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Abstract

Document retrieval techniques form the foun-001
dation for the development of large-scale in-002
formation systems. The prevailing methodol-003
ogy is to construct a bi-encoder and compute004
the semantic similarity. However, such scalar005
similarity is difficult to reflect enough informa-006
tion and impedes our comprehension of the007
retrieval results. In addition, this computa-008
tional process mainly emphasizes the global009
semantics and ignores the fine-grained seman-010
tic relationship between the query and the011
complex text in the document. In this paper,012
we propose a new method called Generation013
Augmented Retrieval (GeAR) that incorporates014
well-designed fusion and decoding modules.015
This enables GeAR to generate the relevant text016
from documents based on the fused representa-017
tion of the query and the document, thus learn-018
ing to "focus on" the fine-grained information.019
Also when used as a retriever, GeAR does not020
add any computational burden over bi-encoders.021
To support the training of the new framework,022
we have introduced a pipeline to efficiently023
synthesize high-quality data by utilizing large024
language models. GeAR exhibits competitive025
retrieval and localization performance across026
diverse scenarios and datasets. Moreover, the027
qualitative analysis and the results generated028
by GeAR provide novel insights into the inter-029
pretation of retrieval results.030

1 Introduction031

Document retrieval serve as the foundational tech-032

nology behind large-scale information systems,033

playing a crucial role in applications such as034

web search, open-domain question answering035

(QA) (Chen et al., 2017; Karpukhin et al., 2020),036

and retrieval-augmented generation (RAG) (Lewis037

et al., 2020; Liu et al., 2024a; Gao et al., 2024).038

The predominant approach in passage retrieval is039

to construct a bi-encoder model. In this architec-040

ture, queries and documents are encoded separately,041

transforming each into vector representations that042

enable computation of their semantic similarity in 043

a high-dimensional space. 044

However, this similarity calculation process 045

faces several challenges. First, the complex se- 046

mantic relationship between query and document 047

is mapped to a scalar similarity, which cannot re- 048

flect enough information and is difficult to under- 049

stand (Brito and Iser, 2023). Second, when deal- 050

ing with long documents, such as those with 256, 051

512, or even more tokens, identifying the section 052

most relevant to the query and contributing most 053

to the similarity is highly desirable but challeng- 054

ing to achieve (Luo et al., 2024; Günther et al., 055

2024). Moreover, many NLP tasks, such as sen- 056

tence selection, search result highlighting, needle 057

in a haystack (Liu et al., 2024b; An et al., 2024; 058

Wang et al., 2024), and fine-grained citations (Gao 059

et al., 2023; Zhang et al., 2024), require a deep and 060

fine-grained understanding of the text. 061

Given this need for fine-grained understanding, 062

the bi-encoder that simply aligns the entire docu- 063

ment to the query seems insufficient, as its conven- 064

tional contrastive loss mainly emphasizes global 065

semantics (Khattab and Zaharia, 2020). To com- 066

plement this core localization capability of the re- 067

triever, we propose a novel and challenging fun- 068

damental question: Can we enhance and integrate 069

the information localization capability of existing 070

retrievers without sacrificing their inherent retrieval 071

capabilities? 072

To address these challenges, we proposed a 073

novel approach GeAR (Generation-Augmented 074

Retrieval). Specifically, we construct the data into 075

(query-document-information) triples, still using 076

contrastive learning to optimize the similarity be- 077

tween the query and the document. At the same 078

time, we design a text decoder to generate the rel- 079

evant fine-grained information in the document 080

given the query and document to enhance the re- 081

trieval and localization capabilities. Although the 082

concept is simple, there are many challenges. First, 083
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it is difficult to find sufficient data to support our084

solution to this problem in previous research work.085

Second, the training objectives of retrieval and gen-086

eration tasks, model architectures, and more design087

details, as well as how to effectively train the mod-088

els, have not been fully explored. To this end, we089

explored a complete pipeline from data synthesis,090

structure design, to model training. Overall, our091

contributions are summarized as follows:092

• We proposed GeAR, which enhances the093

model’s ability to understand and locate text094

in a fine-grained manner by jointly modeling095

natural language understanding and natural096

language generation. At the same time, the097

inference process is very flexible to handle098

different tasks.099

• We abstract a new retrieval task that takes into100

account the problems present in the current101

retrieval scenario. To solve this task and to102

support model training, we built a pipeline to103

synthesize a large amount of high quality data104

using LLM.105

• Through extensive experiments, GeAR has106

shown competitive performance in retrieval107

tasks and fine-grained information localiza-108

tion tasks. At the same time, GeAR can also109

generate relevant information based on the110

query and document to help us understand the111

retrieval results, bringing a new perspective to112

the traditional retrieval process.113

2 Related Work114

2.1 Embedding-based Retrieval115

Embedding-based retrieval has emerged as a cor-116

nerstone of modern information retrieval systems,117

enabling efficient semantic search through dense118

vector representations. Early approaches like119

Word2Vec (Mikolov et al., 2013) and GloVe (Pen-120

nington et al., 2014) demonstrated the poten-121

tial of learning distributed word representations,122

while more recent transformer-based models such123

as BERT (Devlin et al., 2019) have pushed124

the boundaries of contextual embeddings. Bi-125

encoder architectures (Reimers and Gurevych,126

2019) have become particularly popular for re-127

trieval tasks (Huang et al., 2013). Recent advances128

include contrastive learning objectives (Karpukhin129

et al., 2020; Wang et al., 2022; Li et al., 2023;130

Gao et al., 2021), hard negative mining strate- 131

gies (Xiong et al., 2021), and knowledge distil- 132

lation techniques (Hofstätter et al., 2021) to im- 133

prove embedding quality while maintaining com- 134

putational efficiency. Muennighoff et al. (2024) 135

explored how to generate text and provide excel- 136

lent semantic representation by distinguishing task 137

instructions. 138

Multimodal information retrieval also relies on 139

high-quality semantic representations, where the 140

embedding space serves to bridge different modali- 141

ties, including text, images, and video. Vision lan- 142

guage models such as CLIP (Radford et al., 2021), 143

ALBEF (Li et al., 2021), and BLIP (Li et al., 2022) 144

have demonstrated remarkable zero-shot capabil- 145

ities by learning joint embeddings derived from 146

large scale image-text pairs. These advances made 147

cross-modal retrieval tasks such as text-to-image 148

search and image-to-text retrieval possible. 149

2.2 Information Localization 150

Information localization in massive corpora and 151

contents has become a key research direction for 152

improving response accuracy and factual basis. The 153

classic methods used RNN or BERT to compute 154

token representations and trained a classifier for 155

information extraction (Seo, 2016; Wang, 2016; 156

Chen et al., 2017; Xu et al., 2019). The heuris- 157

tic hierarchical approach involves further chunking 158

the document and then calculating the semantic 159

similarity with the query on the chunked sentences 160

or units for localization. However, finer chunking 161

also results in increased computational complex- 162

ity and semantic incoherence (Yang et al., 2016; 163

Liu et al., 2021; Arivazhagan et al., 2023). With 164

the development of generative models, there have 165

been many recent efforts to enhance the model’s 166

ability to find a needle in a haystack (Liu et al., 167

2024b; An et al., 2024; Wang et al., 2024), that is, 168

to locate key information such as sentences in long 169

texts. Another type of similar task is to have the 170

model add reference information to the original text 171

when generating responses (Gao et al., 2023; Zhang 172

et al., 2024). Coincidentally, there have been some 173

recent works focusing on improving the regional 174

level understanding ability of multimodal large lan- 175

guage models (MLLMs) (Chen et al., 2024). De- 176

spite these advances, we have found that there is 177

currently little focus on fine-grained information 178

localization during the retrieval stage. 179
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Figure 1: Comparison of functionality between classical retriever and GeAR. GeAR is designed to handle both
document retrieval and fine-grained unit localization simultaneously, while also generating auxiliary information for
reference.

3 Generation Augmented Retrieval180

3.1 Preliminaries181

In this work, we formalize the retrieval task with lo-182

calization as follows: Let a document corpus as D,183

which contains N documents {d1, ..., di, ..., dN}.184

Each of these documents di contains a number of185

fine-grained information units {u1, ..., uli}, such186

as sentences, where li is the units number of di.187

Our goal is to find a retrieval method f(·), which188

can retrieve the relevant document d from D, as189

well as the fine-grained unit u from d given query190

q:191

f(q,D) → {d} (1)192

f(q, d) → {u} (2)193

In this work, we explicitly define the process as194

two tasks, (1) the document retrieval task and (2)195

the fine-grained unit localization task, as Figure 1196

showing. It can be seen that the triples of query,197

document, and unit, represented by the symbols198

(q, d, u), are fundamental to the definition and res-199

olution of this task.200

3.2 Data construction201

In this work, we focus on two common retrieval202

scenarios: (1) Question Answer Retrieval (QAR)203

and (2) Relevant Information Retrieval (RIR). In204

the following sections, we will introduce how the205

data are constructed and how they correspond to 206

the triples (q, d, u) mentioned above. 207

Question Answer Retrieval In this scenario, 208

the query q is in the form of a question, and the goal 209

is to retrieve reference documents d that support 210

answering the question and fine-grained sentences 211

u that contain the answer. 212

Relevant Information Retrieval In this sce- 213

nario, the query q is in the form of a few phrases or 214

keywords, the objective is to retrieve the documents 215

d that correspond to the query and the fine-grained 216

sentences u in the documents that are most relevant 217

to the query. The scenario is very close to what 218

users normally do when they search for informa- 219

tion on the web. The challenge is that we have 220

difficulty in finding suitable data in the current pub- 221

lic dataset to drive our problem solving. Therefore, 222

we constructed a pipeline to synthesize high quality 223

data using a large language model. Specifically, we 224

selected high quality Wikipedia documents (Foun- 225

dation), from which we will sample sentences of 226

appropriate length and whose subject is not a pro- 227

noun as u. Then we will leverage LLM to rewrite 228

them as queries q. After de-duplication and rel- 229

evance filtering, we get promising 5.8M triples. 230

Kindly refer to Appendix A for details on complete 231

data processing procedure. 232
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Figure 2: GeAR. It consists of a bi-encoder, a fusion encoder, and a text decoder. It contains two training objectives,
CL represents contrastive learning loss, which aims to optimize the similarity between documents and queries. LM
represents the language modeling loss for generating relevant information given documents and queries.

3.3 Model Structure233

This section presents the architecture of GeAR. It234

is our intention that the model not only has pow-235

erful retrieval capability, but also has the ability236

to locate key information in documents. Inspired237

by advances in multimodal representation learn-238

ing (Li et al., 2021, 2022; He et al., 2020), we239

revisit the task from a modal alignment perspective.240

Documents and queries can be considered as two241

modalities. We facilitate semantic alignment be-242

tween documents and queries via a bi-encoder, and243

enable the model to learn to attend to fine-grained244

query-related information in the document via a fu-245

sion encoder and a generation task. The overview246

of the GeAR structure is illustrated in Figure 2.247

Bi-Encoder In the same setup as the classical248

retrieval approach, we initialize two encoders Ed(·)249

for documents and Eq(·) for queries. We use mean250

pooling to obtain the text embedding.251

Fusion Encoder The fusion encoder share252

most of the parameters with query encoder, but253

have an extra learnable cross attention module. In254

this part, the document embeddings from Ed(·) are255

fused with the query embeddings through cross256

attention at each layer of the fusion encoder.257

Text Decoder The text decoder receives the258

fusion embeddings and generates fine-grained in-259

formation1 in the document based on the given260

1Note that in the generation task of the QAR scenario, the
ground truth is the answer itself, not the sentence u. But in
the RIR scenario and the localization task, we all used the
sentence u.

query and document. It uses a unidirectional causal 261

attention instead of a bidirectional self-attention. 262

A specific [Decode] token is added to identify the 263

beginning of the sequence. The subsequent auto- 264

regressive decoding process will interact with the 265

generated tokens and fusion embeddings to gener- 266

ate text. 267

3.4 Training Objectives 268

In this section, we present the training objectives 269

of GeAR. We make the model capable of both 270

retrieval as well as fine-grained semantic under- 271

standing and localization through joint natural lan- 272

guage understanding and natural language genera- 273

tion modeling. 274

Contrastive Learning Loss (CL) We use bi- 275

encoder to encode the queries and documents, and 276

optimize the semantic similarity between them 277

through contrastive learning loss (CL). In addition, 278

we followed the practice in MoCo (He et al., 2020) 279

and BLIP (Li et al., 2022), where a momentum 280

Bi-Encoder is introduced to encode momentum 281

embeddings and provide richer supervised signals 282

as soft labels. 283

Language Modeling Loss (LM) The intro- 284

duction of LM loss is key to enhancing the infor- 285

mation localization capability of GeAR. LM acti- 286

vates the text decoder, which enables the model 287

to generate relevant information using the fusion 288

embeddings of document and query. It guides the 289

model to learn the fine-grained semantic fusion of 290

query and document. LM optimizes the cross en- 291
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tropy loss over the entire vocabulary, maximizing292

the likelihood of the ground truth text. The overall293

loss of GeAR is the sum of LCL and LLM:294

LGeAR = LCL + LLM (3)295

3.5 Inference296

GeAR’s inference process is diverse and flexible.297

In this section, we introduce various usages of298

GeAR to accomplish different tasks.299

Documents Retrieval For this task, we can300

use the bi-encoder part of GeAR to compute the301

similarity between query and document like the pre-302

vious classic retrieval method, without introducing303

any additional parameters and computation cost.304

Fine-Grained Units Localization The fusion305

encoder in GeAR calculates the fusion embedding306

of query and document through cross attention. We307

use the cross attention weights of the query on the308

tokens in the document to locate the units that the309

query pays the most attention to in the document.310

Information Generation For this task, we311

feed the fusion embedding to the text decoder and312

enable autoregressive decoding. In GeAR, infor-313

mation generation is actually an auxiliary task, and314

we will present the generative performance of the315

model in experiments, both in terms of quantitative316

metrics and qualitative analysis.317

4 Experiments318

In this section, we first introduce the experimental319

setup, and then we show the overall performance of320

each task and more detailed analysis experiments.321

4.1 Setup322

Datasets For Question Answer Retrieval, we323

sampled 30M data from PAQ (Lewis et al., 2021)324

datasets to train GeAR, and sampled 1M docu-325

ments and 20k queries as test set. We also eval-326

uate the performance on another 3 QA datasets:327

SQuAD (Rajpurkar et al., 2016), NQ (Kwiatkowski328

et al., 2019), and TriviaQA (Joshi et al., 2017).329

These test datasets are all held out to observe the330

generalizability of compared methods. For Rele-331

vant Information Retrieval, we leverage the synthe-332

sized 5.8M data, of which 95% is used for training333

and 5% is reserved for the test set. Specific dataset334

statistics are in Appendix B.335

Training Details To better observe the ef-336

fectiveness of GeAR, we use "BERT-base-337

uncased" (Devlin et al., 2019) to initialize the en-338

coders in GeAR. We trained the model for 10339

epochs using a batch size of 48 (QAR) / 16 (RIR) 340

on 16 AMD MI200 GPUs with 64GB memory. We 341

use the AdamW (Loshchilov, 2017) optimizer with 342

a weight decay of 0.05. The full hyperparameters 343

and training settings are detailed in Appendix C. 344

Baselines We compare our approach to two 345

classes of baseline methods, one class of text repre- 346

sentation models that have been adequately trained 347

on a large corpus, including SBERT (Reimers 348

and Gurevych, 2019), specifically "all-mpnet- 349

base" (Song et al., 2020), E5 (Wang et al., 2022), 350

BGE (Xiao et al., 2024), and GTE (Li et al., 2023). 351

We use both base-level models for this compari- 352

son. The other category consists different training 353

pipelines that unify the training data and starting 354

points, including SBERT (Reimers and Gurevych, 355

2019) and BGE (Xiao et al., 2024). We retrained 356

them all using the "bert-base-uncased" to initial- 357

ize and aligned the training data, referred to as 358

SBERTRT and BGERT in the following. 359

4.2 Overall performance 360

In this section, we present the overall performance 361

on Documents Retrieval, Units Localization, and 362

Information Generation. 363

Documents Retrieval Firstly, we report the 364

comparison with existing methods on documents 365

retrieval task in Table 1. The results demonstrate 366

that GeAR delivers competitive performance across 367

multiple datasets, even with limited training data. 368

As a reference, the pre-trained SBERT model used 369

1.17B sentence pairs, with partial overlap between 370

its training data and our evaluation data. To en- 371

sure a fair comparison, we retrained SBERT2 and 372

BGE3 using their open source training pipelines, 373

aligned training data and initialization settings. As 374

shown in the retrained model section in Table 1, 375

GeAR achieves superior performance, underscor- 376

ing the effectiveness of our training approach. 377

Units Localization Next, we evaluate the per- 378

formance of each method on the units localization 379

task. In the evaluation process, we provide the 380

query and the document (q, d) to the model and 381

observe whether it is able to find the corresponding 382

fine-grained unit u. For the retrieval model, we 383

split the documents into sentences and compute 384

their similarity to the query independently, select- 385

ing the top-k sentences. In contrast, GeARlocates 386

units based on the cross attention weights for each 387

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2.

3https://github.com/FlagOpen/FlagEmbedding.
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SQuAD NQ TriviaQA PAQ RIR

R@5 M@5 R@5 M@5 R@5 M@5 R@5 M@5 R@5 M@5

Pre-trained retrieval model

SBERT 0.812 0.667 0.754 0.576 0.677 0.413 0.808 0.701 0.376 0.297
E5 0.803 0.674 0.760 0.581 0.645 0.390 0.816 0.716 0.484 0.396
BGE 0.829 0.701 0.674 0.502 0.690 0.422 0.752 0.647 0.451 0.367
GTE 0.866 0.744 0.767 0.587 0.726 0.443 0.836 0.736 0.528 0.435

Retrained retrieval model

SBERTRT 0.742 0.585 0.739 0.550 0.577 0.342 0.859 0.742 0.739 0.631
BGERT 0.841 0.701 0.751 0.553 0.640 0.384 0.901 0.802 0.953 0.881
GeAR 0.883 0.762 0.747 0.567 0.660 0.398 0.940 0.855 0.961 0.903
GeARw/oLLM

0.889 0.776 0.755 0.565 0.660 0.399 0.955 0.877 0.963 0.907

Table 1: Comparison of documents retrieval performance on different datasets, where R@k stands for Recall@k,
M@k stands for MAP@k.

SQuAD NQ TriviaQA PAQ RIR

R@1 M@1 R@1 M@1 R@1 M@1 R@1 M@1 R@3 M@3

Pre-trained retrieval model

SBERT 0.739 0.800 0.558 0.652 0.359 0.583 0.498 0.561 0.891 0.874
E5 0.783 0.847 0.590 0.683 0.379 0.613 0.573 0.640 0.891 0.878
BGE 0.768 0.830 0.570 0.663 0.362 0.589 0.565 0.630 0.894 0.881
GTE 0.758 0.820 0.548 0.639 0.352 0.572 0.525 0.590 0.895 0.886

Retrained retrieval model

SBERTRT 0.516 0.568 0.445 0.523 0.281 0.472 0.363 0.418 0.899 0.991
BGERT 0.455 0.538 0.601 0.656 0.288 0.475 0.409 0.466 0.897 0.888
GeAR 0.810 0.874 0.765 0.871 0.515 0.808 0.885 0.965 0.954 0.897

Table 2: Comparison of units localization performance on different datasets, where R@k stands for Recall@k,
M@k stands for MAP@k.

sentence given the document and the query, as de-388

scribed in Section 3.5. The results are reported in389

Table 2. We found that GeAR came out ahead on390

all metrics, and that GeAR did not require further391

chunking and encoding of the document. It is ob-392

served that SBERTRT and BGERT exhibit subopti-393

mal performance, as their training objective focus394

solely on optimizing the overall semantic similarity395

between the document and the query, neglecting396

the fine-grained semantic relationships. In contrast,397

GeAR benefits from the joint end-to-end training398

of retrieval and generation tasks, enabling it not399

only to retrieve documents closely aligned with the400

query but also to effectively attend to fine-grained401

information within the document.402

Information Generation Although genera-403

tion serves only as an auxiliary task in GeAR, we 404

are nonetheless interested in evaluating its genera- 405

tion performance. Table 3 reports the Exact Match 406

(EM) and F1 scores on the QA datasets, and the 407

Rouge (Lin, 2004) scores on the RIR dataset. No- 408

tably, GeAR achieves strong performance on test 409

sets with distributions similar to the training data, 410

such as PAQ and RIR, and performs reasonably 411

well on other test sets. Additionally, Figure 3 il- 412

lustrates examples of GeAR’s ability to generate 413

correct answers and relevant information, demon- 414

strating its satisfactory generation capabilities. 415

4.3 Analysis 416

Visualization of Information Localization Fig- 417

ure 3 illustrates the information localization and 418
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The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th 

centuries gave their name to Normandy, a region in France. They were descended from Norse ("Norman" comes from 

"Norseman") raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear 

fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and 

Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West 

Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, 

and it continued to evolve over the succeeding centuries.

Query1: When were the Normans in Normandy? 

Ground Truth: 10th and 11th centuries / in the 10th 

and 11th centuries

GeAR Generation: 10th and 11th centuries.

Query2: In what country is Normandy located?

Ground Truth Answers: France.

GeAR Generation : France.

Document

(a) Information localization and generation results of GeAR in Question Answer Retrieval scenario.

[In computer science, an AVL tree is a self-balancing binary search tree.] In an AVL tree, the heights of the two child 

subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore 

this property.[ Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.] The AVL 

tree is named after its two Soviet inventors, Georgy Adelson-Velsky and Evgenii Landis, who published it in their 1962 

paper "An algorithm for the organization of information". ……

Query1: data structure, computer science, 

balanced tree

GeAR Generation: In computer science, an AVL 

tree is a self-balancing binary tree.

Query2: AVL tree insertion operations, how to 

rebalance

GeAR Generation : Insertions and deletions may 

require the tree to be rebalanced by one or 

more tree rotations.

Document

(b) Information localization and generation results of GeAR in Related Information Retrieval scenario. The sentences in brackets of
corresponding colors are the ground truth of the query.

Figure 3: Visualization of information localization of GeAR . In the two scenarios of Question Answer retrieval and
Related Information Retrieval, we propose two different queries for one document and highlight the top 10 tokens
with the highest cross attention weights for the corresponding queries. The tokens with orange background are for
query1 , and the tokens with purple background are for query2 . We also show the generated results of GeAR.

generation results of GeAR across different sce-419

narios. We provide two distinct queries for one420

document and highlight the top 10 tokens with the421

highest cross attnetion weights corresponding to422

each queries. In Figure 3(a), the two queries fo-423

cus on time and location, respectively. GeAR not424

only gave the correct answers to both queries but425

also dynamically adjusts its query-specific focus:426

it assigns higher attention weights to time-related427

tokens in response to the first query and prioritizes428

tokens related to countries and regions in response429

to the second query. In Figure 3(b), GeAR will fo-430

cus on the definition of the AVL tree itself, and the431

insertion, deletion, rotation and rebalancing of the432

AVL tree, and generate corresponding sentences.433

It can be seen that the added generation task has434

brought improvements to the model in terms of per-435

formance and qualitative effects, making it accurate 436

in localization and generation. 437

Correlation of Generation and Localization 438

In this section, we analyze the relationship between 439

the generation and localization tasks. As illustrated 440

in Figure 4(a) and 4(b), we plot the performance co- 441

ordinates from epoch 1 to epoch 10 during training, 442

where the horizontal axis represents the generation 443

performance and the vertical axis represents the lo- 444

calization performance. The results reveal a strong 445

correlation between the two tasks. This observation 446

demonstrates that the generation task, designed as 447

a proxy, effectively enhances the model’s ability to 448

extract fine-grained information from documents. 449

These findings highlight the synergistic relation- 450

ship between generation and localization. 451

Localization performance of different layers 452
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SQuAD NQ TriviaQA PAQ RIR

EM F1 EM F1 EM F1 EM F1 Rouge-1 Rouge-L

46.6 65.2 66.1 61.0 47.4 60.0 88.1 92.4 87.4 87.1

Table 3: Generation performance of GeAR on different tasks.
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Figure 4: Plots of generation and localization performance on (a) QAR tasks and (b) RIR tasks as training progresses.
(c) shown the localization performance at different layers.

In GeAR, the fusion encoder and decoder interact453

through the cross attention module at each layer.454

To investigate the relationship between localization455

performance and model depth, we plot the local-456

ization performance using cross attention weights457

across different layers in Figure 4(c). The results458

indicate that high-level token embeddings perform459

well, as they capture rich semantic information460

through deeper layers of the network. Interestingly,461

we observe that the highest layer does not yield the462

best localization performance. Instead, peak per-463

formance is achieved in the last 3 to 4 layers4. This464

phenomenon may arise because the representations465

in the highest layer are optimized to serve the final466

task rather than intermediate localization. Similar467

findings have been reported in prior studies involv-468

ing encoder-only and decoder-only models (Jawa-469

har et al., 2019; Skean et al., 2024).470

The Affect of Language Modeling Objectives471

In this work, we utilize only the information472

corresponding to the query as supervision and in-473

corporate a language modeling objective. It enables474

the model to achieve stronger capabilities in both475

information localization and generation, without476

requiring additional loss functions or complex mod-477

ule designs. However, as a trade-off, we observe478

a slight decrease in retrieval performance when479

compared to using only the contrastive learning480

4In this work, we utilized the 10th layer for evaluation.

objective for the retrieval task, as shown in the last 481

two rows of Table 1. How to further design the 482

balance between the two training objectives from 483

the perspective of multi-task learning so that they 484

benefit from each other is a point that can still be 485

explored in the future. 486

5 Conclusion 487

In this work, to address the challenges of unex- 488

plainable and coarse-grained results inherent in 489

current bi-encoder retrieval methods, we propose a 490

direct and effective modeling method: Generation 491

Augmented Retrieval (GeAR). GeAR enhances 492

fine-grained information localization and genera- 493

tion capabilities by incorporating a decoder and a 494

lightweight cross-attention layer, while maintain- 495

ing the efficiency of a bi-encoder. Experimental 496

results across multiple retrieval tasks and two dif- 497

ferent scenarios demonstrate that GeAR achieves 498

competitive performance. Furthermore, its ability 499

to accurately and reasonably localize information 500

makes it particularly promising for downstream 501

tasks such as web search, semantic understand- 502

ing, and retrieval-augmented generation (RAG). 503

We hope this work offers valuable insights into the 504

gradual unification of natural language understand- 505

ing and generation paradigms, paving the way for 506

more versatile and explainable retrieval systems in 507

the future. 508
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Limitations509

Due to constraints in computational resources and510

associated costs, the synthesized data used in our511

experiments is not as comprehensive as that found512

in traditional retrieval scenarios. While the results513

demonstrate the efficacy of GeAR, applying it to514

more diverse and semantically rich retrieval sce-515

narios remains an important direction for future516

exploration.517

Additionally, the context length of limited to518

512 tokens, consistent with the chunk lengths com-519

monly used in retrieval tasks. However, recent520

advancements in extending the context length of521

retrieval models, such as those proposed in (Zhu522

et al., 2024), suggest exciting opportunities to over-523

come this limitation. Extending GeAR’s context524

length could further enhance its capabilities in han-525

dling long-form retrieval tasks, which we plan to526

investigate in future work.527

We hope that the above discussions can inspire528

further investigation within the research commu-529

nity, encouraging advancements that address these530

limitations and contribute to the broader progress531

of NLP research.532
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Appendices829

A Data Construction830

We present here the practice of synthesizing data831

for Relevant Information Retrieval scenarios.832

Pre-processing Firstly, we choose high-833

quality documents from Wikipedia (Foundation).834

We process the documents sentence by sentence,835

removing sentences with repetitive line breaks and836

phrases, until the document processing is complete837

or the token count reaches 500 (<512). We remove838

the documents that are too short, with a sentence839

count less than 3 or a token count of less than 200.840

Second, we filter the candidate sentences in the841

document that can be rewritten: we filter all the842

sentences that have a token count between 8 and 20843

and whose first word and subject are not pronouns844

(the set of pronouns includes "this", "these", "it",845

"that", "those", "they", "he", "she", "we", "you",846

"I"). If the number of sentences filtered is less than847

3, we discard the document.848

LLM Rewriting We randomly select 3 sen-849

tences in the document and use vLLM (Kwon et al.,850

2023) and "Llama-3.1-70B-Instruct" (Dubey et al.,851

2024) to rewrite them into queries, the prompt is:852

"".853

Post-processing We de-duplicate the key-854

words in the rewritten query and then reorder855

them. To ensure the relevance of the query to the856

document, we perform a round of filtering using857

BGE (Xiao et al., 2024) to retain the data with858

a similarity of 0.5 or more between the rewritten859

query and the document. In this way we obtain a860

reasonable triad of queries, documents, and units861

(sentences).862

For the construction of Relevant Information Re-863

trieval data, we have also tried to collect paired864

sentences and make LLM expand one of them into865

a document. However, we found that other sen-866

tences in the LLM expansion were less informative867

than the original sentence, for example, being some868

descriptive statements were generated around the869

original sentence. This pattern tends to cause the870

model to learn to locate the central sentence, or871

the most informative sentence, in the expanded872

document, leading model to ignore the query. So873

please be aware of this if you plan to try this way874

of constructing your data.875

Hyperparameter Assignment
Computing Infrastructure 16 MI200-64GB GPUs
Number of epochs 10
Batch size per GPU 48 / 16
Maximum sequence length 512
Optimizer AdamW
AdamW epsilon 1e-8
AdamW beta weights 0.9, 0.999
Learning rate scheduler Cosine lr schedule
Initialization learning rate 1e-5
Minimum learning rate 1e-6
Weight decay 0.05
Warmup steps 1000
Warmup learning rate 1e-6

Table 4: Hyperparameter settings

B Overview of datasets 876

We describe here in detail the datasets used for 877

training and evaluation. 878

B.1 Training 879

For Question Answer Retrieval, we sampled 30M 880

data from PAQ (Lewis et al., 2021) datasets to 881

train GeAR. For Relevant Information Retrieval, 882

we used the 95% of the synthetic data for training. 883

The specific statistics are shown in Table 5. 884

Scenario Data Number

QAR 30,000,000
RIR 5,676,877

Table 5: Training data statistics.

B.2 Evaluation 885

In the evaluation stage, we introduce the specific 886

information of the evaluation data by task. 887

Documents Retrieval First, for the document 888

retrieval task, the queries come from the test set in 889

the respective dataset, and the candidate documents 890

are all documents within the entirety of the dataset, 891

including the SQuAD (Rajpurkar et al., 2016), 892

NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi 893

et al., 2017), and RIR datasets. It is difficult to en- 894

code all the documents of the PAQ dataset because 895

the dataset is too large. So for the PAQ dataset, 896

we sampled 1M documents and 20k queries, all of 897

which have no intersection with the training data. 898

The evaluation data statistics for the document re- 899

trieval task are shown in Table 6. 900
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Scenario Dataset Documents Number Queries Number

QA

Squad 20,239 5,928
NQ 64,501 2,889
TriviaQA 104,160 14,000
PAQ 932,601 20,000

RIR RIR 2,315,413 145,562

Table 6: The evaluation data statistics for the document retrieval task.

Scenario Dataset Data Number

QA

Squad 5,928
NQ 2,889
TriviaQA 14,000
PAQ 20,000

RIR RIR 10,000

Table 7: The evaluation data statistics for the units localization and information generation tasks.

Units Localization and Information Genera-901

tion For these two tasks, we directly use the test902

set data corresponding to the respective datasets.903

Therefore, their number is consistent with the num-904

ber of queries in Table 6. For the RIR dataset, we905

sample 10k records as the test set. The evaluation906

data statistics for the units localization and infor-907

mation generation tasks are shown in Table 7.908

C HyperParameters and Implementation909

Details910

We run model training on 16 AMD MI200 GPUs911

with 64GB memory and evaluation on 8 NVIDIA912

Tesla V100 GPUs with 32GB memory. The learn-913

ing rate is warmed-up from 1e-6 to 1e-5 in the914

first 1000 steps, and then following a cosine sched-915

uler, where the mininum learning rate is 1e-6. The916

momentum parameter for updating momentum en-917

coder is set as 0.995, the queue size is set as 57600.918

We linearly ramp-up the soft labels weight from 0919

to 0.4 within the first 2 epoch. The overall hy-920

perparameters are detailed in Table 4. We use921

FAISS (Douze et al., 2024; Johnson et al., 2019)922

to store and search for vectors. The 2 encoders923

and 1 decoders in GeAR are the same size as "bert-924

base" (Devlin et al., 2019), the total number of925

parameters of GeARis about 330M. The training926

time for QAR scenario is about 5 days, for RIR927

scenario is about 3 days.928
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