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Abstract

Code-switching (CS) is still a critical challenge
in Natural Language Processing (NLP). Cur-
rent Large Language Models (LLMs) struggle
to interpret and generate code-switched text,
primarily due to the scarcity of large-scale CS
datasets for training. This paper presents a
novel methodology to generate CS data using
LLMs, and test it on the English-Spanish lan-
guage pair. We propose back-translating natu-
ral CS sentences into monolingual English, and
using the resulting parallel corpus to fine-tune
LLMs to turn monolingual sentences into CS.
Unlike previous approaches to CS generation,
our methodology uses natural CS data as a start-
ing point, allowing models to learn its natural
distribution beyond grammatical patterns. We
thoroughly analyse the models’ performance
through a study on human preferences, a quali-
tative error analysis and an evaluation with pop-
ular automatic metrics. Results show that our
methodology generates fluent code-switched
text, expanding research opportunities in CS
communication, and that traditional metrics do
not correlate with human judgement when as-
sessing the quality of the generated CS data.
We release our code and generated dataset un-
der a CC-BY-NC-SA license.!

1 Introduction

Code-Switching (CS) consists of mixing two or
more languages within a single utterance and is
a common phenomenon in multilingual settings
(Tucker, 2001). Although it is mainly present in
spoken interactions, it can also be found in written
interactions on-line (Appel and Muysken, 2005;
Sarkisov, 2021), where it appears jointly with other
features of informal speech. Example 1 shows
an utterance where the speaker switches between
English and Spanish.

"URL to be announced upon acceptance.

(1)  Why make everybody sentarse atrds pa’ que
everybody has to move pa’ que se salga.
Why make everybody sit at the back so that
everybody has to move so that she may get

2
out.
(Poplack, 1980)

Despite the prevalence of code-switching, most
research in Natural Language Processing (NLP)
assumes monolingualism as a standard for human
communication. However, this implicit decision
means that state-of-the-art models are not able to
properly interpret or generate CS data. Even ad-
vances in multilingual language modelling (Lin
et al.,, 2022; Chowdhery et al., 2023) have not
led to significant improvements, and performance
on CS data is still poor compared to performance
on monolingual data (Aguilar et al., 2020; Winata
et al., 2021). This occurs because there is little CS
text available in the multilingual pretraining data.
Similarly, there are no parallel datasets available to
learn to generate CS in a supervised fashion, as one
would expect for tasks such as machine translation.
Finally, there is no clear methodology for evalu-
ating automatically generated CS text, as it has
specific needs different from other text generation
tasks.

It is therefore crucial to develop methodologies
to enable models to generate natural CS text and
simultaneously implement robust evaluation frame-
works that can assess how well NLP systems han-
dle CS across multiple tasks. We argue that both
of these goals require models that can condition-
ally generate CS from monolingual text. Conse-
quently, our research focuses on the development
of a methodology to fine-tune and evaluate LL.Ms
on the task of CS generation, following two main
research questions:

%In all examples of CS featured in this paper, Spanish
parts are shown in italics, in both the original instance and its
translation.



RQ1: Is it viable to approach CS generation with
natural CS text as a starting point?

RQ2: Do automatic metrics for Natural Lan-
guage Generation (NLG) correlate well with hu-
man judgement for the task of CS generation?

We propose a novel method to generate CS text
from monolingual text using LL.Ms, which requires
less data for fine-tuning. We apply this to the
English-Spanish pair (RQ1). Unlike prior work,
our approach leverages naturally occurring code-
switched data instead of artificial examples, allow-
ing models to learn its natural distribution. Ad-
ditionally, our source texts come from informal
contexts, making the output both code-switched
and informal — two intertwined phenomena. We
evaluate our methodology both qualitatively, with
a study on human preferences and a manual error
analysis, and quantitatively, using automatic NLG
metrics, which allows us to study the correlation
with between human and automatic evaluation for
this task (RQ2).

To summarize, the contributions presented in
this paper are the following:

* we develop a novel approach for CS genera-
tion through fine-tuning LLMs on a psuedo-
parallel corpus sourced from natural code-
switched data.

* we present a new parallel English-CS corpus,
EN2CS, with silver train and development
splits and a gold post-edited test set, which
can be used to train and evaluate model for
English-Spanish CS generation.

* we perform both human and automatic evalua-
tion of the results of models fine-tuned on this
dataset, and perform a study on the correlation
between human and automatic evaluation for
CS generation.

2 Related Work

Perspectives in linguistics. CS naturally occurs
in communities where two or more languages are
in contact, making it a subject of great interest to
fields like sociolinguistics and psycholinguistics.
From a social perspective, it can be affected by
the attitudes of the speakers towards the languages
and the CS phenomenon itself. In this respect, it
is related and associated with notions of prestige
and identity (Heredia et al., 2025). For example,

in bilingual communities where a language is mi-
noritized, CS can be regarded as an intrusion of
the majority language (Dewaele and Wei, 2014).
However, for migrant communities, it may be a
way to preserve their mother tongue and as an “em-
blem of ethnic identity” (Poplack, 1980). Once
again, its importance in different social contexts
highlights the need to consider CS in NLP research,
as it plays a crucial role in linguistic interactions
and, consequently, the development of language
technologies.

CS in NLP. The processing and understanding
of code-switched text can be crucial in the process-
ing of social media data (Bali et al., 2014), and
for speech applications, such as speech recogni-
tion or speech synthesis (Rallabandi and Black,
2017). In fact, non-monolingual speakers have
shown preference for chatbots that use CS (Bawa
et al., 2020). Different approaches may include
normalization (Parikh and Solorio, 2021), machine
translation (Xu and Yvon, 2021) or modeling code-
switched text (Gonen and Goldberg, 2019). The
survey by Winata et al. (2023) covers trends and
advances in NLP for code-switched text, includ-
ing main fields of interest and future research lines.
Dogruoz et al. (2021) explain advances in applica-
tions of language technologies for code-switched
text from a linguistic and social perspective.

Datasets & benchmarks for CS. The majority
of code-switched data is obtained from social me-
dia, and other popular data sources include record-
ings and transcriptions (Winata et al., 2023). There
have been several shared tasks that deal with CS,
for the tasks of Language Identification (Solorio
et al., 2014; Molina et al., 2016) and Sentiment
Analysis (Patwa et al., 2020). Two popular bench-
marks have been created to answer the demand for
evaluation of CS that covers different language
pairs and tasks: LINCE (Aguilar et al., 2020),
which covers traditional tasks such as Part Of
Speech tagging (POS) or Sentiment Analysis (SA);
and GLUECoS (Khanuja et al., 2020), which incor-
porates NLU tasks for the Hindi-English pair. As
of today, GLUECoS cannot be used without access
to the X APL

CS generation. CS generation has seldom been
tackled in previous research. Approaches include
using linguistically informed techniques that aim to
find out plausible switching points (Pratapa et al.,
2018; Gupta et al., 2020; Gregorius and Okadome,



2022), data augmentation (Tarunesh et al., 2021)
and, more recently, prompting LLMs for CS gen-
eration (Yong et al., 2023). To the best of our
knowledge, there is no previous research on CS
generation with natural CS as a starting point.

3 Parallel Data Creation

In this work we present a novel approach to gener-
ate code-switched text from monolingual sentences.
As a first step, we create a synthetic parallel corpus
from an initial set of English-Spanish CS sentences
with their English monolingual equivalents, gen-
erated by the Command R model (Cohere For Al,
2024). We exploit the fact that LLMs struggle to
generate CS text given a monolingual sentence, but
are able to more reliably convert a CS sentence to
its corresponding monolingual version, especially
when the target language is English. After having
created this pseudo-parallel corpus, we use it to
fine-tune LLMs on the task of conditional code-
switching generation, presented in Section 4.

3.1 The LINCE benchmark

We use LINCE as a starting point, a popular bench-
mark that has been widely used to evaluate CS
systems (Aguilar et al., 2020), which is available in
6 language pairs. This benchmark contains annota-
tions for 5 different tasks: Language Identification
(LID), Part Of Speech tagging (POS), Named En-
tity Recognition (NER), and Sentiment Analysis
(SA). All sentences in LINCE are tokenized, and
each token is annotated with a language tag as well
as other categories depending on the task. In our
work we focus on the English-Spanish pair and
filter all sentences in the data that do not contain
CS, similarly discarding all the task-specific anno-
tations. Example 2 shows a random instance from
LINCE.

estaba aqui three feet away
spa spa eng eng eng

2 engécspa

LINCE comprises around 95, 000 train, 20, 000
development, and 33,000 test instances for the
English-Spanish pair. We deduplicate the instances
among splits, and filter and pre-process the in-
stances to ensure that they are suitable for our task
by removing links, replacing usernames with the
placeholder <user>, and detokenizing all instances
with the script provided as part of the Moses toolkit
(Koehn et al., 2007). After this preprocessing, we
obtain a more natural version of the LINCE data. A

Train Dev Test
Original 94,728 19,574 33,361
Pre-processed 27,684 2,461 5,353
EN2CS 10,703 792 1,040

Table 1: Size of original LINCE (EN-ES) compared to
the automatically filtered instances and the final set of
parallel instances, dubbed EN2CS.

preliminary analysis reveals that many sentences in
LINCE are monolingual or contain a single word in
one language that often correspond to a borrowing,
as shown in Example 3. In order to ensure that
all of our sentences actually contain CS, we filter
sentences that do not have at least two words in
each language.

(3) I need a shot of tequila or a glass of scotch
to keep me warm right now.

After these pre-processing and filtering steps, we
end up with 27,684 train, 2,461 development and
5, 353 test instances. The comparison between the
original size of LINCE and the final number of
sentences selected for our experiments after pre-
processing is shown in Table 1.

3.2 EN2CS

The next step in our method requires creating a
pseudo-parallel English-CS dataset by translating
the natural code-switched instances into monolin-
gual text. As there are no available machine trans-
lation systems to convert from English-Spanish CS
text to English monolingual text, we instead make
use of prompt engineering, using the Command R
model (Cohere For Al, 2024), one of the strongest
publicly available models at the time.

We perform an initial set of experiments to deter-
mine the optimal prompt to generate monolingual
English versions of the code-switched data. Ideally,
we aim for a prompt that generates translations that
maintain the meaning of the original sentences, are
fluent and natural, whose grammar is correct and
that does not contain any Spanish words or phrases.
The tested prompts are listed and explained in Ap-
pendix A, and the prompt that generates outputs
closest to the desired ones is: Now convert this
code-switched phrase to English. Leave the parts
in English as they are, focus on translating the
parts in Spanish. Preliminary experiments also
showed that a few-shot strategy helps the model



Original

English

you just have to tell me que como te va.

You just have to tell me how it’s going.

Silver
osea i know we wanna party pero tampoco no aya asta dallas  like i know we want to party but not all the way to dallas
fully enamorada de mis eyelash extensions I’m totally in love with my eyelash extensions

Gold hasta venir a plaza se siente like home. even coming to the square feels like home.

me siento tan pendejo right now.

i feel so stupid right now.

y no te dan problemas as long as you put that it was frozen.

and they don’t give you problems as long as you put that it was frozen.

Table 2: Examples of the EN2CS parallel corpus. Left: original code-switched instances, right: generated (silver) or

post-edited (gold) English instances.

for the task at hand, so the prompt is enriched with
5 manually selected examples that show how the
output should look like.

The generated monolingual sentences are further
processed, and instances that contain profanity or
that are prefaced with a direct mention of the task,
such as “Of course, here’s your translation:” are
discarded.

In order to create a true gold standard test set
to evaluate a CS generation model, we perform
a manual post-edition of the the monolingual test
translations for 1, 040 instances of the LINCE test
set. The post-edition was carried out by three profi-
cient speakers of English and Spanish, who were
provided with specific guidelines as shown in Ap-
pendix B.

Table 1 shows the final size of the parallel cor-
pus, which we dub EN2CS, after post-processing
and post-edition, and Table 2 shows examples of
silver and gold instances. The final version of our
dataset therefore contains 10, 703 train and 792 de-
velopment instances with automatically translated
English sentences matched to their original CS sen-
tences, and 1,040 gold instances with corrected
English translations.

4 CS generation experiments

With EN2CS as our starting point, we frame CS
generation as a machine translation task, with En-
glish as the source and CS as the target language,
where parts of the source sentence have to be trans-
lated to Spanish. In our experiments we try four
generative models, namely, Llama3, Llama3 In-
struct (Dubey et al., 2024), Mistral and Mistral
Instruct (Jiang et al., 2023).> All the models are
trained with the causal language modelling objec-
tive, but we use different input formats for the base

3Llama3 models are used in their 8B size (Base and In-
struct). Mistral models are used in their 7B size, version 0.3
(Base and Instruct).

Base model

I want to not work and make money. = quiero no trabajar
and make money

Instruction-tuned model

system prompt: "You are a bilingual speaker of English
and Spanish. Translate the following English sentence
into code-switched text between both languages:"

user: "I want to not work and make money."

assistant: "quiero no trabajar and make money"

Table 3: Examples and format of prompts used for fine-
tuning base and instruction-tuned models

and instruct models. For base models we follow
(Zhu et al., 2024) and use templates in the form of
“<X>=<Y>", where <X> and <Y> are placeholders
for the input English sentence and generated CS, re-
spectively. At inference, the second code-switched
part is left empty for the model to fill. For fine-
tuning instruction-tuned models, we provide them
with a system prompt that contains the instruction,
a query by the user in English, and an answer from
the assistant with the code-switched target. At in-
ference time, the same system prompt is used, and
the user prompt contains the English sentence, so
that the model generates the assistant part. Table 3
shows examples of the format used for fine-tuning
base and instruction-tuned models.

All models are trained using Quantized Low-
Rank Adaptation (QLoRA) (Dettmers et al., 2023),
to ensure memory and parameter efficiency, with
standard parameters: the model is loaded in 4 bit
with NF4 quantization data type and bf16 computa-
tional data type. The LoRA rank and scaling factor
are set to 16 and the dropout to 0.05. We apply the
LoRA update matrices to the attention blocks and
do not train bias parameters. Regarding the hyper-
parameters, we only tune the learning rate (le™,
5e4, 1e73 and 5e%) and training epoch € [1. .. 10],
choosing the parameters that give the lowest cross-
entropy loss on the development set for each model.


https://huggingface.co/Undi95/Meta-Llama-3-8B-hf
https://huggingface.co/Undi95/Meta-Llama-3-8B-Instruct-hf
https://huggingface.co/Undi95/Meta-Llama-3-8B-Instruct-hf
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

Model Generated Output

Original (Gold)  damm todos se casaron and we still single lol forever alone

English (Source) damn everyone got married and we’re still single lol forever alone

MT Baseline damn everyone got married and we still be single lol

Llama3 damn todos se fueron a casarse y nosotras estamos solitarias lol forever alone
Llama3 Instruct  damm everyl got married and we’re still single lol alonso solit@o foreverrrr lolololo
Mistral damm everyone got married y ni somos esa lol ofrever alone

Mistral Instruct

dude todo el mundo se caso y nosotros hemos quedado solteros 1ol

Table 4: Example from the test set and the generated outputs of the different models.

We use the transformers package (Wolf et al., 2020)
for all training experiments.

Early experiments indicated that the models’ out-
puts are longer than expected and usually produce
the desired output up to a punctuation mark and
then either begin to translate the sentence again or
hallucinate more content. We therefore truncate the
output up to a punctuation mark where the length
is closest to that of the original sentence. We ad-
ditionally experimented with the length_penalty
and exponential_length_decay generation param-
eters, as well as trying to control the length of the
generation with length codes, but find that the trun-
cation heuristic performs the best. Accordingly, all
further experiments will use the truncated output.
This overgeneration problem has been reported in
previous papers, where similar truncation strategies
have been adopted (Bawden and Yvon, 2023).

We also include a dedicated encoder-decoder
model as a baseline, trained on EN2CS using
the MarianNMT toolkit (Junczys-Dowmunt et al.,
2018), with a mini-batch size automatically se-
lected for the available memory*. Optimization is
performed using Adam (Kingma and Ba, 2015),
with « = 0.0003, 1 = 0.9, B2 = 0.98 and
e = 1079, using a standard learning rate of 3e~*.
Validation is conducted every 100 steps, and train-
ing stops if perplexity showed no improvement
after 5 consecutive checkpoints.

Table 4 shows an example of the outputs of the
different models, compared to the original code-
switched sentence and the English monolingual
sentence that they received as input.

“We used two GPUs and 8G'B per GPU.

5 Qualitative evaluation

As a first step to assess the quality of the outputs
produced by the different models, we perform a
manual qualitative analysis of the results in two
parts: a pairwise tournament-based human evalua-
tion, and an in-depth analysis of the most common
errors made by the models and their distribution.

5.1 Preference based evaluation

We perform a tournament-based evaluation that al-
lows us to determine the ranking of models in terms
of human preference. A total of 660 instances are
matched against each other, corresponding to the
outputs of the five models for 110 English source
sentences, as well as the gold standard reference.
The evaluation is conducted pairwise, requiring an-
notators to choose the best out of two sentences
or declare a tie. When choosing the best sentence,
annotators do not know the original English sen-
tence, nor which model produced what output. This
process results in 110 - (g) = 1,650 comparisons,
and was carried out by 11 annotators, with each
annotator performing 150 random comparisons.

Annotators are provided with a series of criteria
to choose between the instances, devised after the
error analysis described in the next section. They
must take into account three main criteria, that must
be applied in the following order: a) the presence
and naturalness of the CS; b) the content and flu-
ency of the sentences; and c) the orthographical
errors of the instances (correct punctuation, pres-
ence of typos, etc.). Annotators are furthermore
asked to avoid declaring ties, unless completely
necessary (e.g., in a case where both sentences are
completely monolingual and therefore equally in-
correct), to compel them to develop a preference.
The complete annotation guidelines are available
in Appendix C.



Ranking Model Score

&  GoldStandard 3925
&  Llama3 3255
é Llama3 Instruct 303.0
4 Mistral 285.5
5 Mistral Instruct  242.0
6 MT Baseline 101.5

Table 5: Ranking of models according to the human
preference score.

With the results of the pairwise comparisons, we
calculate a global score for each model, as follows:
every time a model is voted, it gets 1 point, and the
loser gets O points; in case of ties, both models get
0.5 points each. Table 5 shows the global scores, as
well as the ranking of human preferences according
to said score. We find that the gold standard ref-
erence obtains the highest score, as expected, and
that Llama3 ranks the highest among the automatic
methods. Instruction-tuned models obtain worse
scores compared to their base model counterparts,
with a similar difference for both Llama3 and Mis-
tral family of models. Finally, the evaluation also
shows that humans clearly prefer the output of sys-
tems based on Large Language Models compared
to the MT baseline, which is voted as the worst
model by a large margin.

5.2 Error analysis

In order to further explore differences between
model performance, we analyse the most com-
mon errors made by the CS generation models,
both quantitatively and qualitatively. We adapt the
methodology presented in Popovi¢ (2018), who
proposes different typologies for machine transla-
tion errors, and extend it to CS generation error
analysis. To do so, we randomly select a set of
100 outputs from all models and conduct a detailed
examination of the types of errors present in them.
This thorough analysis allows us to identify recur-
ring patterns and propose a refined error typology
specifically for automatic CS generation. This ini-
tial error analysis yields 18 total error categories,
which we simplify and group into three main er-
ror types: a) CS errors, b) Translation Errors, and
c) Format errors. The full error typology, along
with detailed descriptions for each error type, is
provided in Appendix D, while here we explain the
three error categories:

Error Distribution by Model

o1 @ CS Errors mm Format Errors
Translation Errors
12
€ 105
3 1
o
O 79 83
o
S 71
4
=
w -

Mistral Mistral

Instruct

Llama3 MT baseline

Instruct

Llama3

Figure 1: Error distribution by model, obtained by count-
ing the number of instances that present errors of each

type.

CS Errors: Errors of sentences that are either
completely monolingual or switch between
languages in an unnatural manner, e.g., by
repeating the same word in English and Span-
ish. In Example 4, Llama3 Instruct preserves
the original meaning, but the sentence is fully
monolingual.

Source After all these things when
we’re done.
after all these things when we’re

finished

“) Output

Translation errors: Critical errors that either
change the original meaning of the sentence
or introduce mistakes in fluency or grammar,
for example, using the wrong tense or word
order. Example 5 shows an instance where
Mistral Instruct outputs a seemingly natural
code-switched sentence, but the phrase “they
got hurt” is not adequately translated and the
meaning of the sentence is not preserved.

Source I wasn’t happy because they got
hurt.
no estuve happy porque me

dieron mal

) Output

Format errors: Errors in form that do not
make the sentences unintelligible nor change
their meaning, such as repetitions of a word
or phrase or incorrect punctuation. Example
6, by the model Llama3, accurately preserves
the original meaning and introduces CS, but
removes the username and adds a smiley face.

Source <user> old mexican remedies
Output old school remedios mexicanos :)

(6)



Model BLEU BERTScore chrF
Llama3 34.49 81.64 53.17
Llama3 Instruct  33.42 81.77 52.01
Mistral 31.65 80.93 50.56
Mistral Instruct  25.98 78.66 44.58
MT Baseline 20.21 76.38 33.79

Table 6: Results of automatic metrics the EN2CS test
set. Best results in bold, second best results underlined.

We classify 500 additional instances (100 in-
stances per model, obtained from the same source
sentences) into these kind of errors, and show the
results in Figure 1. The analysis indicates that
the baseline MT system has the worst performance,
with nearly twice as many errors as the best models.
This is in line with the results of the preference-
based evaluation, where MT ranked last. The
most frequent errors made by the MT system —
word repetition, missing information, and incor-
rect translations — are particularly problematic, as
they often make the output unintelligible or incom-
plete. Among the pre-trained models, Llama mod-
els make the fewest errors overall, with 19 fewer
errors on average. Base models of both families
struggle mainly with format errors, which make
up 50.68% of their errors on average, whereas
instruction-tuned models present more meaning-
related issues, 53, 45%. This suggests that the lin-
guistic knowledge of the models degrade when
tuned on instructions, a phenomenon that has been
observed on other related areas (Fu et al., 2024).
CS-related mistakes are the least common in all
models, accounting for less than 15% of the overall
error count. It seems that the models have effec-
tively learned to switch between languages natu-
rally, though they may still be prone to other types
of errors.

6 Automatic Evaluation

We perform a quantitative evaluation using tradi-
tional metrics used in NLG. To that end, we use
BLEU (Papineni et al., 2002), BERTScore (Zhang
et al., 2020), and chrF (Popovié, 2015), imple-
mented with the evaluate library. All three are
reference-based task-agnostic quality metrics that
give results between 0-1, based on character-level
F-score, n-gram precision and semantic similarity
using contextual embeddings’ respectively.

SBERTscore has been calculated using the embeddings
from the model Bert Base Multilingual Cased.

The results of the evaluation can be seen in Ta-
ble 6. The best two models are Llama3, with the
highest BLEU and chrF, and Llama3 Instruct, with
the highest BERTScore. They are closely followed
by less than 2 points in all metrics by Mistral, the
third best model overall. Finally, Mistral Instruct is
the pre-trained model with the lowest results.

The MT baseline obtains the lowest results over-
all, which is consistent with the qualitative eval-
uation described above, where the MT baseline
proves to be the worst system by a large margin.
However, it is worth noting that not all metrics
capture this gap in performance, since, according
to BERTScore, there is only a 2 point difference
between the MT baseline and Mistral, which is the
pre-trained LLLM that obtains the worst metrics. It
is also interesting to compare these results with the
error analysis in Section 5.2. For instance, Mistral
Instruct yields low values for BLEU and chrF, in
line with its number of translation errors, as de-
picted in Figure 1. However, automatic metrics
fail to capture the fact that CS errors produced by
language model based systems are relatively low.

6.1 Correlation With Automatic Metrics

The automatic metrics used in the section before
are known to have poor correlation with human
judgment in NLG tasks (Sai et al., 2022), and in this
section we analyse whether this poor correlation
also occurs when evaluating CS generation. To that
end, we compare the automatic metrics results with
the preference-based scores obtained in Section
5.1.

We calculate Pearson’s (p) correlation coefficient
at instance-level, using the 550 instances employed
for the error classification and human evaluation
(the output of 5 models for 110 source sentences)®.
Each data point corresponds to the CS output of one
particular model for an English source sentence,
and we compute the correlation using two values:
the score obtained by the model for this instance in
the human preference-based evaluation of Section
5.1, and the score it attains if we apply the same
strategy using the values of the automatic metrics
to determine the winner.

The correlation coefficients are shown in Figure
2. The top part of the figure shows the correla-
tion using all the instances, whereas the bottom
part only considers those instances that showed

®We do not consider the reference CS sentence when cal-
culating the correlations.


https://huggingface.co/docs/evaluate/index
https://huggingface.co/google-bert/bert-base-multilingual-cased
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Figure 2: Heatmap of the correlations between human
scores and automatic metrics, calculated using the Pear-
son Correlation Coefficient. The correlations are calcu-
lated for all instances, as well as for different subsets of
instances, according to the type of errors they exhibit. *
indicates statistical significance (p < 0.05).

some type of error, according to the error analysis
described in Section 5.2. If we consider all the
instances, the maximum p correlation value is 0.28,
which indicates a low alignment with the scores
assigned by automatic metrics and human judg-
ments. The metric with highest correlation is chrF,
which seems to confirm previous research that re-
ports a higher correlation with human judgement
than other metrics (Popovié, 2015).

Regarding the correlations according to the error
types, all metrics obtain the highest correlation on
errors related to meaning and format, which is ex-
pected, as they were originally designed to evaluate
MT systems. However, instances with CS errors
show the lowest correlation overall, with only chrF
showing p values above 0.05. Human evaluators
were explicitly asked to never choose instances
without CS, but automatic metrics are not sensitive
to these nuances, and may assign high scores to
instances regardless of whether they contain CS or
not.

All in all, these results confirm that several of
the most commonly used automatic metrics for
NLG have a poor correlation with human judg-
ments when evaluating CS generation. This un-
derscores the need to research more specialized
evaluation methods which are designed specifically
to capture the nuances of this task.

7 Conclusion

In this work, we have presented a methodology to
leverage LLMs in the generation of code-switched
text from monolingual instances, specifically for
the English-Spanish language pair.

Our framework consists of back-translating nat-
ural code-switched instances (EN-ES) into mono-
lingual English sentences, and using the resulting
parallel corpus, dubbed EN2CS, to fine-tune autore-
gressive models to turn monolingual sentences into
CS. This approach has the potential to improve the
naturalness of CS generation, as the gold standard
CS text is not artificially generated.

We have provided an extensive evaluation of
the results of our models. On the one hand, we
perform a human evaluation of the outputs of the
models with two parts: a human preference based
evaluation and an error analysis of a subset of the
test sentences, where we find out three types of
errors: CS errors, errors in meaning and format
errors. On the other, we employ popular NLG
metrics to automatically evaluate the results of our
models, and calculate the correlation between both
types of evaluation.

Both the automatic metrics and the analysis of
the outputs of the models, as well as the human
evaluation, show that, when fine-tuning the mod-
els with LoRA, base models work better than their
instruction-tuned counterparts for this task, and that
the Llama3 family obtains better scores than the
Mistral family. This could be an example where in-
struction tuning degrades the base model’s linguis-
tic ability (Fu et al., 2024) or alternatively could
be related to differences in how LoRA fine-tuning
affects each model type.

Our analyses show low correlation between hu-
man and automatic evaluations, particularly in
cases with CS errors. This suggests that current
metrics are not adequate for assessing CS genera-
tion, which would require more specialized evalua-
tion methods.

We conclude that pre-trained models are able
to yield competent results and generate satisfac-
tory outputs, as the error analysis shows the less
abundant type of errors are those related to CS, as
opposed to problems in fluency, retaining the origi-
nal meaning of the sentences, and errors in format.
Human evaluation shows that their generations are
still not on a par with the original instances.



Limitations

Our research focuses on testing the capabilities
of LLMs for CS generation, a field of interest in
the research of many applications, yet still in need
of more research. While our findings highlight
promising potential, we also identify key areas for
refinement and improvement, as well as promising
lines for future research in this domain.

We only perform an in-domain evaluation where
the train, validation and test sets had the same ori-
gin. Additionally, we would like to test the effi-
ciency of our models in an out-of-domain setting,
since one of the use-cases of a CS generation model
is to create parallel corpora to evaluate the abilities
of models to perform different tasks when there is
CS.

One of the key points of our research is using
open-weight LLMs, however, the use of bigger,
more powerful restricted-weights LLMs could very
plausibly yield better results, even in a zero-shot
scenario (Huzaifah et al., 2024).

We want to acknowledge the fact that our ap-
proach is dependent on having an initial set of code-
switched sentences, which may not be available for
all pairs of languages, especially in a low-resource
scenario. We believe that it would be interesting to
explore the possibility of a cross-lingual approach
using our methodology, with English and/or Span-
ish as pivot languages, that could be useful for
transfer knowledge into other less-resourced lan-
guage pairs.

Finally, as we have pointed out, we are aware
of the problems of the automatic metrics that we
have used to evaluate the outputs of our models,
that do not capture the nuances of our task. In
the future, we would like to investigate how to
improve this evaluation by designing new methods
to automatically evaluate CS generation, focusing
on a more linguistic approach able to capture the
linguistic and social intricacies of CS.
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A Prompt Tuning

We test the prompts in Table 7, combined with O-,
1- and 5-shot strategies. The prompts include the
instructions explained in different ways, including
more or less information.

For the few-shot strategies, the prompt includes
the following template at the beginning, alongside
a set of manually selected examples:

Here are {n} examples of a code-switched text
that has been converted to {lang):

Testing the different prompts, we are able to
choose the one whose outputs are closest to our
needs, taking into consideration the trade-off be-
tween including too little and too much level of
specificity in the instructions to the models.

Regarding the few-shot strategies, we find out
that giving some examples to the models results in
outputs that are more aligned with the expected out-
put, which is logical, since this allows the models
to more faithfully replicate the examples provided.
The more examples given, the more the model is
able to comply to leaving the punctuation marks as
they are and not standardizing the spelling, but also
it tends to add more colloquial terms and alternate
spellings.

B Post-edition Guidelines

The original sentence should contain CS and be
translatable. The main reasons to remove an in-
stance altogether are:

* If the sentence is very clearly monolingual
and the CS has been detected incorrectly (eg,
the case of interlingual homographs such as
has).

* When the sentence is bilingual for metalin-
guistic reasons, because it makes the transla-
tion tricky and hard to understand, and in most
cases it’s not even CS.

* The part that is in the other language is a
named entity, such as a title, a name, ...

o If the code-switched part is not translatable or
very hard to translate, probably because it’s a
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borrowing. Ambiguous and a little bit up to
the annotator.

If the tweet is saying the same thing in both
languages (making it monolingual doesn’t
make sense).

Some instances are tweets that are part of a
conversation or thread and taken out of con-
text are very hard to understand/intelligible.

Some tweets are not translatable because of
wordplay that doesn’t transfer to monolingual
speech.

The result should be a monolingual sentence that
has roughly the same meaning as the original sen-
tence. The main reasons to edit a translation are:

* If the meaning changes or the model has hallu-
cinated extra information that wasn’t present
in the original sentence.

If there are still some words in the Spanish.
Attempts to translate named entities.

Remove “meta comments” from the model
about the task.

It is not necessary to correct things like:
* Punctuation marks.
* Different spellings of the same word.

* Words of phrases that the model has changed
for synonyms.

C Pairwise Annotation Guidelines

The main objective of this task is two evaluate a pair
of sentences that should contain code-switching
between English and Spanish. It should be noted
that models have been trained with texts extracted
from social media and informal conversations, so
the outputs of the models are expected to present
traits of informality, such as common typos, that
at first should not be considered errors, because
they are within the expected behaviour of the mod-
els. The criteria to choose between both sentences
is to be applied in the following order:

1. Code-switching
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Convert this code-switched phrase to English.

Convert this code-switched phrase to English without correcting the original spelling, focus on
translating the parts in Spanish.

Convert this code-switched phrase to English. Leave the parts in Spanish as they are, focus on
translating the parts in Spanish.

Convert this code-switched phrase to English. Directly output the translation and don’t correct the
original spelling, focus on translating the parts in Spanish.

Table 7: Different prompts that have been used to convert the code-switched instances into English, with different
levels of specificity. Final prompt in bold.

1.1.

1.2.

Presence of code-switching: For a sen-
tence to be a suitable candidate it must
have tokens in both languages. A com-
pletely monolingual sentence will always
be wrong.

Naturalness of the code-switching: A
switch between both languages can be
unnatural. There are different linguistic
constraints. For example, a switch is only
possible at a point in a sentence where
it does not violate the syntactic rules of
either language.

2. Content and fluency

2.1.

2.2.

2.3.

Content: Sentences must have meaning
as a whole, they have to be understand-
able, without extra content disconnected
from the rest of the message or abrupt
interruptions.

Agreement: Sentences must have the
right gender and number agreement.

Conjugation: Verbs have to be correctly
conjugated.

3. Form: Additional errors that can be used in
case none of the above are applicable.

3.1.
3.2.
3.3.
3.4.

Repetitions of the same word or phrase.
Misspelled words / uncommon typos
Wrong punctuation marks

Extra characters

Ties are only contemplated in two situations:

» Two sentences that are equally wrong, that is
to say, they are both either completely mono-
lingual or unintelligible.

* Two sentences that are exactly the same and
thus no criteria can be used to break the tie.
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In case no criteria is applicable to a pair, we ask
the annotators to choose their preferred sentence,
using their own judgement o additional criteria they
might observe in the specific pair of sentences.

D Error Typology

1. CS errors

2.

1.1.

1.2.

1.3.

No CS - the sentence is entirely mono-
lingual.

Unnatural CS - the sentence contains
unnatural CS, either due to unnatural
switching points, or unnatural register.
Repetition in both languages - the sen-
tence contains the same information re-
peated in both languages, rather than CS.

Translation errors

2.1.

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

Made-up words - the words in the out-
put look like English or Spanish but do
no actually exist.

Wrong translation - the translation of
a word or phrase is incorrect.

Wrong conjugation - a verb is translated
with the right lexeme but a seemingly
made-up conjugation.

Wrong agreement - there is a mistake
in agreement in gender or number.
Wrong meaning - a word or phrase has
been translated into a sense that does not
fit into the context.

Wrong order - the words are right but
they are written in the wrong order.
Wrong tense - the verbal tense is not
consistent through the sentence.
Unintelligible - it is not possible to un-
derstand the sentence in English nor in
Spanish.



3.

2.9.

Instruction misunderstanding - the
task has been misunderstood, e.g., the
model makes a "comment" about the con-
tent of the output or explains a word.

Format errors

3.1.

3.2.

3.3.

3.4.

3.5.

Extra words - the sentence contains
seemingly random extra words that do
not affect its meaning.

Extra characters - the sentence contains
more non-word characters than the origi-
nal, e.g., ‘7?7 instead of ‘77".
Hallucinations - the sentence contains
new words or phrases not derived from
the original text.

Start over - the sentence is finalized, but
the model begins a second translation of
the same sentence.

Duplications - some words or phrases of
the sentence are duplicated.
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