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Abstract

In this paper, we propose a Local Differentially
Private Natural Language Processing (LDP-
NLP) model that protects the privacy of user
input sentences for both training and infer-
ence stages while requiring no server security
trust. Compared to existing methods, the novel
privacy-preserving methodology significantly
reduces calibrated noise power and thus im-
proves model accuracy by incorporating (a) an
LDP-layer, (b) sub-sampling and up-sampling
DP amplification algorithms for training and
inference, and (c) DP composition algorithms
for noise calibration. This novel LDP-NLP so-
lution guarantees privacy for the entire train-
ing/inference data for the first time, whereas
current methods can only guarantee privacy
for either a single training/inference step. Fur-
thermore, the total privacy cost is reduced to a
reasonable range, i.e., less than 10, for the first
time with an accuracy loss of only 2-5% com-
pared to the accuracy upper bound produced
by the original model without privacy guaran-
tee.

1 Introduction

Natural Language Processing (NLP) based on
(deep) neural architectures has given rise to a
new generation of applications such as sentiment
analysis, question answering, and information re-
trieval (Sun et al., 2019; Pang et al., 2017; Chen
et al., 2017). The majority of these applications
may require a significant amount of personal data
during the training stage, as well as personal
queries sent to the server during the inference stage,
raising a number of privacy concerns. Question-
answering systems, for example, require personal
data for training (fine-tuning) and questions from
the user are required again during the inference
stage to query answers from the service provider.
Many studies, however, have discovered privacy
violations in deep learning models due to the in-
put information embedded in latent representations

and model parameters (Shokri et al., 2017; Carlini
et al., 2019). To protect privacy, there has been
an increase in demand for privacy-preserving NLP
model (Feyisetan et al., 2020b).

Data anonymization that removes personally
identifiable information or protected attributes from
data is insufficient as innocuous-looking attributes
can be linked to other information sources for rei-
dentification (Pedreshi et al., 2008; Sweeney, 2015).
Differential Privacy (DP) (Dwork et al., 2006), on
the other hand, randomizes the computation pro-
cess to stabilize the output in the face of changes to
input data, ensuring that the adversary can hardly
tell if an individual data item, i.e., a word or a sen-
tence (which is the protection granularity depend-
ing on the mechanism designed), is in the dataset or
not by looking at the computation output, i.e., latent
representation or model. DP has been integrated
into the deep learning training stage (Abadi et al.,
2016) by appropriately randomizing backpropa-
gation with calibrated noise to limit what could
be breached from the training data when reveal-
ing the model. This is known as Differentially-
Private Stochastic Gradient Descent (DP-SGD). As
a result, the model parameters can be viewed as
a sanitized release, with individual training data
obscured but the model still remains functional.
However, due to the calibrated noise required for
DP, it has been recognized that DP mechanisms
invariably significantly reduce the downstream task
performance, raising the privacy-utility tradeoff is-
sue (Dwork and Lei, 2009).

In the context of NLP in this paper, we focus
on the practical situation in which users! are con-
cerned about the privacy of their sensitive data and
the server is untrustworthy. Since the privacy of
data embedded in the model/gradient can be vi-
olated (Shokri et al., 2017; Carlini et al., 2019),

A user is a data owner in this paper, who could be an
individual single user or a curator involved in multi-party
computation.



Local DP (LDP) is required to protect user’s in-
put sentences before sharing them or sharing their
computation results with the server. Furthermore,
as the downstream task implemented at the server,
the user itself cannot perform DP-SGD-based train-
ing to protect the privacy of its training data, let
alone the privacy of its inference data. To address
the aforementioned problems, we propose a novel
LDP layer on the user side to randomize the inter-
mediate output for training’s and inference’s for-
ward computations, respectively. We successfully
push the privacy-accuracy tradeoff boundary sig-
nificantly by carefully designing noise calibration
algorithms based on sampling, achieving for the
first time state-of-the-art accuracy while lowering
the privacy parameter € to less than 10 for the entire
training/inference stage. The technical contribu-
tions are summarized below.

(I) We develop a novel non-parametric DP layer
along with the noise power calibration algorithms
that provides LDP for not only the training sen-
tences but also the inference sentences.

(I) For the first time in the LDP-NLP model,
we propose novel sentences sub-sampling and
up-sampling DP-amplification mechanisms in the
training and inference stages, that reduce the pri-
vacy cost parameter ¢ to less than 10 across the
entire training/inference data set. By contrast, the
same data privacy cost € can only be guaranteed
in a single training or inference step in the litera-
ture. In other words, thousands of additional train-
ing/inference steps can be carried out in the pro-
posed method with the same level of privacy as
existing methods.

(IIT) The proposed generic LDP-NLP methodology
significantly outperforms state-of-the-art methods
on typical LDP-NLP tasks and benchmarks. In
comparison to the performance upper bound pro-
duced by the version that does not guarantee pri-
vacy, the accuracy loss due to privacy preservation
is only 2%-5% for an LSTM or a BERT encoder
with privacy cost less than 10.

2 LDP-NLP Task Pipeline

Fig. 1 depicts a target scenario with correspond-
ing LDP operations in Fig. 22. As the user’s in-
put contains sensitive information, our primary re-
quirement is that the service provider only accesses
LDP-guaranteed representation, which means that

2 Although this study focuses on a single user case, it is
easily adaptable to a more general setting in which sensitive
data is collected independently from multiple users using LDP.
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Figure 1: LDP-NLP pipeline for DP training and DP
inference in Stages 2 and Stage 3 to protect training
and inference.
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Figure 2: Different LDP architectures for the privacy-
preserving modules (in blue) in Fig. 1.

all of the information sent out locally by the user
in all steps together must satisfy the DP definition,
with little chance of determining whether or not
an individual sentence is in the data set. The four
stages required to complete an LDP-NLP task be-
tween a user and the server are summarized below,
with the training (Stage 2) and inference (Stage 3)
stages containing user sentence input that requires
DP assurance.

Stage 1 (Pre-train): If necessary, the server per-
forms pre-training on its own data.

Stage 2 (DP training): During collaborative train-
ing, each user converts raw data (e.g., sentences)
into LDP-guaranteed latent representations before
sending them to the server. We propose a non-
parametric DP layer after the encoder to achieve



LDP guarantee with details about the operations
and the noise calibration algorithm in Section 4.1
and Section 4.2, respectively.

Stage 3 (DP inference): The raw data is converted
by the local DP-layer into DP-guaranteed latent
representations before being sent to the server for
the inference process. This stage enables some
calibrated noise power, which depends on the up-
sampling DP amplification algorithm. This will be
described in Section 4.3.

Stage 4 (Inference result return): The model of
the server responds to DP-protected queries.

Note that, after receiving the DP-guaranteed rep-

resentations in Stage 3 and Stage 4, the server
computes the remaining forward computations and
backpropagations for both the inference and train-
ing stages. Note that DP-SGD in Li et al. (2021);
Anil et al. (2021); Dupuy et al. (2021), which is
designed to protect only the training data while
sharing the training model, is inapplicable in the
considered situation because performing the down-
stream task would require the untrusted server to
compute the true gradient, resulting in data leak-
age (Zhao et al., 2020).
Paper organization This paper focuses primarily
on Stage 3 and Stage 4. We will first introduce the
DP definition in the context of NLP problems in
Section 3, and then in Section 4, we will formulate
the DP layer operators as well as the noise cali-
bration algorithms for the training and inference
stages. Section 5 contains information about re-
lated work. In Section 6, we provide experimental
validation.

3 LDP-NLP Model

DP Mechanism: A random DP algorithm’s output
is stabilized to the point where the presence or
absence of any specific data item, such as a word or
a sentence in an NLP task, is hardly distinguishable.
The type of data item is the DP granularity. The
greatest possible divergence between the output
distributions of DP algorithms when applied to two
datasets that differ by arbitrary data item of the
DP granularity, i.e., word or sentence, describes
the DP protection level (also known as DP cost).
More accurately, let x and x’ be datasets that differ
in one data item (a word or a sentence), then the
randomized algorithm M, which is the local user
output in our problem (details in Equation (4)), is
(e,0)-DP if for arbitrary subset, i.e., ) of the all
possible output of M:

PrM(z) € Y] < e PriM(a’) € Y] +46. (1)

This equation shows that the protection level is re-
lated to e: the lower ¢ values, the better privacy
protection. The value § can be interpreted as the
likelihood of not achieving DP. Specifically, when
0 = 0, we get e-DP. We notice that the protection
level is also related to the level of granularity: the
higher the level of granularity, the higher the level
of privacy guaranteed. Therefore the sentence level
DP considered in this paper has a better privacy
protection than the word level DP proposed in the
literature (Feyisetan et al., 2020a; Qu et al., 2021;
Yue et al., 2021) in general, because a sequence
of words in the sentence is hidden in the former
case. However, the specific operation M in the ex-
isting studies cannot be easily extended from word
protection to sentence protection. We proposed a
DP-layer to achieve the aforementioned goals with
details in Section 4.1.

Given a target privacy budget (¢, d) for protect-
ing the entire training and inference stages, the
next critical point is to calibrate the noise power,
a parameter for that DP mechanism. It should be
noted that the lower the noise power, the higher
the model’s accuracy but the lower the level of
privacy. To solve this dilemma, we investigate
subsampling/upsampling methods for DP ampli-
fication and tight DP composition among train-
ing/inference steps in order to reduce noise power
without compromising the privacy.

DP Amplification&Composition: Intuitively, pri-
vacy amplification by sampling is caused by the
fact that an individual sentence has complete pri-
vacy if it is not included in the samples and whether
or not the sentence is included is a secret. In this
paper, we investigate sub-sampling DP amplifica-
tion for each NLP training step and further propose
for the first time up-sampling DP amplification for
the NLP inference/query by introducing fictitious
data on the user side.

To complete an NLP task, both the training and
query stages must perform a series of computation
steps on the private training/inference dataset, with
each computation step potentially based on the re-
sults of previous computation steps on the same
dataset. Even if each step ¢ is DP protected with
a privacy cost (e;,d;), taking all steps output to-
gether by the adversary may no longer guarantee
privacy. The computation of privacy degradation
as the number of steps increases is referred to as
DP composition. Specifically, since an NLP train-
ing stage requires even more than thousands of



step updates and the proposed up-sampling infer-
ence usually also involves multiple queries, a tight
composition methodology is needed. The detailed
analysis and corresponding noise calibration algo-
rithms are provided in Section 4.2 and 4.3.

4 Operations in the LDP-NLP Model
4.1 DP Mechanism in the DP-Layer

We propose a nonparametric DP layer by injecting
calibrated noise into the output of a clipped encoder.
It is important to note that applying the DP layer
directly to the embeddings results in significant
performance degradation due to the significant loss
of semantic information for the downstream task.
As a result, an encoder is used before the DP layer
on the user side. A light-weight encoder, such as
LSTM, can be used for a computation/memory-
limited user, while stacked transformers can be
used for a powerful user, such as a curator.

Clipping Operation: One method to stablize the
output is clipping. Let = and 2’ be arbitrary pair
of sentences from the training or inference sets,
and define f(z) as the corresponding output of the
encoder in Fig. 2(b) and Fig. 2(c). The sensitivity
A of f(z), which is the greatest variation output
for a pair of sentences with the ¢3-norm is given by

A = max||f(z) = f(2)]]2- 2

Because of the randomness of training data, com-
puting A is difficult. We limit f’s output range
by clipping per sentence representation from the
output of local encoder with

) C

CL(f(x);C) = f(z) - min <1, ||f(33)||2) . (3)
The quantity C' is a predefined hyper-parameter.
The lower the value of C, the less calibrated noise
power is required for a given level of DP protection.
Cutting too much with a small C, on the other hand,
will harm the semantic information embedded and
will result in a significant performance drop.

After clipping, we apply additive Gaussian noise
to improve the accuracy of the NLP model while
still providing DP guarantee. Hence, the DP layer
output is given by

M(z, f(-),€,8) = CL(f(2)) + N(0,07). (4)

It is shown that the calibrated noise power o and
the DP profile (¢(d), §) follows (Dong et al., 2021):

Algorithm 1 Non-parametric DP-Layer

Require: Latent representation f(z) € R, clip-
ping value C, noise variance o>
1: Gaussian Mechanism: Z <— CL (f(x);C) + =z
with z ~ N(0, 0%1,).
2: return 7.

R S AT WENDR P S (R o
6(6’M)_©< u+2) eq)( [ 2) ©)

with
p=A/o, (6)

where ®(t) is the c.d.f. of the standard normal
distribution.

In summary, we form a DP-layer containing clip-
ping operation to bound the output sensitivity and
additive Gaussian noise on the latent representation.
A formal statement for the privacy guarantees of
Algorithm 1 is provided in Theorem 1.

Lemma 1. (DP-Layer Privacy) Let f(x) be the
encoder output with o sensitivity C' given by Equa-
tion (3). For any € > 0 and § € (0, 1), the mecha-
nism described in Algorithm 1 is (e, 0)-DP for each
time of using the DP layer.

We evaluate the privacy cost for each step of in-
put forward though DP-layer in Algorithm 1 based
on Gaussian DP (GDP), which measure the pri-
vacy profile (e,0) in terms of p via (5) and (6).
To make the paper self-contained, we introduce
the GDP preliminary in the appendix and for more
details please refer to Dong et al. (2021). Composi-
tion enjoys a simple and convenient formulation in
GDP, i.e., the n-fold composition of u;-GDP mech-
anisms is G, ® Gy, ® --- ® G, = G,-DP with
p=+/p3+--+ p2. Let z' denote the sampled
sentences for the ¢-th update step (training or infer-
ence) with || the number of sentences and z!, the
k-th sentence. The output of 2, after the DP layer
is C'/04-GDP according to (6). By calibrating the
dynamic noise power o; for each step, we have the
Ihrain-GDP composition result of all the sampled
sentences in each step with

Htrain = ‘xt g (7
O¢
In the following, we show how to calibrate the
noise by leveraging sub-sampling and up-sampling
to conduct DP amplification in the training and
inference stages, respectively.



Algorithm 2 Noise calibration (Training stage)

Require: Training DP budget (e, §), sampling rate
Prrain, and samples x; for all t € T'.
1: Compute fuor corresponding to (e, d) by (5)
2: Compute 11 = +++ = i = fltrain bY (8)

3: Compute o, = \xtlugm by (6) for all ¢t € [T].

Algorithm 3 Noise calibration (Inference stage)

Require: Inference/query DP budget (e, d), true

data rate ¢, sampling rate pquery

1: Mix the true query data with fictitious data by
keeping the true data rate ¢

2: Sample query data sets x; for all ¢ € T" from
the mixed dataset.

3: Compute jio corresponding to (€, d) by (5)

4: Compute p11 = -+ = pup = Hquery by (9)

5: Compute o, = \xtlﬁ by (7) forall ¢t € [T]

4.2 Noise Calibration for Training
Each update step is performed on a sub-sampled

sentences, which is obtained through an inde-
pendent Bernoulli trial of all sentences with
probability puan. The dual function of (5) for
each subsamples with DP amplification can be
expressed by Pirain - Gut =+ (1 - ptrain) Id (Dong
et al., 2021), with pu computed by (6) and
Id : [0,1] — [0,1] being Id (a) = 1 — . Usually
the sub-sampling rate pg,in is much smaller
than 1, and thus the trade-off function is much
smaller than G,,. Since it does not satisfy GDP,
we cannot directly apply n-fold composition of
GDP anymore. Consider a series of 7' adaptive
compositions of Peain - Gy + (1 — Pieain) 1d .
According to the recent central limit theorem
for GDP (Bu et al., 2020), the trade-off function
for lim7_ ®?:1 (Pteain - Gut + (1 = Purain) 1d )
approaches G, ,-DP, which is given by

uﬁf{m = Dtrain - /T (eufmin N 1) ' ®

In summary, given a privacy budget for the train-
ing stage, i.e., (¢, d) and training steps 7', we can
first subsample the training data sets to construct
the mini-batch for each step update and then cal-
ibrate the noise power for each step as shown in
Algorithm 2.

4.3 Noise Calibration for Inference

To improve utility, we propose DP amplification
via upsampling for the inference stage. The general

idea is to introduce uncertainty into the inference
data set by upsampling it with fictitious data. We
generate some fictitious sentences that do not con-
tain any private information and mix them with the
true queries before randomly sampling the queries
multi-steps to send to the server via the DP layer.
Note that all the true queries will be send out via
multi-upsamplings. Because of the effectiveness
of this type of DP amplification, noise power will
be significantly reduced, improving inference accu-
racy without jeopardizing privacy.

Let z and y denote the original and fictitious
inference sets, respectively. Then we have the true
sentence rate ¢ = |z|/(|z|+ |y|). For each step, we
sample each query sentence in the mixed data set by
independent Bernoulli trial with probability pguery-
Then the probability that each true query is sampled
is given by ¢ - pquery- Following similar analysis in
the previous training stage DP amplification, the
GDP privacy parameter for the inference stage is

2
,U/?(;ltery =q- pquery . T (e/’Lﬂluery — ]_) . (9)

Similar to Algorithm 2, given a privacy budget for
the query stage, i.e., (¢,d) and query number 7,
the noise power calibration for the inference stage
is shown in Algorithm 3.

Note that the DP amplification in the inference
stage does not come for free. Similarly to how
downsampling reduces the training convergence
rate, up-sampling increases the query/inference
times since the mixed fictitious sentences and un-
certainty from the sampling. In the next section,
we will put this to the test through experimentation.

5 Related Work

To share the model while protect the corresponding
training data privacy, the previous study used DP-
SGD to train privacy-preserving models (Shokri
and Shmatikov, 2015; Yu et al., 2019). Because of
the large number of steps for training, even though
each step provides a reasonable DP cost, say, € = 3,
the overall privacy cost explodes, which does not
provide any privacy guarantee. Abadi et al. (2016)
propose the first work with a reasonable level of
€ for DP-SGD. Because of their moment account-
ing technique for tight composition, the calibrated
noise is much smaller than all previous methods
based on the same privacy budget. More recently,
Lietal. (2021) study the DP-SGD for NLP problem
to reduce the performance loss due to privacy pre-
serving, and Anil et al. (2021); Dupuy et al. (2021)



show how to efficiently train an NLP model via DP-
SGD. However, as SGD-based training takes place
on the server and is unrelated to inference data in
user-server settings, DP-SGD based methods are
inapplicable to the LDP-NLP model investigated
in this paper.

Another line of research focuses on user data
protection in the user-server model, which is also
the subject of this paper. Feyisetan et al. (2020a);
Qu et al. (2021); Yue et al. (2021) aim to pro-
tect the local input words based on the metric
DP (Chatzikokolakis et al., 2013), a relaxation of
DP definition. The methods can only be applied to
the token representation layer by evaluating seman-
tic distance between words in the latent representa-
tion space. Due to the fact that these works (Feyise-
tan et al., 2020a; Qu et al., 2021; Yue et al., 2021)
adhere to the metric DP and its corresponding
mechanism, tight DP composition/amplification
for the metric DP related mechanism remains lack-
ing. Furthermore, sampling words from a data set
of sentences using a sampling distribution, such
as Poisson sampling or uniform sampling, is dif-
ficult. Due to the aforementioned reasons, DP is
only guaranteed for each training/inference step,
but the DP cost for the entire data set scales to the
number of training steps (typically more than thou-
sands steps), which no longer guarantees privacy.
Furthermore, the existing methods only provide
DP protection at the word level, falling short of
a more stringent DP protection requirement, such
as sentence level DP protection. We compare our
DP-NLP model to existing works in Fig. 2 and
Table 1.

6 Experiments

We conduct empirical privacy-utility test on text-
matching and classification tasks. Note that the
comparison is not fair for the proposed DP-NLP
model because we protect an entire sentence rather
than just a word as is done in the literature. Despite
this, the experimental results show that the pro-
posed DP-NLP model outperforms existing meth-
ods in terms of accuracy and privacy by a signifi-

cant margin. We also run individual ablation exper-
iments to show how the position of the DP layer,
sub-sampling ratio, and up-sampling ratio improve
privacy and utility, respectively.

Data Sets: Two real-world datasets from the
GLUE benchmark (Wang et al., 2018), Quora Ques-
tion Paris (QQP) and Stanford Sentiment Treebank
(SST-2), are used for text-matching and classifica-
tion tasks. We leave the introduction of these two
datasets in the appendix.

For QQP, because each pair of sentences is sup-
plied by the user for training, each pair passes
through the DP layer is protected. Given that each
pair’s binary label contains no privacy, it is sent out
without noise perturbation. During the query stage,
however, only the DP protected query sentence rep-
resentation is sent to the server. By contrast, only
a single sentence needs to be protected for SST-
2, resulting in less calibrated noise according to
Equation (7). As a result, it is expected that, in
general, better accuracy will be obtained for SST-2
data while maintaining the same privacy budget.

Model and Parameters: Depending on the prac-
tical computation and communication resources,
we test both the lightweight BILSTM and BERT
model as the encoder and the corresponding model
and parameters are provided in the appendix.

Baselines: To protect privacy at the word level, a
relaxation of the above (e, §)-DP definition known
as metric DP (Chatzikokolakis et al., 2013) and
the corresponding mechanism has recently been
proposed (Feyisetan et al., 2020a; Yue et al., 2021;
Quet al., 2021). Because of the unique mechanism
used, sampling amplification and tight composition
are still absent. As aresult, only the DP cost of each
training step is given in Feyisetan et al. (2020a);
Yue et al. (2021); Qu et al. (2021). To account for
the total privacy cost for all the data used, as far as
we know, the best way to is to apply the advanced
composition (Dwork et al., 2010) to achieve an
overall privacy cost. For every ¢ > 0,4,0" > 0,
(€,9)-DP mechanism is (¢/, 70 + ¢')-DP under 7'

LDP-NLP Method | DP Definition DP Granularity -ning/Inference - Training/Inference DP
DP Amplification Composition
Lyu et al. (2020) (e,6)-DP feature v/ (with dropout) X
Feyisetan et al. (2020a) metric DP word X X
Queet al. (2021) metric DP word X X
Yue et al. (2021) metric DP word X X
Ours (e,6)-DP sentence v/ (with sampling) v

Table 1: Summary of different methods’ functionalities for an LDP-NLP task.
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Besides, the utility of the null privacy case, which
serves as the upper bound, is also provided.
DP Amplification&Composition The ultimate
goal is to achieve a reasonable total privacy cost
for the entire training and query separately. The
total DP cost €, which is a function of train-
ing steps, boosts using the advanced composition
method (Dwork et al., 2010), as shown in Fig.3.
The greatest saving of privacy cost as shown in
Fig.3 is due to the fact that the proposed DP layer
benefits from the model’s inherent randomness, i.e.,
sub-sampling for training and a novel up-sampling
scheme for inference to perform DP amplification
as well as a tight privacy composition. Therefore,
we can calibrate the noise power in Algorithm 1
tightly so as to improve the model utility as shown
in the following.
Training Data Privacy vs. Model Accuracy

We first compare the performance of our pro-
posed method to previous works (Feyisetan et al.,
2020a; Yue et al., 2021; Qu et al., 2021) at different
DP budget constraints for the entire training data
sets. Since none of existing methods consider the
privacy protection of inference data, we leave this
case in the next subsection. The result in Feyisetan
et al. (2020a) is reproduced by Qu et al. (2021),
and we select the smallest d for neighbor search as
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Accuracy (%)
=
o

a
=]

Inference data e Accuracy on QQP Data
no USDPA +USDPA +USDPA (Retrain)
1 75.83 +1.17 +3.82
225 78.72 +0.53 +1.29
4 79.67 +0.11 +0.64
14 79.82 +0.10 +0.69
Null Privacy 83.11

Table 2: Accuracy improvement by up-sampling DP
amplification (USDPA) for inference on QQP.

a lower bound from the Fig. 3 in Qu et al. (2021),
which gives the strongest privacy. For both QQP
and SST-2 data sets, it is shown consistently in
Fig. 4 and Fig. 5 that missing a tight DP accounting
method results in the total privacy parameter € scal-
ing to more than 5000 in the state-of-the-art works,
which does not guarantee any privacy for the whole
data set even though they provide reasonable pri-
vacy protection for each step. Moreover, due to the
random noise applied to the token layer, the per-
formance of existing method degrades significantly
compared to the null privacy case and even tend
to be that of a random classifier when e = 5100.
By contrast, the proposed DP-NLP model improves
the performance, which approaches the null privacy
case for the SST-2 data sets for both the LSTM and
BERT encoders. Moreover, it is observed that the
performance loss to the non-DP version of BERT
model is larger than that of the LSTM model be-
cause its large representation dimension is more
sensitive to clipping and noise.
Inference Data Privacy vs. Model Accuracy
We further test the proposed up-sampling DP
amplification algorithm to the accuracy improve-
ment. First, we directly apply Algorithm 2 on infer-
ence/query data to check the improvement, which
is referred to as (up-sampling DP amplification)
USDPA. In this case, the noise power for training
is not consistent with the training case. We further
retrain the model with the same noise power as
the inference case to test the performance, which
is referred to as USDPA (Retrain). It is shown
that the up-sampling improves accuracy, and the
stronger the privacy guaranteed the larger an ac-



Inference data e Accuracy on SST-2 Data
no USDPA +USDPA +USDPA (Retrain)
0.8 76.72 +1.25 +3.31
1.75 78.44 +0.77 +1.72
2.25 78.90 +0.80 +1.25
8 80.70 -0.19 +0.77
Null Privacy 83.91
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Table 3: Accuracy improvement by up-sampling DP
amplification (USDPA) for inference data on SST-2.

- QQP . SST-2
Training e Training €
Token Rep.  Latent Rep. Token Rep.  Latent Rep.

1.5 71.53 75.83 1 68.23 76.72

2.3 72.85 78.72 2.3 71.33 78.44

4 74.25 79.67 3.5 73.32 78.90

13 74.51 79.82 12 73.51 80.70

45 75.51 80.47 25 74.20 81.30
Null Privacy 83.11 Null Privacy 83.91

Table 4: DP layer applied to the token representation
versus that applied to the latent representation.

curacy gain is obtained. Note that in practice, the
retrain is not necessary and we can directly apply
the (up-sampling DP amplification) USDPA.

In the following, we conduct a series of ablation
experiments to test the proposed LDP-NLP model.
DP-Layer Position Impact We put the proposed
DP layer position to the test by applying it to both
the token and latent representations, illustrated in
Table 4. Compared to being applied on latent rep-
resentations, being applied on the token representa-
tion is sensitive to random perturbation and results
in performance degradation for downstream tasks.
Using the DP layer directly on the latent represen-
tation, on the other hand, improves accuracy by 4%
to 8% for a variety of tasks.

Sub-sampling Rate Impact We also look at how
the subsampling rate py.i, affects model accuracy
and training efficiency. The smaller the pain,
the smaller the sampled batch size, and thus the
slower the convergence. However, according to
(8), smaller pyin leads to larger DP amplification,
resulting in a lower calibrated noise power. As a
result, there is a "best" pgain to choose from. We
fix the privacy budget e = 12 and 45 for SST-2 and
QQP to test the effect of pyain. The results of Fig. 6
agree with our intuition, and there is a pg,ip that
produces the highest accuracy given a fixed privacy
budget. As the accuracy is not sensitive to the value
Of Pirain, We do not need to tune this parameter in
practice to achieve "optimal" performance.

Up-sampling Rate Impact Similar to the above
ablation study, we examine the impact of q - pguery
for inference. It is expected that the smaller the
q * Pquery 18, the larger accuracy gain we can obtain
from the DP amplification. It is evident, however,

Figure 6: Effectiveness and efficiency relationship in-
fluenced by sampling rate for training phrase.
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Figure 7: The relationship between privacy cost (total
privacy budget, sampling rate g - pquery and the query
times to complete all the test sentences.

that we need more sampling times and inference
steps to finish all the test datasets, which further in-
crease the privacy cost. Consistent with the above
analysis, Figure 7 illustrates the relationships, and
in practice, we can specify specific g - pquery Values
based on query time and privacy budget require-
ments. The ratio of fictitious data to true data is set
t00,0.5,1,1.5,...,8.5,9,in Figure 7, and q-pquery
is set to be the reciprocal of total data size.

Moreover, in Appendix A.4, we also discuss the
effect of representation dimension on performance.
Furthermore, Equations (8) and (9) are used to com-
pute the composition’s limits, as explained before
Equation (8). It leads to an underestimation of the
true cost of privacy. In Appendix A.5, we compute
the upper bound further. It is demonstrated that the
difference between the lower and upper bounds is
very small, implying that the lower bound is a good
approximation.

7 Conclusion

To protect the privacy of local user data while keep
the model accuracy, we propose a novel LDP-NLP
methodology, which includes a non-parametric DP-
layer applied to the user-side latent representa-
tion, DP amplifications for training/inference data
via sub-sampling/up-sampling, tight composition
for privacy accounting, and noise calibration al-
gorithms based on DP analysis. It successfully
reduces calibrated noise and achieves a significant
accuracy improvement while lowering total privacy
costs to less than 10 for the first time for both train-
ing and inference stages.
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A Supplementary Formalism Details

A.1 GDP Preliminary

GDP is a dual representation of (e, §)-DP for Gaus-
sian mechanism. Let P and () denote the distri-
butions of M (x) and M (z') with x ~ 2/, and let
¢ be any (possibly randomized) rejection rule for
testing Hy : P against H; : (). With these in place,
Dong et al. (2021) defines the trade-off function of
P and QQ as

T(P,Q) :[0,1] — [0,1]

o~ inf {1~ Eq[g] : Eplg] < a}.

(1D
Above, Ep[¢] and 1 — Eg[¢] are type I and type
II errors of the rejection rule ¢, respectively. It
is shown that T(P, Q) > T(N(0,1),N(u, 1)) &
G, which is referred to as ;i-GDP. The conversion
between 11-GDP and (e, 6)-DP follows the privacy
profile in (5). Please refer to (Dong et al., 2021) for
more details about the p-GDP definition.

A.2 Datasets

Quora Question Paris (QQP): Automated process-
ing of users queries and records is a significant
research direction, and one such task is computing
the semantic similarity between user logs for the
benefit of retrieval efficiency. QQP is a sentence-
pair classification task dataset with 363k sentence
pairs for training and 40k sentence pairs for vali-
dation. The goal is to determine whether a pair of
questions are paraphrases or not.

Stanford Sentiment Treebank (SST-2): SST-2 is a
sentence classification task that consists of 67k
training sentences and 872 validation sentences.
The goal is to predict a sentiment label for a movie
review sentence. We use the GLUE version of
SST-2 (Bowman et al., 2015).

A.3 Models and Parameters

Given the computation and communication cost
constraints, we use the lightweight BiLSTM as
the user-side feature extractor and set the max se-
quence length and latent representation dimension
to 128. The clipping value is C' = 0.5, and the
DP budget parameters § for the training/inference
stages are set to be the reciprocal of the train-
ing/inference data size; and € for the total privacy
cost are set to be in the range [0.8, 14]. Given a pri-
vacy budget of (¢, d), the noise powers for training
and inference are calibrated via Algorithm 2 and
Algorithm 3.

11

A.4 Representation Dimension Impact

We investigate the effect of the latent representation
dimension on the accuracy for the LSMT model.
The clip operation for the sensitivity bound in Al-
gorithm 1 is affected by the size of the /2-norm of
a latent representation. As the norm increases, the
clip operation becomes more detrimental to down-
stream tasks even though we tune it extensively.
The outcome demonstrates the critical nature of
lower dimension accuracy in the presence of pri-
vacy constraints. Additionally, this conclusion is
supported by practical constraints on communica-
tion and computation.

.. Latent Rep dimensionality
Dataset | Training ¢ 3 756 768

1.5 7583 75.68 54.58

QQP 23 78.72 78.18 71.86
4 79.67 79.03 74.27

1 76.72 7545 7294

SST-2 2.3 78.44 77.29 73.97
35 7890 77.89 76.03

Table 5: Accuracy of different dimensions of latent rep-
resentation at different privacy levels for training data.

A.5 Privacy Cost Lower Bound and Upper
Bound

The equations (8) and (9) are used to compute the
composition’s approximation, as explained before
(8). It leads to an underestimation of the true cost of
privacy. In Table 6, we compute the upper bound
corresponding to the € used in Fig. 4 and Fig. 5
further based on the very recent work (Gopi et al.,
2021). It is demonstrated that the difference be-
tween the lower and upper bounds is very small,
implying that the lower bound is a good approx-
imation. We do not use the upper bound as the
approximation because it is based on numerical
computation (Gopi et al., 2021) and it is difficult,
if not impossible, to calibrate the noise power.

QQP Privacy Cost € SST-2 Privacy Cost €
GDP+CLT  Upper Bound | GDP+CLT  Upper Bound
1.5 1.7 1 1.2
23 2.6 23 2.7
4 4.5 35 4.6
13 13.9 12 13.2

Table 6: Privacy cost based on GDP with CLT (Dong
et al., 2021) and compostion of tradeoff func-
tions (Gopi et al., 2021).



