
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PASS: Predictive Auto-Scaling System for Large-scale Enterprise
Web Applications

ABSTRACT
We confront two challenges in themanagement of a vast and diverse
array of online web applications deployed on enterprise-grade auto-
scaling infrastructure, primarily focused on ensuring Quality of
Service (QoS) for large-scale applications and optimizing resource
costs. Firstly, reacting to increased load with a response-based
approach can temporarily degrade QoS because many web applica-
tions need a few minutes to warm up. Therefore, precise workload
prediction is critical for predictive scaling. However, our analysis
of real-world applications underscores the substantial challenges
arising from the limited precision and robustness of existing sin-
gle prediction algorithms in the context of predictive auto-scaling.
Secondly, guaranteeing the QoS of online applications within a cost-
effective structure is crucial, as it is inherently linked to corporate
profitability. Nevertheless, our study shows that mainstream auto-
scaling methods exhibit various limitations, either being unsuitable
for online environments or inadequately ensuring QoS.

To address these issues, we introduce PASS, a Predictive Auto-
Scaling System tailored for large-scale onlineweb applications in en-
terprise settings. Our highly robust and accurate prediction frame-
work dynamically integrates and calibrates appropriate prediction
algorithms based on the unique characteristics of each application
to effectively manage workload diversity. We further establish a
performance model derived from online historical logs, enhancing
auto-scaling to ensure diverse QoS without adverse impacts on
online applications. Additionally, we implement a reactive strategy
grounded in queuing theory to promptly address QoS violations
resulting from inaccurate predictions or unexpected events. Across
a wide spectrum of applications and real-world workloads, PASS
outperforms state-of-the-art methods, achieving higher workload
prediction accuracy and a superior QoS guarantee rate with less
resource cost.

KEYWORDS
auto-scaling, workload prediction, quality of service, performance
model, cloud computing

1 INTRODUCTION
In recent years, the rapid growth of cloud computing has prompted
an increasing number of enterprises to host their web applications
on public clouds, such as Amazon EC2 [1] and Windows Azure [2],
or on private cloudsmanaged by frameworks like VMware Cloud [4],
Mesos [19], and Kubernetes [8]. Auto-scaling has become a key facil-
itator for efficiently allocating and releasing resources in response
to workload fluctuations[7], leading to substantial reductions in
operational and management costs [37, 38].

We conducted a comprehensive assessment and analysis of auto-
scaling within our large-scale internet enterprise’s private cloud
platform. Our study encompassed over 200 services from eight busi-
ness departments within the enterprise. The findings demonstrated
that the methods employed within the enterprise and some other
state-of-the-art (SOTA) techniques either inadequately ensured

Quality of Service (QoS) or led to excessive resource redundancy.
This stems from the following two challenges:

The first challenge revolves around the necessity for pre-
cise workload forecasting technology. As enterprises cut costs
and boost efficiency, many departments refrain from keeping ex-
cess resources to handle peak workloads. However, this reliance
on dynamic resource scaling presents challenges. Reactively scal-
ing to ensure QoS during workload surges is complicated by the
warm-up time required for starting program instances. This de-
lay can temporarily reduce QoS, highlighting the importance of
accurate load prediction technology for maintaining high-quality
service. Furthermore, we randomly collected Query Per Second
(QPS) time series data from 200+ enterprise web services and found
that existing SOTA prediction algorithms either lack precision or
robustness, making them incapable of capturing critical traffic mu-
tation features1 in a timely manner (see Section 2.1). This results
in inadequate predictive performance, rendering them unable to
serve downstream auto-scaling methods to guarantee QoS.

The second challenge is lack of an accurate and cost-effective
performance model to guarantee QoS for online applications.
Performance models are used to estimate required resources based
on levels of workload. Ideally, an accurate model can be constructed
by sampling in an offline environment. However, the large scale
and extensive range of enterprise applications make it expensive
and challenging to replicate an offline environment identical to
the online setup. Furthermore, the direct link between the ser-
vice quality of online applications and corporate profits makes it
a priority for application owners. As a consequence, application
profiling [14, 36, 43] and AI-driven auto-scaling methods like rein-
forcement learning [12, 39] are not universally applicable due to
their potential adverse impact on the online applications. More-
over, the auto-scaling methods commonly employed by application
owners, such as threshold-based rules [28], target tracking [3], and
queuing theory [24], often struggle to effectively guarantee the
QoS of a wide range of web applications due to their simple or
inaccurate performance model (see Section 2.2).

In this paper, we proposePASS, aPredictiveAuto-Scaling System
designed for large-scale online web applications in enterprise en-
vironments. To address the first challenge, we have developed
a predictive algorithm specialized in forecasting QPS time series
for enterprise-level applications. This algorithm integrates various
sub-algorithms customized to the specific features of an applica-
tion’s QPS series, thereby enhancing prediction accuracy.To tackle
the second challenge, we have constructed a performance model
based on historical online logs to guarantee diverse QoS for appli-
cations without compromising online performance. PASS utilizes
the predicted QPS to access the performance model and determine
the number of instances, ensuring that scaling out occurs prior to
the warm-up time. Furthermore, the system continuously monitors
1the mutation features are especially prevalent and critical in enterprise-level applica-
tions. This is due to a substantial influx of QPS during morning, noon, and evening
peak hours, leading to a considerable and undeniable impact.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Figure 1: Comparing the accuracy and robustness of various prediction algorithms.
the QoS metrics of the application in real time. Upon detecting a
violation, PASS promptly revises the prediction QPS and scales out
to the appropriate number of instances, with the aim of minimizing
the duration of the QoS violation. Employing ELPA, PASS effec-
tively lowers average resource consumption by 8.91% compared to
the SOTA method while achieving a notable improvement in QoS
assurance, with a rate increase of up to 22.64%.

Wemake four primary contributions in this paper. Firstly, we con-
ducted real-system testing of mainstream prediction algorithms2
and auto-scaling methods for enterprise-level services. Further-
more, we conducted a thorough evaluation of existing methods,
highlighting the limitations that were previously overlooked in the
context of large-scale web applications auto-scaling (see Section 2).
Secondly, we’ve developed an Ensemble Learning-based Prediction
Algorithm named ELPA. This algorithm leverages a specialized
combination of sub-algorithms tailored to the time series QPS char-
acteristics of various enterprise-level applications, resulting in im-
proved prediction accuracy (see Section 3.1). Thirdly, we introduced
PASS, a predictive auto-scaling system for large-scale web appli-
cations. PASS prioritizes QoS while remaining cost-effective, and
doesn’t need profiling or negatively impact the applications (see
Section 3.2 and 3.3). Finally, we evaluated the performance of ELPA
and PASS using a diverse range of enterprise web applications,
demonstrating that our methods outperform SOTA approaches in
the majority of cases (see Section 4).

The rest of the paper is organized as follows. Section 2 evalu-
ates mainstream prediction algorithms and elastic scaling meth-
ods in our enterprise system scenarios and provides an overview
of the challenges associated with auto-scaling web applications
in enterprise environments. Section 3 outlines our auto-scaling
framework’s process, as well as the design of the prediction and
performance models. Section 4 presents the experimental results
obtained from our enterprise systems. Section 5 discusses related
work, and Section 6 serves as the conclusion of the paper.

2 REAL-SYSTEM INVESTIGATION
We first evaluate and analyze the mainstream prediction algorithm
(Section 2.1) and auto-scaling method (Section 2.2) on real systems
and applications. And then in Section 2.3, we summarize the chal-
lenges of large-scale web application auto-scaling in our enterprise.

2.1 Prediction Algorithm Analysis
we employed a stratified sampling method across 10 thousand ser-
vices operating in real business scenarios across various business
2We analyzed the outcomes of the prediction algorithms across 200+ services spanning
8 different business departments within the enterprise.

groups within our company. This allowed us to apply the Pearson
approach [17] (see Appendix A.1 for details) to detect periodicity
within the data. Our findings indicate that 92.80% of the applications
exhibit strong periodic patterns, 4.55% display weaker periodicity,
and only 2.65% show no discernible periodicity.

Observation 1: For the majority of applications, the real-
world load can be reliably forecasted using models. This is
primarily because the time-series load data for most busi-
nesses remains consistent and predictable.

By conducting experimental comparisons, we rigorously evalu-
ated the performance of a range of prediction algorithms commonly
employed in both industry and academia, spanning various appli-
cation types. We subjected 225 real-world applications to testing
using their respective time-series data3. Our observations reveal
that the most effective prediction algorithm depends on the specific
characteristics of business traffic, emphasizing the absence of a uni-
versal solution. As depicted in Figure 1(a) and (b), we illustrate the
predictive performance of seasonal index and patchTST using the
traffic time-series data from three representative applications. In
Figure 1(a), patchTST significantly outperforms the seasonal index
for application 1, while in Figure 1(b), the seasonal index proves
more effective than patchTST for application 2. These results un-
derscore the variability in algorithm performance, highlighting the
need to select the most suitable algorithm for specific time-series
traffic characteristics.

Observation 2: Owing to the inherent constraints of pre-
diction algorithms, there is no single algorithm capable of
consistently providing optimal predictive performance for
all categories of time-series data characteristics. Diverse pre-
diction algorithms prove more effective for specific types of
business traffic forecasts.

Prediction algorithms are commonly categorized into two tech-
nical approaches: online prediction and offline prediction. Online
prediction models utilize real-time traffic (time series) data to fore-
cast values in the near future. This continuous intake of the latest
time-series data typically leads to superior predictive performance4.
Conversely, offline prediction models can directly predict future
traffic values without real-time data input, often relying on histori-
cal data. However, offline models, which lack the latest data, may
not achieve the same level of predictive accuracy.

Offline prediction has its merits. In scenarios where rapid re-
sponse is critical, timely and precise (robustness) predictions are

3Specific details regarding the evaluated algorithms can be found in Section 4.1.
4This process is akin to a sliding window, with the latest real-time traffic data continu-
ously entering the model, producing sequential predictions for future traffic values.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

QoS Guarantee Rate Resource Costavg RT TP999 RT
Threshold based rules 62.16% 54.05% 85

Target tracking 74.29% 68.57% 112
Queuing theory 88.57% 80% 92

Table 1: QoS guarantee rate and resource cost of three com-
mon auto-scaling methods.
more critical than accuracy. For example, in cases of periodic "mu-
tation features," online models may exhibit prediction lags (high-
lighted in a black circle in Figure 1(c)). This lag effect will persist for
a while, which we refer to as the "dirty interval". On the contrary, of-
fline models effectively capture this information, facilitating timely
auto-scaling actions (see Figure 1(d)). However, offline models can
encounter issues like "amplitude deviation," where the shape of the
feature is accurately represented but there’s a discrepancy in its
absolute value (see Figure 1(d)). Note that the "mutation features"
are especially prevalent in enterprise-level applications. This is due
to a substantial influx of traffic during morning, noon, and evening
peak hours, leading to a considerable and undeniable impact.

Observation 3: Online methods offer superior average ac-
curacy and stable predictive performance but struggle with
"mutation features." In contrast, offline approaches can cap-
ture "mutation features" but suffer from significant ampli-
tude deviations.

2.2 Auto-scaling Methods Analysis
The auto-scaling methods of web applications can be briefly divided
into the following categories [37, 38]:

1) Threshold based rules [1, 18, 21]. Auto-scaling is performed
based on a series of rules containing thresholds. Taking CPU re-
source utilization as an example, when the resource utilization ex-
ceeds the upper threshold, resources are increased, and conversely,
resources are decreased when the utilization falls below the lower
threshold. Threshold parameters are generally set empirically by
the application owner.

2) Target tracking [3]. A control theory [33] method that main-
tains a certain metric (such as CPU resource utilization) within a
specific range. When the actual resource utilization is not within
the set range, the number of instances that need to be scaled is
automatically calculated based on the current status. For example,
if the current average CPU resource utilization of 10 instances is
80% and the target value is 50%, then the instances need to be scaled
to 80% ∗ 10/50% = 16 instances.

3) Queuing theory [5, 20]. It estimates performance metrics and
the waiting time of requests based on queuing theory models. The
common𝑀/𝑀/𝑠 model indicates that the time for request arrival
and processing is exponentially distributed, and a total of 𝑠 servers
process it in parallel. AHPA [49] also uses Queuing theory as a
performance model.

4) Reinforcement learning [13, 42]. RL is awidely usedmethod,
where the auto-scaler acts as an agent and interacts with the envi-
ronment, receiving reward feedback after each action. It establishes
a mapping model between states and actions through trial and
error [12, 39].

The methods used by most application owners are simple or
direct, including: threshold based rules, target tracking, and queuing
theory. RL and other AI related methods are not in the set because
they may affect the performance of online applications. In order to

verify the QoS guarantee degree of the commonly used methods,
we selected a representative back-end service that provides data
support and tested the QoS guarantee rate under two kinds of QoS.
Since our main purpose is to verify the degree of QoS guarantee,
we used a ladder-increasing workload. Table 1 shows the results of
QoS guarantee rate and resource cost. The QoS guarantee rate is
calculated by dividing the duration of QoS guarantee by the total
time length. The resource cost is determined by the integral of the
number of instances over time(minute).

Observation 4: The auto-scaling methods widely used by
web application owners do not effectively guarantee QoS,
especially when the QoS requirement includes tail latency.
Compared with QoS of average Response Time (RT), the QoS guar-
antee rates of the three methods are significantly reduced when the
QoS requirement is TP999 tail latency. However, most web applica-
tions require tail latency QoS, which makes widely used methods
even less effective, either violating QoS often or wasting resource.

Observation 5: The performance models of these methods
are not accurate enough. The performance model behind the
threshold based rules and target tracking is actually "QoS violations
will not occur when the workload (QPS) is within a certain range".
And the parameters of this range are determined based on manual
experience. The results in Table 1 prove that it is not effective.
In addition, the queuing theory relies too much on theoretical
assumptions and is not practical enough, causing its estimated RT
to be lower than the true value (hence QoS violations). Note that
the workload is known in advance in this experiment, so the QoS
violations are only due to an inaccurate performance model.

2.3 Challenge
Large-scale web applications auto-scaling faces the following chal-
lenges.

Accurately predict the workload of all web applications.
As discussed in Section 2.1, a significant portion of web applica-
tions exhibit a robust period pattern in their QPS (time series).
Consequently, the proactive scaling approach based on prediction
holds great promise. Nevertheless, the multitude of diverse and
complex time-series QPS characteristics generated by real-world
applications implies that no single SOTA prediction model will
consistently outperform the others, as indicated in Observations 2
and 3 in Section 2.1.

Construct an effective performance model without ad-
verse impact on online applications. Due to the large number of
applications, it is very expensive to build a complete offline environ-
ment for profiling. The performance models of common methods
are based on manual experience or statistical mathematics, which
cannot effectively guarantee QoS (Section 2.2).

The QoS requirements of web applications are diverse.
Different applications have different QoS requirements, such as
average latency and various percentile tail latencies (TP99, TP999,
etc.). Moreover, some applications require a combination of multiple
metrics, which increases the difficulty of guaranteeing QoS.

3 DESIGN
There are two keys to achieving efficient auto-scaling (guaranteeing
QoS and reducing resource cost) in a large-scale enterprise environ-
ment. One is robust, reliable and accurate workload prediction,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: Overview of PASS. The black lines in the upper half figure represent the offline steps. The red lines in the lower half
figure represent the online process.

which can adapt to various applications. The second is an effective
performance model in the online production environment to
efficiently ensure QoS with appropriate resources.

The overview of PASS is shown in Figure 2. PASS has an en-
semble workload prediction model, named ELPA, for accurately
predicting the QPS in real-time (Section 3.1). Then PASS queries
the performance model, which is constructed based on historical
logs, and predictively scales to the desired number of instances
without violating QoS (Section 3.2). In addition, PASS continuously
monitors QoS metrics. If a violation is detected resulting from in-
accurate workload prediction, PASS quickly revises the prediction
result and scales out to the appropriate number of instances to
promptly address the violation (Section 3.3).

3.1 Workload Prediction
This section introduces an Ensemble Learning-based Prediction
Algorithm framework named ELPA, which is designed to address
the challenges identified with existing prediction algorithms in
Section 2.1. The structure of the prediction model is illustrated in
Figure 3. For each category of real-time traffic, a corresponding
set of online and offline models is employed to provide predictive
services. Initially, from a diverse array of online models, we select
the one that offers the most accurate prediction for the current
time series data distribution. Subsequently, for predicting "muta-
tion features," we opt for the offline prediction model, which excels
in learning these features associated with time series traffic. This
offline model effectively prediction the "shape" of these "mutation
features." Additionally, we have addressed the issue of "traffic ampli-
tude deviation" that can arise when using offline prediction in the
context of "mutation features," further enhancing predictive perfor-
mance. It’s worth noting that while "mutation features" constitute
a smaller fraction of actual time series data, precise prediction of
these features is crucial for maintaining QoS in a production setting.
Businesses often grapple with effectively managing these ’mutation
features,’ which can lead to significant performance degradation or
cost implications.

In the following, we will delve into the specifics of online/offline
model selection and amplitude calibration within the framework.

3.1.1 Selection of the Prediction Model in ELPA. We employ spe-
cialized prediction models tailored to each type of time-series traffic
data generated by real businesses to ensure optimal predictive per-
formance. The selection process between online and offline models
involves evaluating the predictive results of several consecutive
cycles to determine which predictive algorithm offers the best per-
formance for the current time-series traffic characteristics. To as-
sess these consecutive cycle outcomes, we employ an exponential
weighted average, giving greater weight to predictions closer to

Figure 3: Integration framework of Predictionmodels (ELPA).

the present moment and gradually decreasing weight for older
predictions. We have established an average cumulative index of
predictive performance for the evaluation of the current predictive
algorithm, as depicted in Equation (1):

𝑉𝑜𝑛 =

∑𝑖=𝑡−1
𝑖=0 𝑣𝑇−1,𝑖

𝑡
(1)

𝑡 stands for the count of time points within a single period.
𝑣𝑇−1,𝑖 symbolizes the cumulative metric of single-point predictive
performance, used to depict the aggregate value of absolute errors
at a specific time point 𝑖 within each period ranging from (0, T-
1) before the present period 𝑇 (see Equation (2)). As a result, the
mean cumulative metric of predictive performance 𝑉 represents
the average of the weighted accumulated absolute errors of all
predictive results within the period, serving as an indicator of the
predictive efficacy of the algorithm.

𝑣𝑇−1,𝑖 = 𝛽 ∗ 𝑣𝑇−2,𝑖 + (1 − 𝛽) ∗𝐴𝐵𝐸𝑇−1,𝑖 (2)
In Equation (2), we have applied the concept of exponential

weighted moving average, where the highest weight is assigned to
the predictive result closest to the current time point. This approach
is founded on our assumption that the traffic features nearest to
the current time point most accurately represent the current traffic
conditions. 𝛽 denotes the exponential weight. 𝐴𝐵𝐸𝑇−1,𝑖 signifies
the absolute error (absolute error) of the predictive outcome corre-
sponding to a specific predictive algorithm within the current cycle
of 𝑇 − 1 at time point 𝑖 . Here, 𝐴𝐵𝐸𝑇−1,𝑖 = |𝑦𝑇−1,𝑖 − 𝑦𝑇−1,𝑖 |. 𝑦𝑇−1,𝑖
represents the actual value of traffic at time point 𝑖 within the cycle
of 𝑇 − 1. 𝑦𝑇−1,𝑖 denotes the predicted traffic value at time point 𝑖
within the cycle of 𝑇 − 1.

Note that the selection process for both online and offline predic-
tive models relies on the previously mentioned average cumulative

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

predictive performance metrics (𝑉𝑜𝑛 and𝑉𝑜 𝑓 𝑓). The selected online
model will handle the bulk of predictive tasks, while the operational
details of the offline model will be detailed in Section 3.1.2.

3.1.2 The operational timing of the offline model in ELPA. As we
discovered in Section 2.1, there are instances when the predictive
performance of the online model falls short compared to the offline
model, particularly in cases of traffic exhibiting "mutant features".
This is primarily due to the offline model’s predictive results ex-
hibiting mutation features similar to the actual traffic, which greatly
enhances the potential for improving predictive performance. Con-
sequently, it is crucial to devise a mechanism for selecting the
appropriate timing for the online/offline model prediction service
for the current feature traffic, i.e., determining how to identify these
"mutant features".

Specifically, to articulate the "mutant feature", we define the slope
of the traffic value between two consecutive points in the time-
series traffic data, as depicted in Equation (3). Herein, 𝑦𝑖 represents
the traffic value at the ith moment, and 𝑥𝑖 signifies the timestamp
corresponding to the ith moment.

𝐾(𝑖−1,𝑖) = |𝑦𝑖 − 𝑦𝑖−1
𝑥𝑖 − 𝑥𝑖−1

| (3)

When 𝐾(𝑖−1,𝑖) ⩾ 𝜖 , we characterize the traffic feature at this
point as a "mutant feature", and designate moment 𝑖 as the occur-
rence of the "mutant feature". On the contrary, we identify it as a
more stable traffic feature. In this context, 𝜖 is the hyperparameter
determining whether it’s a "mutant feature". When a specific mo-
ment 𝑖 is classified as a "mutant feature", we employ an offline model
to deliver prediction services within the "dirty interval" [𝑖, 𝑖 + 𝑗]
(for the definition of "dirty interval", please refer to Section 2.1).

3.1.3 Amplitude calibration of offlinemodel in ELPA. The predictive
capability of the offline model is totally dependent on the time
series data from several previous periods. If the amplitude of the
current period undergoes a significant change compared to the
amplitudes of past periods, it can result in substantial prediction
deviations. Therefore, an amplitude calibration mechanism needs to
be designed for the offline model, taking into account the real-time
traffic of the day.

Specifically, when the "mutant feature" occurs (at moment 𝑖), we
will determine the calibration multiple 𝐷𝑖 𝑓 𝑓𝑖 for the actual traffic
value and the offline predicted traffic value at the moment of the
"mutant feature" using Equation (4).

𝐷𝑖 𝑓 𝑓𝑖 =

∑𝑧=𝑎
𝑧=1 𝑇𝐹𝑖−𝑧/𝑃𝐹𝑖−𝑧

𝑎
(4)

In this context, 𝑇𝐹𝑖 represents the actual traffic value at the
moment 𝑖 , while 𝑃𝐹𝑖 signifies the offline predicted traffic value at
the same moment. The calculation of the difference multiple should
be determined based on the average difference multiple of all points
within the time interval [𝑖−𝑎, 𝑖). 𝑎 is a hyperparameter, and its value
varies depending on the distinct traffic features. a represents the
count of points number within the interval [𝑖 − 𝑎, 𝑖). Therefore, the
offline predicted traffic value at the moment 𝑖 will be recalibrated
to 𝑃𝐹𝐶𝑖 = 𝐷𝑖 𝑓 𝑓𝑖 ∗ 𝑃𝐹𝑖 .

Note that the amplitude calibration mechanism within the "dirty
interval" [𝑖, 𝑖 + 𝑗] aligns with the calibration mechanism at moment

𝑖 . In other words, if the offline prediction value at the moment 𝑖 + 1
undergoes calibration, the calibration multiple at this point would
be𝐷𝑖 𝑓 𝑓𝑖+1. Subsequently, the traffic value post-calibration becomes
𝑃𝐹𝐶𝑖+1.

3.2 Log-based Performance Model

Algorithm 1: Performance Model Construction
Input: logs, QoS
Output: ins_qps_table

1 for each (ins_cnt,data) in logs.groupby("ins_cnt") do
2 qps_count, violation_count = {}, {}
3 for each row in data.itertuples() do
4 qps = row["qps"] // cap
5 qps_count[qps] += 1
6 if data violates QoS then
7 violation_count[qps] += 1
8 end
9 end

10 Function QoSGuaranteeRate(qps):
11 total_count, total_violation = 0, 0
12 for each (k,v) in qps_count.items() in ascending order do
13 if k > qps then
14 break
15 end
16 total_count += v
17 total_violation += violation_count[k]
18 end
19 return (total_count-total_violation)/total_count
20 lt = sorted(qps_count, key = lambda k:(QoSGuaranteeRate(k)

> 𝛿 , k), reverse=True)
21 ins_qps_table[ins_cnt] = lt[0] * cap
22 end

Model construction. Algorithm 1 illustrates how to construct a
performancemodel based on historical logs without offline profiling.
The input logs from the monitoring system include information
about QPS, the number of instances, and QoS metrics. The input
QoS is application-related, and the performance model needs to
be re-established when QoS changes. We first aggregate the input
logs by the number of instances and traverse all records (line 1-9).
Line 4 aggregates QPS by the granularity of "cap" (such as one-
thousandth of the maximum QPS) to reduce the number of data
(QPS) and algorithm overhead. Lines 5-8 count the occurrence times
and the number of QoS violation times. Given some records may
be inaccurate resulting from system failures, when we evaluate the
guarantee rate of a certain QPS, we not only calculate the current
QPS records but also comprehensively take into account all lower
QPS records(line 10-19). The sorting rule of line 20 is to prioritize
the QoS guarantee rate greater than a given threshold 𝛿 , and then
sort in descending order by QPS. 𝛿 can be adjusted according to the
needs of the application owners (default is 0.99), which measures
the tolerance to QoS violations. The closer 𝛿 is to 1, the lower
the tolerance. Finally, we assign the first QPS after sorting as the
maximum traffic that the current number of instances can handle
(line 21).

Process inaccurate entries. Performance model tables directly
constructed from monitoring logs may be inaccurate. When the

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

auto-scaling parameters set by the application are unreasonable
(such as a large scale-out step or excessive resource redundancy),
there may be no monitoring logs for certain instance numbers,
or the count may be extremely small. This can lead to missing or
inaccurate entries in the initially built table. To solve this, we first
ensure that the original table data maintains a non-strict monotonic
increase, with empty or lower QPS being replaced by the previous
higher QPS. Then, for sections where the number of instances
increases but the QPS remains unchanged, we calculate the slope
based on the adjacent QPS and update them. For example, if the
initialized performance model mapping is {5 : 30, 7 : 20, 8 : 60},
after using the QPS of instance 5 to replace instance 6 and 7, it
becomes {5 : 30, 6 : 30, 7 : 30, 8 : 60}. Then, based on the QPS
difference between instance 5 and 8, we update the QPS of instance
6 and 7, resulting in {5 : 30, 6 : 40, 7 : 50, 8 : 60}. In addition, the
performance model is periodically reconstructed using the latest
monitoring logs during the low-peak period every night to maintain
accuracy.

3.3 Hybrid Auto-scaling

Algorithm 2: Hybrid Auto-scaling
Input: ins_qps_table, QoS

1 while 1 do
2 sleep 1 min // wait new monitor data
3 cur_qps,cur_slo = query_monitor_system()
4 predicted_qps = get_predicted_qps()
5 if cur_slo violates QoS then

// reactive scaling
6 revised_qps = QT_model(cur_ins_num,cur_slo)
7 qps = max(cur_qps,predicted_qps,revised_qps)
8 scale2ins_num(max(search(qps,ins_qps_table),cur_ins_num+1))
9 disable scaling in for a while

10 end
11 else

// proactive scaling
12 qps = max(cur_qps,predicted_qps)
13 scale2ins_num(search(qps,ins_qps_table))
14 end
15 end

Not only predictive scaling, PASS also has a reactive strategy
grounded in queuing theory to deal with the QoS violations caused
by inaccurate workload prediction or sudden load increases in hot
events. Our hybrid auto-scaling algorithm is shown in Algorithm
2. PASS monitors the current QPS and Service Level Objective
(SLO) of the application and the latest predicted QPS in real time
(line 3-4). If a QoS violation is detected, PASS revises the predicted
QPS based on the MMs queuing theory model and re-query the
performance model to quickly scale out to an appropriate number
of instances (lines 6-8). Specifically, the queuing theory model is
shown in Equation 5:

𝑟𝑒𝑣𝑖𝑠𝑒𝑑_𝑞𝑝𝑠 (𝑀/𝑀/𝑠) = 𝑠 ∗ 𝑢 + ln(1 − 𝑝)/𝑡 (5)
where 𝑠 represents the current number of instances, 𝑢 stands

for the bottleneck QPS per instance, 𝑝 denotes the percentile of
latency, and 𝑡 refers to the tail latency at the 𝑝 percentile (see the

Appendix A.2 for the derivation process, function "search" and
"scale2ins_num"). The reason for using queuing theory to estimate
QPS instead of latency is that the latency derived from queuing
theory tends to be lower than the actual value (as evidenced by the
low QoS guarantee rate of queuing theory in Section 2.2), hence the
QPS derived from actual latency would be higher than the actual
value. We scale out based on the higher QPS to quickly respond to
QoS violations and minimize losses. The experiments in Section
4.3 show that this part of resource redundancy does not lead to
a lot of waste. line 9 disables scaling in for a period of time in
order to prevent newly expanded instances from being scaled in
because of system jitter. If no QoS violation is found, PASS performs
proactive scaling according to the monitored QPS, predicted QPS,
and performance model table (lines 12-13).

4 EVALUATION
We implemented PASS with Python (about 3 KLOC) and conducted
experiments on our private container platform.

4.1 Experiment Setup
Applications and workloads. We randomly selected 225 web-
related applications from various business lines of our enterprise to
verify the accuracy of the prediction model. The historical QPS data
of these applications is obtained from the unified online monitoring
platform within our enterprise. The data are categorized based on
their prediction difficulty into three distinct levels. Among them,
164 are defined as easy, 48 are defined as medium difficulty, and 13
are defined as hard (see the Appendix A.1 for grading standards).
We also selected several representative applications for end-to-end
evaluation. These applications are back-end services that provide
C-side user basic attributes, user behavior query, search and chat
functions. We recorded online request traffic and played them back
in the offline environment to restore the real online environment.
In order to reduce time and resource costs, we sliced the recorded
traffic and ignored long-term stable low-peak loads that cannot
trigger auto-scaling.

Comparison baselines. We compared various types of predic-
tion algorithms and auto-scaling methods. Prediction algorithms
include: offline algorithm (Seasonal Index [9], Prophet [41]) and
online algorithm (LSTNet [25], PatchTST [32], and TIDE [11]). Note
that the online algorithms we have assessed are designed to predict
the value at the third time point from the present moment, i.e., hori-
zon equals 3. This is sufficient to meet the demands of predictive
scaling. As for offline prediction algorithms, they are capable of
predicting time series data for an entire future period in a single
operation. Auto-scaling methods include: target tracking [3] and
AHPA [49]. Since target tracking can usually scale to the target
range faster than the threshold-based rules with the same parame-
ters (Section 2.2 also shows that the performance of target tracking
is better), we only compared the target tracking among the com-
monly used methods. AHPA, which is a SOTA work from Alibaba,
has better performance than HPA [31], so we chose it as another
comparison object. AHPA is implemented based on the unofficial
implementation of RobustPeriod 5 [45] and RobustSTL6 [44] and

5https://github.com/ariaghora/robust-period
6https://github.com/LeeDoYup/RobustSTL

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Method Seasonal_index [9] Prophet [41] LSTNet [25] PatchTST [32] TIDE [11] ELPA
Metrics RRSE CORR RRSE CORR RRSE CORR RRSE CORR RRSE CORR RRSE CORR

Metrics_avg 0.1359 0.9934 0.3163 0.9509 0.0801 0.9968 0.0726 0.9973 0.1807 0.9812 0.0651 0.9985Datasets
(easy) Winner (rate) 0% 0% 0% 0% 3.04% 1.83% 3.66% 2.44% 0.61% 0.61% 92.68% 95.12%

Metrics_avg 0.3418 0.9588 0.4418 0.8936 0.1853 0.9704 0.1576 0.9826 0.3089 0.9489 0.1311 0.9873Datasets
(medium) Winner (rate) 0% 0% 0% 0% 2.08% 2.08% 6.25% 4.17 0% 0% 91.67% 93.75%

Metrics_avg 0.6009 0.8514 0.6063 0.7996 0.2848 0.9147 0.2452 0.9495 0.4527 0.8788 0.1903 0.9571Datasets
(hard) Winner (rate) 0% 0% 0% 0% 7.69% 0% 0% 7.69% 0% 0% 92.3% 92.3%

Table 2: This is an accuracy summary of SOTA methods on various datasets, divided into three prediction difficulty levels.
Each row and column compare the results of all methods at a specific level’s datasets and for a specific metric, respectively.
Boldface highlights the best result per metric. 𝑀𝑒𝑡𝑟𝑖𝑐𝑠_𝑎𝑣𝑔 represents the average prediction outcomes at current difficulty
levels’ datasets, while𝑊𝑖𝑛𝑛𝑒𝑟 shows the proportion where a method outperforms others in accuracy, evaluated per dataset type.

Figure 4: Exhibit of prediction instantiation for the online model, offline model (inclusive of amplitude calibration), and ELPA.

the description of the paper. The other algorithms are the official
open-source implementation.

4.2 Evaluation of the Ensemble Learning-based
Prediction Algorithm (ELPA)

In this section, we conduct an evaluation of ELPA, alongside five
other widely employed prediction algorithms, as detailed in Sec-
tion 4.1. These methodologies find practical application in time
series data forecasting within prominent cloud service providers.
For instance, Prophet has been adopted within Facebook’s forecast-
ing contexts [41], underscoring their relevance in enterprise-level
scenarios. Moreover, the ELPA framework exhibits flexibility in
integrating SOTA prediction algorithms, thereby enhancing their
predictive capabilities without being limited to the algorithms men-
tioned earlier7. Subsequently, our assessment will center on the
accuracy of these prediction algorithms (see Section 4.2.1) and their
robustness (see Section 4.2.2).

4.2.1 Overall evaluation of ELPA’s accuracy. Table 2 presents the
comparative prediction accuracy8 performance of various predic-
tion algorithms. It is evident that the ELPA framework outperforms
individual prediction algorithms across most metrics. This superior
performance can be attributed to ELPA’s implementation of a set of
optimized rules for selecting the most suitable online/offline com-
bination and employing amplitude calibration to predict specific
time series data.

However, it is worth noting that in specific datasets, certain
online models exhibit superior performance. For instance, in the
’easy’ datasets, LSTNet and PatchTST respectively win in 3.04% and
3.66% of the dataset types (RRSE). This variation can be attributed

7The ELPA framework is adaptable to integrate any SOTA prediction algorithm.
8Please refer to the Appendix A.5 for the RRSE and CORR evaluation metrics.

to minor shifts in data distribution, causing the best online model
to vary between training and testing datasets. For example, while
PatchTST performs as the top prediction algorithm in the testing
data (in real-world scenarios), ELPA, informed by the training data,
selects LSTNet, the highest-performing prediction algorithm, for
predicting the testing data. Nonetheless, in these dataset categories,
the prediction results of ELPA deviate by a maximum of only 0.5%
when compared to the top-performing models, indicating nearly
identical prediction performance. Thus, we have confidence in
ELPA’s capability to consistently deliver exceptional prediction
performance across various scenarios.

Insight 1: The ELPA prediction framework leverages the
advantages of both online and offline models, consistently
achieving superior prediction accuracy in most scenarios.
Even in infrequent scenarios where a single predictionmodel
outperforms, ELPA consistently maintains a prediction ac-
curacy remarkably close to it.

4.2.2 The robustness evaluation of ELPA. In Section 2.1, we have
come to recognize the significance of accurately forecasting "mu-
tation features" to ensure QoS. Figure 4 provides an illustrative
example of ELPA’s approach, where it combines online and offline
models with an amplitude adjustment for the offline model. It’s
important to note that "mutation features" can manifest in various
types of real-time sequential data. Due to space constraints, we’ve
chosen one representative time series dataset to highlight ELPA’s
robust predictive capabilities.

In Figure 4(a), a comparison between the predictions made by
the online model (PatchTST) and the actual data is presented. While
the online model exhibits high prediction accuracy in most cases, a
significant lag issue is observed in predicting "mutation features"
(highlighted in a black circle in Figure 4). This lag could potentially
hinder the provision of predictive performance. In Figure 4(b), the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

TP99 ≤ 40, 3h TP999 ≤ 80, 4h TP999 ≤ 40, 4h TP999 ≤ 30, 4h TP999 ≤ 95, 6h TP99 ≤ 45 &
TP999 ≤ 100, 4h

Average

Target Tracking 94.44% 27.35 80.83% 32.18 88.33% 24.68 99.17% 25.40 93.89% 36.03 69.44% 29.28 87.68% 29.15
AHPA 87.78% 23.42 80.83% 30.68 86.67% 19.82 100.00% 20.00 92.22% 38.75 67.50% 26.67 85.83% 26.56
PASS 97.78% 24.53 88.75% 29.60 91.25% 19.83 100.00% 12.00 94.17% 33.63 82.78% 25.55 92.46% 24.19

Table 3: The end-to-end performance of three auto-scaling methods under different QoS and test duration (hour) scenarios. In
each scenario, the first column is the QoS guarantee rate, and the second column is the resource cost(instance num * hours).
Boldface highlights the best result per metric.
predictive performance of the offline model (Seasonal Index model)
is depicted by the blue dashed line. Despite a noticeable predic-
tion discrepancy with the actual data in most cases, it effectively
anticipates "mutation features" in a timely manner, mitigating the
problem of prediction lag. The red dashed line in Figure 4(b) shows
the result of ELPA’s amplitude calibration at the "mutation features"
of the offline model, successfully predicting these features. Finally,
in Figure 4(c), ELPA’s outcomes are presented, which integrates
the online model and the calibrated offline model. It’s evident that
ELPA’s prediction accuracy and its ability to predict "mutation
features" both demonstrate exceptional predictive performance.

Insight 2: The offline model, while proficient at capturing
the data’s "mutation features," shows a notable discrepancy in
its predictive results. Conversely, the online model encoun-
ters challenges in effectively forecasting these "mutation
features." However, the ELPA framework, through the amal-
gamation of both models and the application of amplitude
calibration, showcases remarkable robustness.

4.3 End-to-end Performance
Metrics.We evaluate the effect of the auto-scaling method from
two aspects. The QoS guarantee rate measures the length of time
an application violates QoS, which is computed by taking the ra-
tio of the duration for which QoS is guaranteed to the total time
length. The Resource cost is determined by integrating the quantity
of instances over a given time period, measured in hours.

The results of the end-to-end experiment are shown in Table
3 (see Appendix A.4 for detailed monitoring data during the test
process, including QPS series, instance count, and QoS indicators
such as TP99, TP999 tail latency). Each test scenario provides QoS
indicators, test duration, and the QoS guarantee rate and resource
cost of the three methods.

Insight 3: The performance model of PASS is accurate
and effective. PASS achieves the highest QoS guarantee rate in
all application test scenarios. Compared with target tracking and
AHPA, the average QoS guarantee rate has increased by 5.54%
and 7.71%. It is even more obvious in scenario 6 of multiple QoS
indicators, where our QoS guarantee rate has increased by 19.21%
and 22.64%, respectively. PASS also has the lowest average resource
cost in all scenarios. The average resource cost is reduced by 8.91%
compared to AHPA and 17.02% compared to target tracking. Our
resource cost is reduced by up to 40% and 52.76% in scenario 4. In
only two scenarios, the resource cost of PASS is slightly higher than
AHPA, and in all other tests, our resource cost is the lowest.

Note that the application instance is startedwithout pre-warming
(For example, the database service establishes a connection in ad-
vance, loads the metadata required at runtime into cache, etc.), so
even if the instance is scaled out in advance, a large number of cold
queries at the beginning will still cause a sudden increase in tail

latency. If pre-warming is added to the application instance startup
logic, our QoS guarantee rate will be further improved.

5 RELATEDWORK
In Section 2.2 we introduced some auto-scaling methods, and we
provide several other related work in this section.

AI for time series.Multivariate time series data pervade our
daily lives, encompassing aspects such as cloud service time se-
ries load, the energy output of solar power plants, electricity con-
sumption, and traffic congestion [27, 46]. Users frequently express
interest in analyzing or forecasting new trends or potential risks,
leveraging historical observations from time series signals. This
paper primarily focuses on the load prediction task, which provides
crucial guidance for auto-scaling [10, 23, 32]. Moreover, prevailing
research typically revolves around Time Series Anomaly Detec-
tion [6, 26, 35], Time Series Classification [16, 29, 40], and other
facets of Time Series Analysis [30, 47, 48].

Hybrid auto-scaling approaches. Due to the pros and cons
of individual methods or models, some works have proposed hy-
brid scaling approaches. Pereira [34] proposed a horizontal scaling
method that combines threshold-based and time-series prediction.
It uses monitoring data for reactive scaling and proactively scales
based on time-series prediction results. Jamshidi [22] proposed a
method that combines machine learning and rule-based scaling,
which can automatically design and adjust rules dynamically with-
out human involvement. Gambi [15] proposed a hybrid approach
that combines machine learning and queuing theory. During the
process of training the machine learning model, queuing theory
is used as a substitute to address the problem of QoS violations
caused by slow convergence.

6 CONCLUSION
We have presented PASS, a predictive auto-scaling system for large-
scale online web applications in enterprises. We designed an inte-
grated prediction framework namely ELPA to cope with complex
and diverse application workloads, and constructed a performance
model through logs for predictive scaling. In addition, we also im-
plemented a reactive scaling strategy based on queuing theory to
quickly respond to QoS violations. Under a diverse range of enter-
prise applications and under real workloads, ELPA outperforms
existing single prediction models in 90%+ of web service scenarios.
Notably, in scenarios featuring "mutant features," ELPA demon-
strates a remarkable enhancement in predictive accuracy, reaching
an increase of up to 36.1% when compared to the second-best pre-
diction model. Employing ELPA, PASS effectively lowers average
resource consumption by 8.91% compared to AHPAwhile achieving
a notable improvement in QoS assurance, with a rate increase of
up to 22.64%.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] 2023. AWS Auto Scaling. https://aws.amazon.com/autoscaling/.
[2] 2023. Overview of autoscale in Azure. https://learn.microsoft.com/azure/azure-

monitor/autoscale/autoscale-overview.
[3] 2023. Target tracking scaling. https://docs.aws.amazon.com/AmazonElastiCache/

latest/red-ug/AutoScaling-Scaling-Policies-Target.html.
[4] 2023. Vmware Cloud. https://cloud.vmware.com/providers.
[5] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. 2012. An adaptive hybrid

elasticity controller for cloud infrastructures. In 2012 IEEE Network Operations
and Management Symposium. IEEE, 204–212.

[6] Sarah Alnegheimish, Dongyu Liu, Carles Sala, Laure Berti-Equille, and Kalyan
Veeramachaneni. 2022. Sintel: A machine learning framework to extract insights
from signals. In Proceedings of the 2022 International Conference on Management
of Data. 1855–1865.

[7] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slomin-
ski, et al. 2017. Serverless computing: Current trends and open problems. In
Research advances in cloud computing. Springer, 1–20.

[8] Brendan Burns, Joe Beda, Kelsey Hightower, and Lachlan Evenson. 2022. Kuber-
netes: up and running. " O’Reilly Media, Inc.".

[9] Fabio Canova and Bruce E Hansen. 1995. Are seasonal patterns constant over
time? A test for seasonal stability. Journal of Business & Economic Statistics 13, 3
(1995), 237–252.

[10] Yue Cui, Kai Zheng, Dingshan Cui, Jiandong Xie, Liwei Deng, Feiteng Huang,
and Xiaofang Zhou. 2021. METRO: a generic graph neural network framework
for multivariate time series forecasting. Proceedings of the VLDB Endowment 15,
2 (2021), 224–236.

[11] Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. 2023.
Long-term Forecasting with TiDE: Time-series Dense Encoder. arXiv preprint
arXiv:2304.08424 (2023).

[12] Zihan Ding, Yanhua Huang, Hang Yuan, and Hao Dong. 2020. Introduction to
reinforcement learning. Deep reinforcement learning: fundamentals, research and
applications (2020), 47–123.

[13] Xavier Dutreilh, Sergey Kirgizov, Olga Melekhova, Jacques Malenfant, Nicolas
Rivierre, and Isis Truck. 2011. Using reinforcement learning for autonomic
resource allocation in clouds: towards a fully automated workflow. In ICAS 2011,
The Seventh International Conference on Autonomic and Autonomous Systems.
67–74.

[14] Hector Fernandez, Guillaume Pierre, and Thilo Kielmann. 2014. Autoscaling web
applications in heterogeneous cloud infrastructures. In 2014 IEEE international
conference on cloud engineering. IEEE, 195–204.

[15] Alessio Gambi, Mauro Pezze, and Giovanni Toffetti. 2015. Kriging-based self-
adaptive cloud controllers. IEEE Transactions on Services Computing 9, 3 (2015),
368–381.

[16] Ge Gao, Qitong Gao, Xi Yang, Miroslav Pajic, and Min Chi. 2022. A reinforcement
learning-informed pattern mining framework for multivariate time series classi-
fication. In In the Proceeding of 31th International Joint Conference on Artificial
Intelligence (IJCAI-22).

[17] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. Press: Predictive elastic
resource scaling for cloud systems. In 2010 International Conference on Network
and Service Management. Ieee, 9–16.

[18] Rui Han, Li Guo, Moustafa M Ghanem, and Yike Guo. 2012. Lightweight resource
scaling for cloud applications. In 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE, 644–651.

[19] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for
{Fine-Grained} Resource Sharing in the Data Center. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 11).

[20] Gaopan Huang, Songyun Wang, Mingming Zhang, Yefei Li, Zhuzhong Qian,
Yuan Chen, and Sheng Zhang. 2016. Auto scaling virtual machines for web
applications with queueing theory. In 2016 3rd International conference on systems
and informatics (ICSAI). IEEE, 433–438.

[21] Waheed Iqbal, Matthew Dailey, and David Carrera. 2009. SLA-driven adaptive
resource management for web applications on a heterogeneous compute cloud.
In IEEE International Conference on Cloud Computing. Springer, 243–253.

[22] Pooyan Jamshidi, Claus Pahl, and Nabor C Mendonça. 2016. Managing uncer-
tainty in autonomic cloud elasticity controllers. IEEE Cloud Computing 3, 3
(2016), 50–60.

[23] Renhe Jiang, ZhaonanWang, Jiawei Yong, Puneet Jeph, Quanjun Chen, Yasumasa
Kobayashi, Xuan Song, Shintaro Fukushima, and Toyotaro Suzumura. 2023.
Spatio-temporal meta-graph learning for traffic forecasting. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 37. 8078–8086.

[24] Vladimir V Kalashnikov. 2013. Mathematical methods in queuing theory. Vol. 271.
Springer Science & Business Media.

[25] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In The 41st
international ACM SIGIR conference on research & development in information

retrieval. 95–104.
[26] Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia

Hu. 2021. Revisiting time series outlier detection: Definitions and benchmarks.
In Thirty-fifth conference on neural information processing systems datasets and
benchmarks track (round 1).

[27] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning:
a survey. Philosophical Transactions of the Royal Society A 379, 2194 (2021),
20200209.

[28] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A review of
auto-scaling techniques for elastic applications in cloud environments. Journal
of grid computing 12, 4 (2014), 559–592.

[29] Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. 2019. Learning repre-
sentations for time series clustering. Advances in neural information processing
systems 32 (2019).

[30] Abhinav Mishra, Ram Sriharsha, and Sichen Zhong. 2022. OnlineSTL: scaling
time series decomposition by 100x. Proceedings of the VLDB Endowment 15, 7
(2022), 1417–1425.

[31] Thanh-TungNguyen, Yu-Jin Yeom, Taehong Kim, Dae-Heon Park, and Sehan Kim.
2020. Horizontal pod autoscaling in kubernetes for elastic container orchestration.
Sensors 20, 16 (2020), 4621.

[32] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. 2022.
A time series is worth 64 words: Long-term forecasting with transformers. arXiv
preprint arXiv:2211.14730 (2022).

[33] Tharindu Patikirikorala and Alan Colman. 2010. Feedback controllers in the
cloud. In Proceedings of APSEC. sn, 39.

[34] Paulo Pereira, Jean Araujo, and Paulo Maciel. 2019. A hybrid mechanism of hori-
zontal auto-scaling based on thresholds and time series. In 2019 IEEE international
conference on systems, man and cybernetics (SMC). IEEE, 2065–2070.

[35] Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph.
2021. Neural transformation learning for deep anomaly detection beyond images.
In International Conference on Machine Learning. PMLR, 8703–8714.

[36] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2016. A reliable and
cost-efficient auto-scaling system for web applications using heterogeneous spot
instances. Journal of Network and Computer Applications 65 (2016), 167–180.

[37] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. 2018. Auto-scaling
web applications in clouds: A taxonomy and survey. ACM Computing Surveys
(CSUR) 51, 4 (2018), 1–33.

[38] Parminder Singh, Pooja Gupta, Kiran Jyoti, and Anand Nayyar. 2019. Research
on auto-scaling of web applications in cloud: survey, trends and future directions.
Scalable Computing: Practice and Experience 20, 2 (2019), 399–432.

[39] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

[40] Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Michael Blumenstein, and Jing
Jiang. 2021. Omni-Scale CNNs: a simple and effective kernel size configuration for
time series classification. In International Conference on Learning Representations.

[41] Sean J Taylor and Benjamin Letham. 2018. Forecasting at scale. The American
Statistician 72, 1 (2018), 37–45.

[42] Gerald Tesauro, Nicholas K Jong, Rajarshi Das, and Mohamed N Bennani. 2006.
A hybrid reinforcement learning approach to autonomic resource allocation. In
2006 IEEE International Conference on Autonomic Computing. IEEE, 65–73.

[43] Rafael Weingärtner, Gabriel Beims Bräscher, and Carlos Becker Westphall. 2015.
Cloud resource management: A survey on forecasting and profiling models.
Journal of Network and Computer Applications 47 (2015), 99–106.

[44] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo
Zhu. 2019. RobustSTL: A robust seasonal-trend decomposition algorithm for
long time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 5409–5416.

[45] Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan Xu.
2021. RobustPeriod: Robust time-frequency mining for multiple periodicity
detection. In Proceedings of the 2021 international conference on management of
data. 2328–2337.

[46] Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan,
and Liang Sun. 2022. Transformers in time series: A survey. arXiv preprint
arXiv:2202.07125 (2022).

[47] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang,
Yunhai Tong, and Bixiong Xu. 2022. Ts2vec: Towards universal representation
of time series. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 36. 8980–8987.

[48] Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. 2022.
Self-supervised contrastive pre-training for time series via time-frequency consis-
tency. Advances in Neural Information Processing Systems 35 (2022), 3988–4003.

[49] Zhiqiang Zhou, Chaoli Zhang, Lingna Ma, Jing Gu, Huajie Qian, Qingsong Wen,
Liang Sun, Peng Li, and Zhimin Tang. 2023. AHPA: Adaptive Horizontal Pod
Autoscaling Systems on Alibaba Cloud Container Service for Kubernetes. In
Proceedings of the AAAI conference on artificial intelligence.

9

https://aws.amazon.com/autoscaling/
https://learn.microsoft.com/azure/azure-monitor/autoscale/autoscale-overview
https://learn.microsoft.com/azure/azure-monitor/autoscale/autoscale-overview
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Scaling-Policies-Target.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/AutoScaling-Scaling-Policies-Target.html
https://cloud.vmware.com/providers

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX
A.1 Identifying Periodic Patterns
We regularly analyze time-series data representing the traffic load
of web applications running on a genuine platform. This data is
collected at weekly intervals, representing the window size. By
aggregating traffic data over multiple consecutive windows, we
ascertain whether these applications exhibit any recurring patterns
or periodicity. The specific method of determination involves cal-
culating the Pearson correlation coefficient and the mean of any
two windows. Please refer to Equation 6.

𝜌 =

∑ (𝑋𝑖 − 𝑋) (𝑌𝑖 − 𝑌)√︁∑ (𝑋𝑖 − 𝑋)2 ∑ (𝑌𝑖 − 𝑌)2
(6)

𝑋 and𝑌 represent time series data for two consecutive weeks.𝑋𝑖
represents the QPS value at time 𝑖 during the current week, while
𝑋 and 𝑌 denote the means of 𝑋 and 𝑌 , respectively.

The Pearson correlation coefficient is a statistical measure used
to assess the strength and direction of the linear relationship be-
tween two continuous variables. When analyzing time series data,
if the correlation coefficient exceeds 0.8 and the difference in the
means is within 5%, the application is considered to exhibit strong
periodicity. If the correlation coefficient falls between 0.5 and 0.8,
and the difference in the means is within 10%, the application is re-
garded as having weak periodicity [17]. Otherwise, the application
is considered to lack periodicity.

In Section 4.1, we classified the prediction dataset into three
distinct levels of complexity: easy, medium, and hard. This clas-
sification process relied on the computation of correlation, using
the Pearson Correlation Coefficient (defined in Equation 6), on the
QPS time series data from the preceding two weeks. When the
results demonstrated a robust correlation, the first half portion was
designated as "easy," and the latter half portion as "medium." In
cases where the results exhibited a weak correlation, they were
categorized as "hard." If the outcomes indicated a complete absence
of correlation, it signaled that forecasting was unnecessary due to
the lack of underlying periodic patterns.

A.2 The Derivation Process of Equation 5
Assume that the time interval between request arrivals follows an
exponential distribution with parameter 𝜆, the service times have
an exponential distribution with parameter 𝑢, and the number of
servers is s. Then in M/M/s model, the request’s sojourn time T
in the system follows an exponential distribution with parameters
𝑠 · 𝑢 − 𝜆, and its probability density function is:

𝑓 (𝑡) =
{
(𝑠 · 𝑢 − 𝜆)𝑒−(𝑠 ·𝑢−𝜆)𝑡 for 𝑡 > 0,
0 otherwise.

Therefore, the cumulative distribution function is:

𝑃{𝑇 ≤ 𝑡} = 1 − 𝑒−(𝑠 ·𝑢−𝜆)𝑡 , 𝑡 ≥ 0

Let 𝑃{𝑇 ≤ 𝑡} = 𝑝 ,which is the percentile of tail latency, we get:

1 − 𝑒−(𝑠 ·𝑢−𝜆)𝑡 = 𝑝

ln(1 − 𝑝) = −(𝑠 · 𝑢 − 𝜆)𝑡
ln(1 − 𝑝)/𝑡 = −𝑠 · 𝑢 + 𝜆
𝜆 = 𝑠 · 𝑢 + ln(1 − 𝑝)/𝑡

Hence, the QPS estimated by M/M/s queuing model based on the
number of servers and 𝑝 percentile tail latency 𝑡 is:

𝑞𝑝𝑠 = 𝑠 ∗ 𝑢 + ln(1 − 𝑝)/𝑡

A.3 Functions used in Hybrid Auto-scaling
Algorithm 3 provides the function "search" and "scale2ins_num"
used in Algorithm 2. The function "search" (line 1-7) queries the
performance model to determine how many instances are needed
to handle the incoming QPS traffic. The function scale2ins_num
(lines 8-15) is used to scale to the input number of instances. Note
that newly started instances require a certain amount of warm-up
time, scaling out will sleep for a while (line 11). There is no need
for scaling in to sleep as it takes effect almost in real time.

Algorithm 3: Functions used in Hybrid Auto-scaling
1 Function search(QPS,ins_qps_table):
2 for ins_num,qps in ins_qps_table in ascending order do
3 if qps ≥ QPS then
4 return ins_num
5 end
6 end
7 return MAX_INS_NUM
8 Function scale2ins_num(num):
9 if num > cur_ins_num then
10 scale_out(num - cur_ins_num)
11 sleep(warmup_time)
12 end
13 else if num < cur_ins_num then
14 scale_in(cur_ins_num - num)
15 end

A.4 The Monitoring Data during End-to-end
Performance Test

Figure 5 and Figure 6 provide detailed monitoring data of several
scenarios in 4.3, including QPS series, instance count and QoS met-
rics. The QPS curve graph includes the actual request traffic curve
(with data normalized to remove sensitive information) and the
predicted curve (AHPA and PASS only because target tracking is a
reactive method that does not have prediction models). In the tail
latency curve graph, the blue line represents the tail latency (log-
arithmic transformation has been applied for better observation).
Points above the pink line indicate QoS violations. Note that the
relatively high spurt is because the application instance is started
without pre-warming.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

PASS: Predictive Auto-Scaling System for Large-scale Enterprise Web Applications Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Figure 5: The comprehensive monitoring data for Scenario 1 encompasses QPS series, instance count, and QoS metrics.

Figure 6: The comprehensive monitoring data for Scenario 6 encompasses QPS series, instance count, and QoS metrics.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

A.5 The evaluation metrics for prediction
algorithms, RRSE and CORR.

A.5.1 RRSE (Relative Root Mean Square Error): RRSE is a metric
used to assess the accuracy of a time series forecasting model. It
measures the relative error between the forecasted values and the
actual values in the time series data. A lower RRSE indicates a more
accurate forecast, as it suggests that the forecasted values are closer
to the actual values. The formula for RRSE is typically as follows
(Equation 7):

𝑅𝑅𝑆𝐸 =

√︃∑𝑛
𝑡=1 (𝑌𝑡−𝑌𝑡)2

𝑛√︃∑𝑛
𝑡=1 (𝑌𝑡−𝑌)2

𝑛

(7)

where 𝑌𝑡 is the actual value at time 𝑡 , 𝑌𝑡 is the forecasted (pre-
dicted) value at time 𝑡 , 𝑌 is the mean of the actual values, 𝑛 is the
number of data points in the time series.

A.5.2 CORR (Correlation): Correlation is a statistical measure that
quantifies the strength and direction of a linear relationship be-
tween two variables. In the context of time series forecasting, it is
used to assess how well the forecasted values correlate with the
actual values. When the CORR value approaches 1, it signifies a
robust positive linear correlation between the forecasted values and
the observed actual values. This implies that as the actual values
experience an increase, the forecasted values exhibit a concomitant
increase in a coherent fashion. Within the domain of time series
forecasting, this phenomenon is typically construed as a favorable
indicator, indicative of a model’s robust predictive prowess. The
formula for RRSE is typically as follows (Equation 8):

𝐶𝑂𝑅𝑅 =

∑𝑛
𝑡=1 (𝑌𝑡 − 𝑌) (𝑌𝑡 −

¯̂)𝑌√︃∑𝑛
𝑡=1 (𝑌𝑡 − 𝑌)2 ∑𝑛

𝑡=1 (𝑌𝑡 −
¯̂
𝑌)2

(8)

Where 𝑌𝑡 is the actual value at time t, 𝑌𝑡 is the forecasted (pre-
dicted) value at time 𝑡 , 𝑌 is the mean of the actual values, ¯̂

𝑌 is the
mean of the forecasted (predicted) values, 𝑛 is the number of data
points in the time series.

12

	Abstract
	1 Introduction
	2 REAL-SYSTEM INVESTIGATION
	2.1 Prediction Algorithm Analysis
	2.2 Auto-scaling Methods Analysis
	2.3 Challenge

	3 Design
	3.1 Workload Prediction
	3.2 Log-based Performance Model
	3.3 Hybrid Auto-scaling

	4 EVALUATION
	4.1 Experiment Setup
	4.2 Evaluation of the Ensemble Learning-based Prediction Algorithm (ELPA)
	4.3 End-to-end Performance

	5 Related Work
	6 Conclusion
	References
	A APPENDIX
	A.1 Identifying Periodic Patterns
	A.2 The Derivation Process of Equation 5
	A.3 Functions used in Hybrid Auto-scaling
	A.4 The Monitoring Data during End-to-end Performance Test
	A.5 The evaluation metrics for prediction algorithms, RRSE and CORR.

