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Abstract

Code-switching (CS) is still a critical challenge001
in Natural Language Processing (NLP). Cur-002
rent Large Language Models (LLMs) struggle003
to interpret and generate code-switched text,004
primarily due to the scarcity of large-scale CS005
datasets for training. This paper presents a006
novel methodology to generate CS data using007
LLMs, and test it on the English-Spanish lan-008
guage pair. We propose back-translating natu-009
ral CS sentences into monolingual English, and010
using the resulting parallel corpus to fine-tune011
LLMs to turn monolingual sentences into CS.012
Unlike previous approaches to CS generation,013
our methodology uses natural CS data as a start-014
ing point, allowing models to learn its natural015
distribution beyond grammatical patterns. We016
thoroughly analyse the models’ performance017
through a study on human preferences, a quali-018
tative error analysis and an evaluation with pop-019
ular automatic metrics. Results show that our020
methodology generates fluent code-switched021
text, expanding research opportunities in CS022
communication, and that traditional metrics do023
not correlate with human judgement when as-024
sessing the quality of the generated CS data.025
We release our code and generated dataset un-026
der a CC-BY-NC-SA license.1027

1 Introduction028

Code-Switching (CS) consists of mixing two or029

more languages within a single utterance and is030

a common phenomenon in multilingual settings031

(Tucker, 2001). Although it is mainly present in032

spoken interactions, it can also be found in written033

interactions on-line (Appel and Muysken, 2005;034

Sarkisov, 2021), where it appears jointly with other035

features of informal speech. Example 1 shows036

an utterance where the speaker switches between037

English and Spanish.038

1URL to be announced upon acceptance.

(1) Why make everybody sentarse atrás pa’ que 039

everybody has to move pa’ que se salga. 040

Why make everybody sit at the back so that 041

everybody has to move so that she may get 042

out.2 043

(Poplack, 1980) 044

Despite the prevalence of code-switching, most 045

research in Natural Language Processing (NLP) 046

assumes monolingualism as a standard for human 047

communication. However, this implicit decision 048

means that state-of-the-art models are not able to 049

properly interpret or generate CS data. Even ad- 050

vances in multilingual language modelling (Lin 051

et al., 2022; Chowdhery et al., 2023) have not 052

led to significant improvements, and performance 053

on CS data is still poor compared to performance 054

on monolingual data (Aguilar et al., 2020; Winata 055

et al., 2021). This occurs because there is little CS 056

text available in the multilingual pretraining data. 057

Similarly, there are no parallel datasets available to 058

learn to generate CS in a supervised fashion, as one 059

would expect for tasks such as machine translation. 060

Finally, there is no clear methodology for evalu- 061

ating automatically generated CS text, as it has 062

specific needs different from other text generation 063

tasks. 064

It is therefore crucial to develop methodologies 065

to enable models to generate natural CS text and 066

simultaneously implement robust evaluation frame- 067

works that can assess how well NLP systems han- 068

dle CS across multiple tasks. We argue that both 069

of these goals require models that can condition- 070

ally generate CS from monolingual text. Conse- 071

quently, our research focuses on the development 072

of a methodology to fine-tune and evaluate LLMs 073

on the task of CS generation, following two main 074

research questions: 075

2In all examples of CS featured in this paper, Spanish
parts are shown in italics, in both the original instance and its
translation.
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RQ1: Is it viable to approach CS generation with076

natural CS text as a starting point?077

RQ2: Do automatic metrics for Natural Lan-078

guage Generation (NLG) correlate well with hu-079

man judgement for the task of CS generation?080

We propose a novel method to generate CS text081

from monolingual text using LLMs, which requires082

less data for fine-tuning. We apply this to the083

English-Spanish pair (RQ1). Unlike prior work,084

our approach leverages naturally occurring code-085

switched data instead of artificial examples, allow-086

ing models to learn its natural distribution. Ad-087

ditionally, our source texts come from informal088

contexts, making the output both code-switched089

and informal — two intertwined phenomena. We090

evaluate our methodology both qualitatively, with091

a study on human preferences and a manual error092

analysis, and quantitatively, using automatic NLG093

metrics, which allows us to study the correlation094

with between human and automatic evaluation for095

this task (RQ2).096

To summarize, the contributions presented in097

this paper are the following:098

• we develop a novel approach for CS genera-099

tion through fine-tuning LLMs on a psuedo-100

parallel corpus sourced from natural code-101

switched data.102

• we present a new parallel English-CS corpus,103

EN2CS, with silver train and development104

splits and a gold post-edited test set, which105

can be used to train and evaluate model for106

English-Spanish CS generation.107

• we perform both human and automatic evalua-108

tion of the results of models fine-tuned on this109

dataset, and perform a study on the correlation110

between human and automatic evaluation for111

CS generation.112

2 Related Work113

Perspectives in linguistics. CS naturally occurs114

in communities where two or more languages are115

in contact, making it a subject of great interest to116

fields like sociolinguistics and psycholinguistics.117

From a social perspective, it can be affected by118

the attitudes of the speakers towards the languages119

and the CS phenomenon itself. In this respect, it120

is related and associated with notions of prestige121

and identity (Heredia et al., 2025). For example,122

in bilingual communities where a language is mi- 123

noritized, CS can be regarded as an intrusion of 124

the majority language (Dewaele and Wei, 2014). 125

However, for migrant communities, it may be a 126

way to preserve their mother tongue and as an “em- 127

blem of ethnic identity” (Poplack, 1980). Once 128

again, its importance in different social contexts 129

highlights the need to consider CS in NLP research, 130

as it plays a crucial role in linguistic interactions 131

and, consequently, the development of language 132

technologies. 133

CS in NLP. The processing and understanding 134

of code-switched text can be crucial in the process- 135

ing of social media data (Bali et al., 2014), and 136

for speech applications, such as speech recogni- 137

tion or speech synthesis (Rallabandi and Black, 138

2017). In fact, non-monolingual speakers have 139

shown preference for chatbots that use CS (Bawa 140

et al., 2020). Different approaches may include 141

normalization (Parikh and Solorio, 2021), machine 142

translation (Xu and Yvon, 2021) or modeling code- 143

switched text (Gonen and Goldberg, 2019). The 144

survey by Winata et al. (2023) covers trends and 145

advances in NLP for code-switched text, includ- 146

ing main fields of interest and future research lines. 147

Doğruöz et al. (2021) explain advances in applica- 148

tions of language technologies for code-switched 149

text from a linguistic and social perspective. 150

Datasets & benchmarks for CS. The majority 151

of code-switched data is obtained from social me- 152

dia, and other popular data sources include record- 153

ings and transcriptions (Winata et al., 2023). There 154

have been several shared tasks that deal with CS, 155

for the tasks of Language Identification (Solorio 156

et al., 2014; Molina et al., 2016) and Sentiment 157

Analysis (Patwa et al., 2020). Two popular bench- 158

marks have been created to answer the demand for 159

evaluation of CS that covers different language 160

pairs and tasks: LINCE (Aguilar et al., 2020), 161

which covers traditional tasks such as Part Of 162

Speech tagging (POS) or Sentiment Analysis (SA); 163

and GLUECoS (Khanuja et al., 2020), which incor- 164

porates NLU tasks for the Hindi-English pair. As 165

of today, GLUECoS cannot be used without access 166

to the X API. 167

CS generation. CS generation has seldom been 168

tackled in previous research. Approaches include 169

using linguistically informed techniques that aim to 170

find out plausible switching points (Pratapa et al., 171

2018; Gupta et al., 2020; Gregorius and Okadome, 172
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2022), data augmentation (Tarunesh et al., 2021)173

and, more recently, prompting LLMs for CS gen-174

eration (Yong et al., 2023). To the best of our175

knowledge, there is no previous research on CS176

generation with natural CS as a starting point.177

3 Parallel Data Creation178

In this work we present a novel approach to gener-179

ate code-switched text from monolingual sentences.180

As a first step, we create a synthetic parallel corpus181

from an initial set of English-Spanish CS sentences182

with their English monolingual equivalents, gen-183

erated by the Command R model (Cohere For AI,184

2024). We exploit the fact that LLMs struggle to185

generate CS text given a monolingual sentence, but186

are able to more reliably convert a CS sentence to187

its corresponding monolingual version, especially188

when the target language is English. After having189

created this pseudo-parallel corpus, we use it to190

fine-tune LLMs on the task of conditional code-191

switching generation, presented in Section 4.192

3.1 The LINCE benchmark193

We use LINCE as a starting point, a popular bench-194

mark that has been widely used to evaluate CS195

systems (Aguilar et al., 2020), which is available in196

6 language pairs. This benchmark contains annota-197

tions for 5 different tasks: Language Identification198

(LID), Part Of Speech tagging (POS), Named En-199

tity Recognition (NER), and Sentiment Analysis200

(SA). All sentences in LINCE are tokenized, and201

each token is annotated with a language tag as well202

as other categories depending on the task. In our203

work we focus on the English-Spanish pair and204

filter all sentences in the data that do not contain205

CS, similarly discarding all the task-specific anno-206

tations. Example 2 shows a random instance from207

LINCE.208

(2) estaba aquí three feet away .
spa spa eng eng eng eng&spa

209

LINCE comprises around 95, 000 train, 20, 000210

development, and 33, 000 test instances for the211

English-Spanish pair. We deduplicate the instances212

among splits, and filter and pre-process the in-213

stances to ensure that they are suitable for our task214

by removing links, replacing usernames with the215

placeholder <user>, and detokenizing all instances216

with the script provided as part of the Moses toolkit217

(Koehn et al., 2007). After this preprocessing, we218

obtain a more natural version of the LINCE data. A219

Train Dev Test

Original 94,728 19,574 33,361
Pre-processed 27,684 2,461 5,353
EN2CS 10,703 792 1,040

Table 1: Size of original LINCE (EN-ES) compared to
the automatically filtered instances and the final set of
parallel instances, dubbed EN2CS.

preliminary analysis reveals that many sentences in 220

LINCE are monolingual or contain a single word in 221

one language that often correspond to a borrowing, 222

as shown in Example 3. In order to ensure that 223

all of our sentences actually contain CS, we filter 224

sentences that do not have at least two words in 225

each language. 226

(3) I need a shot of tequila or a glass of scotch 227

to keep me warm right now. 228

After these pre-processing and filtering steps, we 229

end up with 27, 684 train, 2, 461 development and 230

5, 353 test instances. The comparison between the 231

original size of LINCE and the final number of 232

sentences selected for our experiments after pre- 233

processing is shown in Table 1. 234

3.2 EN2CS 235

The next step in our method requires creating a 236

pseudo-parallel English-CS dataset by translating 237

the natural code-switched instances into monolin- 238

gual text. As there are no available machine trans- 239

lation systems to convert from English-Spanish CS 240

text to English monolingual text, we instead make 241

use of prompt engineering, using the Command R 242

model (Cohere For AI, 2024), one of the strongest 243

publicly available models at the time. 244

We perform an initial set of experiments to deter- 245

mine the optimal prompt to generate monolingual 246

English versions of the code-switched data. Ideally, 247

we aim for a prompt that generates translations that 248

maintain the meaning of the original sentences, are 249

fluent and natural, whose grammar is correct and 250

that does not contain any Spanish words or phrases. 251

The tested prompts are listed and explained in Ap- 252

pendix A, and the prompt that generates outputs 253

closest to the desired ones is: Now convert this 254

code-switched phrase to English. Leave the parts 255

in English as they are, focus on translating the 256

parts in Spanish. Preliminary experiments also 257

showed that a few-shot strategy helps the model 258
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Original English

Silver
you just have to tell me que como te va. You just have to tell me how it’s going.

osea i know we wanna party pero tampoco no aya asta dallas like i know we want to party but not all the way to dallas

fully enamorada de mis eyelash extensions I’m totally in love with my eyelash extensions

Gold
hasta venir a plaza se siente like home. even coming to the square feels like home.

me siento tan pendejo right now. i feel so stupid right now.

y no te dan problemas as long as you put that it was frozen. and they don’t give you problems as long as you put that it was frozen.

Table 2: Examples of the EN2CS parallel corpus. Left: original code-switched instances, right: generated (silver) or
post-edited (gold) English instances.

for the task at hand, so the prompt is enriched with259

5 manually selected examples that show how the260

output should look like.261

The generated monolingual sentences are further262

processed, and instances that contain profanity or263

that are prefaced with a direct mention of the task,264

such as “Of course, here’s your translation:” are265

discarded.266

In order to create a true gold standard test set267

to evaluate a CS generation model, we perform268

a manual post-edition of the the monolingual test269

translations for 1, 040 instances of the LINCE test270

set. The post-edition was carried out by three profi-271

cient speakers of English and Spanish, who were272

provided with specific guidelines as shown in Ap-273

pendix B.274

Table 1 shows the final size of the parallel cor-275

pus, which we dub EN2CS, after post-processing276

and post-edition, and Table 2 shows examples of277

silver and gold instances. The final version of our278

dataset therefore contains 10, 703 train and 792 de-279

velopment instances with automatically translated280

English sentences matched to their original CS sen-281

tences, and 1, 040 gold instances with corrected282

English translations.283

4 CS generation experiments284

With EN2CS as our starting point, we frame CS285

generation as a machine translation task, with En-286

glish as the source and CS as the target language,287

where parts of the source sentence have to be trans-288

lated to Spanish. In our experiments we try four289

generative models, namely, Llama3, Llama3 In-290

struct (Dubey et al., 2024), Mistral and Mistral291

Instruct (Jiang et al., 2023).3 All the models are292

trained with the causal language modelling objec-293

tive, but we use different input formats for the base294

3Llama3 models are used in their 8B size (Base and In-
struct). Mistral models are used in their 7B size, version 0.3
(Base and Instruct).

Base model
I want to not work and make money. = quiero no trabajar
and make money

Instruction-tuned model

system prompt: "You are a bilingual speaker of English
and Spanish. Translate the following English sentence
into code-switched text between both languages:"

user: "I want to not work and make money."

assistant: "quiero no trabajar and make money"

Table 3: Examples and format of prompts used for fine-
tuning base and instruction-tuned models

and instruct models. For base models we follow 295

(Zhu et al., 2024) and use templates in the form of 296

“<X>=<Y>”, where <X> and <Y> are placeholders 297

for the input English sentence and generated CS, re- 298

spectively. At inference, the second code-switched 299

part is left empty for the model to fill. For fine- 300

tuning instruction-tuned models, we provide them 301

with a system prompt that contains the instruction, 302

a query by the user in English, and an answer from 303

the assistant with the code-switched target. At in- 304

ference time, the same system prompt is used, and 305

the user prompt contains the English sentence, so 306

that the model generates the assistant part. Table 3 307

shows examples of the format used for fine-tuning 308

base and instruction-tuned models. 309

All models are trained using Quantized Low- 310

Rank Adaptation (QLoRA) (Dettmers et al., 2023), 311

to ensure memory and parameter efficiency, with 312

standard parameters: the model is loaded in 4 bit 313

with NF4 quantization data type and bf16 computa- 314

tional data type. The LoRA rank and scaling factor 315

are set to 16 and the dropout to 0.05. We apply the 316

LoRA update matrices to the attention blocks and 317

do not train bias parameters. Regarding the hyper- 318

parameters, we only tune the learning rate (1e-4, 319

5e-4, 1e-3 and 5e-3) and training epoch ∈ [1 . . . 10], 320

choosing the parameters that give the lowest cross- 321

entropy loss on the development set for each model. 322

4
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Model Generated Output

Original (Gold) damm todos se casaron and we still single lol forever alone
English (Source) damn everyone got married and we’re still single lol forever alone

MT Baseline damn everyone got married and we still be single lol
Llama3 damn todos se fueron a casarse y nosotras estamos solitarias lol forever alone
Llama3 Instruct damm every1 got married and we’re still single lol alonso solit@o foreverrrr lolololo
Mistral damm everyone got married y ni somos esa lol ofrever alone
Mistral Instruct dude todo el mundo se casó y nosotros hemos quedado solteros lol

Table 4: Example from the test set and the generated outputs of the different models.

We use the transformers package (Wolf et al., 2020)323

for all training experiments.324

Early experiments indicated that the models’ out-325

puts are longer than expected and usually produce326

the desired output up to a punctuation mark and327

then either begin to translate the sentence again or328

hallucinate more content. We therefore truncate the329

output up to a punctuation mark where the length330

is closest to that of the original sentence. We ad-331

ditionally experimented with the length_penalty332

and exponential_length_decay generation param-333

eters, as well as trying to control the length of the334

generation with length codes, but find that the trun-335

cation heuristic performs the best. Accordingly, all336

further experiments will use the truncated output.337

This overgeneration problem has been reported in338

previous papers, where similar truncation strategies339

have been adopted (Bawden and Yvon, 2023).340

We also include a dedicated encoder-decoder341

model as a baseline, trained on EN2CS using342

the MarianNMT toolkit (Junczys-Dowmunt et al.,343

2018), with a mini-batch size automatically se-344

lected for the available memory4. Optimization is345

performed using Adam (Kingma and Ba, 2015),346

with α = 0.0003, β1 = 0.9, β2 = 0.98 and347

ϵ = 10−9, using a standard learning rate of 3e−4.348

Validation is conducted every 100 steps, and train-349

ing stops if perplexity showed no improvement350

after 5 consecutive checkpoints.351

Table 4 shows an example of the outputs of the352

different models, compared to the original code-353

switched sentence and the English monolingual354

sentence that they received as input.355

4We used two GPUs and 8GB per GPU.

5 Qualitative evaluation 356

As a first step to assess the quality of the outputs 357

produced by the different models, we perform a 358

manual qualitative analysis of the results in two 359

parts: a pairwise tournament-based human evalua- 360

tion, and an in-depth analysis of the most common 361

errors made by the models and their distribution. 362

5.1 Preference based evaluation 363

We perform a tournament-based evaluation that al- 364

lows us to determine the ranking of models in terms 365

of human preference. A total of 660 instances are 366

matched against each other, corresponding to the 367

outputs of the five models for 110 English source 368

sentences, as well as the gold standard reference. 369

The evaluation is conducted pairwise, requiring an- 370

notators to choose the best out of two sentences 371

or declare a tie. When choosing the best sentence, 372

annotators do not know the original English sen- 373

tence, nor which model produced what output. This 374

process results in 110 ·
(6
2

)
= 1, 650 comparisons, 375

and was carried out by 11 annotators, with each 376

annotator performing 150 random comparisons. 377

Annotators are provided with a series of criteria 378

to choose between the instances, devised after the 379

error analysis described in the next section. They 380

must take into account three main criteria, that must 381

be applied in the following order: a) the presence 382

and naturalness of the CS; b) the content and flu- 383

ency of the sentences; and c) the orthographical 384

errors of the instances (correct punctuation, pres- 385

ence of typos, etc.). Annotators are furthermore 386

asked to avoid declaring ties, unless completely 387

necessary (e.g., in a case where both sentences are 388

completely monolingual and therefore equally in- 389

correct), to compel them to develop a preference. 390

The complete annotation guidelines are available 391

in Appendix C. 392
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Ranking Model Score

Gold Standard 392.5

Llama3 325.5

Llama3 Instruct 303.0
4 Mistral 285.5
5 Mistral Instruct 242.0
6 MT Baseline 101.5

Table 5: Ranking of models according to the human
preference score.

With the results of the pairwise comparisons, we393

calculate a global score for each model, as follows:394

every time a model is voted, it gets 1 point, and the395

loser gets 0 points; in case of ties, both models get396

0.5 points each. Table 5 shows the global scores, as397

well as the ranking of human preferences according398

to said score. We find that the gold standard ref-399

erence obtains the highest score, as expected, and400

that Llama3 ranks the highest among the automatic401

methods. Instruction-tuned models obtain worse402

scores compared to their base model counterparts,403

with a similar difference for both Llama3 and Mis-404

tral family of models. Finally, the evaluation also405

shows that humans clearly prefer the output of sys-406

tems based on Large Language Models compared407

to the MT baseline, which is voted as the worst408

model by a large margin.409

5.2 Error analysis410

In order to further explore differences between411

model performance, we analyse the most com-412

mon errors made by the CS generation models,413

both quantitatively and qualitatively. We adapt the414

methodology presented in Popović (2018), who415

proposes different typologies for machine transla-416

tion errors, and extend it to CS generation error417

analysis. To do so, we randomly select a set of418

100 outputs from all models and conduct a detailed419

examination of the types of errors present in them.420

This thorough analysis allows us to identify recur-421

ring patterns and propose a refined error typology422

specifically for automatic CS generation. This ini-423

tial error analysis yields 18 total error categories,424

which we simplify and group into three main er-425

ror types: a) CS errors, b) Translation Errors, and426

c) Format errors. The full error typology, along427

with detailed descriptions for each error type, is428

provided in Appendix D, while here we explain the429

three error categories:430

Llama3 Mistral Llama3
Instruct

Mistral
Instruct

MT baseline
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Error Distribution by Model

CS Errors
Translation Errors

Format Errors

Figure 1: Error distribution by model, obtained by count-
ing the number of instances that present errors of each
type.

CS Errors: Errors of sentences that are either 431

completely monolingual or switch between 432

languages in an unnatural manner, e.g., by 433

repeating the same word in English and Span- 434

ish. In Example 4, Llama3 Instruct preserves 435

the original meaning, but the sentence is fully 436

monolingual. 437

(4)

Source After all these things when
we’re done.

Output after all these things when we’re
finished

438

439
Translation errors: Critical errors that either 440

change the original meaning of the sentence 441

or introduce mistakes in fluency or grammar, 442

for example, using the wrong tense or word 443

order. Example 5 shows an instance where 444

Mistral Instruct outputs a seemingly natural 445

code-switched sentence, but the phrase “they 446

got hurt” is not adequately translated and the 447

meaning of the sentence is not preserved. 448

(5)

Source I wasn’t happy because they got
hurt.

Output no estuve happy porque me
dieron mal

449

450
Format errors: Errors in form that do not 451

make the sentences unintelligible nor change 452

their meaning, such as repetitions of a word 453

or phrase or incorrect punctuation. Example 454

6, by the model Llama3, accurately preserves 455

the original meaning and introduces CS, but 456

removes the username and adds a smiley face. 457

(6)
Source <user> old mexican remedies
Output old school remedios mexicanos :)

458
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Model BLEU BERTScore chrF

Llama3 34.49 81.64 53.17
Llama3 Instruct 33.42 81.77 52.01
Mistral 31.65 80.93 50.56
Mistral Instruct 25.98 78.66 44.58
MT Baseline 20.21 76.38 33.79

Table 6: Results of automatic metrics the EN2CS test
set. Best results in bold, second best results underlined.

We classify 500 additional instances (100 in-460

stances per model, obtained from the same source461

sentences) into these kind of errors, and show the462

results in Figure 1. The analysis indicates that463

the baseline MT system has the worst performance,464

with nearly twice as many errors as the best models.465

This is in line with the results of the preference-466

based evaluation, where MT ranked last. The467

most frequent errors made by the MT system —468

word repetition, missing information, and incor-469

rect translations — are particularly problematic, as470

they often make the output unintelligible or incom-471

plete. Among the pre-trained models, Llama mod-472

els make the fewest errors overall, with 19 fewer473

errors on average. Base models of both families474

struggle mainly with format errors, which make475

up 50.68% of their errors on average, whereas476

instruction-tuned models present more meaning-477

related issues, 53, 45%. This suggests that the lin-478

guistic knowledge of the models degrade when479

tuned on instructions, a phenomenon that has been480

observed on other related areas (Fu et al., 2024).481

CS-related mistakes are the least common in all482

models, accounting for less than 15% of the overall483

error count. It seems that the models have effec-484

tively learned to switch between languages natu-485

rally, though they may still be prone to other types486

of errors.487

6 Automatic Evaluation488

We perform a quantitative evaluation using tradi-489

tional metrics used in NLG. To that end, we use490

BLEU (Papineni et al., 2002), BERTScore (Zhang491

et al., 2020), and chrF (Popović, 2015), imple-492

mented with the evaluate library. All three are493

reference-based task-agnostic quality metrics that494

give results between 0-1, based on character-level495

F-score, n-gram precision and semantic similarity496

using contextual embeddings5 respectively.497

5BERTscore has been calculated using the embeddings
from the model Bert Base Multilingual Cased.

The results of the evaluation can be seen in Ta- 498

ble 6. The best two models are Llama3, with the 499

highest BLEU and chrF, and Llama3 Instruct, with 500

the highest BERTScore. They are closely followed 501

by less than 2 points in all metrics by Mistral, the 502

third best model overall. Finally, Mistral Instruct is 503

the pre-trained model with the lowest results. 504

The MT baseline obtains the lowest results over- 505

all, which is consistent with the qualitative eval- 506

uation described above, where the MT baseline 507

proves to be the worst system by a large margin. 508

However, it is worth noting that not all metrics 509

capture this gap in performance, since, according 510

to BERTScore, there is only a 2 point difference 511

between the MT baseline and Mistral, which is the 512

pre-trained LLM that obtains the worst metrics. It 513

is also interesting to compare these results with the 514

error analysis in Section 5.2. For instance, Mistral 515

Instruct yields low values for BLEU and chrF, in 516

line with its number of translation errors, as de- 517

picted in Figure 1. However, automatic metrics 518

fail to capture the fact that CS errors produced by 519

language model based systems are relatively low. 520

6.1 Correlation With Automatic Metrics 521

The automatic metrics used in the section before 522

are known to have poor correlation with human 523

judgment in NLG tasks (Sai et al., 2022), and in this 524

section we analyse whether this poor correlation 525

also occurs when evaluating CS generation. To that 526

end, we compare the automatic metrics results with 527

the preference-based scores obtained in Section 528

5.1. 529

We calculate Pearson’s (ρ) correlation coefficient 530

at instance-level, using the 550 instances employed 531

for the error classification and human evaluation 532

(the output of 5 models for 110 source sentences)6. 533

Each data point corresponds to the CS output of one 534

particular model for an English source sentence, 535

and we compute the correlation using two values: 536

the score obtained by the model for this instance in 537

the human preference-based evaluation of Section 538

5.1, and the score it attains if we apply the same 539

strategy using the values of the automatic metrics 540

to determine the winner. 541

The correlation coefficients are shown in Figure 542

2. The top part of the figure shows the correla- 543

tion using all the instances, whereas the bottom 544

part only considers those instances that showed 545

6We do not consider the reference CS sentence when cal-
culating the correlations.
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Figure 2: Heatmap of the correlations between human
scores and automatic metrics, calculated using the Pear-
son Correlation Coefficient. The correlations are calcu-
lated for all instances, as well as for different subsets of
instances, according to the type of errors they exhibit. *
indicates statistical significance (p ≤ 0.05).

some type of error, according to the error analysis546

described in Section 5.2. If we consider all the547

instances, the maximum ρ correlation value is 0.28,548

which indicates a low alignment with the scores549

assigned by automatic metrics and human judg-550

ments. The metric with highest correlation is chrF,551

which seems to confirm previous research that re-552

ports a higher correlation with human judgement553

than other metrics (Popović, 2015).554

Regarding the correlations according to the error555

types, all metrics obtain the highest correlation on556

errors related to meaning and format, which is ex-557

pected, as they were originally designed to evaluate558

MT systems. However, instances with CS errors559

show the lowest correlation overall, with only chrF560

showing ρ values above 0.05. Human evaluators561

were explicitly asked to never choose instances562

without CS, but automatic metrics are not sensitive563

to these nuances, and may assign high scores to564

instances regardless of whether they contain CS or565

not.566

All in all, these results confirm that several of567

the most commonly used automatic metrics for568

NLG have a poor correlation with human judg-569

ments when evaluating CS generation. This un-570

derscores the need to research more specialized571

evaluation methods which are designed specifically572

to capture the nuances of this task.573

7 Conclusion 574

In this work, we have presented a methodology to 575

leverage LLMs in the generation of code-switched 576

text from monolingual instances, specifically for 577

the English-Spanish language pair. 578

Our framework consists of back-translating nat- 579

ural code-switched instances (EN-ES) into mono- 580

lingual English sentences, and using the resulting 581

parallel corpus, dubbed EN2CS, to fine-tune autore- 582

gressive models to turn monolingual sentences into 583

CS. This approach has the potential to improve the 584

naturalness of CS generation, as the gold standard 585

CS text is not artificially generated. 586

We have provided an extensive evaluation of 587

the results of our models. On the one hand, we 588

perform a human evaluation of the outputs of the 589

models with two parts: a human preference based 590

evaluation and an error analysis of a subset of the 591

test sentences, where we find out three types of 592

errors: CS errors, errors in meaning and format 593

errors. On the other, we employ popular NLG 594

metrics to automatically evaluate the results of our 595

models, and calculate the correlation between both 596

types of evaluation. 597

Both the automatic metrics and the analysis of 598

the outputs of the models, as well as the human 599

evaluation, show that, when fine-tuning the mod- 600

els with LoRA, base models work better than their 601

instruction-tuned counterparts for this task, and that 602

the Llama3 family obtains better scores than the 603

Mistral family. This could be an example where in- 604

struction tuning degrades the base model’s linguis- 605

tic ability (Fu et al., 2024) or alternatively could 606

be related to differences in how LoRA fine-tuning 607

affects each model type. 608

Our analyses show low correlation between hu- 609

man and automatic evaluations, particularly in 610

cases with CS errors. This suggests that current 611

metrics are not adequate for assessing CS genera- 612

tion, which would require more specialized evalua- 613

tion methods. 614

We conclude that pre-trained models are able 615

to yield competent results and generate satisfac- 616

tory outputs, as the error analysis shows the less 617

abundant type of errors are those related to CS, as 618

opposed to problems in fluency, retaining the origi- 619

nal meaning of the sentences, and errors in format. 620

Human evaluation shows that their generations are 621

still not on a par with the original instances. 622
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Limitations623

Our research focuses on testing the capabilities624

of LLMs for CS generation, a field of interest in625

the research of many applications, yet still in need626

of more research. While our findings highlight627

promising potential, we also identify key areas for628

refinement and improvement, as well as promising629

lines for future research in this domain.630

We only perform an in-domain evaluation where631

the train, validation and test sets had the same ori-632

gin. Additionally, we would like to test the effi-633

ciency of our models in an out-of-domain setting,634

since one of the use-cases of a CS generation model635

is to create parallel corpora to evaluate the abilities636

of models to perform different tasks when there is637

CS.638

One of the key points of our research is using639

open-weight LLMs, however, the use of bigger,640

more powerful restricted-weights LLMs could very641

plausibly yield better results, even in a zero-shot642

scenario (Huzaifah et al., 2024).643

We want to acknowledge the fact that our ap-644

proach is dependent on having an initial set of code-645

switched sentences, which may not be available for646

all pairs of languages, especially in a low-resource647

scenario. We believe that it would be interesting to648

explore the possibility of a cross-lingual approach649

using our methodology, with English and/or Span-650

ish as pivot languages, that could be useful for651

transfer knowledge into other less-resourced lan-652

guage pairs.653

Finally, as we have pointed out, we are aware654

of the problems of the automatic metrics that we655

have used to evaluate the outputs of our models,656

that do not capture the nuances of our task. In657

the future, we would like to investigate how to658

improve this evaluation by designing new methods659

to automatically evaluate CS generation, focusing660

on a more linguistic approach able to capture the661

linguistic and social intricacies of CS.662

References663

Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.664
2020. LinCE: A centralized benchmark for linguis-665
tic code-switching evaluation. In Proceedings of the666
Twelfth Language Resources and Evaluation Confer-667
ence, pages 1803–1813, Marseille, France. European668
Language Resources Association.669

Rene Appel and Pieter C. Muysken. 2005. Language670
Contact and Bilingualism. Amsterdam University671
Press.672

Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yo- 673
garshi Vyas. 2014. “I am borrowing ya mixing ?” an 674
analysis of English-Hindi code mixing in Facebook. 675
In Proceedings of the First Workshop on Computa- 676
tional Approaches to Code Switching, pages 116–126, 677
Doha, Qatar. Association for Computational Linguis- 678
tics. 679

Anshul Bawa, Pranav Khadpe, Pratik Joshi, Kalika 680
Bali, and Monojit Choudhury. 2020. Do multilingual 681
users prefer chat-bots that code-mix? let’s nudge 682
and find out! Proc. ACM Hum.-Comput. Interact., 683
4(CSCW1). 684

Rachel Bawden and François Yvon. 2023. Investigating 685
the translation performance of a large multilingual 686
language model: the case of BLOOM. In Proceed- 687
ings of the 24th Annual Conference of the European 688
Association for Machine Translation, pages 157–170, 689
Tampere, Finland. European Association for Machine 690
Translation. 691

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 692
Maarten Bosma, Gaurav Mishra, Adam Roberts, 693
Paul Barham, Hyung Won Chung, Charles Sutton, 694
Sebastian Gehrmann, Parker Schuh, Kensen Shi, 695
Sasha Tsvyashchenko, Joshua Maynez, Abhishek 696
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin- 697
odkumar Prabhakaran, Emily Reif, Nan Du, Ben 698
Hutchinson, Reiner Pope, James Bradbury, Jacob 699
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 700
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 701
Sunipa Dev, Henryk Michalewski, Xavier Garcia, 702
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 703
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 704
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 705
David Dohan, Shivani Agrawal, Mark Omernick, An- 706
drew M. Dai, Thanumalayan Sankaranarayana Pil- 707
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, 708
Rewon Child, Oleksandr Polozov, Katherine Lee, 709
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark 710
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy 711
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, 712
and Noah Fiedel. 2023. Palm: Scaling language mod- 713
eling with pathways. Journal of Machine Learning 714
Research, 24(240):1–113. 715

Cohere For AI. 2024. c4ai-command-r-v01 (revision 716
8089a08). 717

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and 718
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning 719
of quantized llms. 720

Jean-Marc Dewaele and Li Wei. 2014. Attitudes to- 721
wards code-switching among adult mono- and multi- 722
lingual language users. Journal of Multilingual and 723
Multicultural Development, 35(3):235–251. 724
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Maja Popović. 2015. chrF: character n-gram F-score862
for automatic MT evaluation. In Proceedings of the863
Tenth Workshop on Statistical Machine Translation,864
pages 392–395, Lisbon, Portugal. Association for865
Computational Linguistics.866
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A Prompt Tuning964

We test the prompts in Table 7, combined with 0-,965

1- and 5-shot strategies. The prompts include the966

instructions explained in different ways, including967

more or less information.968

For the few-shot strategies, the prompt includes969

the following template at the beginning, alongside970

a set of manually selected examples:971

Here are {n} examples of a code-switched text972

that has been converted to {lang}:973

Testing the different prompts, we are able to974

choose the one whose outputs are closest to our975

needs, taking into consideration the trade-off be-976

tween including too little and too much level of977

specificity in the instructions to the models.978

Regarding the few-shot strategies, we find out979

that giving some examples to the models results in980

outputs that are more aligned with the expected out-981

put, which is logical, since this allows the models982

to more faithfully replicate the examples provided.983

The more examples given, the more the model is984

able to comply to leaving the punctuation marks as985

they are and not standardizing the spelling, but also986

it tends to add more colloquial terms and alternate987

spellings.988

B Post-edition Guidelines989

The original sentence should contain CS and be990

translatable. The main reasons to remove an in-991

stance altogether are:992

• If the sentence is very clearly monolingual993

and the CS has been detected incorrectly (eg,994

the case of interlingual homographs such as995

has).996

• When the sentence is bilingual for metalin-997

guistic reasons, because it makes the transla-998

tion tricky and hard to understand, and in most999

cases it’s not even CS.1000

• The part that is in the other language is a1001

named entity, such as a title, a name, . . .1002

• If the code-switched part is not translatable or1003

very hard to translate, probably because it’s a1004

borrowing. Ambiguous and a little bit up to 1005

the annotator. 1006

• If the tweet is saying the same thing in both 1007

languages (making it monolingual doesn’t 1008

make sense). 1009

• Some instances are tweets that are part of a 1010

conversation or thread and taken out of con- 1011

text are very hard to understand/intelligible. 1012

• Some tweets are not translatable because of 1013

wordplay that doesn’t transfer to monolingual 1014

speech. 1015

The result should be a monolingual sentence that 1016

has roughly the same meaning as the original sen- 1017

tence. The main reasons to edit a translation are: 1018

• If the meaning changes or the model has hallu- 1019

cinated extra information that wasn’t present 1020

in the original sentence. 1021

• If there are still some words in the Spanish. 1022

• Attempts to translate named entities. 1023

• Remove “meta comments” from the model 1024

about the task. 1025

It is not necessary to correct things like: 1026

• Punctuation marks. 1027

• Different spellings of the same word. 1028

• Words of phrases that the model has changed 1029

for synonyms. 1030

C Pairwise Annotation Guidelines 1031

The main objective of this task is two evaluate a pair 1032

of sentences that should contain code-switching 1033

between English and Spanish. It should be noted 1034

that models have been trained with texts extracted 1035

from social media and informal conversations, so 1036

the outputs of the models are expected to present 1037

traits of informality, such as common typos, that 1038

at first should not be considered errors, because 1039

they are within the expected behaviour of the mod- 1040

els. The criteria to choose between both sentences 1041

is to be applied in the following order: 1042

1. Code-switching 1043

12

https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176


Convert this code-switched phrase to English.

Convert this code-switched phrase to English without correcting the original spelling, focus on
translating the parts in Spanish.

Convert this code-switched phrase to English. Leave the parts in Spanish as they are, focus on
translating the parts in Spanish.
Convert this code-switched phrase to English. Directly output the translation and don’t correct the
original spelling, focus on translating the parts in Spanish.

Table 7: Different prompts that have been used to convert the code-switched instances into English, with different
levels of specificity. Final prompt in bold.

1.1. Presence of code-switching: For a sen-1044

tence to be a suitable candidate it must1045

have tokens in both languages. A com-1046

pletely monolingual sentence will always1047

be wrong.1048

1.2. Naturalness of the code-switching: A1049

switch between both languages can be1050

unnatural. There are different linguistic1051

constraints. For example, a switch is only1052

possible at a point in a sentence where1053

it does not violate the syntactic rules of1054

either language.1055

2. Content and fluency1056

2.1. Content: Sentences must have meaning1057

as a whole, they have to be understand-1058

able, without extra content disconnected1059

from the rest of the message or abrupt1060

interruptions.1061

2.2. Agreement: Sentences must have the1062

right gender and number agreement.1063

2.3. Conjugation: Verbs have to be correctly1064

conjugated.1065

3. Form: Additional errors that can be used in1066

case none of the above are applicable.1067

3.1. Repetitions of the same word or phrase.1068

3.2. Misspelled words / uncommon typos1069

3.3. Wrong punctuation marks1070

3.4. Extra characters1071

Ties are only contemplated in two situations:1072

• Two sentences that are equally wrong, that is1073

to say, they are both either completely mono-1074

lingual or unintelligible.1075

• Two sentences that are exactly the same and1076

thus no criteria can be used to break the tie.1077

In case no criteria is applicable to a pair, we ask 1078

the annotators to choose their preferred sentence, 1079

using their own judgement o additional criteria they 1080

might observe in the specific pair of sentences. 1081

D Error Typology 1082

1. CS errors 1083

1.1. No CS - the sentence is entirely mono- 1084

lingual. 1085

1.2. Unnatural CS - the sentence contains 1086

unnatural CS, either due to unnatural 1087

switching points, or unnatural register. 1088

1.3. Repetition in both languages - the sen- 1089

tence contains the same information re- 1090

peated in both languages, rather than CS. 1091

2. Translation errors 1092

2.1. Made-up words - the words in the out- 1093

put look like English or Spanish but do 1094

no actually exist. 1095

2.2. Wrong translation - the translation of 1096

a word or phrase is incorrect. 1097

2.3. Wrong conjugation - a verb is translated 1098

with the right lexeme but a seemingly 1099

made-up conjugation. 1100

2.4. Wrong agreement - there is a mistake 1101

in agreement in gender or number. 1102

2.5. Wrong meaning - a word or phrase has 1103

been translated into a sense that does not 1104

fit into the context. 1105

2.6. Wrong order - the words are right but 1106

they are written in the wrong order. 1107

2.7. Wrong tense - the verbal tense is not 1108

consistent through the sentence. 1109

2.8. Unintelligible - it is not possible to un- 1110

derstand the sentence in English nor in 1111

Spanish. 1112
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2.9. Instruction misunderstanding - the1113

task has been misunderstood, e.g., the1114

model makes a "comment" about the con-1115

tent of the output or explains a word.1116

3. Format errors1117

3.1. Extra words - the sentence contains1118

seemingly random extra words that do1119

not affect its meaning.1120

3.2. Extra characters - the sentence contains1121

more non-word characters than the origi-1122

nal, e.g., ‘???’ instead of ‘??’.1123

3.3. Hallucinations - the sentence contains1124

new words or phrases not derived from1125

the original text.1126

3.4. Start over - the sentence is finalized, but1127

the model begins a second translation of1128

the same sentence.1129

3.5. Duplications - some words or phrases of1130

the sentence are duplicated.1131
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