computer tasks.655
Advances in Neural Information Processing Systems,656
36.657

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,658
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,659
and Yongbin Li. 2023. Api-bank: A comprehen-660
sive benchmark for tool-augmented llms. In The661
2023 Conference on Empirical Methods in Natural662
Language Processing.663

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-664
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and665
Jianfeng Gao. 2024. Chameleon: Plug-and-play666
compositional reasoning with large language mod-667
els. Advances in Neural Information Processing668
Systems, 36.669

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E670
Gonzalez. 2023. Gorilla: Large language model671
connected with massive apis. arXiv preprint672
arXiv:2305.15334.673

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 674
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 675
Bill Qian, et al. 2023. Toolllm: Facilitating large 676
language models to master 16000+ real-world apis. 677
arXiv preprint arXiv:2307.16789. 678

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 679
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 680
moyer, Nicola Cancedda, and Thomas Scialom. 681
2024. Toolformer: Language models can teach 682
themselves to use tools. Advances in Neural In- 683
formation Processing Systems, 36. 684

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 685
Weiming Lu, and Yueting Zhuang. 2024. Hugging- 686
gpt: Solving ai tasks with chatgpt and its friends 687
in hugging face. Advances in Neural Information 688
Processing Systems, 36. 689

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan 690
Scales, David Dohan, Ed H Chi, Nathanael Schärli, 691
and Denny Zhou. 2023. Large language models can 692
be easily distracted by irrelevant context. In Inter- 693
national Conference on Machine Learning, pages 694
31210–31227. PMLR. 695

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li, 696
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest- 697
gpt: Connecting large language models with real- 698
world applications via restful apis. arXiv preprint 699
arXiv:2306.06624. 700

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, 701
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener- 702
alized tool learning for language models with 3000 703
simulated cases. arXiv preprint arXiv:2306.05301. 704

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, 705
Amjad Almahairi, Yasmine Babaei, Nikolay Bash- 706
lykov, Soumya Batra, Prajjwal Bhargava, Shruti 707
Bhosale, et al. 2023. Llama 2: Open founda- 708
tion and fine-tuned chat models. arXiv preprint 709
arXiv:2307.09288. 710

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 711
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 712
Kaiser, and Illia Polosukhin. 2017. Attention is all 713
you need. Advances in neural information process- 714
ing systems, 30. 715

Boshi Wang, Hao Fang, Jason Eisner, Benjamin Van 716
Durme, and Yu Su. 2024. Llms in the imaginar- 717
ium: Tool learning through simulated trial and error. 718
Preprint, arXiv:2403.04746. 719

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al- 720
isa Liu, Noah A Smith, Daniel Khashabi, and Han- 721
naneh Hajishirzi. 2022. Self-instruct: Aligning 722
language models with self-generated instructions. 723
arXiv preprint arXiv:2212.10560. 724

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao 725
Ge, Xiu Li, and Ying Shan. 2024. Gpt4tools: 726
Teaching large language model to use tools via self- 727
instruction. Advances in Neural Information Pro- 728
cessing Systems, 36. 729

10

https://arxiv.org/abs/2403.04746
https://arxiv.org/abs/2403.04746
https://arxiv.org/abs/2403.04746

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak730
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.731
React: Synergizing reasoning and acting in language732
models. arXiv preprint arXiv:2210.03629.733

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,734
Yongliang Shen, Ren Kan, Dongsheng Li, and735
Deqing Yang. 2024. Easytool: Enhancing llm-736
based agents with concise tool instruction. Preprint,737
arXiv:2401.06201.738

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,739
and Chao Zhang. 2024. Toolqa: A dataset for llm740
question answering with external tools. Advances741
in Neural Information Processing Systems, 36.742

11

https://arxiv.org/abs/2401.06201
https://arxiv.org/abs/2401.06201
https://arxiv.org/abs/2401.06201

A ToolBFS+ Method Details743

A.1 Tool Selection and Scenario Generation744

Prompt745

Table 6 presents the prompt we used to select the746

tool and generate the scenario. At the end of the747

prompt is the least-used tool we select for it.748

A.2 Node Cases and Experience Cases749

Table 7 presents a node example in the Tool-BFS750

algorithm. Table 8 presents an experience example751

gained from the exploration stage.752

A.3 Tool-BFS Algorithm753

Algorithm 1 is the pseudo-code of our Tool-BFS754

Algorithm.755

A.4 Judgment Prompt756

During our Multi-Tool BFS exploration phase, to757

determine whether the currently obtained answer is758

correct without a ground truth answer, we prompt759

the model to judge the correctness of the current an-760

swer by pre-defining rules. The specific judgment761

prompt is shown in Table 9.762

Using LLMs to judge the correctness of the763

answer has been widely adopted in tool learning764

tasks (Qin et al., 2023). Due to the complexity765

of tool learning tasks, there is often a lack of la-766

bels to serve as evaluation standards. Therefore,767

many works employ LLMs to determine the cor-768

rectness of the answers (Qin et al., 2023; Lu et al.,769

2024). Besides, data with reasonable answers is770

relatively easy to collect. For instance, during user771

interactions, the model can provide answers using772

different tools, and users can give positive or nega-773

tive feedback. By gathering this type of data with774

positive feedback, we can eliminate the need for775

scenario generation in Multi-Tool Scenario Gen-776

eration stage and judge the correctness of the an-777

swers found in the Multi-Tool BFS Exploration778

stage based on user-satisfactory answers.779

A.5 Revising Prompt780

We present three main types of prompts utilized781

in stage 3, which are for revising tool descriptions782

Table 10, revising tool parameters Table 11, and783

revising tool responses Table 12.784

B Case Study785

We present examples of using different786

documentation-based React methods on787

RestBench-TMDB in Table 13, and exam- 788

ples of using different documentation-based 789

RestGPT methods on RestBench-Spotify in 790

Table 14, 15. In the React examples, the model 791

accurately selects the tool during the Action 2 792

stage due to our more precise tool description. 793

Similarly, in the RestGPT examples, the model’s 794

caller module correctly fills in the parameters 795

because of our more detailed parameter description 796

C Details of ToolBench-Food 797

C.1 Dataset Building Process 798

ToolBench (Qin et al., 2023) is a benchmark that 799

encompasses a wide range of user requests and 800

numerous REST APIs, offering 49 categories avail- 801

able through the RapidAPI hub. However, many 802

requests in ToolBench are unachievable, and many 803

of the APIs are of low quality, making it impossible 804

to function properly (Qin et al., 2023). To obtain 805

a high-quality dataset for validating our method, 806

we select a high-quality dataset from Toolbench’s 807

I2 category Food subset and named it Toolbench- 808

Food, which is similar in size to RestBench. 809

To ensure that each request is achievable, we 810

filter out the data that provided the correct answers 811

by checking the DFSDT output for each request. 812

DFSDT is a tool usage scheme based on the Depth- 813

First Search (DFS) proposed in (Qin et al., 2023). 814

We then extract the tools used by these requests 815

to compile a toolset. In the end, we filter out 54 816

requests and 41 tools. Table 16 shows several ex- 817

amples of the dataset. 818

D Details of RestGPT 819

D.1 Success Rate Evaluation 820

For the evaluation of the Success Rate, we adopt 821

the human evaluation method following Rest- 822

GPT (Song et al., 2023) to assess whether the 823

model has fulfilled the user query. We recruit three 824

graduate students from related fields to evaluate the 825

Success Rate. 826

E Fine-Grained Analysis of Tool 827

Documentation Detail 828

We recruit three graduate students from related 829

fields to evaluate the quality of the tool documen- 830

tation. The prompts used for evaluation were the 831

same for both GPT-4 and human evaluators. Ta- 832

ble 17 18 19 show the prompts we used. 833

12

Algorithm 1: Tool-BFS Algorithm
Input: Scenario S, Tool set T , Executor E, Model M , Maximum depth max_depth, Width

width
Output: Correct solution path or None
queue← Queue();
initial_node← Node(depth=0, history=[], plan=[], response=[]);
queue.push(initial_node);
while not queue.empty() and queue.depth ≤ max_depth do

current_node← queue.pop();
if is_api_call(current_node.plan) then

current_node.response← execute_api_call(current_node.plan, E, M);

else if is_final_answer(current_node.plan) then
if is_correct_answer(current_node.plan, S, M) then

return;

next_nodes← [];
for i← 1 to width do

plan← generate_next_plan(T, next_nodes, M);
if plan in [node.plan for node in next_nodes] then

continue;
new_node← Node(depth=current_node.depth + 1, history=current_node.history +

current_node, plan=plan, response=[]);
next_nodes.push(new_node);
queue.push(new_node);

return None;

13

You are an API tester whose job is to design usage scenarios for existing API
libraries to test their specific functionalities.
I will provide all the API information. Each API includes its operations , paths , and
basic descriptions.

When constructing a usage scenario , you need to first select APIs and then build the
scenario based on the chosen APIs.

Please note that each time you must select between two and four APIs , and the first
API is mandatory.
For the scenarios you build , please avoid using unknown information such as "this
movie" "the music" or 'artist ' Instead , replace them with specific movies or music
titles , such as "Inception", "The Eminem Show" or "Eminem ".
The scenario you constructed should be relatively complex and it requires the use
of at least two API tools to address the task.
You cannot generate scenarios that cannot be solved by the API I provide.
Make sure your question is a solvable one , and I won 't add any additional
information to your question

Here are some examples:
{icl_examples}

Here are the APIs information:
General description of the API toolset: {description}
APIs:
{apis}
The API 1 must be selected. When selecting other APIs , prioritize choosing ones that
are related to API 1.

Every API you select must be used in the scenarios you have built.
When you choose an API , try to choose APIs that are related to each other.
For example , an API requires the return result of another API as input.
Some APIs may be independent. In this case , you only need to use this API to build
usage scenarios. You don 't need to select another API.
Starting below , you must follow this format:
Selected APIs: The selected APIs information
Operation: The operation of the first API
Path: The path of the first API , it must be the API 1 in the above APIs , the content
of API 1 should be identical to the one listed above. Please do not fabricate any

information.
Description: The description of the first API
Operation: The operation of the second API
Path: The path of the second API , it could be any API in the above APIs
Description: The description of the second API
...up to 4 APIs
Constructed scenarios: The constructed scenarios , just generate one scenario
Now begin your mission!

Selected APIs:
Operation: {operation}
Path: {path}
Description: {api_description}

Table 6: Tool Select and Scenario Generation Prompts in Our Method

14

{
"planner_history ": [
[

"Search for the movie "The Dark Knight ".",
"GET /search/movie?query=The Dark Knight",
"Successfully called GET /search/movie?query=The Dark Knight to search for
the movie "The Dark Knight ". The total number of results is 31 spread across
2 pages."

],
],
"depth": 2,
"plan": {

"plan": "Get the credits for the movie "The Dark Knight" to find the
director.",
"api_plan ": "GET /movie /155/ credits"

},
"api_calling ": {

"Operation: GET ,
"Input": {

"URL": "https ://api.themoviedb.org/3/ movie /155/ credits",
"parameters ": None
"description ": "Get the cast and crew details for the movie 'The Dark
Knight.'",
"output_instructions ": "What is the name of the director of the movie?"

}
},
"response ": {

"id": 155,
"cast": [

{
"adult": false ,
"gender ": 2,
"id": 3894,
"known_for_department ": "Acting",
"name": "Christian Bale",
"original_name ": "Christian Bale",
"popularity ": 39.477 ,
"profile_path ": "/ v2Oks7DTbZcKzSi2Pw58C7SSLzM.jpg",
"cast_id ": 35,
"character ": "Bruce Wayne / Batman",
"credit_id ": "52 fe4220c3a36847f8005d17",
"order": 0

}...
"execution_res ": "Successfully called GET /movie /155/ credits to get the cast and
crew details for the movie 'The Dark Knight '. The name of the director of the

movie is Christopher Nolan."
}

Table 7: BFS Tree Node Example in RestBench-TMDB Dataset

{
"scenario ": "Get the genres of the most popular movie currently.",
"known_information ": "The ID of the most popular movie currently.",
"right_plan ": "I have the ID of the most popular movie currently , so I need to
get the genres of the movie.",
"right_api_plan ": "Use the GET /movie/{ movie_id} method to get the genres of the
movie.",

"wrong_plan ": "I have the ID of the most popular movie currently , now I need to
know the details of the movie.",
"wrong_api_plan ": "Use the GET /movie/{ movie_id }/ credits method to get the
details of the movie."

}

Table 8: Experience Example in RestBench-TMDB Datasets

15

You are an evaluator tasked with determining whether the reasoning process I
provided has been completed successfully. If it has , please explain why and then
output 'yes ', otherwise , explain why and then output 'the answer is "no"'
Please note that if a task is successfully completed , its reasoning process must be
correct , and the final result should be formatted as follows:
Final Answer: The final answer of the query is "..." (It indicates that a task has
been successfully completed .)

Here are some examples:
{icl_examples}

API information:
{api_info}

Judgement Rules:

1: In the API calling step , placeholders "{{}}" should not be present. They need to
be formatted with specific content.
2: For the ID information in the inference path , it must be obtained or referenced
from the API response , rather than being fabricated by the model itself.For example ,
if the model uses GET /albums /{{ albums_id }}/tracks , the albums_id must be obtained
from the API response , such as GET /search

3: If the question is about a specific piece of information and one of the available
APIs has an API for that specific piece of information , then the specific API

should be used to solve the problem rather than the more general API. For example ,
if the query is about the tracks of a albums , the model should use the API GET /
albums /{{ albums_id }}/ tracks to get the tracks of the album , rather than using /
search API or /albums /{{ albums_id }}.
4: In judging , you need to consider the correctness of the inference process and the
final answer.

5: The order of execution of the api should be in the order indicated.
6: Additional unrelated actions are not allowed

No matter how the model explain its reasoning steps in the inference stage , the
above rules are must be followed.

You must follow the format below:
Query: The query the model is trying to answer.
Plan step 1: The first step of the reasoning process.
API calling 1: The API calling in the first step.
...
Final Answer: The final answer of the query is "..."
Judgement: The judgement of the reasoning process. Firstly explain why the reasoning
process is correct or incorrect , and then output "yes" or "no".

Begin !!!
Query: {query}
{planner_history}
{plan}
Judgement:

Table 9: Prompt for Tool Selection and Scenario Generation

16

You are an API documenter responsible for writing a series of functional
descriptions for RESTful APIs to assist users in querying the relevant APIs.
I will provide you with a description of the existing api but this description may
be incomplete or noisy , please rewrite the description of the current api based on
some of the scenarios and call examples I have provided you with as well as the
original api information
Please update the current description of the API based on the given information to
better assist users in querying the API.
Note that you should keep the description as informative as possible while reducing
the text length.
Please briefly explain what parameters the api requires and what to include in the
response , as well as the considerations for the use of the api.
The original document may contain some irrelevant or redundant information , so pay
attention to filtering
You only need to add what you think is important to the document , not explain the
response completely.
Each rewritten document should be no more than 50 words.
If you think the original information is accurate enough , then you don 't need to
change it, just output the original conten

Here are some examples:
{icl_examples}
If you think the original description is accurate enough , just repeat the original
description.

Starting below , you must follow this format:
Operation: The operation of the API
Path: The path of the API
Description: The original description of the API
Parameters: The parameters of the API , maybe None
Responses: The responses of the API , maybe None
Scenario Examples: The scenario examples of the API
Rewritten Description: Your rewritten description of the API

Now begin your mission!
{api_doc}
Scenario Examples: {scenario}
Rewritten Description:

Table 10: Prompt for Revising Tool Functionality Description

17

You are an API documentation personnel , and your task is to write description
information for the parameters in the current API documentation.
I will provide you with basic information about the API and partial descriptions of
the existing parameters , but the original descriptions may not be comprehensive
enough.
Therefore , I will also provide you with some real use case examples. Based on the
given case examples , you should update the parameter descriptions to better assist
users in querying the API.
Each rewritten description should be no more than 10 words.
If you think the original information is accurate enough , then you don 't need to
change it, just output the original content.

The updated parameter description of the API should be the following format:
For example:

{icl_examples}
If you think the original description is accurate enough , just repeat the original
description.
Starting below , you must follow this format:
Operation: The operation of the API
Path: The path of the API
Description: The original description of the API
Parameters: The parameters of the API , maybe None
Responses: The responses of the API , maybe None
Scenario Examples: The scenario examples of the API
Updated Parameter Description: The updated parameter description of the API

Now begin your mission!
{api_doc}
Scenario Examples: {scenario}
Updated Parameter Description:

Table 11: Prompt for Revising Tool Parameters

You are an API documentation personnel and your task is to write descriptive
information for the response formats in the current API documentation.
I will provide you with basic information about the API , and in addition , I will
give you some real -world usage examples.
Based on the given usage examples , I need you to write descriptive information for
each of the response values. The specific requirements are as follows:
The response format is a dictionary nested within another dictionary. I would like
you to add a description field to each dictionary to describe what the current value
represents.

If you think the original information is accurate enough , then you don 't need to
change it, just output the original content.

For example:
{icl_examples}

If you think the original description is accurate enough , just repeat the original
description.
Starting below , you must follow this format:
Operation: The operation of the API
Path: The path of the API
Responses: The responses of the API , maybe None
Scenario Examples: The scenario examples of the API
Updated Responses: The updated response schema of the API

Now begin your mission!
{api_doc}
Scenario Examples: {scenario}
Updated Responses:

Table 12: Prompt for Revising Tool Responses

18

React with Original Documentation:
Query: give me a poster of the second season of Big Bang Theory
Thought 1: Search for the TV show "Big Bang Theory"
Action 1:GET /search/tv
Action Input 1:
{ "Operation ": "GET",

"url": "https ://api.themoviedb.org/3/ search/tv",
"params ": {
"query": "Big Bang Theory" }}

Observation 1: {..."id":1418 ," origin_country ":["US"]," original_language ":"en","
original_name ":"The Big Bang Theory","overview ":" Physicists Leonard and Sheldon find
their nerd -centric social circle with pals Howard and Raj expanding when aspiring

actress Penny moves in next door ."...}
Thought 2:I have found "The Big Bang Theory" TV show. Now , I need to get the details
of the second season to find the poster.

Action 2:GET /tv /1418/ season /2
Action Input 2:
{ "Operation ": "GET",

"url": "https ://api.themoviedb.org/3/tv /1418/ season /2",}
Observation 2: Observation 2: {..." production_code ":"3 T7351","runtime ":22,"
season_number ":2," show_id ":1418 ," still_path ":"/ y9cFxQyFRBOewwVvkMl6SaH2om0.jpg","
vote_average ":7.7 ," vote_count ":48 ,...}
Thought 3:I have found the details of the second season of "The Big Bang Theory" and
the poster for the first episode is available. I will now provide the poster for

the second season of "The Big Bang Theory ."
Action 3:Final Answer: ![The Bad Fish Paradigm](https :// image.tmdb.org/t/p/original/
y9cFxQyFRBOewwVvkMl6SaH2om0.jpg)
--
React with Our Documentation:
Query: give me a poster of the second season of Big Bang Theory
Thought 1: Search for the TV show "Big Bang Theory" to get its ID.
Action 1:GET /search/tv?query=Big%20 Bang %20 Theory
Action Input 1:
{" Operation ": "GET",

"url": "https ://api.themoviedb.org/3/ search/tv",
"params ": {
"query": "Big Bang Theory "}}

Observation 1: {..."id":1418 ," origin_country ":["US"]," original_language ":"en","
original_name ":"The Big Bang Theory","overview ":" Physicists Leonard and Sheldon find
their nerd -centric social circle with pals Howard and Raj expanding when aspiring

actress Penny moves in next door ."...}
Thought 2:I have found the ID for "The Big Bang Theory" TV show , which is 1418. Now ,
I need to get the images for the second season of this show.

Action 2:GET /tv /1418/ season /2/ images
Action Input 2: Action Input 2:
{ "Operation ": "GET",

"url": "https ://api.themoviedb.org/3/tv /1418/ season /2/ images",}
Observation 2: {"id":3733 ," posters ":[{" aspect_ratio ":0.666 ," height ":2233 ," iso_639_1
":"en","file_path ":"/2 NBwUBZ4clwj6qO9fBinfxiB0dR.jpg"," vote_average ":5.454 ,"
vote_count ":3," width ":1488} ,{" aspect_ratio ":0.666 ," height ":1426 ," iso_639_1 ":"en","
file_path ":"/ tULsqpXMTZ85BdFjNR9ScxBSbec.jpg"," vote_average ":5.322 ," vote_count ":5,"
width ":950} ,{" aspect_ratio ":0.667 ," height ":2268 ," iso_639_1 ":"hu","file_path ":"/
eFIj7bDVKRTssMMs67EkiLbZ0o9.jpg"," vote_average ":5.312 ," vote_count ":1," width
":1512} ,...}
Thought 3:I have found the posters for the second season of "The Big Bang Theory ".
Here are some of the images:
1. ![Poster 1](https :// image.tmdb.org/t/p/original /2 NBwUBZ4clwj6qO9fBinfxiB0dR.jpg)
2. ![Poster 2](https :// image.tmdb.org/t/p/original/tULsqpXMTZ85BdFjNR9ScxBSbec.jpg)
3. ![Poster 3](https :// image.tmdb.org/t/p/original/eFIj7bDVKRTssMMs67EkiLbZ0o9.jpg)
Final Answer: These are some of the posters for the second season of "The Big Bang
Theory ".

Table 13: React with different documentation on RestBench-TMDB

19

RestGPT with Original Documentation:
Query: Add the first song from my music library to the playback queue and enable
single song repeat mode
Planner: Get the first song from my music library
API Selector: GET /me/tracks
Caller: Operation: GET
Input: {

"url": "https ://api.spotify.com/v1/me/tracks",
"params ": {

"limit": "1"
},
"description ": "Retrieve a list of the songs saved in the current Spotify user 's
'Your Music ' library.",

"output_instructions ": "What is the name and id of the first track saved in the
user 's library ?"

}
Parser: Name: Whitney Houston - I Wanna Dance with Somebody (Who Loves Me)
ID: 2tUBqZG2AbRi7Q0BIrVrEj
Caller: Execution Result: Successfully called GET /me/tracks. The name of the first
track saved in the user 's library is "Whitney Houston - I Wanna Dance with Somebody
(Who Loves Me)" and the ID is 2tUBqZG2AbRi7Q0BIrVrEj.
Planner: Add the track "Whitney Houston - I Wanna Dance with Somebody (Who Loves Me)
" (2 tUBqZG2AbRi7Q0BIrVrEj) to the playback queue
API Selector: POST /me/player/queue to add the track "Whitney Houston - I Wanna
Dance with Somebody (Who Loves Me)" (2 tUBqZG2AbRi7Q0BIrVrEj) to the playback queue
Caller: Operation: POST
Input: {

"url": "https ://api.spotify.com/v1/me/player/queue",
"data": {

"uri": "spotify:track:2 tUBqZG2AbRi7Q0BIrVrEj"
},
"description ": "Add an item to the end of the user 's current playback queue.",
"output_instructions ": "No specific output instructions provided ."

}
Parser: The URI of the track added to the queue is spotify:track:2
tUBqZG2AbRi7Q0BIrVrEj
Caller: Execution Result: Successfully called POST /me/player/queue to add the track
"Whitney Houston - I Wanna Dance with Somebody (Who Loves Me)" with the URI spotify

:track:2 tUBqZG2AbRi7Q0BIrVrEj to the playback queue.
Planner: Enable single song repeat mode
API Selector: PUT /me/player/repeat with the parameter "repeat -track"
Caller: Operation: PUT
Input: {

"url": "https ://api.spotify.com/v1/me/player/repeat",
"description ": "Set the repeat mode for the user 's playback to repeat the
current track."

}
Parser: Error: Required parameter state missing.

Table 14: RestGPT with original documentation on RestBench-Spotify

20

RestGPT with Our Documentation:
Query: Add the first song from my music library to the playback queue and enable
single song repeat mode
Planner: Get the first song from my music library
API Selector: GET /me/tracks
Caller: Operation: GET
Input: {

"url": "https ://api.spotify.com/v1/me/tracks",
"params ": {

"limit": "5"
},
"description ": "Retrieve the updated list of saved songs in the user 's library
with a limit of 5.",
"output_instructions ": "Extract the names and ids of the saved songs."

}
Parser: The name of the artist is Whitney Houston and the id is 6
XpaIBNiVzIetEPCWDvAFP
The name of the artist is Whitney Houston and the id is 6XpaIBNiVzIetEPCWDvAFP
The name of the artist is Lana Del Rey and the id is 00 FQb4jTyendYWaN8pK0wa
The name of the artist is Lana Del Rey and the id is 00 FQb4jTyendYWaN8pK0wa
The name of the artist is Lana Del Rey and the id is 00 FQb4jTyendYWaN8pK0wa
Caller: Execution Result: Successfully called GET /me/tracks. The names and ids of
the saved songs are as follows:
1. Artist: Whitney Houston , ID: 6XpaIBNiVzIetEPCWDvAFP
2. Artist: Lana Del Rey , ID: 00 FQb4jTyendYWaN8pK0wa
Planner: Add the song by Whitney Houston (6 XpaIBNiVzIetEPCWDvAFP) to the playback
queue
API Selector: POST /me/player/queue to add the song by Whitney Houston (6
XpaIBNiVzIetEPCWDvAFP) to the playback queue
Caller: Operation: POST
Input:
{

"url": "https ://api.spotify.com/v1/me/player/queue",
"data": {

"uri": "spotify:track:6 XpaIBNiVzIetEPCWDvAFP"
},
"description ": "Adding a specific song to the playback queue.",
"output_instructions ": "No specific output needed ."

}
Parser: The URI of the song added to the playback queue is spotify:track:6
XpaIBNiVzIetEPCWDvAFP
Caller: Execution Result: Successfully called POST /me/player/queue to add the song
by Whitney Houston (6 XpaIBNiVzIetEPCWDvAFP) to the playback queue. The URI of the
song added to the playback queue is spotify:track:6 XpaIBNiVzIetEPCWDvAFP.
Planner: Enable single song repeat mode
API Selector: PUT /me/player/repeat to enable single song repeat mode
Caller: Operation: PUT
Input: {

"url": "https ://api.spotify.com/v1/me/player/repeat",
"data": {

"state": "track"
},
"description ": "Set repeat mode for playback to single song repeat mode."

}
Parser: The player has been set to repeat mode.
Caller: Execution Result: Successfully called PUT /me/player/repeat to enable single
song repeat mode

Planner: Final Answer: I have added the first song from your music library to the
playback queue and enabled single song repeat mode.

Table 15: RestGPT with our documentation on RestBench-Spotify

21

My family and I are planning a beer tasting trip to Italy and we need a
comprehensive list of beers available in different regions. Can you provide me with
that? Additionally , I would like to explore the local cuisine. Can you give me
recipes for Italian wedding soup? Lastly , I'm curious about the nutritional
information of milk. Can you fetch that for me?

I'm a food blogger and I'm looking for new recipe ideas. Can you provide me with
creative recipes for tacos? Also , fetch the details of the available chicken dishes
from KFC Chickens API.

"I'm a food blogger and I'm looking for unique and creative recipes to share with my
audience. Can you recommend some interesting chicken recipes using the Recipe_v4

API? Additionally , I would like to know the nutritional information for milk. Please
provide me with the energy , protein , carbohydrate , and fat content of milk.

I'm organizing a cocktail workshop for beginners and I want to teach them some easy
and delicious cocktail recipes. Can you suggest some cocktail recipes that use
ingredients like vodka , rum , and tequila? It would be great if you could also
provide some tips and tricks for making the perfect cocktails.

Table 16: Several examples of ToolBench-Food

You are an evaluator assessing the quality of a tool description. Your task is to
read the given description of the tool and provide a score based on the following
criteria:
1. Information Completeness: How comprehensive is the description? Does it cover all
essential aspects of the tool , including its main features , benefits , and use cases

?
2. Text Length: How concise is the description? Is it to the point without
unnecessary details or redundancy?

Your score should be a number between 1 and 3, where 1 is the lowest and 3 is the
highest. Please provide a brief explanation for your score.
The score 1 means that the description is incomplete , lacks essential information ,
or is too verbose.
The score 2 means that the description is somewhat complete but could be improved in
terms of information coverage or text length.

The score 3 means that the description is highly informative , well -structured , and
concise.

Please evaluate the description based on these criteria and provide a score for the
given tool description.

Tool: {tool}
Description: {description}
Score:

Table 17: Prompt for evaluating tool descriptions

22

You are an evaluator tasked with assessing the quality of the parameter section in a
tool document. Your goal is to read the provided section and assign a score based

on the following criteria:

1. Completeness and Accuracy: How comprehensive and accurate is the description of
the parameters? Does it cover all necessary parameters , their types , ranges , and any
constraints accurately?

2. Clarity and Understandability: How clear and understandable is the description of
the parameters? Can readers easily comprehend the purpose and usage of each

parameter?

Your score should be a number between 1 and 3, where 1 is the lowest and 3 is the
highest. Please provide a brief explanation for your score.
The score 1 means that the parameter section is incomplete , inaccurate , or difficult
to understand.

The score 2 means that the parameter section is somewhat complete and clear but
could be improved in terms of accuracy or clarity.
The score 3 means that the parameter section is highly informative , accurate , and
easy to understand.

Please evaluate the parameter section based on these criteria and provide a score
for the given tool document.

Tool: {tool}
Parameter Section: {parameters}
Score:

Table 18: Prompt for evaluating tool parameters

You are an evaluator tasked with assessing the quality of the response section in a
document. Your objective is to read the provided section and assign a score based on
the following criteria:

1. Structural Accuracy: How well -structured is the response section? Does it follow
a logical sequence and provide a clear overview of the tool 's response mechanism?
2. Comprehensive Parameter Explanations: How comprehensive and accurate are the
explanations of the parameters in the response section? Do they cover all necessary
details , including how each parameter affects the response and any dependencies
between parameters?

Your score should be a number between 1 and 3, where 1 is the lowest and 3 is the
highest. Please provide a brief explanation for your score.
The score 1 means that the response section is poorly structured , lacks clarity , or
provides incomplete parameter explanations.
The score 2 means that the response section is somewhat structured and informative
but could be improved in terms of clarity or completeness.
The score 3 means that the response section is well -structured , clear , and provides
comprehensive parameter explanations.

Please evaluate the response section based on these criteria and provide a score for
the given tool document.

Tool: {tool}
Response Section: {response}
Score:

Table 19: Prompt for evaluating tool responses

23

	Introduction
	Related work
	Methodology
	Method Framework
	Multi-Tool Scenarios Generation
	Multi-Tool BFS Exploration
	Tool Documentation Revision

	Experiment Setup
	Datasets and Evaluation Metrics
	Baselines
	Implementation Details

	Result and Analysis
	Main Result
	Ablation Study
	Case Study

	Discussion
	Conclusion
	ToolBFS+ Method Details
	Tool Selection and Scenario Generation Prompt
	Node Cases and Experience Cases
	Tool-BFS Algorithm
	Judgment Prompt
	Revising Prompt

	Case Study
	Details of ToolBench-Food
	Dataset Building Process

	Details of RestGPT
	Success Rate Evaluation

	Fine-Grained Analysis of Tool Documentation Detail

