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Abstract

Enhancing the task-solving capabilities of large
language models (LLMs) through utilizing
tools has garnered increasing attention. To en-
able LLMs to use tools accurately, developers
often provide documentation of the tools in
the LLMSs’ context. However, such documenta-
tion has various issues, such as incomplete tool
descriptions and insufficient descriptions of pa-
rameters or responses. To address this problem,
we propose ToolBFS+, a method to revise tool
documentation by exploring the use of tools.
ToolBFS+ adopts a Breadth-First Search (BFS)
strategy to explore various tool usage scenar-
ios and collects the information obtained from
the exploration to revise the tool documenta-
tion, ultimately improving the model’s ability
to accurately utilize the tools. Extensive exper-
iments on multiple datasets demonstrate that
the ToolBFS+ method can substantially reduce
errors, such as the selection of incorrect tools,
and improve the capability of LLMs to use tools
accurately’.

1 Introduction

As large language models (LLMs) become increas-
ingly popular (Achiam et al., 2023; Touvron et al.,
2023; Kim et al., 2024), the tool learning task is pro-
posed to further enhance the capabilities of LLMs
(Shen et al., 2024; Schick et al., 2024; Cai et al.,
2023). These methods enhance LLLMs’ capabilities
by enabling them to utilize external tools for real-
world interaction, thereby enhancing their ability
to address diverse problems (Zhuang et al., 2024;
Qin et al., 2023). To help LLMs understand the
tools, developers often provide tool documentation
within the model’s context (Song et al., 2023; Yang
et al., 2024). LLMs rely on their in-context learn-
ing capabilities to understand the tools from the
context and utilize them accurately. Thus, docu-
mentation quality is crucial for enabling the LLMs
to effectively utilize tools (Hsieh et al., 2023).

"https://anonymous.4open.science/ToolBFS

Question: How could I get a list of the top 10 McDonald's
restaurants in the USA
Original
Documentation

! Tool Selecting

Description are
too vaguel!

0 results per request. Use
¥ ‘page number for Pagination

Current tool's parameters
"name": B
Nyper string",

Tcan't
understand the
meaning of
parameter.

-
Parameter
Filling

. * I don't know
: % 9 where the
" —> @ mfcrmgflon I
,,,,,,,,,,,,,,, Response required.
Parsing

Current tool's parameters
5. [ 1

| "name": "restaurantchainname”,
| iype "string”
"description":

d restaurant chain, e.g..
efault": "kfe"

, : 3

Parameter Response
Filling Parsing

I get the answer!!

Tool Selecting

Figure 1: The figure illustrates issues in the original tool
documentation, including incomplete tool descriptions,
inadequate parameter explanations, and insufficient re-
sponse details. The documentation can be revised by
our 7oolBFS+to be more comprehensive and accurate
for better tool usage.

Typically, when acquiring a tool, the corre-
sponding documentation is provided to facilitate
its use (Hsieh et al., 2023). However, this docu-
mentation frequently exhibits various issues (Yuan
et al., 2024; Qin et al., 2023). As illustrated in Fig-
ure 1, the original tool documentation suffers from
incomplete descriptions, inadequate parameter ex-
planations, and insufficient response details. These
issues can result in errors when the model attempts
to utilize the tools.

While manually revising the incomplete docu-
mentation could entail substantial costs (Zhuang
et al., 2024), some work (Yuan et al., 2024) at-
tempts to have LLMs complete this process by
prompting the LLMs to revise the tool documen-
tation. However, solely depending on LLMs to
infer the incomplete documentation details without
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concrete tool-use information (e.g., full tool invo-
cation, including parameters, responses, etc.) may
potentially lead to inaccuracies in the documenta-
tion. To incorporate concrete tool-use information
for a more accurate documentation revision, we
propose ToolBFS+ method that utilizes multi-tool
Breadth-First Search (BFS) exploration to enhance
the tool documentation. Specifically, our method
consists of three stages:

1. Multi-Tool Scenario Generation. Specific tool-
use scenarios are crucial for acquiring tool-use in-
formation. In this stage, LLMs are prompted to
select several functionally related tools, thoroughly
understand each tool’s functionalities, and subse-
quently generate a multi-tool scenario for further
exploration in the next stage. Multi-tool scenarios
refer to specific problems that require the collab-
oration of multiple tools to solve. These scenar-
ios better mimic the complex demands of the real
world.

2. Multi-Tool BFS Exploration. Tool-use infor-
mation can be plentiful, but some of it may be
meaningless or low-quality, providing no valuable
information (e.g., empty tool responses caused by
incorrect tool parameters). We consider the solu-
tions of the scenarios as tool-use information. To
obtain high-quality solutions in generated scenar-
ios, we design the Tool-BFS algorithm to search
for solutions through exploration. By viewing the
exploration process as a graph search, considering
each tool invocation as a node and starting from the
root node with no tool invocations, we use a BFS
strategy to iteratively search through all possible
paths until the correct answer is found. We consider
the path from the root node to the node containing
the correct answer as a high-quality solution. The
BFS strategy ensures both the correctness and effi-
ciency of the solution.

3. Tool Documentation Revision. To incorpo-
rate concrete tool-use information from the solu-
tions into the tool documentation, we consider the
following two aspects: (1) Using a single node
with complete tool invocation, including param-
eters, responses, etc, to revise the corresponding
tool’s documentation, filling in the incomplete or
unclear content. (2) Viewing the tool selections
in the solutions as an experience that can guide
which tool to select in specific scenarios. We incor-
porate this experience into the corresponding tool
documentation.

We conduct extensive experiments on Rest-

Bench (Song et al., 2023) and ToolBench (Qin
et al., 2023). The results show substantial im-
provements using our proposed documentation en-
hancement method. These improvements are vis-
ible across various tool-use methods and datasets,
validating the effectiveness of our approach.

Our main contributions are as follows:

1. We propose ToolBFS+, a multi-stage tool docu-
mentation enhancement method that can revise
the documentation for more accurate tool uti-
lization of LLMs.

2. We design the Tool-BFS algorithm, which al-
lows for a thorough exploration of the scenarios
and the discovery of high-quality solutions in a
BES strategy.

3. We conduct extensive experiments on three
datasets and show the effectiveness of our
ToolBFS+ method in improving the quality
of tool documentation and tool-use ability of
LLMs.

2 Related work

Tool-augmented language models. Enhancing
the capabilities of LLMs through external tools
has been proven effective (Schick et al., 2024; Jin
etal., 2024; Li et al., 2023; Patil et al., 2023). Some
methods enhance a model’s tool-use ability through
fine-tuning on specific datasets, involving dataset
construction and a training process (Schick et al.,
2024; Gao et al., 2024; Tang et al., 2023; Wang
etal., 2024, 2022). However, these methods require
additional training data, can only be applied to
open-source models, and involve high fine-tuning
costs (Qin et al., 2023).

Consequently, some researchers aim to opti-
mize the process of utilizing tools to enhance the
model’s ability to use them. These methods lever-
age the in-context learning abilities of LLLMs by
incorporating tool documentation and demonstra-
tions into the context. By designing specific work-
flows, they enable the model to use tools to accom-
plish tasks (Yao et al., 2022; Lu et al., 2024; Song
et al., 2023). Although this approach eliminates
the need for training, it is susceptible to the quality
of tool demonstrations and documentation (Yuan
et al., 2024; Shi et al., 2023). To address this prob-
lem, we propose an approach that enhances the
quality of tool documentation, thereby improving
the model’s ability to use tools.
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Figure 2: The overall process of our Too/BFS+ consists of three stages: (1) Multi-Tool Scenario Generation, where
functionally related tools are selected and multi-tool scenarios are generated to mimic real-world scenarios; (2)
Multi-Tool BFS Exploration, employing a BES strategy to explore and find high-quality solutions; and (3) Tool
Documentation Revision, using solutions from the exploration to revise and enhance tool documentation, improves

accuracy of tool usage.

3 Methodology

3.1 Method Framework

In this section, we detail the Tool/BFS+, enhancing
the tool documentation by multi-tool BFS explo-
ration. As shown in Figure 2, our approach con-
sists of three main stages: (1) Multi-Tool Scenario
Generation, (2) Multi-Tool BFS Exploration, and
(3) Tool Documentation Revision. In the Multi-
Tool Scenario Generation stage, we select several
functionally related tools from the toolset 7" and
generate a tool-use scenario for these tools. The
scenario is then passed to the Multi-Tool BFES Ex-
ploration stage for further exploration to get the
tool invocation path as the solution. In the Tool
Documentation Revision stage, we will revise the
tool documentation using the information obtained
from the exploration stage.

3.2 Multi-Tool Scenarios Generation

This stage is designed to generate multi-tool sce-
narios on the toolset ' = {¢1,t2,...,t,}. The
stage includes two steps: tool selection and sce-
nario generation. During the tool selection step, we
initially allow the LL.Ms to select functionally re-
lated tools, but we found that LLMs tend to prefer
simpler tools (e.g., search/movie, which has sim-
ple tool description and require fewer parameters)

and overlook more complex ones (e.g., /discover/tv,
which involve multiple parameters and difficult to
use). To avoid this, we record the frequency of tool
selection and ensure that the least-used tool is se-
lected each time. This is achieved by incorporating
the least-used tool into the LLMs’ output during
the selection step. Subsequently, the LLMs select
functionally related tools based on the least-used
tool. Then, we prompt LLMs to generate a multi-
tool scenario, which involves the coordinated use
of selected tools. For example, as shown in stage
1 in Figure 2, the LLMs are provided the least-
used tool, /person/person_id/images. They then
select related tools like /search/movie and /movie/-
movie_id/credits, and generate the scenario: “What
does the lead actor of Iron Man look like?", which
is passed to the next stage for further exploration.

3.3 Multi-Tool BFS Exploration

After scenario generation, we aim to explore the
generated scenarios to obtain high-quality solutions
that provide the correct answer and meaningful tool
invocations. We also summarize the experience
regarding tool selection from the solutions.

Tool-BFS Algorithm. To get solutions, we spe-
cially design the Tool-BFS Algorithm. As shown
in stage 2 in Figure 2, we prompt the model to
explore solutions using a BFS strategy. Specifi-



cally, by viewing the exploration process as a graph
search, we consider each tool invocation as a node
and start from the root node initially containing no
tool invocations. Each time, we select a node from
the current level to explore downwards until all
nodes at the current level have been selected. Then,
we proceed to the next level to continue the explo-
ration. Every node records the invoked tools his-
tory, the currently invoked tools, parameters, and
response. To make the child nodes more diverse
and expand the search space, we explicitly inform
the model about the next tool plans in the nodes it
has generated and encourage it to generate differ-
ent plans. When LLM give “Final Answer” in the
tool plan, we consider that the LLMs have either
found the answer or can no longer proceed with the
tools. Then, we prompt LLMs to judge whether the
current solution and answer are correct by using
predefined rules. The rules are manually written
and specific to the dataset e.g., “the model should
return a reasonable answer”’; “fabricating specific
parameters during reasoning is not allowed”. The
algorithm stops when the correct answer is found or
the maximum depth limit is reached. We consider
the path from the root node to the correct node
as the solution. The pseudo-code of the overall
algorithm is given in Appendix A.3.

After completing the BFS exploration and find-
ing a solution, we categorize the nodes in the BFS
tree into three types: “Right”, “Wrong”, and “Irrel-
evant”. These respectively refer to the nodes along
the solution, the nodes along the wrong paths, and
the nodes that do not intersect with the solution.
We do not take any action on the Irrelevant nodes.
Subsequently, we extract the Right nodes for later
documentation revision.

Experience Summary. The tool selection in the
solution can be considered as an experience that
guides which tool to select in specific scenarios.
The “Wrong” nodes also contain meaningful infor-
mation as they store the mistakes the model tends
to make. Therefore, we explicitly store this guid-
ance and mistake as a type of experience within the
corresponding tool documentation. This kind of ex-
perience consists of four parts: the scenario, known
information, the right plan, and the wrong plan. We
summarize this experience at the locations where
the model generates “Wrong” nodes and “Right”
nodes, indicated by gray blocks in Figure 2. For
example, fool 6 and tool 7 are summarized as one
experience. This experience includes the current

scenario “What does the lead action of Iron Man
look like”, the known information (i.e., the execu-
tion result of fool 3), the right plan (i.e., tool 7), and
the wrong plan (i.e., ool 6). It will be integrated
into Tool 3’s documentation in next stage.

3.4 Tool Documentation Revision

After generating and exploring different scenarios,
we aim to incorporate concrete tool-use informa-
tion from the solution into the tool documentation
in two aspects: (1) using the complete tool invoca-
tion from the solution to revise the corresponding
tool documentation, filling in the incomplete or un-
clear content. (2) integrating the experience sum-
marized from the previous stage into corresponding
tool documentation as guidance for tool selection.

For the first aspect, we revise the documentation
using nodes at three key points: tool’s functionality
description, parameters, and responses. For the tool
functionality description section, we use the scenar-
ios, required parameters and execution results to
revise the tool’s functionality description. By doing
s0, we provide a clear understanding of when and
how to use the tool. For the tool parameters section,
we utilize specific parameters and responses from
tool invocations to clarify the specific functions of
each parameter. This helps in providing concrete,
clear explanations of how each parameter affects
the tool’s behavior. For the tool response section,
we leverage actual responses from tool invocations
to explain the structure and details of the responses.
This ensures that LLMs can comprehend the output
format and content accurately. By integrating these
elements into the LLMs’ context, we can revise the
documentation more effectively, making it clearer
and more comprehensive for LL.Ms.

For the integration of experience, we designed
a mechanism to avoid having too many redundant
experiences. This mechanism checks if a new ex-
perience already exists in the tool experience set
when adding new experiences. Specifically, we
prompt the LLMs to check whether the current ex-
perience to be added matches or is similar to any
experience in the tool’s experience set based on
known information and scenario. For the use of
experience, for example, in Figure 2, when other
tool-use methods use tool3, we expose the experi-
ence set of tool3 to the LLMs, allowing them to
determine if there is any experience that fits the
current scenario and known information. If so, the
experience is incorporated into the context to guide
the selection of tools.



4 Experiment Setup
4.1 Datasets and Evaluation Metrics

Datasets. We conduct experiments on below
datasets: (1) RestBench (Song et al., 2023): A
benchmark with two sub-datasets: the TMDB
dataset, containing 57 real APIs related to movies
and actors, and the Spotify dataset, comprising
40 real APIs for operations such as retrieving and
playing songs. (2) ToolBench (Qin et al., 2023):
A benchmark has a wide range of user requests
and many Rapid APIs, with 49 categories available
through the RapidAPI hub. We filter a high-quality
dataset from Toolbench’s 12 category Food subset
and named it Toolbench-Food. This dataset is de-
signed to match the format and size of RestBench
and contains information related to food recipes
and more. We detail the specific dataset construc-
tion in Appendix C.

Evaluation Metrics. In evaluating the tool-use
methods performance on two RestBench datasets,
we use two evaluation metrics following (Song
et al., 2023): (1) Correct Path Rate (CP%), which
considers a tool call path as correct if the path of the
golden answer is a subpath of the model-generated
path, and (2) Success Rate (Success%), which as-
sesses whether the model accurately completes the
query by human evaluation. For the ToolBench-
Food dataset, we follow ToolBench’s evaluation
metrics. Include (1) Pass Rate (Pass), the propor-
tion of successful instructions completed within a
limited budget, and (2) Win Rate (Win), ChatGPT’s
preference between two solutions (Qin et al., 2023).

4.2 Baselines

We conduct extensive experiments across various
tool-use methods to demonstrate the effectiveness
of our Tool/BFS+ method. These tool-use methods
include: (1) React (Yao et al., 2022), a method
that utilizes a chain-of-thought approach within the
Thought-Action-Observe framework. (2) Reflect
(Gou et al., 2023), which employs a feedback and
self-correction mechanism based on tool responses.
(3) Chameleon (Lu et al., 2024), a method that di-
rectly generates multi-step plans for tool usage and
then sequentially executes the plan. (4) RestGPT
(Song et al., 2023), which adopts a multi-agent col-
laboration strategy integrating roles such as planner,
selector, caller, and parser. These diverse frame-
works allow us to comprehensively evaluate the
effectiveness of our proposed method.

For the documentation used in the above tool-
use methods, we adopt three settings. (1) Original:
Using the documentation provided in the bench-
mark, which may have various issues. (2) Easy-
Tool: Using documentation that has been improved
by EasyTool(Yuan et al., 2024). (3) Ours: Using
our tool documentation enhanced by Multi-Tool
BFS Exploration.

4.3 Implementation Details

We employ OpenAl’s gpt-3.5-turbo® as the back-
bone to implement our proposed method and
all tool-use methods. Additionally, we conduct
experiments on the open-source model Mixtral-
8x7B (Jiang et al., 2024) to validate our method’s
performance on open-source models.

In the Multi-Tool BFS Exploration stage (§ 3.3),
we set the width to 3 and the maximum depth to
8. For the tool-use method in exploration in § 3.3,
we employ a three-stage process, planning, calling,
and parsing, to complete a tool invocation. To
determine whether the solution and the answer are
correct, we design a set of rules and prompt the
model to judge their correctness. We provide the
specific details of the judgment in Appendix A.4

5 Result and Analysis
5.1 Main Result

Overall Performance. Table 1 presents our exper-
imental results. Our 7o0/BFS+ method enhanced
documentation achieves the best performance in
all tool-use methods on three datasets. Specifically,
on the RestBench-TMDB dataset, our enhanced
tool documentation with the React method achieves
64.0 in Correct Path Rate metric and 62.0 in Suc-
cess Rate metric. This substantially improves per-
formance compared to the Original and EasyTool
baselines and approach the performance of Rest-
GPT on the original documentation. The similar
improvement is observed on the RestBench-Spotify
and ToolBench-Food datasets. The reason is that
our multi-tool exploration and documentation revi-
sion method improves the quality of the tool doc-
umentation by incorporating concrete tool usage
information. This improvement is manifested in
more comprehensive tool descriptions and more
detailed parameter explanations, etc. The enhanced
tool documentation provides more information and
improves performance for the four tool-use meth-
ods mentioned above.

2ht’cps: //openai.com/chatgpt
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RestBench-TMDB

RestBench-Spotify  ToolBench-Food

Method Docs Type
CP% Success% CP% Success%  Pass Win
Original 56.0 56.0 52.6 43.6 51.85 -
React (Yao et al., 2022) EasyTool 60.0 59.0 - - 59.25 53.66
Ours 64.0 62.0 57.8 544 68.52 62.50
Original 55.0 53.0 50.9 49.1 48.14 47.50
Reflect (Gou et al., 2023) EasyTool 58.0 56.0 - - 64.81 59.32
Ours 60.0 60.0 56.1 52.6 66.67 61.02
Original 64.0 63.0 56.1 54.4 46.30 46.88
Chameleon (Lu et al., 2024)  EasyTool 69.0 69.0 - - 59.25 54.29
Ours 72.0 71.0 614 59.6 61.11 56.25
Original 65.0 63.0 71.9 68.4 62.96 60.34
RestGPT (Song et al., 2023)  EasyTool 74.0 70.0 - - 64.81 62.06
Ours 76.0 73.0 77.2 70.1 70.37 65.51

Table 1: The results on three datasets. The CP% represents the Correct Path Rate metric, while the Success%
indicates the Success Rate metric. The Pass metric denotes the proportion of successful queries completed. Win
is calculated by comparing each model’s output to React Original. The best result for each tool-use method is
underlined, and the best overall result across all methods is in bold.

RestBench-TMDB RestBench-Spotify

Method
CP% Success % CP%  Success%
Mixtral-8x7B
React Original 51.0 40.0 38.6 35.1
React Ours 54.0 46.0 45.6 40.4
RestGPT Original ~ 62.0 49.0 61.4 59.7
RestGPT Ours 70.0 52.0 66.7 63.2

Table 2: The results of using Mixtral-8x7B as the back-
bone with different tool-use methods. We report CP %
and Success%.

Both the EasyTool method and our method
yield substantial improvements compared to using
the original documentation. Compared to Easy-
Tool’s documentation, our approach performs bet-
ter in every experiment setting. This is because,
compared to EasyTool, our approach provides more
concrete tool-use information, including parame-
ters and concrete examples of responses, when re-
vising documentation. This information can better
assist LLMs in revising tool documentation.

Performance with the Open-Source LLMs. Fol-
lowing the above experiment settings, we alternate
our backbone LLMs with the open-source model
Mistral-8x7B (Jiang et al., 2024) and further vali-
date the effectiveness of our approach. As shown
in Table 2, under the RestBench-TMDB setting,
our method increases the Success Rate from 40%
to 46% using the React method and from 49% to
52% using the RestGPT method, demonstrating the
effectiveness with the open-source model.

RestBench-TMDB  RestBench-Spotify

Document Type
CP% Success% CP% Success%
React
Original 56.0 56.0 52.6 43.6
Ours 64.0 62.0 57.8 54.4
-w/o multi-scenario  61.0 60.0 54.4 50.9
-w/o exp 63.0 61.0 54.4 52.6
-w/o doc 61.0 61.0 56.1 56.1
RestGPT

Original 65.0 63.0 71.9 68.4
Ours 73.0 70.0 77.2 70.1
-w/o multi-scenario  71.0 67.0 71.9 64.9
-w/o exp 72.0 69.0 73.7 66.7
-w/o doc 69.0 68.0 75.4 68.4

Table 3: The results of Ablation study on the RestBench-
Spotify and RestBench-TMDB datasets.

5.2 Ablation Study

To further illustrate the impact of different com-
ponents in our method, we conduct the following
experiments:

-w/o multi-scenario: We replace the multi-tool sce-
nario in § 3.2 with a single-tool scenario (e.g.,
/search/movie, search the movie Iron Man, only
one tool is needed), then explore the single-tool
scenario and revise the documentation.
-w/o exp. We remove the experience in § 3.4 Tool
Documentation Revision to test if it affects tool
selection.
-w/o doc: We implement this by retaining the expe-
rience but replacing the enhanced tool documenta-
tion with the original tool documentation in § 3.4.
We conduct ablation experiments on Rest-
Bench’s two datasets using the React and RestGPT
methods with the ablated documentation. Our full



method still retains the best performance on two
metrics. The -w/o multi-scenario setting signifi-
cantly reduced effectiveness across datasets and
methods. This indicates that exploring multi-tool
scenarios is crucial for enhancing tool documenta-
tion, as the information obtained from single-tool
scenarios is insufficient to revise tool documenta-
tion.

On the TMDB dataset, the -w/o doc setting
causes the most significant performance decline,
while on the Spotify dataset, the -w/o exp setting
causes the most significant performance decline.
This is because the original TMDB dataset has rel-
atively limited documentation content, with more
incomplete tool descriptions and insufficient expla-
nations for parameters and responses. However, the
quality of the Spotify documentation is relatively
high, and experience guidance plays a major role
in documentation enhancement.

5.3 Case Study

We conduct a comprehensive case study and find
that our enhanced documentation allows the model
to better understand the tools, enabling it to select
correct tools, fill in the correct parameters, and
parse required information from the responses. We
also provide examples to illustrate the difference
between our enhanced documentation and original
documentation in tool-use methods performance.
More details can be found in Appendix B.

6 Discussion
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Figure 3: The efficiency analysis of the RestGPT
method on different documentation, where we count
the distribution of input and output token consumption
and the average consumption fi.

Efficiency analysis. Due to the intensive inference

costs associated with tool-use methods (Song et al.,
2023), we further explore whether our documenta-
tion method would result in efficiency reductions.
Using the same settings as Table 1, we compare
the token consumption between using the original
documentation and our enhanced documentation
on the RestBench-TMDB dataset.

In Figure 3, we present histograms showing the
frequency and mean value p of token consump-
tion for input and output tokens using different
documentation. Notably, output token calculations
are typically more complex and time-consuming
than input token calculations (Vaswani et al., 2017).
Our findings indicate that the number of output
tokens remains almost consistent with the origi-
nal documentation, and there was no significant
increase in input token consumption. This suggests
that our method achieves significant performance
improvements while maintaining a similar token
consumption as the original documentation.
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Figure 4: Error statistics in React and RestGPT with
different documentation.

Error analysis. We conduct an error analysis ex-
periment to further analyze how our enhanced docu-
mentation improves the model’s performance. This
experiment, conducted under the experimental set-
tings of Table 1, checks the distribution of differ-
ent errors in React and RestGPT by using differ-
ent documentation. In Figure 4, errors are catego-
rized into Plan Error, Caller Error, and Parser Error.
Specifically, Planning Errors denote the selection
of an incorrect tool, Caller Errors involve the use
of wrong parameters, and Parser Errors arise when
the required information is not parsed from the tool
responses.

Figure 4 illustrates that our method substantially
reduces the Planning Error compared to using the
original documentation. This improvement stems
from the revised tool descriptions and guidance of
experience. Furthermore, improvements are also



Method Correct ALen Tool-Calling Success
React 74.47% 2.36 86.99%
DFSDT 87.23% 242 87.80%
Tool-BFS  89.36% 2.19 95.65%

Table 4: The solution analysis of three different search
strategies on the ResetBench-TMDB dataset.

Document Selector Caller Parser

Type GPT4 Human GPT4 Human GPT4 Human
RestBench-Tmdb

Original 1.70 1.72 2.04 2.03 2.16 2.16
Ours 2.00 1.92 2.13 2.11 2.59 2.51
RestBench-Spotify

Original 1.70 1.65 1.58 1.49 1.82 1.75
Ours 1.92 2.04 1.68 1.59 2.25 2.14

Table 5: The direct evaluation results of documenta-
tion quality on the RestBench-TMDB and RestBench-
Spotify datasets.

observed in correctly filling parameters and parsing
responses, which benefits from more clear and com-
prehensive parameter and response descriptions.

Analysis of the BFS strategy. To demonstrate
the superiority of the BFS approach in finding
high-quality solutions, we compare three different
search strategies: React, DFSDT, and Tool-BFS.
React (Yao et al., 2022) is a tool-use method that
follows the Thought-Action-Observation frame-
work. DFSDT (Qin et al., 2023) enhances LLMs
with the Depth First Search-based Decision Tree
(DFSDT) to select tools to solve tasks. We con-
duct experiments under the generated multi-tool
scenarios of RestBench-TMDB. To evaluate the
quality of the solutions, we design three metrics:
Correct, A Len, and Tool-Calling Success, which
respectively represent the percentage of finding the
correct answer (i.e., the method mentioned in § 3.2
that prompts LLMs to determine the correctness of
the current answer), the average length of solutions,
and the rate of successful tool usage in the solu-
tions. This evaluation is grounded in the simple
intuition that high-quality solutions should ensure
correctness and efficiency.

The results in Table 4 demonstrate that React
underperforms compared to search-based methods
in terms of Correct. Both DFSDT and Tool-BFS
methods show similar performance for Correct.
However, the Tool-BFS method greatly surpasses
the DFS method regarding ALen and Tool-Calling
Success, validating the efficiency of our approach
in utilizing tools to seek high-quality solutions.

Fine-grained analysis of quality of documenta-

tion. Current evaluation metrics lack a direct as-
sessment of tool documentation quality, i.e., eval-
uating the tool documentation itself rather than
indirectly evaluating the performance over other
tasks. To address this, we design a direct evalua-
tion method for documentation quality.

Existing tool-use methods utilize tool documen-
tation mainly in three stages: planning, invocation,
and parsing (Yao et al., 2022; Song et al., 2023;
Qin et al., 2023). We assess tool documentation
quality across these three stages: Planning: The
model selects a tool based on tool descriptions and
user queries. Therefore, we rate documentation
based on the comprehensiveness and conciseness
of the tool functional description. Invocation: The
model fills in parameters based on tool’s parame-
ter section. Hence, We rate documentation based
on the completeness and clarity of parameter de-
scriptions. Parsing: The model parses the required
execution results based on the response description
in the tool documentation. Thus, we rate documen-
tation based on structural accuracy (e.g. standard
and complete json format) and completeness of
response descriptions. For accuracy, we use both
GPT-4 and human evaluations.

We use a three-point scale for the rating with
detailed rules provided in Appendix E. As illus-
trated in Figure 5, both sets of evaluations indicate
a consistent preference for our enhanced documen-
tation across all three metrics, demonstrating the
effectiveness of our approach in improving quality
of tool documentation.

7 Conclusion

In this work, we propose a method called
ToolBFS+, which improves the quality of tool doc-
umentation by integrating specific tool usage in-
formation obtained through multi-tool BFS explo-
ration, thereby improving the performance of dif-
ferent tool-use methods. Our method consists of
three stages: (1) Multi-Tool Scenario Generation,
(2) Multi-Tool BFS Exploration, and (3) Tool Doc-
umentation Revision. By conducting BFS explo-
ration on the generated multi-tool scenarios, we
obtain high-quality solutions. We then integrate
the concrete tool usage information from these
solutions into the corresponding tool documenta-
tion, thereby enhancing the tool documentation.
Extensive experiments on various tool-use meth-
ods and datasets demonstrate the superiority of our
ToolBFS+ method.



Limitations

Our current implementation of Multi-Tool BFS Ex-
ploration, based on LLMs, as discussed in § 3.3,
may encounter efficiency challenges. Specifically,
the process can involve exploring irrelevant nodes
to arrive at high-quality solution. However, it’s im-
portant to note that this documentation is intended
for one-time generation with no subsequent modifi-
cations. In the future, we plan to integrate heuristic
path search methods to enhance the efficiency of
our exploration process.

Ethics Statement

This paper proposes a method to enhance tool doc-
umentation by addressing existing issues in the tool
documentation to improve the model’s ability to
use the tools. All the tools used in our experiments
are provided by open-source platforms, including
TMDB, Spotify, and Rapid API.
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A ToolBFS+ Method Details

A.1 Tool Selection and Scenario Generation
Prompt

Table 6 presents the prompt we used to select the
tool and generate the scenario. At the end of the
prompt is the least-used tool we select for it.

A.2 Node Cases and Experience Cases

Table 7 presents a node example in the Tool-BFS
algorithm. Table 8 presents an experience example
gained from the exploration stage.

A.3 Tool-BFS Algorithm

Algorithm 1 is the pseudo-code of our Tool-BFS
Algorithm.

A4 Judgment Prompt

During our Multi-Tool BFS exploration phase, to
determine whether the currently obtained answer is
correct without a ground truth answer, we prompt
the model to judge the correctness of the current an-
swer by pre-defining rules. The specific judgment
prompt is shown in Table 9.

Using LLMs to judge the correctness of the
answer has been widely adopted in tool learning
tasks (Qin et al., 2023). Due to the complexity
of tool learning tasks, there is often a lack of la-
bels to serve as evaluation standards. Therefore,
many works employ LL.Ms to determine the cor-
rectness of the answers (Qin et al., 2023; Lu et al.,
2024). Besides, data with reasonable answers is
relatively easy to collect. For instance, during user
interactions, the model can provide answers using
different tools, and users can give positive or nega-
tive feedback. By gathering this type of data with
positive feedback, we can eliminate the need for
scenario generation in Multi-Tool Scenario Gen-
eration stage and judge the correctness of the an-
swers found in the Multi-Tool BFS Exploration
stage based on user-satisfactory answers.

A.5 Revising Prompt

We present three main types of prompts utilized
in stage 3, which are for revising tool descriptions
Table 10, revising tool parameters Table 11, and
revising tool responses Table 12.

B Case Study

We present examples
documentation-based

of wusing different
React methods on

12

RestBench-TMDB in Table 13, and exam-
ples of using different documentation-based
RestGPT methods on RestBench-Spotify in
Table 14, 15. In the React examples, the model
accurately selects the tool during the Action 2
stage due to our more precise tool description.
Similarly, in the RestGPT examples, the model’s
caller module correctly fills in the parameters
because of our more detailed parameter description

C Details of ToolBench-Food

C.1 Dataset Building Process

ToolBench (Qin et al., 2023) is a benchmark that
encompasses a wide range of user requests and
numerous REST APIs, offering 49 categories avail-
able through the RapidAPI hub. However, many
requests in ToolBench are unachievable, and many
of the APIs are of low quality, making it impossible
to function properly (Qin et al., 2023). To obtain
a high-quality dataset for validating our method,
we select a high-quality dataset from Toolbench’s
12 category Food subset and named it Toolbench-
Food, which is similar in size to RestBench.

To ensure that each request is achievable, we
filter out the data that provided the correct answers
by checking the DFSDT output for each request.
DFSDT is a tool usage scheme based on the Depth-
First Search (DFS) proposed in (Qin et al., 2023).
We then extract the tools used by these requests
to compile a toolset. In the end, we filter out 54
requests and 41 tools. Table 16 shows several ex-
amples of the dataset.

D Details of RestGPT

D.1 Success Rate Evaluation

For the evaluation of the Success Rate, we adopt
the human evaluation method following Rest-
GPT (Song et al., 2023) to assess whether the
model has fulfilled the user query. We recruit three
graduate students from related fields to evaluate the
Success Rate.

E Fine-Grained Analysis of Tool
Documentation Detail

We recruit three graduate students from related
fields to evaluate the quality of the tool documen-
tation. The prompts used for evaluation were the
same for both GPT-4 and human evaluators. Ta-
ble 17 18 19 show the prompts we used.



Algorithm 1: Tool-BFS Algorithm

Input: Scenario S, Tool set T', Executor E/, Model M, Maximum depth max_depth, Width
width
Output: Correct solution path or None
queue < Queue();
initial_node <— Node(depth=0, history=[], plan=[], response=[]);
queue.push(initial_node);
while not queue.empty() and queue.depth < max_depth do
current_node < queue.pop();
if is_api_call(current_node.plan) then
L current_node.response <— execute_api_call(current_node.plan, E, M);

else if is_final_answer(current_node.plan) then

if is_correct_answer(current_node.plan, S, M) then
| return;

ext_nodes < [];

for i < 1 to width do

plan < generate_next_plan(T, next_nodes, M);

if plan in [node.plan for node in next_nodes] then
L continue;

=

new_node <— Node(depth=current_node.depth + 1, history=current_node.history +
current_node, plan=plan, response=[]);
next_nodes.push(new_node);
queue.push(new_node);

return None;

13



You are an API tester whose job is to design usage scenarios for existing API
libraries to test their specific functionalities.

I will provide all the API information. Each API includes its operations, paths, and
basic descriptions.

When constructing a usage scenario, you need to first select APIs and then build the
scenario based on the chosen APIs.

Please note that each time you must select between two and four APIs, and the first

API is mandatory.

For the scenarios you build, please avoid using unknown information such as "this
movie"” "the music” or 'artist' Instead, replace them with specific movies or music
titles, such as "Inception”, "The Eminem Show” or "Eminem”.

The scenario you constructed should be relatively complex and it requires the use

of at least two API tools to address the task.

You cannot generate scenarios that cannot be solved by the API I provide.

Make sure your question is a solvable one, and I won't add any additional
information to your question

Here are some examples:

{icl_examples?}

Here are the APIs information:

General description of the API toolset: {description}

APIs:

{apis}

The API 1 must be selected. When selecting other APIs, prioritize choosing ones that
are related to API 1.

Every API you select must be used in the scenarios you have built.

When you choose an API, try to choose APIs that are related to each other.

For example, an API requires the return result of another API as input.

Some APIs may be independent. In this case, you only need to use this API to build
usage scenarios. You don't need to select another API.

Starting below, you must follow this format:

Selected APIs: The selected APIs information

Operation: The operation of the first API

Path: The path of the first API, it must be the API 1 in the above APIs, the content
of API 1 should be identical to the one listed above. Please do not fabricate any
information.

Description: The description of the first API

Operation: The operation of the second API

Path: The path of the second API, it could be any API in the above APIs

Description: The description of the second API

...up to 4 APIs

Constructed scenarios: The constructed scenarios, just generate one scenario

Now begin your mission!

Selected APIs:

Operation: {operation}

Path: {path}

Description: {api_description}

Table 6: Tool Select and Scenario Generation Prompts in Our Method
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"planner_history"”: [

L
"Search for the movie "The Dark Knight".",
"GET /search/movie?query=The Dark Knight",
"Successfully called GET /search/movie?query=The Dark Knight to search for
the movie "The Dark Knight". The total number of results is 31 spread across
2 pages."”
g
]7
"depth": 2,
"plan": {
"plan”: "Get the credits for the movie "The Dark Knight" to find the
director."”,
"api_plan”: "GET /movie/155/credits”
}7

"api_calling": {
"Operation: GET,

"Input”: {
"URL": "https://api.themoviedb.org/3/movie/155/credits”,
"parameters”: None
"description"”: "Get the cast and crew details for the movie 'The Dark
Knight."'",
"output_instructions”: "What is the name of the director of the movie?”
}
}Y
"response”: {
"id": 155,
"cast": [
{
"adult”: false,
"gender": 2,
"id": 3894,
"known_for_department”: "Acting",
"name"”: "Christian Bale"”,
"original_name"”: "Christian Bale",
"popularity"”": 39.477,
"profile_path”: "/v20ks7DTbZcKzSi2Pw58C7SSLzM. jpg",
"cast_id": 35,
"character”: "Bruce Wayne / Batman",
"credit_id": "52fe4220c3a36847f8005d17",
"order"”: @
...
"execution_res"”: "Successfully called GET /movie/155/credits to get the cast and
crew details for the movie 'The Dark Knight'. The name of the director of the

movie is Christopher Nolan.”

Table 7: BFS Tree Node Example in RestBench-TMDB Dataset

"scenario": "Get the genres of the most popular movie currently.”,
"known_information”: "The ID of the most popular movie currently."”,
"right_plan”: "I have the ID of the most popular movie currently, so I need to
get the genres of the movie.”,

"right_api_plan”: "Use the GET /movie/{movie_id} method to get the genres of the
movie.",

"wrong_plan”: "I have the ID of the most popular movie currently, now I need to
know the details of the movie.",

"wrong_api_plan”: "Use the GET /movie/{movie_id}/credits method to get the

details of the movie.”

Table 8: Experience Example in RestBench-TMDB Datasets
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You are an evaluator tasked with determining whether the reasoning process I
provided has been completed successfully. If it has, please explain why and then
output 'yes', otherwise, explain why and then output 'the answer is "no"'

Please note that if a task is successfully completed, its reasoning process must be
correct, and the final result should be formatted as follows:

Final Answer: The final answer of the query is "..." (It indicates that a task has
been successfully completed.)

Here are some examples:
{icl_examples}

API information:
{api_info}

Judgement Rules:

1: In the API calling step, placeholders "{{}}" should not be present. They need to

be formatted with specific content.

2: For the ID information in the inference path, it must be obtained or referenced
from the API response, rather than being fabricated by the model itself.For example,
if the model uses GET /albums/{{albums_id}}/tracks, the albums_id must be obtained
from the API response, such as GET /search

3: If the question is about a specific piece of information and one of the available
APIs has an API for that specific piece of information, then the specific API
should be used to solve the problem rather than the more general API. For example,
if the query is about the tracks of a albums, the model should use the API GET /
albums/{{albums_id}}/tracks to get the tracks of the album, rather than using /
search API or /albums/{{albums_id}}.

4: In judging, you need to consider the correctness of the inference process and the
final answer.

5: The order of execution of the api should be in the order indicated.

6: Additional unrelated actions are not allowed

No matter how the model explain its reasoning steps in the inference stage, the
above rules are must be followed.

You must follow the format below:

Query: The query the model is trying to answer.

Plan step 1: The first step of the reasoning process.
API calling 1: The API calling in the first step.
Final Answer: The final answer of the query is "..."

Judgement: The judgement of the reasoning process. Firstly explain why the reasoning
process is correct or incorrect, and then output "yes"” or "no".

Begin !!!
Query: {query}
{planner_history}

{plan}
Judgement :

Table 9: Prompt for Tool Selection and Scenario Generation
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You are an API documenter responsible for writing a series of functional
descriptions for RESTful APIs to assist users in querying the relevant APIs.

I will provide you with a description of the existing api but this description may
be incomplete or noisy, please rewrite the description of the current api based on
some of the scenarios and call examples I have provided you with as well as the
original api information

Please update the current description of the API based on the given information to
better assist users in querying the API.

Note that you should keep the description as informative as possible while reducing
the text length.

Please briefly explain what parameters the api requires and what to include in the
response, as well as the considerations for the use of the api.

The original document may contain some irrelevant or redundant information, so pay
attention to filtering

You only need to add what you think is important to the document, not explain the
response completely.

Each rewritten document should be no more than 50 words.

If you think the original information is accurate enough, then you don't need to
change it, just output the original conten

Here are some examples:

{icl_examples}

If you think the original description is accurate enough, just repeat the original
description.

Starting below, you must follow this format:

Operation: The operation of the API

Path: The path of the API

Description: The original description of the API

Parameters: The parameters of the API, maybe None

Responses: The responses of the API, maybe None

Scenario Examples: The scenario examples of the API
Rewritten Description: Your rewritten description of the API

Now begin your mission!
{api_doc}

Scenario Examples: {scenario}
Rewritten Description:

Table 10: Prompt for Revising Tool Functionality Description
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You are an API documentation personnel, and your task is to write description
information for the parameters in the current API documentation.

I will provide you with basic information about the API and partial descriptions of
the existing parameters, but the original descriptions may not be comprehensive
enough .

Therefore, I will also provide you with some real use case examples. Based on the
given case examples, you should update the parameter descriptions to better assist
users in querying the API.

Each rewritten description should be no more than 10 words.

If you think the original information is accurate enough, then you don't need to
change it, just output the original content.

The updated parameter description of the API should be the following format:
For example:

{icl_examples}

If you think the original description is accurate enough, just repeat the original
description.

Starting below, you must follow this format:

Operation: The operation of the API

Path: The path of the API

Description: The original description of the API

Parameters: The parameters of the API, maybe None

Responses: The responses of the API, maybe None

Scenario Examples: The scenario examples of the API

Updated Parameter Description: The updated parameter description of the API

Now begin your mission!
{api_doc}

Scenario Examples: {scenario}
Updated Parameter Description:

Table 11: Prompt for Revising Tool Parameters

You are an API documentation personnel and your task is to write descriptive

information for the response formats in the current API documentation.

I will provide you with basic information about the API, and in addition, I will

give you some real-world usage examples.

Based on the given usage examples, I need you to write descriptive information for

each of the response values. The specific requirements are as follows:

The response format is a dictionary nested within another dictionary. I would like

you to add a description field to each dictionary to describe what the current value
represents.

If you think the original information is accurate enough, then you don't need to

change it, just output the original content.

For example:
{icl_examples}

If you think the original description is accurate enough, just repeat the original
description.

Starting below, you must follow this format:

Operation: The operation of the API

Path: The path of the API

Responses: The responses of the API, maybe None

Scenario Examples: The scenario examples of the API

Updated Responses: The updated response schema of the API

Now begin your mission!
{api_doc}

Scenario Examples: {scenario}
Updated Responses:

Table 12: Prompt for Revising Tool Responses
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React with Original Documentation:

Query: give me a poster of the second season of Big Bang Theory
Thought 1:Search for the TV show "Big Bang Theory”

Action 1:GET /search/tv

Action Input 1:

{ "Operation”: "GET",

"url”: "https://api.themoviedb.org/3/search/tv",

"params": {

"query": "Big Bang Theory" }}
Observation 1: {..."id":1418,"origin_country”:["US"],"original_language”:"en",6"
original_name"”:"The Big Bang Theory","overview"”:"Physicists Leonard and Sheldon find

their nerd-centric social circle with pals Howard and Raj expanding when aspiring
actress Penny moves in next door."”...}
Thought 2:I have found "The Big Bang Theory"” TV show. Now, I need to get the details
of the second season to find the poster.
Action 2:GET /tv/1418/season/2
Action Input 2:

{ "Operation”: "GET",
"url": "https://api.themoviedb.org/3/tv/1418/season/2",}
Observation 2: Observation 2: {..."production_code”:"3T7351","runtime"”:22,"

season_number":2,"show_id":1418,"still_path":"/y9cFxQyFRBOewwVvkMl6SaH2om@. jpg","

vote_average":7.7,"vote_count":48,...}

Thought 3:I have found the details of the second season of "The Big Bang Theory"” and
the poster for the first episode is available. I will now provide the poster for
the second season of "The Big Bang Theory."

Action 3:Final Answer: ![The Bad Fish Paradigm]l(https://image.tmdb.org/t/p/original/

y9cFxQyFRBOewwVvkM16SaH2om@ . jpg)

React with Our Documentation:

Query: give me a poster of the second season of Big Bang Theory

Thought 1:Search for the TV show "Big Bang Theory" to get its ID.

Action 1:GET /search/tv?query=Big%2@0Bang%2@Theory

Action Input 1:

{"Operation”: "GET",

"url”": "https://api.themoviedb.org/3/search/tv",

"params"”: {

"query"”: "Big Bang Theory"}}
Observation 1: {..."id":1418,"origin_country”:["US"],"original_language”":"en",6"
original_name":"The Big Bang Theory","overview":"Physicists Leonard and Sheldon find

their nerd-centric social circle with pals Howard and Raj expanding when aspiring
actress Penny moves in next door."...}
Thought 2:I have found the ID for "The Big Bang Theory” TV show, which is 1418. Now,
I need to get the images for the second season of this show.
Action 2:GET /tv/1418/season/2/images
Action Input 2:Action Input 2:
{ "Operation”: "GET",
"url”: "https://api.themoviedb.org/3/tv/1418/season/2/images"”,}

Observation 2: {"id":3733,"posters”:[{"aspect_ratio”:0.666,"height"”:2233,"is0_639_1
":"en","file_path"”:"/2NBwUBZ4clwj6q09fBinfxiB@dR. jpg","vote_average":5.454 "
vote_count”:3,"width"”:1488},{"aspect_ratio”:0.666,"height":1426,"is0_639_1":"en" "
file_path”:"/tULsqpXMTZ85BdFjNR9ScxBSbec. jpg","vote_average”:5.322,"vote_count”:5,"
width":950},{"aspect_ratio”:0.667,"height":2268,"is0_639_1":"hu","file_path":"/
eFIj7bDVKRTssMMs67EkiLbZ009. jpg","vote_average”:5.312,"vote_count”:1,"width
":1512%}, ...}
Thought 3:I have found the posters for the second season of "The Big Bang Theory".
Here are some of the images:

1. ![Poster 1](https://image.tmdb.org/t/p/original/2NBwUBZ4clwj6q09fBinfxiB@dR. jpg)
2. ![Poster 2](https://image.tmdb.org/t/p/original/tULsqpXMTZ85BdFjNR9ScxBSbec. jpg)
3. ![Poster 3](https://image.tmdb.org/t/p/original/eFIj7bDVKRTssMMs67EkilLbZ0@09. jpg)
Final Answer: These are some of the posters for the second season of "The Big Bang
Theory".

Table 13: React with different documentation on RestBench-TMDB
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RestGPT with Original Documentation:

Query: Add the first song from my music library to the playback queue and enable
single song repeat mode

Planner: Get the first song from my music library

API Selector: GET /me/tracks

Caller: Operation: GET

Input: {
"url”: "https://api.spotify.com/v1/me/tracks",
"params"”: {
"limit": "1"
}Y
"description”: "Retrieve a list of the songs saved in the current Spotify user's
'Your Music' library."”,
"output_instructions”: "What is the name and id of the first track saved in the
user's library?"
}
Parser: Name: Whitney Houston - I Wanna Dance with Somebody (Who Loves Me)

ID: 2tUBqZG2AbRi7Q@BIrVrEj

Caller: Execution Result: Successfully called GET /me/tracks. The name of the first
track saved in the user's library is "Whitney Houston - I Wanna Dance with Somebody
(Who Loves Me)" and the ID is 2tUBqZG2AbRi7Q@BIrVrEj.

Planner: Add the track "Whitney Houston - I Wanna Dance with Somebody (Who Loves Me)
" (2tUBgZG2AbRi7Q@BIrVrEj) to the playback queue

API Selector: POST /me/player/queue to add the track "Whitney Houston - I Wanna
Dance with Somebody (Who Loves Me)" (2tUBqZG2AbRi7Q@BIrVrEj) to the playback queue
Caller: Operation: POST

Input: {
"url”: "https://api.spotify.com/vi/me/player/queue”,
"data": {
"uri”: "spotify:track:2tUBqZG2AbRi7Q@BIrVrEj"
}’
"description”: "Add an item to the end of the user's current playback queue.”,
"output_instructions”: "No specific output instructions provided.”
}

Parser: The URI of the track added to the queue is spotify:track:2

tUBqZG2AbRi7Q0@BIrVrEj

Caller: Execution Result: Successfully called POST /me/player/queue to add the track
"Whitney Houston - I Wanna Dance with Somebody (Who Loves Me)"” with the URI spotify
:track:2tUBqZG2AbRi7Q@BIrVrEj to the playback queue.

Planner: Enable single song repeat mode

API Selector: PUT /me/player/repeat with the parameter "repeat-track"”

Caller: Operation: PUT

Input: {
"url": "https://api.spotify.com/vi/me/player/repeat”,
"description”: "Set the repeat mode for the user's playback to repeat the

n

current track.

}

Parser: Error: Required parameter state missing.

Table 14: RestGPT with original documentation on RestBench-Spotify
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RestGPT with Our Documentation:

Query: Add the first song from my music library to the playback queue and enable
single song repeat mode

Planner: Get the first song from my music library

API Selector: GET /me/tracks

Caller: Operation: GET

Input: {
"url": "https://api.spotify.com/v1/me/tracks",
"params": {
lllimit": Il5ll
}?
"description”: "Retrieve the updated list of saved songs in the user's library
with a limit of 5.",
"output_instructions”: "Extract the names and ids of the saved songs.”
}

Parser: The name of the artist is Whitney Houston and the id is 6
XpaIBNiVzIetEPCWDVAFP

The name of the artist is Whitney Houston and the id is 6XpaIBNiVzIetEPCWDVAFP
The name of the artist is Lana Del Rey and the id is 00FQb4jTyendYWaN8pKo@wa

The name of the artist is Lana Del Rey and the id is 0Q0FQb4jTyendYWaN8pKowa

The name of the artist is Lana Del Rey and the id is 00FQb4jTyendYWaN8pKo@wa
Caller: Execution Result: Successfully called GET /me/tracks. The names and ids of
the saved songs are as follows:

1. Artist: Whitney Houston, ID: 6XpaIBNiVzIetEPCWDVAFP

2. Artist: Lana Del Rey, ID: 00FQb4jTyendYWaN8pKo@wa

Planner: Add the song by Whitney Houston (6XpaIBNiVzIetEPCWDVAFP) to the playback
queue

API Selector: POST /me/player/queue to add the song by Whitney Houston (6
XpaIBNiVzIetEPCWDVAFP) to the playback queue

Caller: Operation: POST

Input:
{
"url": "https://api.spotify.com/vi/me/player/queue”,
"data": {
"uri": "spotify:track:6XpaIBNiVzIetEPCWDVAFP"
} ’
"description”: "Adding a specific song to the playback queue."”,
"output_instructions”: "No specific output needed.”
}

Parser: The URI of the song added to the playback queue is spotify:track:6
XpaIBNiVzIetEPCWDVAFP

Caller: Execution Result: Successfully called POST /me/player/queue to add the song
by Whitney Houston (6XpaIBNiVzIetEPCWDVAFP) to the playback queue. The URI of the
song added to the playback queue is spotify:track:6XpaIBNiVzIetEPCWDVAFP.

Planner: Enable single song repeat mode

API Selector: PUT /me/player/repeat to enable single song repeat mode

Caller: Operation: PUT

Input: {
"url": "https://api.spotify.com/vi/me/player/repeat”,
"data": {
"state”: "track”
}?
"description”: "Set repeat mode for playback to single song repeat mode."
}

Parser: The player has been set to repeat mode.

Caller: Execution Result: Successfully called PUT /me/player/repeat to enable single
song repeat mode

Planner: Final Answer: I have added the first song from your music library to the
playback queue and enabled single song repeat mode.

Table 15: RestGPT with our documentation on RestBench-Spotify
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My family and I are planning a beer tasting trip to Italy and we need a
comprehensive list of beers available in different regions. Can you provide me with
that? Additionally, I would like to explore the local cuisine. Can you give me
recipes for Italian wedding soup? Lastly, I'm curious about the nutritional
information of milk. Can you fetch that for me?
I'm a food blogger and I'm looking for new recipe ideas. Can you provide me with
creative recipes for tacos? Also, fetch the details of the available chicken dishes
from KFC Chickens API.
"I'm a food blogger and I'm looking for unique and creative recipes to share with my
audience. Can you recommend some interesting chicken recipes using the Recipe_v4
API? Additionally, I would like to know the nutritional information for milk. Please
provide me with the energy, protein, carbohydrate, and fat content of milk.
I'm organizing a cocktail workshop for beginners and I want to teach them some easy
and delicious cocktail recipes. Can you suggest some cocktail recipes that use
ingredients like vodka, rum, and tequila? It would be great if you could also
provide some tips and tricks for making the perfect cocktails.

Table 16: Several examples of ToolBench-Food

You are an evaluator assessing the quality of a tool description. Your task is to
read the given description of the tool and provide a score based on the following
criteria:

1. Information Completeness: How comprehensive is the description? Does it cover all
essential aspects of the tool, including its main features, benefits, and use cases

2

2. Text Length: How concise is the description? Is it to the point without
unnecessary details or redundancy?

Your score should be a number between 1 and 3, where 1 is the lowest and 3 is the
highest. Please provide a brief explanation for your score.

The score 1 means that the description is incomplete, lacks essential information,

or is too verbose.

The score 2 means that the description is somewhat complete but could be improved in
terms of information coverage or text length.

The score 3 means that the description is highly informative, well-structured, and
concise.

Please evaluate the description based on these criteria and provide a score for the
given tool description.

Tool: {tool}
Description: {description}
Score:

Table 17: Prompt for evaluating tool descriptions
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You are an evaluator tasked with assessing the quality of the parameter section in a
tool document. Your goal is to read the provided section and assign a score based
on the following criteria:

1. Completeness and Accuracy: How comprehensive and accurate is the description of
the parameters? Does it cover all necessary parameters, their types, ranges, and any
constraints accurately?

2. Clarity and Understandability: How clear and understandable is the description of
the parameters? Can readers easily comprehend the purpose and usage of each

parameter?

Your score should be a number between 1 and 3, where 1 is the lowest and 3 is the
highest. Please provide a brief explanation for your score.

The score 1 means that the parameter section is incomplete, inaccurate, or difficult
to understand.

The score 2 means that the parameter section is somewhat complete and clear but

could be improved in terms of accuracy or clarity.

The score 3 means that the parameter section is highly informative, accurate, and

easy to understand.

Please evaluate the parameter section based on these criteria and provide a score
for the given tool document.

Tool: {tool}
Parameter Section: {parameters}
Score:

Table 18: Prompt for evaluating tool parameters

You are an evaluator tasked with assessing the quality of the response section in a
document. Your objective is to read the provided section and assign a score based on
the following criteria:

1. Structural Accuracy: How well-structured is the response section? Does it follow
a logical sequence and provide a clear overview of the tool's response mechanism?
2. Comprehensive Parameter Explanations: How comprehensive and accurate are the
explanations of the parameters in the response section? Do they cover all necessary
details, including how each parameter affects the response and any dependencies
between parameters?

Your score should be a number between 1 and 3, where 1 is the lowest and 3 is the
highest. Please provide a brief explanation for your score.

The score 1 means that the response section is poorly structured, lacks clarity, or
provides incomplete parameter explanations.

The score 2 means that the response section is somewhat structured and informative
but could be improved in terms of clarity or completeness.

The score 3 means that the response section is well-structured, clear, and provides
comprehensive parameter explanations.

Please evaluate the response section based on these criteria and provide a score for
the given tool document.

Tool: {tool}
Response Section: {response}
Score:

Table 19: Prompt for evaluating tool responses
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