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Abstract

Document retrieval techniques form the foun-
dation for the development of large-scale in-
formation systems. The prevailing methodol-
ogy is to construct a bi-encoder and compute
the semantic similarity. However, such scalar
similarity is difficult to reflect enough informa-
tion and impedes our comprehension of the
retrieval results. In addition, this computa-
tional process mainly emphasizes the global
semantics and ignores the fine-grained seman-
tic relationship between the query and the
complex text in the document. In this paper,
we propose a new method called Generation
Augmented Retrieval (GeAR) that incorporates
well-designed fusion and decoding modules.
This enables GeAR to generate the relevant text
from documents based on the fused representa-
tion of the query and the document, thus learn-
ing to "focus on" the fine-grained information.
Also when used as a retriever, GeAR does not
add any computational burden over bi-encoders.
To support the training of the new framework,
we have introduced a pipeline to efficiently
synthesize high-quality data by utilizing large
language models. GeAR exhibits competitive
retrieval and localization performance across
diverse scenarios and datasets. Moreover, the
qualitative analysis and the results generated
by GeAR provide novel insights into the inter-
pretation of retrieval results.

1 Introduction

Document retrieval serve as the foundational tech-
nology behind large-scale information systems,
playing a crucial role in applications such as
web search, open-domain question answering
(QA) (Chen et al., 2017; Karpukhin et al., 2020),
and retrieval-augmented generation (RAG) (Lewis
et al., 2020; Liu et al., 2024a; Gao et al., 2024).
The predominant approach in passage retrieval is
to construct a bi-encoder model. In this architec-
ture, queries and documents are encoded separately,
transforming each into vector representations that

enable computation of their semantic similarity in
a high-dimensional space.

However, this similarity calculation process
faces several challenges. First, the complex se-
mantic relationship between query and document
is mapped to a scalar similarity, which cannot re-
flect enough information and is difficult to under-
stand (Brito and Iser, 2023). Second, when deal-
ing with long documents, such as those with 256,
512, or even more tokens, identifying the section
most relevant to the query and contributing most
to the similarity is highly desirable but challeng-
ing to achieve (Luo et al., 2024; Giinther et al.,
2024). Moreover, many NLP tasks, such as sen-
tence selection, search result highlighting, needle
in a haystack (Liu et al., 2024b; An et al., 2024;
Wang et al., 2024), and fine-grained citations (Gao
et al., 2023; Zhang et al., 2024), require a deep and
fine-grained understanding of the text.

Given this need for fine-grained understanding,
the bi-encoder that simply aligns the entire docu-
ment to the query seems insufficient, as its conven-
tional contrastive loss mainly emphasizes global
semantics (Khattab and Zaharia, 2020). To com-
plement this core localization capability of the re-
triever, we propose a novel and challenging fun-
damental question: Can we enhance and integrate
the information localization capability of existing
retrievers without sacrificing their inherent retrieval
capabilities?

To address these challenges, we proposed a
novel approach GeAR (Generation-Augmented
Retrieval). Specifically, we construct the data into
(query-document-information) triples, still using
contrastive learning to optimize the similarity be-
tween the query and the document. At the same
time, we design a text decoder to generate the rel-
evant fine-grained information in the document
given the query and document to enhance the re-
trieval and localization capabilities. Although the
concept is simple, there are many challenges. First,



it is difficult to find sufficient data to support our
solution to this problem in previous research work.
Second, the training objectives of retrieval and gen-
eration tasks, model architectures, and more design
details, as well as how to effectively train the mod-
els, have not been fully explored. To this end, we
explored a complete pipeline from data synthesis,
structure design, to model training. Overall, our
contributions are summarized as follows:

* We proposed GeAR, which enhances the
model’s ability to understand and locate text
in a fine-grained manner by jointly modeling
natural language understanding and natural
language generation. At the same time, the
inference process is very flexible to handle
different tasks.

* We abstract a new retrieval task that takes into
account the problems present in the current
retrieval scenario. To solve this task and to
support model training, we built a pipeline to
synthesize a large amount of high quality data
using LLM.

* Through extensive experiments, GeAR has
shown competitive performance in retrieval
tasks and fine-grained information localiza-
tion tasks. At the same time, GeAR can also
generate relevant information based on the
query and document to help us understand the
retrieval results, bringing a new perspective to
the traditional retrieval process.

2 Related Work
2.1 Embedding-based Retrieval

Embedding-based retrieval has emerged as a cor-
nerstone of modern information retrieval systems,
enabling efficient semantic search through dense
vector representations. Early approaches like
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) demonstrated the poten-
tial of learning distributed word representations,
while more recent transformer-based models such
as BERT (Devlin et al., 2019) have pushed
the boundaries of contextual embeddings. Bi-
encoder architectures (Reimers and Gurevych,
2019) have become particularly popular for re-
trieval tasks (Huang et al., 2013). Recent advances
include contrastive learning objectives (Karpukhin
et al., 2020; Wang et al., 2022; Li et al., 2023;

Gao et al., 2021), hard negative mining strate-
gies (Xiong et al., 2021), and knowledge distil-
lation techniques (Hofstétter et al., 2021) to im-
prove embedding quality while maintaining com-
putational efficiency. Muennighoff et al. (2024)
explored how to generate text and provide excel-
lent semantic representation by distinguishing task
instructions.

Multimodal information retrieval also relies on
high-quality semantic representations, where the
embedding space serves to bridge different modali-
ties, including text, images, and video. Vision lan-
guage models such as CLIP (Radford et al., 2021),
ALBEEF (Li et al., 2021), and BLIP (Li et al., 2022)
have demonstrated remarkable zero-shot capabil-
ities by learning joint embeddings derived from
large scale image-text pairs. These advances made
cross-modal retrieval tasks such as text-to-image
search and image-to-text retrieval possible.

2.2 Information Localization

Information localization in massive corpora and
contents has become a key research direction for
improving response accuracy and factual basis. The
classic methods used RNN or BERT to compute
token representations and trained a classifier for
information extraction (Seo, 2016; Wang, 2016;
Chen et al., 2017; Xu et al., 2019). The heuris-
tic hierarchical approach involves further chunking
the document and then calculating the semantic
similarity with the query on the chunked sentences
or units for localization. However, finer chunking
also results in increased computational complex-
ity and semantic incoherence (Yang et al., 2016;
Liu et al., 2021; Arivazhagan et al., 2023). With
the development of generative models, there have
been many recent efforts to enhance the model’s
ability to find a needle in a haystack (Liu et al.,
2024b; An et al., 2024; Wang et al., 2024), that is,
to locate key information such as sentences in long
texts. Another type of similar task is to have the
model add reference information to the original text
when generating responses (Gao et al., 2023; Zhang
et al., 2024). Coincidentally, there have been some
recent works focusing on improving the regional
level understanding ability of multimodal large lan-
guage models (MLLMs) (Chen et al., 2024). De-
spite these advances, we have found that there is
currently little focus on fine-grained information
localization during the retrieval stage.
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Figure 1: Comparison of functionality between classical retriever and GeAR. GeAR is designed to handle both
document retrieval and fine-grained unit localization simultaneously, while also generating auxiliary information for

reference.

3 Generation Augmented Retrieval

3.1 Preliminaries

In this work, we formalize the retrieval task with lo-
calization as follows: Let a document corpus as D,
which contains N documents {dy, ...,d;, ...,dn}.
Each of these documents d; contains a number of
fine-grained information units {u1, ..., u;, }, such
as sentences, where [; is the units number of d;.
Our goal is to find a retrieval method f(-), which
can retrieve the relevant document d from I, as
well as the fine-grained unit v from d given query

q:

f(g, D) — {d}
f(g,d) = {u}

In this work, we explicitly define the process as
two tasks, (1) the document retrieval task and (2)
the fine-grained unit localization task, as Figure 1
showing. It can be seen that the triples of query,
document, and unit, represented by the symbols
(¢,d, u), are fundamental to the definition and res-
olution of this task.

(D
2

3.2 Data construction

In this work, we focus on two common retrieval
scenarios: (1) Question Answer Retrieval (QAR)
and (2) Relevant Information Retrieval (RIR). In
the following sections, we will introduce how the

data are constructed and how they correspond to
the triples (g, d, u) mentioned above.

Question Answer Retrieval In this scenario,
the query ¢ is in the form of a question, and the goal
is to retrieve reference documents d that support
answering the question and fine-grained sentences
u that contain the answer.

Relevant Information Retrieval In this sce-
nario, the query g is in the form of a few phrases or
keywords, the objective is to retrieve the documents
d that correspond to the query and the fine-grained
sentences u in the documents that are most relevant
to the query. The scenario is very close to what
users normally do when they search for informa-
tion on the web. The challenge is that we have
difficulty in finding suitable data in the current pub-
lic dataset to drive our problem solving. Therefore,
we constructed a pipeline to synthesize high quality
data using a large language model. Specifically, we
selected high quality Wikipedia documents (Foun-
dation), from which we will sample sentences of
appropriate length and whose subject is not a pro-
noun as u. Then we will leverage LLM to rewrite
them as queries ¢q. After de-duplication and rel-
evance filtering, we get promising 5.8M triples.
Kindly refer to Appendix A for details on complete
data processing procedure.
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Figure 2: GeAR. It consists of a bi-encoder, a fusion encoder, and a text decoder. It contains two training objectives,
CL represents contrastive learning loss, which aims to optimize the similarity between documents and queries. LM
represents the language modeling loss for generating relevant information given documents and queries.

3.3 Model Structure

This section presents the architecture of GeAR. It
is our intention that the model not only has pow-
erful retrieval capability, but also has the ability
to locate key information in documents. Inspired
by advances in multimodal representation learn-
ing (Li et al., 2021, 2022; He et al., 2020), we
revisit the task from a modal alignment perspective.
Documents and queries can be considered as two
modalities. We facilitate semantic alignment be-
tween documents and queries via a bi-encoder, and
enable the model to learn to attend to fine-grained
query-related information in the document via a fu-
sion encoder and a generation task. The overview
of the GeAR structure is illustrated in Figure 2.

Bi-Encoder In the same setup as the classical
retrieval approach, we initialize two encoders Fy(-)
for documents and E,(-) for queries. We use mean
pooling to obtain the text embedding.

Fusion Encoder The fusion encoder share
most of the parameters with query encoder, but
have an extra learnable cross attention module. In
this part, the document embeddings from E4(-) are
fused with the query embeddings through cross
attention at each layer of the fusion encoder.

Text Decoder The text decoder receives the
fusion embeddings and generates fine-grained in-
formation! in the document based on the given

"Note that in the generation task of the QAR scenario, the
ground truth is the answer itself, not the sentence u. But in
the RIR scenario and the localization task, we all used the
sentence u.

query and document. It uses a unidirectional causal
attention instead of a bidirectional self-attention.
A specific [Decode] token is added to identify the
beginning of the sequence. The subsequent auto-
regressive decoding process will interact with the
generated tokens and fusion embeddings to gener-
ate text.

3.4 Training Objectives

In this section, we present the training objectives
of GeAR. We make the model capable of both
retrieval as well as fine-grained semantic under-
standing and localization through joint natural lan-
guage understanding and natural language genera-
tion modeling.

Contrastive Learning Loss (CL) We use bi-
encoder to encode the queries and documents, and
optimize the semantic similarity between them
through contrastive learning loss (CL). In addition,
we followed the practice in MoCo (He et al., 2020)
and BLIP (Li et al., 2022), where a momentum
Bi-Encoder is introduced to encode momentum
embeddings and provide richer supervised signals
as soft labels.

Language Modeling Loss (LM) The intro-
duction of LM loss is key to enhancing the infor-
mation localization capability of GeAR. LM acti-
vates the text decoder, which enables the model
to generate relevant information using the fusion
embeddings of document and query. It guides the
model to learn the fine-grained semantic fusion of
query and document. LM optimizes the cross en-



tropy loss over the entire vocabulary, maximizing
the likelihood of the ground truth text. The overall
loss of GeAR is the sum of Ly, and Ly

Laear = Lo + LM 3)

3.5 Inference

GeAR’s inference process is diverse and flexible.
In this section, we introduce various usages of
GeAR to accomplish different tasks.

Documents Retrieval For this task, we can
use the bi-encoder part of GeAR to compute the
similarity between query and document like the pre-
vious classic retrieval method, without introducing
any additional parameters and computation cost.

Fine-Grained Units Localization The fusion
encoder in GeAR calculates the fusion embedding
of query and document through cross attention. We
use the cross attention weights of the query on the
tokens in the document to locate the units that the
query pays the most attention to in the document.

Information Generation For this task, we
feed the fusion embedding to the text decoder and
enable autoregressive decoding. In GeAR, infor-
mation generation is actually an auxiliary task, and
we will present the generative performance of the
model in experiments, both in terms of quantitative
metrics and qualitative analysis.

4 Experiments

In this section, we first introduce the experimental
setup, and then we show the overall performance of
each task and more detailed analysis experiments.

4.1 Setup

Datasets For Question Answer Retrieval, we
sampled 30M data from PAQ (Lewis et al., 2021)
datasets to train GeAR, and sampled 1M docu-
ments and 20k queries as test set. We also eval-
uate the performance on another 3 QA datasets:
SQuAD (Rajpurkar et al., 2016), NQ (Kwiatkowski
et al., 2019), and TriviaQA (Joshi et al., 2017).
These test datasets are all held out to observe the
generalizability of compared methods. For Rele-
vant Information Retrieval, we leverage the synthe-
sized 5.8M data, of which 95% is used for training
and 5% is reserved for the test set. Specific dataset
statistics are in Appendix B.

Training Details To better observe the ef-
fectiveness of GeAR, we use "BERT-base-
uncased" (Devlin et al., 2019) to initialize the en-
coders in GeAR. We trained the model for 10

epochs using a batch size of 48 (QAR) / 16 (RIR)
on 16 AMD MI200 GPUs with 64GB memory. We
use the AdamW (Loshchilov, 2017) optimizer with
a weight decay of 0.05. The full hyperparameters
and training settings are detailed in Appendix C.

Baselines We compare our approach to two
classes of baseline methods, one class of text repre-
sentation models that have been adequately trained
on a large corpus, including SBERT (Reimers
and Gurevych, 2019), specifically "all-mpnet-
base" (Song et al., 2020), E5 (Wang et al., 2022),
BGE (Xiao et al., 2024), and GTE (Li et al., 2023).
We use both base-level models for this compari-
son. The other category consists different training
pipelines that unify the training data and starting
points, including SBERT (Reimers and Gurevych,
2019) and BGE (Xiao et al., 2024). We retrained
them all using the "bert-base-uncased" to initial-
ize and aligned the training data, referred to as
SBERT r7 and BGER7 in the following.

4.2 Overall performance

In this section, we present the overall performance
on Documents Retrieval, Units Localization, and
Information Generation.

Documents Retrieval Firstly, we report the
comparison with existing methods on documents
retrieval task in Table 1. The results demonstrate
that GeAR delivers competitive performance across
multiple datasets, even with limited training data.
As a reference, the pre-trained SBERT model used
1.17B sentence pairs, with partial overlap between
its training data and our evaluation data. To en-
sure a fair comparison, we retrained SBERT? and
BGE? using their open source training pipelines,
aligned training data and initialization settings. As
shown in the retrained model section in Table 1,
GeAR achieves superior performance, underscor-
ing the effectiveness of our training approach.

Units Localization Next, we evaluate the per-
formance of each method on the units localization
task. In the evaluation process, we provide the
query and the document (g, d) to the model and
observe whether it is able to find the corresponding
fine-grained unit w. For the retrieval model, we
split the documents into sentences and compute
their similarity to the query independently, select-
ing the top-k sentences. In contrast, GeARlocates
units based on the cross attention weights for each

Zhttps://huggingface.co/sentence-transformers/all-mpnet-
base-v2.

3https://github.com/FlagOpen/FlagEmbedding.
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SQuAD NQ TriviaQA PAQ RIR
R@5 M@5 R@5 M@5 R@5 M@5 R@5 M@5 R@5 M®@S5
Pre-trained retrieval model
SBERT 0.812 0.667 0.754 0.576 0.677 0413 0.808 0.701 0.376 0.297
ES5 0.803 0.674 0.760 0.581 0.645 0.390 0.816 0.716 0.484 0.396
BGE 0.829 0.701 0.674 0502 0.690 0422 0.752 0.647 0451 0.367
GTE 0.866 0.744 0.767 0.587 0.726 0443 0.836 0.736 0.528 0.435
Retrained retrieval model
SBERT g7 0.742 0.585 0.739 0.550 0.577 0342 0.859 0.742 0.739 0.631
BGEgr 0.841 0.701 0.751 0.553 0.640 0.384 0.901 0.802 0.953 0.881
GeAR 0.883 0.762 0.747 0.567 0.660 0.398 0.940 0.855 0.961 0.903
GeARw/OgLM 0.889 0.776 0.755 0.565 0.660 0.399 0955 0.877 0.963 0.907
Table 1: Comparison of documents retrieval performance on different datasets, where R @k stands for Recall @k,
M@k stands for MAP @k.
SQuAD NQ TriviaQA PAQ RIR
R@l M@l R@l M@l R@l M@l R@]1 M@l R@3 M@3
Pre-trained retrieval model

SBERT 0.739 0.800 0.558 0.652 0.359 0.583 0.498 0.561 0.891 0.874

E5 0.783 0.847 0.590 0.683 0.379 0.613 0.573 0.640 0.891 0.878

BGE 0.768 0.830 0.570 0.663 0.362 0.589 0.565 0.630 0.894 0.881

GTE 0.758 0.820 0.548 0.639 0.352 0.572 0.525 0.590 0.895 0.886

Retrained retrieval model

SBERTryr 0.516 0.568 0445 0.523 0.281 0472 0363 0418 0.899 0.991

BGEgrr 0.455 0.538 0.601 0.656 0.288 0.475 0.409 0.466 0.897 0.888

GeAR 0.810 0.874 0.765 0.871 0.515 0.808 0.885 0.965 0.954 0.897

Table 2: Comparison of units localization performance on different datasets, where R @k stands for Recall @k,

M@k stands for MAP @k.

sentence given the document and the query, as de-
scribed in Section 3.5. The results are reported in
Table 2. We found that GeAR came out ahead on
all metrics, and that GeAR did not require further
chunking and encoding of the document. It is ob-
served that SBERT rr and BGE g7 exhibit subopti-
mal performance, as their training objective focus
solely on optimizing the overall semantic similarity
between the document and the query, neglecting
the fine-grained semantic relationships. In contrast,
GeAR benefits from the joint end-to-end training
of retrieval and generation tasks, enabling it not
only to retrieve documents closely aligned with the
query but also to effectively attend to fine-grained
information within the document.

Information Generation Although genera-

tion serves only as an auxiliary task in GeAR, we
are nonetheless interested in evaluating its genera-
tion performance. Table 3 reports the Exact Match
(EM) and F1 scores on the QA datasets, and the
Rouge (Lin, 2004) scores on the RIR dataset. No-
tably, GeAR achieves strong performance on test
sets with distributions similar to the training data,
such as PAQ and RIR, and performs reasonably
well on other test sets. Additionally, Figure 3 il-
lustrates examples of GeAR’s ability to generate
correct answers and relevant information, demon-
strating its satisfactory generation capabilities.

4.3 Analysis

Visualization of Information Localization Fig-
ure 3 illustrates the information localization and
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The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th
centuries gave their name to Normandy, a region in France. They were descended from Norse ("Norman™ comes from
"Norseman) raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear
fealty to King Charles I11 of West Francia. Through generations of assimilation and mixing with the native Frankish and
Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West
Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century,

and it continued to evolve over the succeeding centuries.
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Ground Truth Answers: France.
GeAR Generation : France.

(a) Information localization and generation results of GeAR in Question Answer Retrieval scenario.

Document !

[In computer science, an AVL tree is a self-balancing binary search tree.| In an AVL tree, the heights of the two child
subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore
this property.[ Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.] The AVL
tree is named after its two Soviet inventors, Georgy Adelson-Velsky and Evgenii Landis, who published it in their 1962

paper "An algorithm for the organization of information™

Query1: data structure, computer science,

balanced tree

GeAR Generation: In computer science, an AVL
\tree is a self-balancing binary tree.

(b) Information localization and generation results of GeAR in Related Information Retrieval scenario. The sentences in brackets of

corresponding colors are the ground truth of the query.

Query2: AVL tree insertion operations, how to N
rebalance

GeAR Generation : Insertions and deletions may
require the tree to be rebalanced by one or
more tree rotations. J

Figure 3: Visualization of information localization of GeAR . In the two scenarios of Question Answer retrieval and
Related Information Retrieval, we propose two different queries for one document and highlight the top 10 tokens

with the highest cross attention weights for the corresponding queries. The tokens with orange background are for
queryl , and the tokens with purple background are for query2 . We also show the generated results of GeAR.

generation results of GeAR across different sce-
narios. We provide two distinct queries for one
document and highlight the top 10 tokens with the
highest cross attnetion weights corresponding to
each queries. In Figure 3(a), the two queries fo-
cus on time and location, respectively. GeAR not
only gave the correct answers to both queries but
also dynamically adjusts its query-specific focus:
it assigns higher attention weights to time-related
tokens in response to the first query and prioritizes
tokens related to countries and regions in response
to the second query. In Figure 3(b), GeAR will fo-
cus on the definition of the AVL tree itself, and the
insertion, deletion, rotation and rebalancing of the
AVL tree, and generate corresponding sentences.
It can be seen that the added generation task has
brought improvements to the model in terms of per-

formance and qualitative effects, making it accurate
in localization and generation.

Correlation of Generation and Localization
In this section, we analyze the relationship between
the generation and localization tasks. As illustrated
in Figure 4(a) and 4(b), we plot the performance co-
ordinates from epoch 1 to epoch 10 during training,
where the horizontal axis represents the generation
performance and the vertical axis represents the lo-
calization performance. The results reveal a strong
correlation between the two tasks. This observation
demonstrates that the generation task, designed as
a proxy, effectively enhances the model’s ability to
extract fine-grained information from documents.
These findings highlight the synergistic relation-
ship between generation and localization.

Localization performance of different layers



SQuAD NQ TriviaQA PAQ RIR
EM F1 EM FlI EM Fl1 EM Fl Rouge-l1 Rouge-L
46.6 652 66.1 61.0 474 60.0 88.1 924 87.4 87.1

Table 3: Generation performance of GeAR on different tasks.
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Figure 4: Plots of generation and localization performance on (a) QAR tasks and (b) RIR tasks as training progresses.

(c) shown the localization performance at different layers.

In GeAR, the fusion encoder and decoder interact
through the cross attention module at each layer.
To investigate the relationship between localization
performance and model depth, we plot the local-
ization performance using cross attention weights
across different layers in Figure 4(c). The results
indicate that high-level token embeddings perform
well, as they capture rich semantic information
through deeper layers of the network. Interestingly,
we observe that the highest layer does not yield the
best localization performance. Instead, peak per-
formance is achieved in the last 3 to 4 layers*. This
phenomenon may arise because the representations
in the highest layer are optimized to serve the final
task rather than intermediate localization. Similar
findings have been reported in prior studies involv-
ing encoder-only and decoder-only models (Jawa-
har et al., 2019; Skean et al., 2024).

The Affect of Language Modeling Objectives

In this work, we utilize only the information
corresponding to the query as supervision and in-
corporate a language modeling objective. It enables
the model to achieve stronger capabilities in both
information localization and generation, without
requiring additional loss functions or complex mod-
ule designs. However, as a trade-off, we observe
a slight decrease in retrieval performance when
compared to using only the contrastive learning

“In this work, we utilized the 10th layer for evaluation.

objective for the retrieval task, as shown in the last
two rows of Table 1. How to further design the
balance between the two training objectives from
the perspective of multi-task learning so that they
benefit from each other is a point that can still be
explored in the future.

5 Conclusion

In this work, to address the challenges of unex-
plainable and coarse-grained results inherent in
current bi-encoder retrieval methods, we propose a
direct and effective modeling method: Generation
Augmented Retrieval (GeAR). GeAR enhances
fine-grained information localization and genera-
tion capabilities by incorporating a decoder and a
lightweight cross-attention layer, while maintain-
ing the efficiency of a bi-encoder. Experimental
results across multiple retrieval tasks and two dif-
ferent scenarios demonstrate that GeAR achieves
competitive performance. Furthermore, its ability
to accurately and reasonably localize information
makes it particularly promising for downstream
tasks such as web search, semantic understand-
ing, and retrieval-augmented generation (RAG).
We hope this work offers valuable insights into the
gradual unification of natural language understand-
ing and generation paradigms, paving the way for
more versatile and explainable retrieval systems in
the future.



Limitations

Due to constraints in computational resources and
associated costs, the synthesized data used in our
experiments is not as comprehensive as that found
in traditional retrieval scenarios. While the results
demonstrate the efficacy of GeAR, applying it to
more diverse and semantically rich retrieval sce-
narios remains an important direction for future
exploration.

Additionally, the context length of limited to
512 tokens, consistent with the chunk lengths com-
monly used in retrieval tasks. However, recent
advancements in extending the context length of
retrieval models, such as those proposed in (Zhu
et al., 2024), suggest exciting opportunities to over-
come this limitation. Extending GeAR’s context
length could further enhance its capabilities in han-
dling long-form retrieval tasks, which we plan to
investigate in future work.

We hope that the above discussions can inspire
further investigation within the research commu-
nity, encouraging advancements that address these
limitations and contribute to the broader progress
of NLP research.
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Appendices

A Data Construction

We present here the practice of synthesizing data
for Relevant Information Retrieval scenarios.

Pre-processing Firstly, we choose high-
quality documents from Wikipedia (Foundation).
We process the documents sentence by sentence,
removing sentences with repetitive line breaks and
phrases, until the document processing is complete
or the token count reaches 500 (<512). We remove
the documents that are too short, with a sentence
count less than 3 or a token count of less than 200.
Second, we filter the candidate sentences in the
document that can be rewritten: we filter all the
sentences that have a token count between 8 and 20
and whose first word and subject are not pronouns
(the set of pronouns includes "this", "these", "it",
"that", "those", "they", "he", "she", "we", "you",
"I"). If the number of sentences filtered is less than
3, we discard the document.

LLM Rewriting We randomly select 3 sen-
tences in the document and use vLLM (Kwon et al.,
2023) and "Llama-3.1-70B-Instruct” (Dubey et al.,
2024) to rewrite them into queries, the prompt is:

nn

Post-processing We de-duplicate the key-
words in the rewritten query and then reorder
them. To ensure the relevance of the query to the
document, we perform a round of filtering using
BGE (Xiao et al., 2024) to retain the data with
a similarity of 0.5 or more between the rewritten
query and the document. In this way we obtain a
reasonable triad of queries, documents, and units
(sentences).

For the construction of Relevant Information Re-
trieval data, we have also tried to collect paired
sentences and make LLM expand one of them into
a document. However, we found that other sen-
tences in the LLLM expansion were less informative
than the original sentence, for example, being some
descriptive statements were generated around the
original sentence. This pattern tends to cause the
model to learn to locate the central sentence, or
the most informative sentence, in the expanded
document, leading model to ignore the query. So
please be aware of this if you plan to try this way
of constructing your data.
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Hyperparameter

Assignment

Computing Infrastructure
Number of epochs

Batch size per GPU
Maximum sequence length
Optimizer

AdamW epsilon

AdamW beta weights
Learning rate scheduler
Initialization learning rate
Minimum learning rate
Weight decay

Warmup steps

Warmup learning rate

16 MI1200-64GB GPUs
10

48/ 16

512

AdamW

le-8

0.9, 0.999

Cosine Ir schedule
le-5

le-6

0.05

1000

le-6

Table 4: Hyperparameter settings

B Overview of datasets

We describe here in detail the datasets used for
training and evaluation.

B.1 Training

For Question Answer Retrieval, we sampled 30M
data from PAQ (Lewis et al., 2021) datasets to
train GeAR. For Relevant Information Retrieval,
we used the 95% of the synthetic data for training.
The specific statistics are shown in Table 5.

Scenario Data Number

QAR 30,000,000
RIR 5,676,877

Table 5: Training data statistics.

B.2 Evaluation

In the evaluation stage, we introduce the specific
information of the evaluation data by task.

Documents Retrieval First, for the document
retrieval task, the queries come from the test set in
the respective dataset, and the candidate documents
are all documents within the entirety of the dataset,
including the SQuAD (Rajpurkar et al., 2016),
NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), and RIR datasets. It is difficult to en-
code all the documents of the PAQ dataset because
the dataset is too large. So for the PAQ dataset,
we sampled 1M documents and 20k queries, all of
which have no intersection with the training data.
The evaluation data statistics for the document re-
trieval task are shown in Table 6.



Scenario Dataset  Documents Number Queries Number

Squad 20,239 5,928
QA NQ 64,501 2,889

TriviaQA 104,160 14,000

PAQ 932,601 20,000
RIR RIR 2,315,413 145,562

Table 6: The evaluation data statistics for the document retrieval task.

Scenario Dataset Data Number

Squad 5,928

NQ 2,889
QA TriviaQA 14,000

PAQ 20,000
RIR RIR 10,000

Table 7: The evaluation data statistics for the units localization and information generation tasks.

Units Localization and Information Genera-
tion For these two tasks, we directly use the test
set data corresponding to the respective datasets.
Therefore, their number is consistent with the num-
ber of queries in Table 6. For the RIR dataset, we
sample 10k records as the test set. The evaluation
data statistics for the units localization and infor-
mation generation tasks are shown in Table 7.

C HyperParameters and Implementation
Details

We run model training on 16 AMD MI200 GPUs
with 64GB memory and evaluation on 8§ NVIDIA
Tesla V100 GPUs with 32GB memory. The learn-
ing rate is warmed-up from le-6 to le-5 in the
first 1000 steps, and then following a cosine sched-
uler, where the mininum learning rate is 1e-6. The
momentum parameter for updating momentum en-
coder is set as 0.995, the queue size is set as 57600.
We linearly ramp-up the soft labels weight from 0
to 0.4 within the first 2 epoch. The overall hy-
perparameters are detailed in Table 4. We use
FAISS (Douze et al., 2024; Johnson et al., 2019)
to store and search for vectors. The 2 encoders
and 1 decoders in GeAR are the same size as "bert-
base" (Devlin et al., 2019), the total number of
parameters of GeARis about 330M. The training
time for QAR scenario is about 5 days, for RIR
scenario is about 3 days.

13



