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Abstract

In this paper, we propose a Local Differentially001
Private Natural Language Processing (LDP-002
NLP) model that protects the privacy of user003
input sentences for both training and infer-004
ence stages while requiring no server security005
trust. Compared to existing methods, the novel006
privacy-preserving methodology significantly007
reduces calibrated noise power and thus im-008
proves model accuracy by incorporating (a) an009
LDP-layer, (b) sub-sampling and up-sampling010
DP amplification algorithms for training and011
inference, and (c) DP composition algorithms012
for noise calibration. This novel LDP-NLP so-013
lution guarantees privacy for the entire train-014
ing/inference data for the first time, whereas015
current methods can only guarantee privacy016
for either a single training/inference step. Fur-017
thermore, the total privacy cost is reduced to a018
reasonable range, i.e., less than 10, for the first019
time with an accuracy loss of only 2-5% com-020
pared to the accuracy upper bound produced021
by the original model without privacy guaran-022
tee.023

1 Introduction024

Natural Language Processing (NLP) based on025

(deep) neural architectures has given rise to a026

new generation of applications such as sentiment027

analysis, question answering, and information re-028

trieval (Sun et al., 2019; Pang et al., 2017; Chen029

et al., 2017). The majority of these applications030

may require a significant amount of personal data031

during the training stage, as well as personal032

queries sent to the server during the inference stage,033

raising a number of privacy concerns. Question-034

answering systems, for example, require personal035

data for training (fine-tuning) and questions from036

the user are required again during the inference037

stage to query answers from the service provider.038

Many studies, however, have discovered privacy039

violations in deep learning models due to the in-040

put information embedded in latent representations041

and model parameters (Shokri et al., 2017; Carlini 042

et al., 2019). To protect privacy, there has been 043

an increase in demand for privacy-preserving NLP 044

model (Feyisetan et al., 2020b). 045

Data anonymization that removes personally 046

identifiable information or protected attributes from 047

data is insufficient as innocuous-looking attributes 048

can be linked to other information sources for rei- 049

dentification (Pedreshi et al., 2008; Sweeney, 2015). 050

Differential Privacy (DP) (Dwork et al., 2006), on 051

the other hand, randomizes the computation pro- 052

cess to stabilize the output in the face of changes to 053

input data, ensuring that the adversary can hardly 054

tell if an individual data item, i.e., a word or a sen- 055

tence (which is the protection granularity depend- 056

ing on the mechanism designed), is in the dataset or 057

not by looking at the computation output, i.e., latent 058

representation or model. DP has been integrated 059

into the deep learning training stage (Abadi et al., 060

2016) by appropriately randomizing backpropa- 061

gation with calibrated noise to limit what could 062

be breached from the training data when reveal- 063

ing the model. This is known as Differentially- 064

Private Stochastic Gradient Descent (DP-SGD). As 065

a result, the model parameters can be viewed as 066

a sanitized release, with individual training data 067

obscured but the model still remains functional. 068

However, due to the calibrated noise required for 069

DP, it has been recognized that DP mechanisms 070

invariably significantly reduce the downstream task 071

performance, raising the privacy-utility tradeoff is- 072

sue (Dwork and Lei, 2009). 073

In the context of NLP in this paper, we focus 074

on the practical situation in which users1 are con- 075

cerned about the privacy of their sensitive data and 076

the server is untrustworthy. Since the privacy of 077

data embedded in the model/gradient can be vi- 078

olated (Shokri et al., 2017; Carlini et al., 2019), 079

1A user is a data owner in this paper, who could be an
individual single user or a curator involved in multi-party
computation.
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Local DP (LDP) is required to protect user’s in-080

put sentences before sharing them or sharing their081

computation results with the server. Furthermore,082

as the downstream task implemented at the server,083

the user itself cannot perform DP-SGD-based train-084

ing to protect the privacy of its training data, let085

alone the privacy of its inference data. To address086

the aforementioned problems, we propose a novel087

LDP layer on the user side to randomize the inter-088

mediate output for training’s and inference’s for-089

ward computations, respectively. We successfully090

push the privacy-accuracy tradeoff boundary sig-091

nificantly by carefully designing noise calibration092

algorithms based on sampling, achieving for the093

first time state-of-the-art accuracy while lowering094

the privacy parameter ε to less than 10 for the entire095

training/inference stage. The technical contribu-096

tions are summarized below.097

(I) We develop a novel non-parametric DP layer098

along with the noise power calibration algorithms099

that provides LDP for not only the training sen-100

tences but also the inference sentences.101

(II) For the first time in the LDP-NLP model,102

we propose novel sentences sub-sampling and103

up-sampling DP-amplification mechanisms in the104

training and inference stages, that reduce the pri-105

vacy cost parameter ε to less than 10 across the106

entire training/inference data set. By contrast, the107

same data privacy cost ε can only be guaranteed108

in a single training or inference step in the litera-109

ture. In other words, thousands of additional train-110

ing/inference steps can be carried out in the pro-111

posed method with the same level of privacy as112

existing methods.113

(III) The proposed generic LDP-NLP methodology114

significantly outperforms state-of-the-art methods115

on typical LDP-NLP tasks and benchmarks. In116

comparison to the performance upper bound pro-117

duced by the version that does not guarantee pri-118

vacy, the accuracy loss due to privacy preservation119

is only 2%-5% for an LSTM or a BERT encoder120

with privacy cost less than 10.121

2 LDP-NLP Task Pipeline122

Fig. 1 depicts a target scenario with correspond-123

ing LDP operations in Fig. 22. As the user’s in-124

put contains sensitive information, our primary re-125

quirement is that the service provider only accesses126

LDP-guaranteed representation, which means that127

2Although this study focuses on a single user case, it is
easily adaptable to a more general setting in which sensitive
data is collected independently from multiple users using LDP.

Figure 1: LDP-NLP pipeline for DP training and DP
inference in Stages 2 and Stage 3 to protect training
and inference.

(a) Existing work on LDP-NLP (Feyisetan et al.,
2020a; Qu et al., 2021; Yue et al., 2021).

(b) Our Sub-Sampling+DP-layer for training. The
privacy-preserving processing (I) in Fig. 1.

(c) Our Up-Sampling+DP-layer for inference.
Privacy-preserving processing (II) in Fig. 1.

Figure 2: Different LDP architectures for the privacy-
preserving modules (in blue) in Fig. 1.

all of the information sent out locally by the user 128

in all steps together must satisfy the DP definition, 129

with little chance of determining whether or not 130

an individual sentence is in the data set. The four 131

stages required to complete an LDP-NLP task be- 132

tween a user and the server are summarized below, 133

with the training (Stage 2) and inference (Stage 3) 134

stages containing user sentence input that requires 135

DP assurance. 136

Stage 1 (Pre-train): If necessary, the server per- 137

forms pre-training on its own data. 138

Stage 2 (DP training): During collaborative train- 139

ing, each user converts raw data (e.g., sentences) 140

into LDP-guaranteed latent representations before 141

sending them to the server. We propose a non- 142

parametric DP layer after the encoder to achieve 143
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LDP guarantee with details about the operations144

and the noise calibration algorithm in Section 4.1145

and Section 4.2, respectively.146

Stage 3 (DP inference): The raw data is converted147

by the local DP-layer into DP-guaranteed latent148

representations before being sent to the server for149

the inference process. This stage enables some150

calibrated noise power, which depends on the up-151

sampling DP amplification algorithm. This will be152

described in Section 4.3.153

Stage 4 (Inference result return): The model of154

the server responds to DP-protected queries.155

Note that, after receiving the DP-guaranteed rep-156

resentations in Stage 3 and Stage 4, the server157

computes the remaining forward computations and158

backpropagations for both the inference and train-159

ing stages. Note that DP-SGD in Li et al. (2021);160

Anil et al. (2021); Dupuy et al. (2021), which is161

designed to protect only the training data while162

sharing the training model, is inapplicable in the163

considered situation because performing the down-164

stream task would require the untrusted server to165

compute the true gradient, resulting in data leak-166

age (Zhao et al., 2020).167

Paper organization This paper focuses primarily168

on Stage 3 and Stage 4. We will first introduce the169

DP definition in the context of NLP problems in170

Section 3, and then in Section 4, we will formulate171

the DP layer operators as well as the noise cali-172

bration algorithms for the training and inference173

stages. Section 5 contains information about re-174

lated work. In Section 6, we provide experimental175

validation.176

3 LDP-NLP Model177

DP Mechanism: A random DP algorithm’s output178

is stabilized to the point where the presence or179

absence of any specific data item, such as a word or180

a sentence in an NLP task, is hardly distinguishable.181

The type of data item is the DP granularity. The182

greatest possible divergence between the output183

distributions of DP algorithms when applied to two184

datasets that differ by arbitrary data item of the185

DP granularity, i.e., word or sentence, describes186

the DP protection level (also known as DP cost).187

More accurately, let x and x′ be datasets that differ188

in one data item (a word or a sentence), then the189

randomized algorithmM, which is the local user190

output in our problem (details in Equation (4)), is191

(ε, δ)-DP if for arbitrary subset, i.e., Y of the all192

possible output ofM:193

Pr[M(x) ∈ Y] ≤ eε Pr[M(x′) ∈ Y] + δ. (1)194

This equation shows that the protection level is re- 195

lated to ε: the lower ε values, the better privacy 196

protection. The value δ can be interpreted as the 197

likelihood of not achieving DP. Specifically, when 198

δ = 0, we get ε-DP. We notice that the protection 199

level is also related to the level of granularity: the 200

higher the level of granularity, the higher the level 201

of privacy guaranteed. Therefore the sentence level 202

DP considered in this paper has a better privacy 203

protection than the word level DP proposed in the 204

literature (Feyisetan et al., 2020a; Qu et al., 2021; 205

Yue et al., 2021) in general, because a sequence 206

of words in the sentence is hidden in the former 207

case. However, the specific operationM in the ex- 208

isting studies cannot be easily extended from word 209

protection to sentence protection. We proposed a 210

DP-layer to achieve the aforementioned goals with 211

details in Section 4.1. 212

Given a target privacy budget (ε, δ) for protect- 213

ing the entire training and inference stages, the 214

next critical point is to calibrate the noise power, 215

a parameter for that DP mechanism. It should be 216

noted that the lower the noise power, the higher 217

the model’s accuracy but the lower the level of 218

privacy. To solve this dilemma, we investigate 219

subsampling/upsampling methods for DP ampli- 220

fication and tight DP composition among train- 221

ing/inference steps in order to reduce noise power 222

without compromising the privacy. 223

DP Amplification&Composition: Intuitively, pri- 224

vacy amplification by sampling is caused by the 225

fact that an individual sentence has complete pri- 226

vacy if it is not included in the samples and whether 227

or not the sentence is included is a secret. In this 228

paper, we investigate sub-sampling DP amplifica- 229

tion for each NLP training step and further propose 230

for the first time up-sampling DP amplification for 231

the NLP inference/query by introducing fictitious 232

data on the user side. 233

To complete an NLP task, both the training and 234

query stages must perform a series of computation 235

steps on the private training/inference dataset, with 236

each computation step potentially based on the re- 237

sults of previous computation steps on the same 238

dataset. Even if each step i is DP protected with 239

a privacy cost (εi, δi), taking all steps output to- 240

gether by the adversary may no longer guarantee 241

privacy. The computation of privacy degradation 242

as the number of steps increases is referred to as 243

DP composition. Specifically, since an NLP train- 244

ing stage requires even more than thousands of 245
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step updates and the proposed up-sampling infer-246

ence usually also involves multiple queries, a tight247

composition methodology is needed. The detailed248

analysis and corresponding noise calibration algo-249

rithms are provided in Section 4.2 and 4.3.250

4 Operations in the LDP-NLP Model251

4.1 DP Mechanism in the DP-Layer252

We propose a nonparametric DP layer by injecting253

calibrated noise into the output of a clipped encoder.254

It is important to note that applying the DP layer255

directly to the embeddings results in significant256

performance degradation due to the significant loss257

of semantic information for the downstream task.258

As a result, an encoder is used before the DP layer259

on the user side. A light-weight encoder, such as260

LSTM, can be used for a computation/memory-261

limited user, while stacked transformers can be262

used for a powerful user, such as a curator.263

Clipping Operation: One method to stablize the264

output is clipping. Let x and x′ be arbitrary pair265

of sentences from the training or inference sets,266

and define f(x) as the corresponding output of the267

encoder in Fig. 2(b) and Fig. 2(c). The sensitivity268

∆ of f(x), which is the greatest variation output269

for a pair of sentences with the `2-norm is given by270

271

∆ = max
x,x′
||f(x)− f(x′)||2. (2)272

Because of the randomness of training data, com-273

puting ∆ is difficult. We limit f ’s output range274

by clipping per sentence representation from the275

output of local encoder with276

CL (f(x);C) = f(x) ·min

(
1,

C

‖f(x)‖2

)
. (3)277

The quantity C is a predefined hyper-parameter.278

The lower the value of C, the less calibrated noise279

power is required for a given level of DP protection.280

Cutting too much with a smallC, on the other hand,281

will harm the semantic information embedded and282

will result in a significant performance drop.283

After clipping, we apply additive Gaussian noise284

to improve the accuracy of the NLP model while285

still providing DP guarantee. Hence, the DP layer286

output is given by287

M(x, f(·), ε, δ) = CL(f(x)) +N (0, σ2). (4)288

It is shown that the calibrated noise power σ2 and289

the DP profile (ε(δ), δ) follows (Dong et al., 2021):290

Algorithm 1 Non-parametric DP-Layer

Require: Latent representation f(x) ∈ Rd, clip-
ping value C, noise variance σ2

1: Gaussian Mechanism: x̃← CL (f(x);C) + z
with z ∼ N (0, σ2Id).

2: return x̃.

291

δ(ε;µ) = Φ

(
− ε
µ

+
µ

2

)
−eεΦ

(
− ε
µ
− µ

2

)
(5) 292

with 293

µ = ∆/σ, (6) 294

where Φ(t) is the c.d.f. of the standard normal 295

distribution. 296

In summary, we form a DP-layer containing clip- 297

ping operation to bound the output sensitivity and 298

additive Gaussian noise on the latent representation. 299

A formal statement for the privacy guarantees of 300

Algorithm 1 is provided in Theorem 1. 301

Lemma 1. (DP-Layer Privacy) Let f(x) be the 302

encoder output with `2 sensitivity C given by Equa- 303

tion (3). For any ε > 0 and δ ∈ (0, 1), the mecha- 304

nism described in Algorithm 1 is (ε, δ)-DP for each 305

time of using the DP layer. 306

We evaluate the privacy cost for each step of in- 307

put forward though DP-layer in Algorithm 1 based 308

on Gaussian DP (GDP), which measure the pri- 309

vacy profile (ε, δ) in terms of µ via (5) and (6). 310

To make the paper self-contained, we introduce 311

the GDP preliminary in the appendix and for more 312

details please refer to Dong et al. (2021). Composi- 313

tion enjoys a simple and convenient formulation in 314

GDP, i.e., the n-fold composition of ui-GDP mech- 315

anisms is Gµ1 ⊗Gµ2 ⊗ · · · ⊗Gµn = Gµ-DP with 316

µ =
√
µ21 + · · ·+ µ2n. Let xt denote the sampled 317

sentences for the t-th update step (training or infer- 318

ence) with |xt| the number of sentences and xtk the 319

k-th sentence. The output of xtk after the DP layer 320

is C/σt-GDP according to (6). By calibrating the 321

dynamic noise power σt for each step, we have the 322

µtrain-GDP composition result of all the sampled 323

sentences in each step with 324

µtrain =
∣∣xt∣∣ C

σt
. (7) 325

In the following, we show how to calibrate the 326

noise by leveraging sub-sampling and up-sampling 327

to conduct DP amplification in the training and 328

inference stages, respectively. 329
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Algorithm 2 Noise calibration (Training stage)

Require: Training DP budget (ε, δ), sampling rate
ptrain, and samples xt for all t ∈ T .

1: Compute µtot corresponding to (ε, δ) by (5)
2: Compute µ1 = · · · = µT = µtrain by (8)
3: Compute σt = |xt| Cµtrain

by (6) for all t ∈ [T ].

Algorithm 3 Noise calibration (Inference stage)

Require: Inference/query DP budget (ε, δ), true
data rate q, sampling rate pquery

1: Mix the true query data with fictitious data by
keeping the true data rate q

2: Sample query data sets xt for all t ∈ T from
the mixed dataset.

3: Compute µtot corresponding to (ε, δ) by (5)
4: Compute µ1 = · · · = µT = µquery by (9)
5: Compute σt = |xt| Cµtrain

by (7) for all t ∈ [T ]

4.2 Noise Calibration for Training330
Each update step is performed on a sub-sampled331

sentences, which is obtained through an inde-332

pendent Bernoulli trial of all sentences with333

probability ptrain. The dual function of (5) for334

each subsamples with DP amplification can be335

expressed by ptrain · Gµt + (1 − ptrain) Id (Dong336

et al., 2021), with µt computed by (6) and337

Id : [0, 1]→ [0, 1] being Id (α) = 1− α. Usually338

the sub-sampling rate ptrain is much smaller339

than 1, and thus the trade-off function is much340

smaller than Gµt . Since it does not satisfy GDP,341

we cannot directly apply n-fold composition of342

GDP anymore. Consider a series of T adaptive343

compositions of ptrain · Gµt + (1 − ptrain) Id .344

According to the recent central limit theorem345

for GDP (Bu et al., 2020), the trade-off function346

for limT→∞⊗Tt=1 (ptrain ·Gµt + (1− ptrain) Id )347

approaches Gµtot-DP, which is given by348

µtrain
tot = ptrain ·

√
T
(

eµ
2
train − 1

)
. (8)349

In summary, given a privacy budget for the train-350

ing stage, i.e., (ε, δ) and training steps T , we can351

first subsample the training data sets to construct352

the mini-batch for each step update and then cal-353

ibrate the noise power for each step as shown in354

Algorithm 2.355

4.3 Noise Calibration for Inference356

To improve utility, we propose DP amplification357

via upsampling for the inference stage. The general358

idea is to introduce uncertainty into the inference 359

data set by upsampling it with fictitious data. We 360

generate some fictitious sentences that do not con- 361

tain any private information and mix them with the 362

true queries before randomly sampling the queries 363

multi-steps to send to the server via the DP layer. 364

Note that all the true queries will be send out via 365

multi-upsamplings. Because of the effectiveness 366

of this type of DP amplification, noise power will 367

be significantly reduced, improving inference accu- 368

racy without jeopardizing privacy. 369

Let x and y denote the original and fictitious 370

inference sets, respectively. Then we have the true 371

sentence rate q , |x|/(|x|+ |y|). For each step, we 372

sample each query sentence in the mixed data set by 373

independent Bernoulli trial with probability pquery. 374

Then the probability that each true query is sampled 375

is given by q · pquery. Following similar analysis in 376

the previous training stage DP amplification, the 377

GDP privacy parameter for the inference stage is 378

µ
query
tot = q · pquery ·

√
T
(

eµ
2
query − 1

)
. (9) 379

Similar to Algorithm 2, given a privacy budget for 380

the query stage, i.e., (ε, δ) and query number T , 381

the noise power calibration for the inference stage 382

is shown in Algorithm 3. 383

Note that the DP amplification in the inference 384

stage does not come for free. Similarly to how 385

downsampling reduces the training convergence 386

rate, up-sampling increases the query/inference 387

times since the mixed fictitious sentences and un- 388

certainty from the sampling. In the next section, 389

we will put this to the test through experimentation. 390

5 Related Work 391

To share the model while protect the corresponding 392

training data privacy, the previous study used DP- 393

SGD to train privacy-preserving models (Shokri 394

and Shmatikov, 2015; Yu et al., 2019). Because of 395

the large number of steps for training, even though 396

each step provides a reasonable DP cost, say, ε = 3, 397

the overall privacy cost explodes, which does not 398

provide any privacy guarantee. Abadi et al. (2016) 399

propose the first work with a reasonable level of 400

ε for DP-SGD. Because of their moment account- 401

ing technique for tight composition, the calibrated 402

noise is much smaller than all previous methods 403

based on the same privacy budget. More recently, 404

Li et al. (2021) study the DP-SGD for NLP problem 405

to reduce the performance loss due to privacy pre- 406

serving, and Anil et al. (2021); Dupuy et al. (2021) 407
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show how to efficiently train an NLP model via DP-408

SGD. However, as SGD-based training takes place409

on the server and is unrelated to inference data in410

user-server settings, DP-SGD based methods are411

inapplicable to the LDP-NLP model investigated412

in this paper.413

Another line of research focuses on user data414

protection in the user-server model, which is also415

the subject of this paper. Feyisetan et al. (2020a);416

Qu et al. (2021); Yue et al. (2021) aim to pro-417

tect the local input words based on the metric418

DP (Chatzikokolakis et al., 2013), a relaxation of419

DP definition. The methods can only be applied to420

the token representation layer by evaluating seman-421

tic distance between words in the latent representa-422

tion space. Due to the fact that these works (Feyise-423

tan et al., 2020a; Qu et al., 2021; Yue et al., 2021)424

adhere to the metric DP and its corresponding425

mechanism, tight DP composition/amplification426

for the metric DP related mechanism remains lack-427

ing. Furthermore, sampling words from a data set428

of sentences using a sampling distribution, such429

as Poisson sampling or uniform sampling, is dif-430

ficult. Due to the aforementioned reasons, DP is431

only guaranteed for each training/inference step,432

but the DP cost for the entire data set scales to the433

number of training steps (typically more than thou-434

sands steps), which no longer guarantees privacy.435

Furthermore, the existing methods only provide436

DP protection at the word level, falling short of437

a more stringent DP protection requirement, such438

as sentence level DP protection. We compare our439

DP-NLP model to existing works in Fig. 2 and440

Table 1.441

6 Experiments442

We conduct empirical privacy-utility test on text-443

matching and classification tasks. Note that the444

comparison is not fair for the proposed DP-NLP445

model because we protect an entire sentence rather446

than just a word as is done in the literature. Despite447

this, the experimental results show that the pro-448

posed DP-NLP model outperforms existing meth-449

ods in terms of accuracy and privacy by a signifi-450

cant margin. We also run individual ablation exper- 451

iments to show how the position of the DP layer, 452

sub-sampling ratio, and up-sampling ratio improve 453

privacy and utility, respectively. 454

Data Sets: Two real-world datasets from the 455

GLUE benchmark (Wang et al., 2018), Quora Ques- 456

tion Paris (QQP) and Stanford Sentiment Treebank 457

(SST-2), are used for text-matching and classifica- 458

tion tasks. We leave the introduction of these two 459

datasets in the appendix. 460

For QQP, because each pair of sentences is sup- 461

plied by the user for training, each pair passes 462

through the DP layer is protected. Given that each 463

pair’s binary label contains no privacy, it is sent out 464

without noise perturbation. During the query stage, 465

however, only the DP protected query sentence rep- 466

resentation is sent to the server. By contrast, only 467

a single sentence needs to be protected for SST- 468

2, resulting in less calibrated noise according to 469

Equation (7). As a result, it is expected that, in 470

general, better accuracy will be obtained for SST-2 471

data while maintaining the same privacy budget. 472

Model and Parameters: Depending on the prac- 473

tical computation and communication resources, 474

we test both the lightweight BiLSTM and BERT 475

model as the encoder and the corresponding model 476

and parameters are provided in the appendix. 477

Baselines: To protect privacy at the word level, a 478

relaxation of the above (ε, δ)-DP definition known 479

as metric DP (Chatzikokolakis et al., 2013) and 480

the corresponding mechanism has recently been 481

proposed (Feyisetan et al., 2020a; Yue et al., 2021; 482

Qu et al., 2021). Because of the unique mechanism 483

used, sampling amplification and tight composition 484

are still absent. As a result, only the DP cost of each 485

training step is given in Feyisetan et al. (2020a); 486

Yue et al. (2021); Qu et al. (2021). To account for 487

the total privacy cost for all the data used, as far as 488

we know, the best way to is to apply the advanced 489

composition (Dwork et al., 2010) to achieve an 490

overall privacy cost. For every ε > 0, δ, δ′ > 0, 491

(ε, δ)-DP mechanism is (ε′, T δ + δ′)-DP under T - 492

LDP-NLP Method DP Definition DP Granularity
Training/Inference Training/Inference DP
DP Amplification Composition

Lyu et al. (2020) (ε, δ)-DP feature 3(with dropout) 7

Feyisetan et al. (2020a) metric DP word 7 7

Qu et al. (2021) metric DP word 7 7

Yue et al. (2021) metric DP word 7 7

Ours (ε, δ)-DP sentence 3(with sampling) 3

Table 1: Summary of different methods’ functionalities for an LDP-NLP task.
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Figure 3: DP compositions for the training stage of var-
ious methodologies.

Figure 4: Acc vs. training privacy on QQP.

fold adaptive composition, for493

ε′ =
√

2k ln (1/δ′) · ε+ k · ε (eε − 1) . (10)494

Besides, the utility of the null privacy case, which495

serves as the upper bound, is also provided.496

DP Amplification&Composition The ultimate497

goal is to achieve a reasonable total privacy cost498

for the entire training and query separately. The499

total DP cost ε, which is a function of train-500

ing steps, boosts using the advanced composition501

method (Dwork et al., 2010), as shown in Fig.3.502

The greatest saving of privacy cost as shown in503

Fig.3 is due to the fact that the proposed DP layer504

benefits from the model’s inherent randomness, i.e.,505

sub-sampling for training and a novel up-sampling506

scheme for inference to perform DP amplification507

as well as a tight privacy composition. Therefore,508

we can calibrate the noise power in Algorithm 1509

tightly so as to improve the model utility as shown510

in the following.511

Training Data Privacy vs. Model Accuracy512

We first compare the performance of our pro-513

posed method to previous works (Feyisetan et al.,514

2020a; Yue et al., 2021; Qu et al., 2021) at different515

DP budget constraints for the entire training data516

sets. Since none of existing methods consider the517

privacy protection of inference data, we leave this518

case in the next subsection. The result in Feyisetan519

et al. (2020a) is reproduced by Qu et al. (2021),520

and we select the smallest d for neighbor search as521

Figure 5: Acc vs. training privacy on SST-2.

Inference data ε
Accuracy on QQP Data

no USDPA +USDPA +USDPA (Retrain)
1 75.83 +1.17 +3.82

2.25 78.72 +0.53 +1.29
4 79.67 +0.11 +0.64
14 79.82 +0.10 +0.69

Null Privacy 83.11

Table 2: Accuracy improvement by up-sampling DP
amplification (USDPA) for inference on QQP.

a lower bound from the Fig. 3 in Qu et al. (2021), 522

which gives the strongest privacy. For both QQP 523

and SST-2 data sets, it is shown consistently in 524

Fig. 4 and Fig. 5 that missing a tight DP accounting 525

method results in the total privacy parameter ε scal- 526

ing to more than 5000 in the state-of-the-art works, 527

which does not guarantee any privacy for the whole 528

data set even though they provide reasonable pri- 529

vacy protection for each step. Moreover, due to the 530

random noise applied to the token layer, the per- 531

formance of existing method degrades significantly 532

compared to the null privacy case and even tend 533

to be that of a random classifier when ε = 5100. 534

By contrast, the proposed DP-NLP model improves 535

the performance, which approaches the null privacy 536

case for the SST-2 data sets for both the LSTM and 537

BERT encoders. Moreover, it is observed that the 538

performance loss to the non-DP version of BERT 539

model is larger than that of the LSTM model be- 540

cause its large representation dimension is more 541

sensitive to clipping and noise. 542

Inference Data Privacy vs. Model Accuracy 543

We further test the proposed up-sampling DP 544

amplification algorithm to the accuracy improve- 545

ment. First, we directly apply Algorithm 2 on infer- 546

ence/query data to check the improvement, which 547

is referred to as (up-sampling DP amplification) 548

USDPA. In this case, the noise power for training 549

is not consistent with the training case. We further 550

retrain the model with the same noise power as 551

the inference case to test the performance, which 552

is referred to as USDPA (Retrain). It is shown 553

that the up-sampling improves accuracy, and the 554

stronger the privacy guaranteed the larger an ac- 555
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Inference data ε
Accuracy on SST-2 Data

no USDPA +USDPA +USDPA (Retrain)
0.8 76.72 +1.25 +3.31
1.75 78.44 +0.77 +1.72
2.25 78.90 +0.80 +1.25

8 80.70 -0.19 +0.77
Null Privacy 83.91

Table 3: Accuracy improvement by up-sampling DP
amplification (USDPA) for inference data on SST-2.

Training ε
QQP

Training ε
SST-2

Token Rep. Latent Rep. Token Rep. Latent Rep.

1.5 71.53 75.83 1 68.23 76.72
2.3 72.85 78.72 2.3 71.33 78.44
4 74.25 79.67 3.5 73.32 78.90
13 74.51 79.82 12 73.51 80.70
45 75.51 80.47 25 74.20 81.30

Null Privacy 83.11 Null Privacy 83.91

Table 4: DP layer applied to the token representation
versus that applied to the latent representation.

curacy gain is obtained. Note that in practice, the556

retrain is not necessary and we can directly apply557

the (up-sampling DP amplification) USDPA.558

In the following, we conduct a series of ablation559

experiments to test the proposed LDP-NLP model.560

DP-Layer Position Impact We put the proposed561

DP layer position to the test by applying it to both562

the token and latent representations, illustrated in563

Table 4. Compared to being applied on latent rep-564

resentations, being applied on the token representa-565

tion is sensitive to random perturbation and results566

in performance degradation for downstream tasks.567

Using the DP layer directly on the latent represen-568

tation, on the other hand, improves accuracy by 4%569

to 8% for a variety of tasks.570

Sub-sampling Rate Impact We also look at how571

the subsampling rate ptrain affects model accuracy572

and training efficiency. The smaller the ptrain,573

the smaller the sampled batch size, and thus the574

slower the convergence. However, according to575

(8), smaller ptrain leads to larger DP amplification,576

resulting in a lower calibrated noise power. As a577

result, there is a "best" ptrain to choose from. We578

fix the privacy budget ε = 12 and 45 for SST-2 and579

QQP to test the effect of ptrain. The results of Fig. 6580

agree with our intuition, and there is a ptrain that581

produces the highest accuracy given a fixed privacy582

budget. As the accuracy is not sensitive to the value583

of ptrain, we do not need to tune this parameter in584

practice to achieve "optimal" performance.585

Up-sampling Rate Impact Similar to the above586

ablation study, we examine the impact of q · pquery587

for inference. It is expected that the smaller the588

q · pquery is, the larger accuracy gain we can obtain589

from the DP amplification. It is evident, however,590

Figure 6: Effectiveness and efficiency relationship in-
fluenced by sampling rate for training phrase.

Figure 7: The relationship between privacy cost (total
privacy budget, sampling rate q · pquery and the query
times to complete all the test sentences.

that we need more sampling times and inference 591

steps to finish all the test datasets, which further in- 592

crease the privacy cost. Consistent with the above 593

analysis, Figure 7 illustrates the relationships, and 594

in practice, we can specify specific q · pquery values 595

based on query time and privacy budget require- 596

ments. The ratio of fictitious data to true data is set 597

to 0, 0.5, 1, 1.5, . . . , 8.5, 9, in Figure 7, and q·pquery 598

is set to be the reciprocal of total data size. 599

Moreover, in Appendix A.4, we also discuss the 600

effect of representation dimension on performance. 601

Furthermore, Equations (8) and (9) are used to com- 602

pute the composition’s limits, as explained before 603

Equation (8). It leads to an underestimation of the 604

true cost of privacy. In Appendix A.5, we compute 605

the upper bound further. It is demonstrated that the 606

difference between the lower and upper bounds is 607

very small, implying that the lower bound is a good 608

approximation. 609

7 Conclusion 610

To protect the privacy of local user data while keep 611

the model accuracy, we propose a novel LDP-NLP 612

methodology, which includes a non-parametric DP- 613

layer applied to the user-side latent representa- 614

tion, DP amplifications for training/inference data 615

via sub-sampling/up-sampling, tight composition 616

for privacy accounting, and noise calibration al- 617

gorithms based on DP analysis. It successfully 618

reduces calibrated noise and achieves a significant 619

accuracy improvement while lowering total privacy 620

costs to less than 10 for the first time for both train- 621

ing and inference stages. 622
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A Supplementary Formalism Details755

A.1 GDP Preliminary756

GDP is a dual representation of (ε, δ)-DP for Gaus-757

sian mechanism. Let P and Q denote the distri-758

butions of M(x) and M (x′) with x ∼ x′, and let759

φ be any (possibly randomized) rejection rule for760

testing H0 : P against H1 : Q. With these in place,761

Dong et al. (2021) defines the trade-off function of762

P and Q as763

T(P,Q) : [0, 1] 7→ [0, 1]

α 7→ inf
φ
{1− EQ[φ] : EP [φ] 6 α} .

(11)764

Above, EP [φ] and 1 − EQ[φ] are type I and type765

II errors of the rejection rule φ, respectively. It766

is shown that T(P,Q) ≥ T(N (0, 1),N (µ, 1)) ,767

Gµ, which is referred to as µ-GDP. The conversion768

between µ-GDP and (ε, δ)-DP follows the privacy769

profile in (5). Please refer to (Dong et al., 2021) for770

more details about the µ-GDP definition.771

A.2 Datasets772

Quora Question Paris (QQP): Automated process-773

ing of users queries and records is a significant774

research direction, and one such task is computing775

the semantic similarity between user logs for the776

benefit of retrieval efficiency. QQP is a sentence-777

pair classification task dataset with 363k sentence778

pairs for training and 40k sentence pairs for vali-779

dation. The goal is to determine whether a pair of780

questions are paraphrases or not.781

Stanford Sentiment Treebank (SST-2): SST-2 is a782

sentence classification task that consists of 67k783

training sentences and 872 validation sentences.784

The goal is to predict a sentiment label for a movie785

review sentence. We use the GLUE version of786

SST-2 (Bowman et al., 2015).787

A.3 Models and Parameters788

Given the computation and communication cost789

constraints, we use the lightweight BiLSTM as790

the user-side feature extractor and set the max se-791

quence length and latent representation dimension792

to 128. The clipping value is C = 0.5, and the793

DP budget parameters δ for the training/inference794

stages are set to be the reciprocal of the train-795

ing/inference data size; and ε for the total privacy796

cost are set to be in the range [0.8, 14]. Given a pri-797

vacy budget of (ε, δ), the noise powers for training798

and inference are calibrated via Algorithm 2 and799

Algorithm 3.800

A.4 Representation Dimension Impact 801

We investigate the effect of the latent representation 802

dimension on the accuracy for the LSMT model. 803

The clip operation for the sensitivity bound in Al- 804

gorithm 1 is affected by the size of the `2-norm of 805

a latent representation. As the norm increases, the 806

clip operation becomes more detrimental to down- 807

stream tasks even though we tune it extensively. 808

The outcome demonstrates the critical nature of 809

lower dimension accuracy in the presence of pri- 810

vacy constraints. Additionally, this conclusion is 811

supported by practical constraints on communica- 812

tion and computation.

Dataset Training ε
Latent Rep dimensionality

128 256 768

QQP
1.5 75.83 75.68 54.58
2.3 78.72 78.18 71.86
4 79.67 79.03 74.27

SST-2
1 76.72 75.45 72.94

2.3 78.44 77.29 73.97
3.5 78.90 77.89 76.03

Table 5: Accuracy of different dimensions of latent rep-
resentation at different privacy levels for training data.

813

A.5 Privacy Cost Lower Bound and Upper 814

Bound 815

The equations (8) and (9) are used to compute the 816

composition’s approximation, as explained before 817

(8). It leads to an underestimation of the true cost of 818

privacy. In Table 6, we compute the upper bound 819

corresponding to the ε used in Fig. 4 and Fig. 5 820

further based on the very recent work (Gopi et al., 821

2021). It is demonstrated that the difference be- 822

tween the lower and upper bounds is very small, 823

implying that the lower bound is a good approx- 824

imation. We do not use the upper bound as the 825

approximation because it is based on numerical 826

computation (Gopi et al., 2021) and it is difficult, 827

if not impossible, to calibrate the noise power.

QQP Privacy Cost ε SST-2 Privacy Cost ε
GDP+CLT Upper Bound GDP+CLT Upper Bound

1.5 1.7 1 1.2
2.3 2.6 2.3 2.7
4 4.5 3.5 4.6
13 13.9 12 13.2

Table 6: Privacy cost based on GDP with CLT (Dong
et al., 2021) and compostion of tradeoff func-
tions (Gopi et al., 2021).

828
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