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ABSTRACT

Vision-language models (VLMs) have made notable progress in tasks such as ob-
ject detection, scene interpretation, and cross-modal reasoning. However, they
continue to face significant challenges when subjected to adversarial attacks. The
simplicity of including hidden text in websites points to a critical need for a deeper
understanding of how misleading text disrupts performance in multimodal appli-
cations. In this study, we systematically introduce faintly embedded and clearly
visible contradictory text into a large-scale dataset, examining its effects on ob-
ject counting, object detection, and scene description under varying text visibil-
ity. Our findings show that counting accuracy suffers significantly in the pres-
ence of adversarial textual perturbations, while object detection remains robust
and scene descriptions exhibit only minor shifts under faint disruptions. These
observations highlight the importance of building more resilient multimodal ar-
chitectures that prioritize reliable visual signals and effectively handle subtle tex-
tual contradictions, ultimately enhancing trustworthiness in complex, real-world
vision-language scenarios.

1 INTRODUCTION

Large Language Models (LLMs) have driven remarkable progress in diverse textual transformation
and generation tasks, offering a powerful foundation for emerging multimodal systems (Jiang et al.,
2024; Yonekura et al., 2024). Their integration with computer vision architectures has produced
vision-language paradigms for applications like image captioning and scene interpretation (Bitton
et al., 2023; Liu et al., 2023). Yet, recent work reveals persistent limitations in managing conflicting
inputs across modalities, highlighting a need for more robust solutions (Zhao et al., 2023).

Within the realm of vision-language modeling, contradictory textual prompts have become a key
concern (Qraitem et al., 2025; Wang et al., 2024; Cheng et al., 2024). An open question focuses on
how faintly embedded versus clearly visible contradictory text disrupts the alignment of visual and
textual signals. Many vision-language models exhibit performance declines under conflicting cues
but lack thorough investigation into subtle contradictions (Qraitem et al., 2025). Addressing these
disruptions is essential for applications requiring accurate object recognition, scene understanding,
and robust cross-modal integration (Cheng et al., 2024).

This paper systematically explores the influence of both subtle and overt contradictory text by ma-
nipulating text visibility in multiple tasks. We address a gap in current benchmarks by isolating
the textual component’s role in degrading object counting, visual detection, and descriptive accu-
racy. Novel methodological choices include precise control of text opacity, ensuring that even faint
contradictions can alter vision-language representations. These measures illuminate the degrees of
visual-linguistic conflict and inform potential avenues for more robust multimodal architectures.
Empirical results indicate that contradictory text markedly decreases counting accuracy, dropping
by up to 0.078 as text visibility intensifies. Other tasks, such as cat detection, remain comparatively
stable, underscoring the significance of task-specific cues. By comprehensively evaluating how
varying text visibility affects system output, this work reveals key vulnerabilities in vision-language
alignment. Its contributions include highlighting the need for better handling of misleading lexicon
and introducing frameworks that can guide more resilient future VLM designs.
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2 RELATED WORKS

Vision-Language Models. Vision-language models (VLMs) have attracted considerable attention
for their capacity to embed and align textual and visual features, enabling tasks such as image
captioning, visual question answering, and object detection (Yonekura et al., 2024; Li et al., 2023).
Notable architectures integrate large-scale pre-training to learn joint representations that generalize
across multiple modalities (Segal et al., 2022; Yang et al., 2024; Bai et al., 2023; Wang et al., 2023a).
Despite rapid advances, these works reveal persistent weaknesses when textual inputs conflict with
visual cues, underscoring the need for strategies to handle inconsistent information (Cheng et al.,
2024; Qraitem et al., 2025).

Evaluation Metrics and Gaps. Recent efforts propose expanded benchmarks assessing VLMs
under varied instructions and adversarial perturbations (Bitton et al., 2023; Wang et al., 2023b;
Bai et al., 2023; Dai et al., 2023; Shirnin et al., 2024). However, few approaches systematically
manipulate text visibility to uncover the range of model vulnerabilities. Building on these gaps,
this paper examines how faint and visible conflicting text affect inference across multiple tasks,
contributing a more nuanced evaluation of model robustness in adversarial settings.

3 METHODS

We aimed to determine how faintly embedded or clearly visible contradictory textual cues affect a
large-scale vision-language model performing visually grounded tasks. Our main hypothesis posited
that even subtle contradictions might disrupt object detection, counting, or descriptive accuracy,
while more conspicuous text would heighten such disruptions. We were guided by questions around
whether the model could discriminate misleading textual information from actual visual cues and
how varying degrees of text visibility might alter predictions in tasks such as object enumeration
(dogs), object presence (cats), and scene description.

We employed the COCO 2017 training set (Lin et al., 2015), sampling 5000 images to support three
tasks: (a) object counting (focusing on dogs), (b) visual search (detecting cat presence), and (c) scene
description (identifying objects and colors). Each image was duplicated into three conditions: Orig-
inal (no text), Faint Text (alpha-blended, near-invisible contradictory text), and Visible Text (clear
white font with a black outline).1 Thus, we aggregated a total of 15,000 image-based data points. We
leveraged the Qwen2.5-VL-7B-Instruct model (Team, 2024), which processes both images
and textual prompts without additional fine-tuning. Prompts were customized per task—requesting
a count, a yes/no determination, or a compositional scene description.

We gathered performance measures for each task under each condition. For counting, we measured
accuracy (perfect dog counts) and mean absolute error (MAE). For visual search, we evaluated
accuracy based on correct yes/no recognition of cat presence. The scene description task involved
four metrics: object recall, color accuracy, spurious objects, and number of objects mentioned.
These metrics offered complementary lenses to understand how contradictory text affects numeric,
Boolean, and descriptive outputs.

Alpha-blending in faint text scenarios was carefully tuned so that misinformation was barely visible
yet present in the pixel space. In visible text conditions, bold, high-contrast statements were placed
in regions of minimal overlap with salient objects. Each modified image was run through the model
with standardized prompts, and output parsing was automated to extract dog counts, cat presence, or
descriptive text. By systematically varying text visibility while preserving core visual content, we
isolated the direct impact of contradictory text on vision-language alignment.

4 RESULTS

Contradictory text reduces counting accuracy. Our analysis reveals that the introduction of con-
tradictory text adversely affects the model’s ability to count dogs accurately. In the Original condi-
tion, the model achieved an exact match accuracy of 0.885. However, when faint contradictory text

1For all images, the contradictory text inserted was: The objects are all blue (no image con-
sisted of only blue objects).
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was added, the accuracy dropped to 0.836, and with more overt (visible) text, it further declined to
0.807. This clear downward trend, also depicted in Figure 1, indicates that textual contradictions can
override reliable visual cues. The model appears to become less confident in its numeric predictions
when confronted with conflicting information, suggesting that even subtle text-based distractions
can significantly undermine counting performance.

Magnitude of counting error increases with text visibility. The disruptive effect of contradictory
text is further highlighted by the escalation in Mean Absolute Error (MAE). In the absence of textual
interference (Original condition), the MAE was recorded at 0.138. The error nearly doubled to
0.292 under the Faint Text condition and peaked at 0.369 when the text was clearly visible. This
marked increase in error magnitude, as shown in Figure 1, underscores how prominently displayed
contradictory text not only confounds the model but also leads to increasingly inaccurate numeric
predictions. It suggests that as the salience of the conflicting information grows, the model’s reliance
on precise visual input diminishes.

Figure 1: Comparison of dog counting performance for Original, Faint Text, and Visible Text con-
ditions.

Object detection remains robust despite contradictions. In stark contrast to counting, the task of
detection exhibits remarkable resilience to contradictory text. Across all three conditions—Original,
Faint Text, and Visible Text—the accuracy for identifying a cat in an image consistently held at
0.954. Figure 2a illustrates this stability, suggesting that the model relies on highly distinctive visual
features that are less susceptible to distraction from textual inputs. This robustness points to the pos-
sibility that some visual attributes, such as those critical for cat identification, are deeply embedded
in the model’s feature extraction process and are therefore minimally impacted by external textual
noise.

Faint cues slightly lower object recall in scene descriptions. Beyond object counting, we eval-
uated the impact of contradictory text on scene description metrics, particularly object recall. The
recall metric, which represents the proportion of correctly identified objects, dropped modestly from
0.555 in the Original condition to 0.539 when faint text was introduced. Although this decrease is
subtle, it indicates that even minimal textual distractions can impair the model’s ability to com-
prehensively capture all relevant objects within a scene. Figure 2b provides a visual comparison
that reinforces this observation, suggesting that the presence of conflicting information may divert
attention from peripheral visual details.

Color accuracy remains unaffected. Interestingly, the extraction of color attributes appears im-
mune to the influence of contradictory text. The color accuracy metrics remained consistently high,
with values of 0.976 (Original), 0.977 (Faint Text), and 0.979 (Visible Text). This near-uniformity
implies that color-related features, which are intrinsically tied to the visual composition of an im-
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(a) Cat detection accuracies showing no significant
changes under faint or visible text.

(b) Scene description metrics (object recall and spuri-
ous mentions) under Original, Faint, and Visible Text.

Figure 2: Figures showing (a) cat detection accuracies and (b) scene description metrics.

age, are robustly encoded by the model. Consequently, even in the presence of distracting textual
elements, the model’s ability to accurately determine color information remains intact.

Spurious object mentions decrease with contradictory text. An unexpected finding emerged
when evaluating spurious object mentions. The model generated an average of 6.67 extraneous
object mentions in the Original condition. However, with the addition of contradictory text, these
spurious mentions declined to 5.75 in the Faint Text condition and further to 5.13 in the Visible
Text condition. This reduction suggests that the model adopts a more conservative approach in
its descriptive output when faced with conflicting cues, potentially as a strategy to minimize the
propagation of errors. The contradictory text may prompt the model to focus on only the most
salient visual elements, thereby reducing the likelihood of over-description.

Overall object mentions also diminish. Complementing the trend observed in spurious mentions,
the overall number of objects identified in scene descriptions also decreased under contradictory
text conditions. The total count fell from 2.30 in the Original condition to 2.23 with faint text,
and further to 2.12 when the text was visible. This contraction in descriptive breadth reinforces
the hypothesis that contradictory textual inputs can narrow the model’s focus, possibly by diverting
attention from less prominent objects. Figure 2b encapsulates these shifts, highlighting how even
faint textual distractions can lead to a more limited descriptive output.

5 CONCLUSION

The findings confirm that textual contradictions can disrupt visually grounded tasks, reinforcing
concerns about vision-language alignment (Bitton-Guetta et al., 2023). While counting performance
declined, object detection remained stable, suggesting that certain visual features can override mis-
leading text. The models’ conservative responses indicate an adaptive recalibration mechanism
rather than simple signal merging, which may enhance reliability but hinders precision in tasks
like counting. Future work should explore broader contradictory conditions, test diverse models,
and refine training strategies that strengthen visual primacy while maintaining flexibility to improve
multimodal system resilience in real-world settings.
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A INPUT IMAGE EXAMPLES

Figure 3: Example input images illustrating the original, faint, and visible versions for different
samples used in the study.
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