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ABSTRACT

Training large language models to acquire specific skills remains a challenging
endeavor. Conventional training approaches often struggle with data distribution
imbalances and inadequacies in objective functions that do not align well with
task-specific performance. To address these challenges, we introduce CycleQD,
a novel approach that leverages the Quality Diversity framework through a cyclic
adaptation of the algorithm, along with a model merging based crossover and an
SVD-based mutation. In CycleQD, each task’s performance metric is alternated
as the quality measure while the others serve as the behavioral characteristics.
This cyclic focus on individual tasks allows for concentrated effort on one task
at a time, eliminating the need for data ratio tuning and simplifying the design of
the objective function. Empirical results from AgentBench indicate that applying
CycleQD to LLAMA3-8B-INSTRUCT based models not only enables them to sur-
pass traditional fine-tuning methods in coding, operating systems, and database
tasks, but also achieves performance on par with GPT-3.5-TURBO, which poten-
tially contains much more parameters, across these domains. Crucially, this en-
hanced performance is achieved while retaining robust language capabilities, as
evidenced by its performance on widely adopted language benchmark tasks. We
highlight the key design choices in CycleQD, detailing how these contribute to its
effectiveness. Furthermore, our method is general and can be applied to image
segmentation models, highlighting its applicability across different domain
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creation of intelligent LLM-based agents,
making continual agentic fine-tuning a
critical development in the field (Gur et al.}
2023 ILiu et al.l [2023b; (Xi et al., [2023;
2024;|Wang et al.,[2024b). However, train-
ing LLMs to acquire various agent skills
presents two major challenges that compli-
cate their development.
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Figure 1: Method Overview. CycleQD uses QD in
a cyclic manner to merge LLMs. Archives are initial-
ized with expert LLMs, each of which has been fine-
tuned to excel in a specific task. Model merging is con-
ducted using QD, treating task performance as quality
(Q) and behavior characteristics (BC), which are cycli-
cally swapped in each generation.
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A significant difficulty arises from the need to balance data ratios during training, to ensure that the
model learns effectively from datasets representing different skills without favoring any particular
one and without neglecting others. For example, researchers have identified the significant influence
of code training to a model’s inferential generation and thinking capabilities (Liu et al.l 2023b).
Comparing CODELLAMA and LLAMA-2, the former shows a significant edge in tasks that follow
a relatively static procedure after being tuned on code data, yet at the same time reveals decreased
performance in tasks that require general thinking abilities.

In addition, conventional objective functions, such as next token prediction, often fail to capture
the nuances required for performance across diverse tasks, typically leading to sub-optimal training
outcomes. This function, although effective for general language understanding, does not foster the
development of specific agent skills. An alternative, such as reinforcement learning (RL), has been
shown to align LLMs with user intents more effectively: |Ouyang et al.|(2022) demonstrated aligning
LLMs with user intents by RL from human feedback, where a reward model is trained from a dataset
of human-ranked model outputs. This method has later on been adopted by many others and become
an industrial standard. Fortunately, unlike general language tasks, the “rewards” are clearly defined
in most agent tasks. On the other hand, managing the balance of rewards in learning tasks and the
associated costs of fine-tuning pose additional problems.

In response to these challenges, we propose CycleQD, a novel framework that leverages the Quality
Diversity (QD) method (Pugh et al., [2016)), specifically through a cyclic adaptation of the MAP-
Elites algorithm (Mouret & Clunel [2015). CycleQD features a dynamic cycle where each agentic
skill’s performance metric (e.g., pass@1 for coding tasks, success rate for Operation System (OS)
and Database (DB) tasks) is optimized in isolation, with other skills represented as behavioral char-
acteristics (BCs). Unlike conventional crossover operations that randomly swap the parameters
between two genes, CycleQD employs a model merging based crossover operation (Akiba et al.|
2024])), which is essential for transferring skills from specialized experts to a new, cohesive model.
Furthermore, we also introduce a singular value decomposition (SVD)-based mutation method to
extrapolate model capabilities while preventing overfitting. Unlike gradient-based fine-tuning, Cy-
cleQD reduces the need for intricate design decisions and hyperparameter tuning, while inherently
capturing diverse skills and behaviors. See Figure[I]for an overview of CycleQD.

We adopt design choices specifically targeting the two major challenges in continual agentic fine-
tuning. Our proposed method not only simplifies the complex data ratio management by focusing
on one task at a time but also addresses the inadequacy of traditional loss functions by directly op-
timizing task-specific performance metrics. Moreover, the QD framework proves ideal for model
merging, particularly in LLMs where the computational pipelines are long. By allowing locally
sub-optimal solutions to persist, such as a temporarily under-performing layer, QD saves these con-
figuration in its archive and provides them a chance to improve in the future.

The empirical results from our experiments illustrate that CycleQD significantly enhances the ability
of a LLAMA3-8B-INSTRUCT based LLM agent to develop and refine multiple computer science
skills. Notably, the averaged performance of the final 8-billion parameter open-weight model is on
par with that of GPT-3.5-TURBO on coding, OS and DB tasks, which potentially contains much
more parameters. This superior performance is achieved without the typical degradation associated
with shifting focus among tasks or compromising general language capabilities.

Based on these results, it is important to note that while post-training of LLMs has been dominated
by gradient-based optimizations, our method demonstrates that incorporating evolutionary algo-
rithms can serve as a compelling modification to the conventional fine-tuning pipeline, effectively
enhancing the training of LLM agents. Our technical contributions are summarized as the following:

* We introduce CycleQD, a novel approach for merging LLM agents, each specializing in a
different task, to create a composite LLM that outperforms baseline methods on computer
science tasks from AgentBench (Liu et al.| [2023b)) and popular coding benchmarks while
maintaining language capabilities.

* We provide ablation studies and detailed explanations of the key design choices in Cy-
cleQD, illustrating their pivotal roles in enhancing the method’s effectiveness.

* We extend the application of CycleQD to the Segment Anything Model (SAM) (Kirillov
et al.l 2023)), demonstrating our method’s broad applicability across domains.
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2 PRELIMINARIES

Evolutionary Strategies (ES) are optimization al- Quality o

gorithms inspired by natural selection. They im-
prove a population of candidate solutions through
mutation, crossover (i.e., recombination), and selec-
tion, guided by a fitness function. By maintaining
diversity, ES avoids premature convergence and is
well-suited for QD optimization, which aims to gen-
erate diverse high-performing solutions rather than a
single global optimum.

MAP-Elites is a key algorithm within the QD . ) .
paradigm, designed t)g op%timize for both perfor- Figure 2: MAP-Elites flow.

mance and diversity by maintaining an archive of elite solutions across a discretized space of behav-
ioral characteristics (BCs). Each cell in this archive corresponds to a unique combination of BCs,
storing the best solution found for that cell. Figure [2]illustrates an optimization step: two parents
are sampled from the archive, and a child solution is generated through crossover and mutation. The
child’s fitness and BCs are then evaluated to determine its placement in the archive, replacing the
current entry if it performs better.
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3 METHODS

To avoid the laborious tuning of the data mixing ratio and the objective function, we introduce
CycleQD. It is built on MAP-Elites, a recognized implementation of QD, but distinguishes itself
from traditional MAP-Elites systems in three key ways (see Algorithm|[I]for the pseudo-code):

Alternating Quality and BCs: |Pugh et al.| (2016)) emphasizes the importance of well-aligned BCs
with the quality (i.e., task metric that needs to be optimized). Traditional systems typically set the
design at the onset and do not alter them throughout the QD process. In contrast, CycleQD uses task
metrics as both quality and BCs, ensuring alignment and dynamically alternating them during the
QD process (lines 6-7 in Algorithm [T)). This step can be viewed as if the archive is rotated by 90
degrees after each generation before proceeding to the optimization, as is illustrated in Figure [T}

Model Merging as Crossover: Unlike existing systems that optimize model parameters directly,
CycleQD leverages a model merging algorithm as a crossover operation, replacing the heuristic,
hand-designed rules often seen in practice (line 12 in Algorithm[I). Le., in Figure [2] our crossover
operation merges the two parent models. In CycleQD, we fine-tune expert agents, each of which
only needs to specialize in one task, and use them as the seed models to initialize the model archives
(lines 2-4 in Algorithm [T).

SVD-based Mutation: Traditional mutation operations in genetic algorithms like MAP-Elites typi-
cally introduce random perturbations from a pre-defined distribution to explore new regions (i.e., the
mutation operation in Figure [2). In contrast, CycleQD utilizes perturbations aligned with the prin-
cipal components of the models’ parameters matrices, facilitating exploration outside the convex
regions formed by the parent models while avoiding overfitting (line 13 in Algorithm [T).

CycleQD repeats these three steps in each generation, and the archives, originally only occupied by
the expert models, accommodate more and more capable and diverse models, as is illustrated by
Figure[6)in the Appendix.

3.1 ALTERNATING QUALITY AND BEHAVIOR CHARACTERISTICS

CycleQD manages K archives, each dedicated to tracking the LLMs that specialize in one of the K
agent skills. Each archive evaluates LLM performance using K tasks, which serve dual roles as both
the quality and BCs. An archive is structured as a lattice, the size of which is defined by [], 2i ks
where dj, is the number of bins defined by the k-th BC, and the i-th BC is excluded from this
particular archive as it is treated as the quality metric. In generation ¢, the i-th archive is selected for
QD computation where ¢ = ¢ mod K (see Figure[I]for an illustration with K = 3). This process
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Algorithm 1 CycleQD

1: function TRAIN(A, EXPERTS) > A are the archives, EXPERTS are the expert LLM agents
2: for i < 1to K do > K is the number of tasks
3: Ali] + UPDATEARCHIVE(A[i], EXPERTS) > Place experts properly in i-th archive
4 end for
5 fort < 1to N do > IV is the total number of generations
6: it mod K > Cyclically swaps the task (archive) for the next QD step
7 A <+ QDSTEP(A, 1) > Conduct one step of the QD algorithm
8 end for
9: end function
10: function QDSTEP(A, k) > Ay is the archive corresponding to the k-th task
11: p1,p2  SAMPLE(A[k]) > p1 and po are the parents, SAMPLE() is detailed in Sec
12: ¢ < CROSSOVER(p1, p2) > ¢ is the child, CROSSOVER() is detailed in Sec
13: ¢ + MUTATE(c) > MUTATE() is detailed in Sec
14: fori < 1to K do
15: Ali] < UPDATEARCHIVE(A[i], ¢) > Place ¢ properly in i-th archive
16: end for

17: end function

utilizes all available data from the K tasks to evaluate and update the archives without the need for
adjusting data ratios or objective functions.

CycleQD shares knowledge across K archives for efficient optimization. Specifically, in generation
t, a new model is created from the i-th archive by sampling, crossover, and mutation. This model is
used to update not only the i-th archive but all K archives (lines 14-15 in Algorithm|I)). This allows
for more effective utilization of the new model and helps facilitate optimization across K tasks.

We employ task performance metrics as our BCs, imbuing them with concrete performance implica-
tions. This allows for the design of an Elite sampling algorithm aimed to expand the Pareto frontier.
Our Elite sampling algorithm is inspired by [Wang et al.|(2023)) which expand the Pareto frontier not
only in quality but also within BCs. However, there are two major differences in CycleQD’s setup:
(1) Both Q and BCs are task metrics and are treated equally in a cyclic process, (2) We aggregate
Q and BC values into a single metric to drive the frontier towards higher performance. Specifically,
this frontier is defined by the models achieving high performance across these BCs. Concretely,
when the i-th archive is active, a model j inside it is sampled with probability P; = —x*— where

n=1"Tn

N 1is the number of models in this archive and +; is calculated as follows:

K

) fji —min(f1.n4) ioh —
- Z];[ (alow i maX(]fl:N}i) — min(fl;N,i) (Oéhlgh Oélow))

Here, f;, indicates the j-th model’s performance on the i-th task. (ciow,nigh) are hyper-
parameters for the purpose of normalization. Elite sampling strategically favors models that excel
across the quality and various BCs, enhancing the efficiency and evolutionary potential of CycleQD.

3.2 MODEL MERGING BASED CROSSOVER

Training an LLM to specialize in a single task does not suffer from problems such as the data ratio
tuning, the complex combinations of objective functions, and etc. It is therefore straightforward to
initially train a set of single-task experts using conventional fine-tuning methods, and then use model
merging algorithms to develop more capable agents. In CycleQD, our model merging crossover
operator employs the parameter space merging scheme described in |Akiba et al.| (2024), which
creates a new model by merging task vectors at the model level (Ilharco et al.,[2022). Specifically, for
a pre-trained base LLM with parameters 0},,5. € R? and its fine-tuned LLM with parameters 6 € R¢,
we define a task vector as 7 = 6 — 0y,,5.. The crossover operator then generates a model’s parameters
by combining these task vectors: Ocpiig = Opase + (w1 /(w1 + wg))Tpl + (wg /(w1 + wg))rm, where
7, and 7,, are the parents’ task vectors. Here, w; and ws are i.i.d samples from A(u, o?), and
(1, o) are predetermined hyper-parameters that remain fixed during the experiments. These w’s do
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Figure 3: SVD-based mutations. Left: A task vector 7 contains multiple parameter matrices 7.
E.g., the query projection matrix from the attention block in layer 1, the key projection matrix from
the attention block in layer 2, etc. Those that have a rank > 1 can be decomposed using SVD into
r components. Right: SVD-based mutation samples a vector w € R" and scales each component by
w;, essentially adding perturbations that are aligned with the “directions” of the components.
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not need to be positive numbers. By allowing negative component weights, the merged model has
more freedom in optimizing its task vectors, the process of which is automatically carried out via
evolutionary search. We normalize (7, , 7, )’s mixing coefficients to ensure the merged weights do
not become outliers and cause problems for the downstream layers.

Additionally, there is potential to enhance the model merging process by training a neural network
policy (u,0) < mg({bc1,...,bck }p,, {bey, ..., beg}p, ) that learns the optimal distribution param-
eters conditioned on the BC grid IDs {bcy, ...,bci} of the parents (k — 1 in total for each parent
because one serves as the quality). However, while this approach could improve the efficiency of
model merging, it also introduces a greater initial learning burden in CycleQD.

3.3 SVD-BASED MUTATION

The formulation of our model merging based crossover bears one obvious limitation: The construc-
tion of fcpilq is a linear combination of (7,,, 7, ), which are themselves linear combination of their
parents. The entire process then reduces to finding the optimal linear combination of the expert mod-
els’ parameters. Due to this, 0.,514 Will likely be trapped in the “convex region” in the performance
space formed by the expert models, yet extrapolation that leads to improved performance is desired.
We introduce a mutation function 6.pjqg = h(6cnilq) after the crossover to get rid of this limitation.

In conventional methods, the mutation function h(f.hiq) is often an operator that samples pertur-
bations from a pre-defined distribution (e.g., Gaussian with pre-determined mean and covariance
matrix) and add them to the gene being mutated. We find this setting introduce excess freedom
and lead to overfitting in the final model. Instead, we propose to sample perturbations along the
“directions” of the components from the model’s parameter matrices. This mutation operation is
mathematically defined as: h(fcniia) = Opase + concat([U;(Z,w)V,T],), where U; € R™*7,
¥, € R™7" and V; € R™ " are the SVD components of 7, = U;%;V,7, the I-th parameter matrix
in the task vector 7cpilq = Ochild — Opase (i-€., 77 is a reshaped subarray of 7cp;14). The perturbation
vector w € R" is sampled from a uniform distribution of boundaries [0, Wax|, Where wWmax € Rt
is a hyper-parameter. Our SVD-based mutation becomes a pass-through operation for parameter
matrices whose rank is one (e.g., those belonging to layer-normalization layers).

This approach provides two key advantages. First, SVD focuses mutations on the fundamental
building blocks of the task vector, which represent the essential components of agent skills. By con-
straining perturbations to these meaningful directions, we avoid the excessive exploration inherent in
random perturbations, reducing the risk of overfitting. Second, the ability to manipulate individual
components (i.e., w) offers finer control over 6,14, enabling targeted modifications at a granular
level. Figure[3]illustrates this process.

3.4 MODEL AGGREGATION

CycleQD maintains K archives during the optimization process, LLMs in each of these archives
are trained to acquire one of the K agent skills. In the end, CycleQD returns hundreds or even
thousands of LLM agents with various specialties and characteristics. These LLM-based agents are
versatile and can facilitate multi-agent research in a diverse set of directions (we discuss this topic
in Section[6).

On the other hand, our goal in this work is to create a single model that achieves high performance
across multiple tasks, and a model aggregation method is therefore necessary. Our model aggrega-
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tion algorithm is straightforward, and can be summarized as: Oags = Opase + Zszl BTk, where 7,
is the task vector from the elite model in the k-th archive, with ties resolved by selecting the most
recent model. 8 = exp(fx)/ Zfil exp(f;) (i.e., softmax function) is the mixing coefficient calcu-
lated from the elite model’s task performance f; in the k-th archive. In this paper, all experimental
results from CycleQD are produced with this aggregated model 0.

4 EXPERIMENTS

4.1 EVALUATION ON COMPUTER SCIENCE TASKS
4.1.1 TASK DESCRIPTION

In this experiment, our goal is to train LLMs to master three agent skills in computer science: coding,
Operation System (OS) manipulation and Database (DB) query generation. We adopt the MBPP+
(Mostly Basic Python Programming) dataset from EvalPlus (Liu et al., 2023a)) for coding skill de-
velopment, and utilize the OS and DB datasets from AgentBench (Liu et al., 2024) for training. For
the coding task, we optimize and report the pass@ 1 metric, whereas in OS and DB tasks we use the
success rate. Please refer to Appendix [A.T.T|for extra and detailed task related setups.

4.1.2 CYCLEQD SETUPS

Experts: We employ LLAMA-3-8B-INSTRUCT MODEL (Dubey et al.,2024) as our base model, and
use supervised fine-tuning to create LLM experts in coding, OS and DB. For the OS and DB experts,
we use the OS and DB training datasets from Agent-FLAN [Chen et al.| (2024). The coding expert is
fine-tuned on a combination of the MAGICODER-EVOL-INSTRUCT-110K and MAGICODER-OSS-
INSTRUCT-75K datasets (Wei et al.,[2024). See detailed configuration in Appendix[A.1.2]

Datasets: We use the MBPP+ dataset, as well as the test and development datasets from OS and
DB. To ensure that the experts have the same task metrics across tasks, each dataset is split evenly
into training and test splits. For OS, problems that could not be solved by either the expert models
and GPT models are excluded beforehand to reduce computation cost.

Hyper-parameters: We use the performances of the three experts to determine the lower and upper
bounds of the BC dimension. Specifically, the lower bound is set at 85% of the performance achieved
by the least proficient expert, while the upper bound is set at 115% of the performance achieved by
the most proficient expert. All BCs are then evenly divided into 15 bins between the lower and upper
bounds. We limit the number of models in each bin to one, and run CycleQD for 1200 generations.
Since the quality and BCs are alternated in each generation, this is equivalent to optimizing for the
three skills for 400 generations each. See more detail in Appendix

4.1.3 BASELINES

Our baselines can be categorized into fine-tuning based and merging based models.

Fine-tuning Based Models: These are models 3-6 in Table|l} In addition to the expert LLMs men-
tioned earlier, we also combine all the data from the three tasks (including the extra MAGICODER-
EVOL-INSTRUCT-110K and MAGICODER-OSS-INSTRUCT-75K datasets) and continue training
the LLAMA3-8B-INSTRUCT base model with supervised fine-tuning to develop an extra baseline
(model 6 in Table[I)). In this baseline, we don’t tune the data ratio and use cross-entropy (i.e., next
token prediction) as our objective function.

Merging Based Models: These are models 7-10 in Table [I] We first introduce a naive merging
method where the merged model is produced by taking an average of the three experts’ task vectors
(model 7). Similar to this baseline, we introduce three additional learning based model merging
methods where, instead of taking an average, the coefficients of a linear combination of these task
vectors is learned through gradient descent on policy gradients (model 8), CMA-ES, an evolutionary
algorithm on the raw rewards (model 9), and NSGA-II (Deb et al.| 2002), another evolutionary
algorithm that optimizes multiple objectives simultaneously (model 10).
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Figure 4: CycleQD Archives from Computer Science Tasks. In each archive, the two axes show
the BCs, and the color intensities indicate the LLM agent’s quality in that grid. These archives
are obtained after 1200 generations of CycleQD. The red bounding boxes indicate the grids where
expert models were present. See Appendix [A.1.4]for archive development across generations.

4.1.4 RESULTS

Overall: We summarize our results from this experiment in Table |1} In addition to the baselines,
we also include the base model and the GPT models for references (highlighted with a lightgray
background). The first thing to notice is that each expert model (models 3-5), fine-tuned specifically
for its assigned task, performs better than the LLAMA3-8B-INSTRUCT base model (model 2), lay-
ing the stepping stones for CycleQD and other model merging based methods. After evolutionary
computing, our method, averaged across the three tasks, outperforms all baselines, and is approach-
ing the performance of GPT-3.5-TURBO. Specifically, CycleQD achieves the highest scores on the
coding and the OS tasks among the baselines, and has only a mild performance drop on the DB tasks
compared with the expert. Figure [ gives the archives in CycleQD at the end of the experiment. It
is easy to see that CycleQD has managed to “illuminate” the three archives.

Comparison with Fine-tune Based Methods: A notable result from the table is that, the model
fine-tuned on all the datasets (model 6) is only partially and marginally better than the three experts,
despite being trained on a larger dataset. On the other hand, the expert models can be easily trained
because they do not require the data ratio or object function adjustment. The drawback of these
experts is that they specialize in only one task, prohibiting their usage in wider scenarios. This
result proves the difficulty with conventional methods, underscoring the importance and technical
contributions of CycleQD.

Comparison with Merging Based Methods: CycleQD also outperforms conventional model merg-
ing based methods (models 7-10), and we conjecture that this is due to three reasons. First, these
methods lack a mutation operation, which we believe is crucial for enabling the merged model to es-

Table 1: Evaluation on computer science tasks. We report pass@ 1 for MBPP and success rates for
the DB and OS tasks. The base model and the GPT models (in gray) are included for completeness.
The MBPP results for the GPT models are extracted from |Dubey et al.|(2024).

# Methods MBPP DB OS Avg
0 GPT-4 83.6 36.5 63.7 613
1 GPT-3.5-TURBO 82.0 41.6 385 53.7

2 Llama3-8B-Instruct (base model) 67.3 53 252 326
Fine-tuning Based Methods

3 Fine-tuning (Coding expert) 70.4 212 207 374
4 Fine-tuning (DB expert) 65.8 424 285 456
5 Fine-tuning (OS expert) 66.3 0.0 304 322
6 Fine-tuning (All) 67.3 37.1 367 470
Merging Based Methods

7 Merging (w/o learning) 72.9 2477 42,6 46.7
8 Merging (learning w/ GD) 69.3 412 29.6 46.7

9 Merging (learning w/ CMA-ES) 69.3 412 302 469
10  Merging (learning w/ NSGA-II) 75.9 424 364 51.6

11 CycleQD (Ours) 76.4 382 42,6 524
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Table 2: Ablation studies. We add and highlight a different treatment from the previous trials.

# Trials MBPP DB OS Avg
0 QD + No mutation + Random sampling 70.4  28.8 43.7 47.6
1 CycleQD + No mutation + Random sampling 729 335 419 494
2  CycleQD + Gaussian mutation + Random sampling 734  30.0 422 485
3  CycleQD + SVD mutation + Random sampling 759 382 41.1 517
4  CycleQD + SVD mutation + Elite sampling 764 382 42.6 524

cape the “convex region” created by the seed models. For example, model 9 scores lower on all three
tasks compared to the experts. In contrast, CycleQD significantly surpasses expert performance in
coding and OS tasks. Second, CycleQD’s cyclic optimization mechanism incorporates elements re-
sembling non-dominant sorting in NSGA-II (model 10). However, unlike the latter, which handles
all tasks simultaneously and relies on crowding distance for diversity, CycleQD alternates between
tasks and naturally encourages diversity via the QD mechanism. This allows CycleQD to be more
effective. Lastly, we suspect that the absence of a mechanism to rehabilitate temporarily underper-
forming models contributes to this discrepancy. Given the lengthy computation pipelines in LLMs,
which include numerous layers, even a single malfunctioning layer can degrade overall performance.
Unlike QD, the baselines do not have a way to recover these layers, potentially promising models
are prematurely discarded.

4.1.5 ABLATION STUDIES

To get insights into the design choices in CycleQD and show how they contribute its effectiveness,
we conduct a series of ablation studies and summarize the results in Table 2l

CycleQD vs QD: We compare conventional QD with CycleQD in trials O and 1. Specifically, we
run QD for three runs. Within each run, one of the task’s metric is treated as the quality while
the others are regarded as the BCs. We control each trial to have an equal computing budget as
for CycleQD, and all other hyper-parameters are identical to CycleQD. We use the same model
aggregation method to merge the best models from these three runs (see Section [3.4). The better
performance from CycleQD suggests the importance of alternating the quality and BCs.

Mutation Methods: We focus on the impact of different mutation operations with trials 1-3. Al-
though we mentioned earlier that mutation helps the merged model extrapolate in the performance
space, naively designed mutations give excess freedom and can lead to overfitting. This is what hap-
pens to trial 2, the performance of which is even worse than trial 1 that does not have any mutation
operations. On the other hand, our SVD-based mutation (trial 3) successfully avoids the problem
and delivers a much better performance.

Sampling Methods: Finally, we demonstrate the importance of Elite sampling in CycleQD in trial
4, which has the identical settings as model 11 in Table [T} and gives the best score in the ablation
studies. Elite sampling is effective because it prioritizes merging high-performing models, the result
of which helps expand the Pareto frontier in each archive more effectively.

In summary, our ablation studies validate the importance of our design choices and shows that
improvements aren’t merely additive - poor design choices can harm performance while our well-
designed components work synergistically (e.g., comparing rows 1 and 2 in Table[2)). The cumulative
improvement from baseline QD to our final CycleQD is substantial at 4.8 percentage points (from
47.6% to 52.4%). This is a significant improvement in the context of LLMs performing complex
agent tasks, particularly considering our model approaches GPT-3.5-TURBO’s performance despite
having significantly fewer parameters.

4.1.6 SKILL GENERALIZATION AND LANGUAGE CAPABILITIES

In addition to agent skills, we evaluate our model on out-of-distribution coding tasks and language
understanding across six categories, please see Appendix for detailed task descriptions. Ta-
bleE] shows the results across these tasks, where we normalize the scores against the LLAMA3-8B-
INSTRUCT base model. On average, CycleQD outperforms the three fine-tuned experts, providing
better overall generalization across tasks. Our method generalizes well on the coding tasks while re-
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Table 3: Generalization performance. The scores are normalized against the base model. CycleQD
generalizes well to other coding tasks unseen in the training while retaining its language capabilities.

M Coding Tasks Language Tasks

odel Avg
HUMANEVAL+ BigCodeBench Reasoning GSMS8K RC CommonSense

MBPP expert 1.18 0.97 0.57 0.82 094 1.03 0.92

DB expert 0.80 0.84 0.84 0.87 098 0.98 0.89

OS expert 0.94 0.90 0.98 0.93 0.99 0.99 0.95

CycleQD 1.10 1.03 0.95 0.88 098 1.02 0.99

Table 4: Merging image segmentation Models. The scores are normalized against the performance
of the corresponding expert models. Model similarity shows how close the pair of expert models are
(the larger the similarity values, the closer the models are).

# ExpertA  ExpertB  Score A  Score B  Avg Score = Model Similarity

0 CAM POL 0.95 0.99 0.97 0.98
1 CAM SKL 0.85 0.99 0.92 0.97
2 CAM LEA 0.51 0.89 0.70 0.88
3 POL SKL 0.98 0.95 0.96 0.99
4 POL LEA 0.40 0.84 0.62 0.93
5 SKL LEA 0.83 0.84 0.83 0.95

training performance on language tasks. In contrast, the MBPP expert, while delivering competitive
scores on the coding tasks, shows significantly lower performance on specific tasks in the Reason-
ing category. This sharp decline in performance suggests the occurrence of catastrophic forgetting
during fine-tuning, where the model loses its ability to generalize across tasks outside its specializa-
tion. These findings once again underscore the efficacy of CycleQD in achieving superior and more
consistent performance across diverse tasks compared to traditional fine-tuning approaches.

4.2 EVALUATION ON IMAGE SEGMENTATION TASKS

4.2.1 TASK DESCRIPTION

Besides to its applications for LLMs, CycleQD serves as a versatile method for integrating expert
models across various data modalities beyond text. For example, we include a vision question
answering (VQA) task in addition to the CS tasks and find CycleQD to be able to outperform the
experts (see Section[A.1.5)). In this experiment, we go further beyond and extend CycleQD to the
fusion of multiple Segment Anything Models (SAM), which are state-of-the-art computer vision
models designed for image segmentation tasks. Specifically, our objective is to merge pairs of SAM
models, A and B, to create models whose capabilities encompass the skill sets of both A and B.

4.2.2 CYCLEQD SETUPS

Experts: We select four tasks within the image segmentation domain, each supported by extensive
datasets, for training specialized models: Camouflaged Object Segmentation (CAM), Polyp Seg-
mentation (POL), Skin Lesion Segmentation (SKL), and Leaf Segmentation (LEA). CAM detects
objects in cluttered environments, making segmentation more challenging than standard tasks. POL
identifies polyps in endoscopic images, essential for early colorectal cancer detection. SKL detects
various skin lesions in medical images. LEA identifies plant leaves in agricultural images, sup-
porting disease control and improving crop quality. We employ SAM-ViT Huge model as our base
model, which we fine-tune to develop these experts. See Appendix [A.2.T|for details on the datasets
used for fine-tuning and CycleQD setups.

Hyper-parameters: CycleQD’s hyper-parameters remain the same as in Section 4.1.2]

4.2.3 RESULTS

Overall: Table ] shows the performance of the models merged by CycleQD, where scores are
normalized against the expert models. You can see visualization results in Appendix [A.2.2] In
general, CycleQD is able to merge the experts successfully, with top models retaining more than
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90% of the experts’ performance (e.g., models O, 1, and 3). On the other hand, models 2, 4 and 5
are less successful. This leads us to conduct further analysis and we report the findings next.

Analysis: We report the similarities between experts A and B in the last column in Table[d] A strong
correlation of 0.83 between the averaged scores and these similarities indicate both the limitations
and potential areas for enhancement in CycleQD. We define the similarity between models A and B
as the average cosine similarity of the singular value vectors (derived from the task vectors) across
all layers in both models: s = (1/L) Zle cos (diag(%;,4), diag(3; p)). Here, L is the number of
weight matrices with a rank greater than 1, and X; . denotes a diagonal matrix of singular values
from the ¢-th weight matrix in the task vector. Although this summarizing metric does not fully
encapsulate the models’ characteristics, CycleQD tends to perform well when the models exhibit
high similarity. This observation underpins our approach of incorporating this similarity metric as a
regularization technique during model fine-tuning. Notably, a similar metric has been employed as
the “proximal term” in optimizing heterogeneous networks within the realm of federated learning,
as evidenced by research documented in (L1 et al., |2020). This precedent lends credence to our
strategy, suggesting it is grounded in established methodologies.

5 RELATED WORKS

LLM skill acquisition research has expanded beyond conversational tasks, focusing on enabling
autonomous problem-solving through the LLM-as-Agent paradigm (Xi et al. 2023} [Wang et al.,
2024b). Techniques like ReAct (Yao et al., |2023) integrate reasoning with action, but skill acqui-
sition through training remains limited, often relying on standard fine-tuning (Zeng et al., |2024;
Qin et al. 2024), which struggles with balancing multiple skills. QD (Pugh et al) [2016) is an
evolutionary paradigm aimed at discovering diverse, high-performing solutions. Algorithms like
MAP-Elites (Mouret & Clune), 2015) and MOQD (Pierrot et al.| 2022) have refined QD for tasks
with diverse behaviors and conflicting objectives. While QD has been applied to neural networks
and LLLM prompts (Guo et al., 2024; Xue et al., [2024)), evolving LLM weights remain unexplored.
Model merging, which combines capabilities across pre-trained models at lower training costs, has
advanced through techniques like sparsification (Yadav et al.,[2023;[Stoica et al., 2024)) and optimiza-
tion (Yang et al., 2024). Our work integrates QD with model merging, allowing LLM components
to be preserved and optimized for diverse tasks. Please refer to Section [B|for more related works.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we introduced CycleQD, a compelling modification of the conventional LLM fine-
tuning pipeline, integrating evolutionary algorithms for agent skill acquisition. CycleQD begins
with single-task experts and utilizes QD to continuously generate hundreds of LLM-based agents,
possessing diverse characteristics and exhibiting a broader range of skills than the initial experts.
Through a dynamic process that cyclically swaps quality and BCs, coupled with a model merg-
ing crossover operation and an SVD-based mutation operator, CycleQD has successfully enabled
LLMs to master computer science skills. Our method not only outperforms baseline approaches but
also achieves on-par performance with GPT-3.5-TURBO, while generalizing to out-of-distribution
tasks and retaining the language capabilities. Furthermore, CycleQD’s applicability extends across
domains to image segmentation models, demonstrating its broad utility.

In terms of limitations, we acknowledge that the success of model merging hinges on the compati-
bility of the source models. CycleQD may encounter challenges when the expert models originate
from highly divergent settings. One way to address this is incorporating model similarity as a reg-
ularization term during the expert training. Furthermore, this research represents an initial foray
into the integration of QD and evolutionary model merging for agent skill acquisition. There is
substantial potential for improvement by leveraging advanced methodologies from both fields, such
as integrating strategies from CMA-ME (Fontaine et al., 2020) and PGA-MAP-Elites (Nilsson &
Cullyl [2021) to enhance the efficiency of the learning process. Looking ahead, a promising direc-
tion for future research lies in multi-agent systems. Considering CycleQD generates an archive of
diverse agents, orchestrating these agents to collaborate and compete opens up exciting possibilities
for scientific exploration and practical applications.
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A APPENDIX

A.1 COMPUTER SCIENCE TASKS
A.1.1 EXTRA TASK SETUPS

The MBPP+ dataset, based on the original MBPP, uses a subset of 399 hand-verified problems
from MBPP-sanitized to ensure well-formed programming tasks. Each problem includes a problem
statement, function signature, and test cases. EvalPlus extends this dataset with additional test cases
to provide a more rigorous evaluation of code generation capabilities. For our evaluation, we use the
pass@1 metric on the Base Tests of MBPP+, which reflects the model’s ability to generate correct
code on the first attempt using the original test cases. The OS dataset evaluates LLMs in genuine
interactive bash environments (Ubuntu Docker) on human questions with deterministic answers and
practical operational tasks. The DB dataset assesses LLMs’ abilities to operate on real databases via
SQL, encompassing the complete pipeline of database analysis with authentic SQL interfaces and
multiple tables. Both OS and DB datasets use success rate as the primary evaluation metric. The OS
tasks are designed to be solved within a maximum of 5 interaction turns and employ a 1-shot setup.
The DB tasks have a similar interaction limit but are evaluated in a 0-shot manner.

A.1.2 TRAINING CONFIGURATION FOR EXPERTS

We utilize llm-recipes (Fujii et al.|, |[2024) (commit 606cdfb) for fine-tuning. We adopt the AdamW
optimizer (Loshchilov & Hutter, [2019) with 5; = 0.9 and 8> = 0.95. A global batch size of 64
is used across all fine-tuning processes. We employ cosine learning rate scheduling with a range of
[4 x 1076,2 x 1079, starting with a linear warmup for the first 10% of the total training steps. The
OS and DB experts are trained for 1 epoch, while the code model is trained for 3 epochs due to its
larger training data size.

A.1.3 CYCLEQD HYPER-PARAMETERS

o
o
>

We set ajow = 0.5 and apien, = 0.8 in Elite
sampling, 1 = 1.0 and ¢ = 0.03 in model
merging-based crossover, and wy,x = 0.3 in
our SVD-based mutations. These hyperpa-
rameters are determined in preliminary studies,
where we arbitrarily determined a set of values,
ran CycleQD for a small number of generations
and picked the set with the best performance. 044
We believe the performance of CycleQD can be
further improved when incorporating sophisti-
cated hyperparameter searching methods. 0.40

Average Score
° o o
e o G
& 3 5

o
=
>

0 200 400 600 800 1000 1200
Generation

To investigate the influence of the number of
generations on CycleQD performance, we an-
alyzed the average scores of the computer sci-
ence tasks every 100 generations. Figure [3]il-
lustrates these results. The performance gradu-
ally increases over the generations with no obviously significant oscillations. While still showing a
slight upward trend beyond this point, it stabilizes around 1000 generations.

Figure 5: Averaged performance on computer
science tasks. Evaluated every 100 generations.

A.1.4 CYCLEQD DEVELOPMENT OF ARCHIVES ACROSS GENERATIONS.

Figure [6] shows the development of archives across generations. The archives are shown in incre-
ments of 300 generations from top to bottom. The corresponding generation for each archive is
displayed on the left side of the figure. The red bounding boxes indicate the grids where expert
policies were present in each archive. It can be observed that the frontier of the archives expands
with each passing generation.
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A.1.5 ADDING A VISION QUESTION ANSWERING TASK

In addition to the computer science tasks, we add a visual question answering (VQA) task to Cy-
cleQD to further demonstrate its generally applicability across tasks that differ drastically. The
VQA task lies within the vision-language modeling (VLM) domain, which presents challenges when
merging it with tasks from LLM domain.

Specifically, we use the TextVQA dataset (Singh et al.l |2019) as part of the CycleQD experiments
along with the coding, DB, and OS tasks. The experimental setup follows the same configurations
described in Section4.2.2] including parameters and the 1200 generations training budget. To create
a VQA expert, we optimize the LLAMA3-LLAVA-NEXT-8B model using 4000 samples from the
TextVQA data as training data. Additionally, we allocate 500 distinct samples, separated from the
training data, for CycleQD training. These 500 samples are evenly divided into optimization and
test datasets.

During the CycleQD optimization process, we extract the LLAMA3-8B-INSTRUCT component of
the VLM and perform merge and mutate operations. The results, presented in Table [5] show that
CycleQD achieves the best average performance compared to both the base and the expert models.
Notably, CycleQD outperforms the several expert models on VQA, coding, and OS tasks, highlight-
ing its effectiveness in combining knowledge across diverse domains.

Table 5: Evaluation on computer science tasks and VQA. We add VQA task to computer science
tasks and evaluate CycleQD.

# Methods VQA MBPP DB OS Avg
0 Llama3-8B-Instruct (base model)  39.0 67.3 53 252 342

Experts models

1 VQA expert 514 4.0 0.0 1.5 142
2 Coding expert 329 70.4 212 20.7 363
3 DB expert 454 65.8 424 285 455
4 OS expert 46.1 66.3 0.0 304 357
5  CycleQD (Ours) 54.1 72.9 324 39.6 49.7

A.1.6 BENCHMARK DATASETS FOR SKILL GENERALIZATION AND LANGUAGE
UNDERSTANDING

In the Coding category, we employ two key benchmarks: HUMANEVAL+ (Liu et al.| 2023a)), eval-
uated in a 0-shot setting using the pass @ 1 metric on the Base Tests, and BigCodeBench (Zhuo et al.,
2024), which is designed to assess code generation with diverse function calls and complex instruc-
tions. We report the average Pass@1 scores for both BigCodeBench-Complete and BigCodeBench-
Instruct variants in the full setting, using 0-shot evaluation. For the General Knowledge and Rea-
soning (Reasoning) category, we utilize two comprehensive benchmarks: MMLU (Hendrycks et al.,
2021)) with a 5-shot evaluation, and BBH (Big Bench Hard) (Suzgun et al., [2023)) using a 3-shot
chain-of-thought (Wei et al., |2022)) prompting approach. These benchmarks provide a holistic as-
sessment of our model’s ability to handle a wide range of knowledge-based and reasoning tasks. To
evaluate Mathematical Reasoning, we employ the GSM8K benchmark (Cobbe et al.||2021)) with a 4-
shot evaluation, challenging our model’s ability to solve complex mathematical problems. For Read-
ing Comprehension (RC), we use two established benchmarks: SQuAD2 (Rajpurkar et al.| [2018)
and TriviaQA (Joshi et al.,|2017), both evaluated using a 4-shot approach. These datasets assess the
model’s capacity to understand and reason over complex textual information. In the Commonsense
Reasoning (CommonSense) category, we employ three diverse benchmarks: HellaSwag (Zellers
et al} [2019) for commonsense inference, OpenBookQA (Mihaylov et al.l 2018)) for elementary-
level science question answering that requires both core scientific knowledge and broader common
knowledge, and XWinograd (English version) (Tikhonov & Ryabinin, |2021) for cross-lingual com-
monsense reasoning and coreference resolution. All these evaluations are conducted with 4-shot
prompts.
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A.1.7 TRAINING TIME COMPARISON

We used NVIDIA H100 GPUs for our experiments. The gradient fine-tuning method (model #6 in
Table[T) took approximately 200 GPU hours, and our method (model #11 in Table[I)) took about 410
GPU hours (excluding the expert models training time). We wish to point out that (1) the extra time
spent on CycleQD is mostly due to agentic task evaluations rather than the optimization, (2) due
to GPU memory constraints, the merging process was carried out on CPU, (3) CycleQD produces
an archive of models whereas fine-tuning generates only one. Furthermore, it is important to note
that fine-tuning is a mature and well-established approach with software implementations that are
optimized for efficiency. By contrast, the proposed method was developed primarily to assess its
performance, and as such, there is ample room for further efficiency improvements.

A.2 IMAGE SEGMENTATION TASKS
A.2.1 DATASETS FOR FINE-TUNING EXPERTS AND CYCLEQD TRAINING

We followed Zhong et al.|(2024) to prepare the datasets. For Camouflaged Object Segmentation,
we use three datasets: COD10K (Fan et al., [2020a), CHAMELEON (Skurowski et al.| [2018]), and
CAMO (Le et al., 2019). Following |[Fan et al.|(2020a) we train on a combined dataset consisting of
the 4040 training images from COD10K and CAMO for 20 epochs, randomly splitting 10% of the
images from the training set for validation. The model is then tested on the 250 COMO test images.
For Polyp Segmentation, we use two datasets: Kvasir (Jha et al., [2019) and CVC-ClinicDB/CVC-
612 (Bernal et al., 2015). Following |[Fan et al.| (2020b), we divide the images into a 9:1 ratio for
training and testing, resulting in 1450 training images. We then randomly split 20 % of the training
set for validation. The model is trained for 30 epochs and tested on the 101 Kvasir test images. For
Skin Lesion Segmentation, we use the ISIC 2017 dataset (Codella et al., 2018]). We train the model
on the 2000 training and 150 validation images for 30 epochs and evaluate it on the 600 test images.
For Leaf Segmentation, we use the Leaf Disease Segmentation Dataset (Rath, 2023). We train the
model on the 498 training image, using 80% for training and 20% for validation for 30 epochs, and
evaluate it on 90 test images.

A.2.2 VISUALIZATION RESULT

The visualization results are shown in Figure[7]for SKL and POL, and Figure[§|for SKL and LEA. In
both figures, "Ours” refers to a single merged model via CycleQD, identical to model #3 (for SKL
and POL) and model #5 (for SKL and LEA) in Table[d] In Figure[7] our model retains near expert-
level performance for both tasks after merging. However, in Figure [8] while our model generally
performs at an expert level for both tasks, a slight drop is observed. Notably, in the bottom images
of SKL, the model seems to detect the edges of the skin lesions instead of the lesions themselves, as
if confusing the task with leaf disease detection. The expert model similarities are high—0.99 for
SKL and POL, and 0.95 for SKL and LEA. This corresponds with the observation that the merged
model from the highly similar SKL and POL performs better than the one from SKL and LEA.

B MORE RELATED WORKS

LLM Skill Acquisition: Beyond conversational tasks, increasing attention has been given to en-
abling LLMs to acquire skills to take action. This allows LLMs to function as agents capable of
solving problems autonomously, and this approach is known as LLM-as-Agent (Xi et al., [2023;
Wang et al., 2024b). Benchmarks for LLM-as-Agent have been developed, and research has demon-
strated that LLMs can successfully perform tasks such as computer operations and web browsing
to a certain extent (Gur et al.|l 2023 [Liu et al.| 2023b} |X1 et al.| [2024; Xu et al., 2024} Tan et al.,
2024;|Ye et al., 2024)). ReAct (Yao et al.,[2023) is the most frequently used approach for constructing
LLM-as-Agent systems, which integrates CoT reasoning with action. ReAct is typically employed
through prompting and few-shot in-context learning, where models learn skills from a small number
of examples. However, attempts to equip LLMs with such skills through actual training with more
examples are still quite limited, with a few studies focusing only on standard fine-tuning (Zeng et al.,
2024; |Qin et al., [2024). This fine-tuning approach often struggles with balancing multiple agent
skills and suffers from the gap between next token prediction loss and actual task performance. Our
proposed method uses QD techniques to optimize each skill independently and directly.
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Quality Diversity: QD is an emerging paradigm in evolutionary computation that aims to discover
a diverse collection of high-performing solutions rather than a single optimal result (Pugh et al.,
2016). QD algorithms balance two key aspects: quality, which represents a solution’s performance,
and behavior characterization (BC), which describes its observable properties. These algorithms
maintain an archive of diverse, high-quality solutions, continuously updated through an evolution-
ary process. MAP-Elites (Mouret & Clunel [2015) is a prominent QD algorithm that maintains an
archive defined by the BCs, discretizes it into tessellation, and stores the best-performing solutions
in each cell to preserve diversity. In each generation, it samples parents from the archive, creates
offspring through crossover and mutation, and evaluates their quality and BCs. Offspring replace
existing elites if they perform better in their respective cells. This process simultaneously explores
diverse behaviors and optimizes performance within each niche, resulting in a map of high-quality,
diverse solutions. Recent improvements to MAP-Elites include a new selection method for better
diversity (Wang et al.,|2023) and an approach that removes the need for predefined niches (Wickman
et al., 2023). Additionally, to address potential stagnation in a fixed BC space, [Usui et al.| (2023))
propose dynamic switching of the BC space. CycleQD goes further by aiming for MOQD, rotating
both the BCs and the quality across tasks. MOQD (Pierrot et al.|[2022) has been proposed to address
problems with multiple, potentially conflicting objectives while maintaining diversity. Instead of the
fitness, it maximizes a Pareto front hyper-volume in each niche of the descriptor space. CycleQD is
a simplified form of MOQD in the sense that it uses task metrics as both BCs and the quality, the
product of which approximates the hyper-volume, and the coordinate-ascent style of optimization
allows it to avoid complex hyper-volume calculations for higher-dimensional archives.

Quality Diversity for LLMs: Evolutionary computation, particularly QD, has occasionally been
applied to neural networks and LLMs (Guo et al., 2024; Xue et al., 2024; |Akiba et al., 2024). How-
ever, there has been no prior research that evolves the main weights of LLMs using QD. [Samvelyan
et al.| (2024) proposed Rainbow Teaming, which applies QD to evolve diverse adversarial prompts
for evaluating LLM safety. Bradley et al.| (2024)) introduced QDAIF, which applies QD with LLM
feedback to evolve populations of generated creative texts. Our work represents the first attempt
to merge LLMs through QD. We believe this approach holds great promise, as it allows individual
components of the model to be preserved even when they are temporarily sub-optimal, with the
potential to contribute to future performance improvements. Given the cost and complexity of opti-
mizing the many layers of LLMs, QD offers a unique advantage by retaining useful configurations
in archives that may later enhance overall model performance.

Model Merging: Model merging refers to combining multiple pre-trained models into a single
model. This technique is gaining attention because it can enhance model performance and integrate
multiple capabilities at a much lower training cost. Additionally, unlike ensemble methods, model
merging does not increase inference costs either. This technique is particularly effective when ap-
plied to different fine-tuned versions of the same base model. The most basic method involves a
linear combination of weights (Wortsman et al., 2022} [lharco et al.|[2023). More advanced merging
techniques have been proposed, incorporating methods such as election and sparsification (Yadav
et al., 2023 Yu et al.| 2024; Wang et al.| [2024a; Stoica et al., [2024). Furthermore, the applicability
and performance of these methods have been significantly improved through optimization (Akiba
et al., [2024; |Yang et al., 2024). Inspired by these merging strategies, CycleQD combines QD with
model merging, allowing for more effective synthesis of multiple capabilities in LLMs.
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Figure 6: CycleQD Development of Archives Across Generations. In each archive, the two axes
represent the BCs, and the color intensities in each grid indicate the quality of the LLM agent in that
grid. The archives are shown in increments of 300 generations from top to bottom. The correspond-
ing generation for each archive is displayed on the left side of the figure. The red bounding boxes
indicate the grids where expert policies were present in each archive. The experiment shown in this
figure is the same as in Figure[d] and the archive for 1200 generations is identical to that in Figure[d]
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Skin Lesion Segmentation (SKL) Polyp Segmentation (POL)

Image Ground truth Expert Ours Image Ground truth Expert Ours

Figure 7: CycleQD of SAM for SKL and POL. Ours is a single merged model via CycleQD, and
it is the same model as the one in Table [4] (# 3). The similarity between the two expert models is
high (0.99), and the model maintains expert-level performance across both tasks.

Skin Lesion Segmentation (SKL) Leaf Segmentation (LEA)

Image Ground truth Expert Ours Image Ground truth Expert Ours

Figure 8: CycleQD of SAM for SKL and LEA. Ours is a single merged model via CycleQD, and
it is the same model as the one in Table [ (# 5). The similarity between the two expert models is
0.95, which is lower than #3 (0.99) from Table [4] resulting in a slight decrease in performance, as
observed when comparing the bottom images in SKL.
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