Data Mixture Optimization: A Multi-fidelity Multi-scale Bayesian Framework

Thomson Yen

Decision, Risk, and Operations Division Columbia Business School ty2531@columbia.edu

Haozhe Chen

Decision, Risk, and Operations Division Columbia Business School haozhe.chen@columbia.edu

Daniel Guetta

Decision, Risk, and Operations Division Columbia Business School crg2133@columbia.edu

Andrew Wei Tung Siah

Decision, Risk, and Operations Division Columbia Business School andrew.siah@columbia.edu

Tianyi Peng

Decision, Risk, and Operations Division Columbia Business School tp2845@columbia.edu

Hongseok Namkoong

Decision, Risk, and Operations Division Columbia Business School hongseok.namkoong@columbia.edu

Abstract

Careful curation of data sources can significantly improve the performance of LLM pre-training, but predominant approaches rely heavily on intuition or costly trial-and-error, making them difficult to generalize across different data domains and downstream tasks. Although scaling laws can provide a principled and general approach for data curation, standard deterministic extrapolation from small-scale experiments to larger scales requires strong assumptions on the reliability of such extrapolation, whose brittleness has been highlighted in prior works. In this paper, we introduce a probabilistic extrapolation framework for data mixture optimization that avoids rigid assumptions and explicitly models the uncertainty in performance across decision variables. We formulate data curation as a sequential decisionmaking problem—multi-fidelity, multi-scale Bayesian optimization—where {data mixtures, model scale, training steps} are adaptively selected to balance training cost and potential information gain. Our framework naturally gives rise to algorithm prototypes that leverage noisy information from inexpensive experiments to systematically inform costly training decisions. To accelerate methodological progress, we build a simulator based on 472 language model pre-training runs with varying data compositions from the SlimPajama dataset. We observe that even simple kernels and acquisition functions can enable principled decisions across training models from 20M to 1B parameters and achieve 2.6x and 3.3x speedups compared to multi-fidelity Bayesian optimization and random search baselines. Taken together, our framework underscores potential efficiency gains achievable by developing principled and transferable data mixture optimization methods. Our code is available at https://github.com/namkoong-lab/data-recipes.

1 Introduction

Data is the foundational infrastructure upon which all AI systems are built. Scaling data has been a key driver of progress in machine learning, particularly in language model training (Deng et al., 2009;

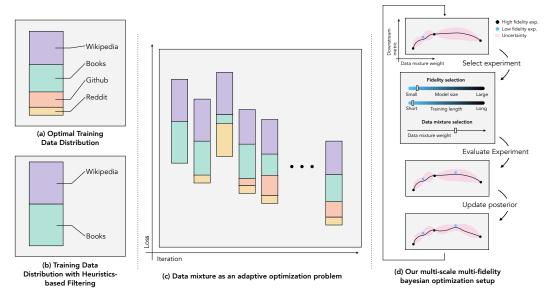


Figure 1: Our multi-fidelity multi-scale Bayesian optimization (BO) framework. (a) Given an unknown optimal training data distribution, (b) existing methods use heuristic-based filtering techniques to approximate the optimal distribution. (c) Our algorithm treats data mixture optimization as a BO problem. (d) We explore data mixtures in a cost-aware fashion; when we test a new data mixture, we also choose the *fidelity* of the observation we will observe. Larger models trained for more steps will result in *high fidelity* observations, but be more expensive. Every point we observe updates our probabilistic belief of model performance over the data mixture, model size, and training steps space, which guides subsequent parameters.

Hoffmann et al., 2022a; Gadre et al., 2024). While this data-centric approach has led to impressive performance gains, it also incurs substantial computational and financial costs in training state-of-the-art models (Hoffmann et al., 2022a; Luccioni et al., 2023). Beyond raw scale, the *composition of training data* has emerged as a critical factor in model performance (Albalak et al., 2023a; Goyal et al., 2024a). For instance, TinyStories (Eldan and Li, 2023) demonstrated that models with only 10 million parameters, when trained on a carefully chosen synthetic dataset, can generate coherent and consistent English text — surpassing the capabilities of significantly larger models like GPT-2 Small (125 million parameters) (Radford et al., 2019). Similarly, Li et al. (2024) showed that a carefully curated dataset enables training a 7-billion-parameter model comparable in performance to that of Mistral-7Bv0.3 and Llama 3 8B while using six times less compute. In practical scenarios where heterogeneous data sources are available, the choice of training mixture has been shown to significantly impact model performance.

Pitfalls of Prior Approaches: This growing recognition of data composition's importance has led institutions to develop proprietary data mixtures based on domain expertise and empirical observations (Radford et al., 2021; Jiang et al., 2023; OpenAI, 2024). Others have introduced heuristics, such as Wikipedia upsampling and perplexity-guided data selection, to refine training mixtures (Thrush et al., 2024; Blakeney et al., 2024). However, these ad hoc approaches are often tailored to specific training datasets and downstream tasks, and may *fail to transfer* across domains and data types. For instance, when organizations in specialized sectors such as healthcare or finance seek to train custom language models on proprietary datasets, it remains unclear whether heuristics developed for public datasets are still effective. Given the substantial resources required for training high-performance language models, there is a pressing need for a principled framework to address data mixture optimization.

Another line of research attempts to deterministically identify the functional relationship between data composition and model performance (Ye et al., 2024; Ge et al., 2025a; Liu et al., 2025). Data Mixing Laws (Ye et al., 2024), for example, proposes fitting validation losses as an exponential function of linear combinations of data proportions. However, collecting sufficient data to fit parameters of such functions at the desired scale and training duration is often computationally prohibitive. As a result, these methods inevitably rely on extrapolating the parameters learned from smaller models trained for fewer steps. Numerous studies have highlighted the *brittleness* of using such naive extrapolation

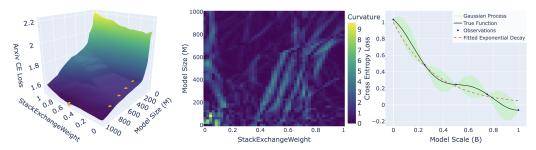


Figure 2: **Left:** The predicted validation cross-entropy loss on ArXiv data (Shen et al., 2024) as a function of data mixing coefficient and model sizes from a data-driven predictor on 472 runs (see details in Sec. 2). Notice the highly non-smooth geometry. Orange dots highlight the optimal data mixture proportion for each model scale. Note that they are not consistent across scales. **Middle:** The curvature at these points shows there are points of high irregularities, suggesting that the relationship between data mixture and model performance is unlikely to take a simple functional form. **Right:** A demonstration showing how functional forms like exponential decay fitted on a small number of points would result in a high predictive error. In contrast, a probabilistic model such as a Gaussian Process can capture uncertainty over the points.

to guide hyperparameter decisions (Levine et al., 2020; Yang et al., 2021; Jiang et al., 2025). Notably, Jiang et al. (2025) demonstrated that extrapolating validation losses based on small models often leads to *inaccurate* results. We reinforce this finding in our empirical study, observing that the optimal data mixing proportion does not remain constant across model scales (see Figure. 2)

Existing approaches, whether based on heuristic trial-and-error or deterministic but unverifiable extrapolation, risk failing to identify the optimal data mixture as experiment scale or data domains change. Moreover, they share another fundamental limitation: when additional computational budget becomes available for training new models, these approaches offer no clear guidance on how to select the next promising data mixture to experiment with. To address these challenges, we propose viewing the problem of curating the optimal data mixture as an adaptive optimization problem, where practitioners iteratively refine their mixing decisions based on empirical observations from prior experiments. This framework leverages the intuition that model performance exhibits local consistency across similar mixtures, training steps, and model scales, while avoiding rigid assumptions about the global structure of the performance landscape.

Our Formulation: Sequential optimization of data mixtures necessitates comprehending which data compositions suffer the highest uncertainty and sharpening beliefs on performance as more observations are gathered. In particular, good adaptive policies must distinguish between aleatoric and epistemic uncertainty: epistemic uncertainty can be reduced with more data, while aleatoric uncertainty is irreducible. Measurements must be planned to maximally reduce epistemic uncertainty on future runs by balancing exploration and exploitation.

We formulate this sequential optimization framework as a *Bayesian optimization* (BO) problem: we maintain probabilistic beliefs on the performance of various data mixtures and model scales, and use these beliefs to choose the next model scale to train, on what data mixture, and for how long. Once we fit and evaluate this new model, we use its performance to update our beliefs (Hutter et al., 2011; Falkner et al., 2018; Frazier, 2018).

In standard BO, the cost of each new observation is the same, and we aim to optimize an objective while observing the smallest number of points possible. Our setting presents *additional* challenges – the cost of training a new model and observing its performance is affected by (1) the number of steps for which the model is trained and (2) the scale of the model (the number of parameters therein).

The number of steps for which a model is trained affects the *quality* of the observation – the more steps we use to train the model, the more accurately the results will reflect the utility of training on the data mixture in question. Previous work has handled this conundrum using so-called *multi-fidelity* BO, in which evaluations are 'stopped early' during the training process if it becomes clear the information revealed during additional training steps will not be worth the expense (Swersky et al., 2014; Domhan et al., 2015; Kandasamy et al., 2017; Li et al., 2018a).

Multi-Fidelity Multi-Scale (MFMS) Bayesian Optimization: Our setting is distinguished by the second factor above — we also want to use data gathered on smaller model scales to guide our search

for optimal parameters in larger models. We refer to this new setting as Multi-Fidelity Multi-Scale (MFMS) BO. While it can be viewed as a special case of the broader framework that optimizes blackbox functions with access to cheaper approximate evaluations (Poloczek et al., 2016), the MFMS setting introduces a distinctive and interesting structure. Specifically, the model scales dimension differs fundamentally from the usual fidelity dimension associated with training steps. For one, the number of training steps typically far exceeds the number of model scales considered. More importantly, when training for z steps, we naturally obtain observations for all intermediate steps up to z. In contrast, evaluating a model of size m provides no inherent information about the performance of smaller or larger architectures. This raises interesting questions about how to appropriately treat and exploit this structure, opening new methodological directions for investigation.

Fortunately, unlike conventional hyperparameters such as learning rate or momentum, where optimal configurations exhibit complex scaling behavior across model sizes (Yang et al., 2021), recent empirical evidence suggests that optimal data mixture compositions enjoy *greater transferability* from smaller to larger model architectures (Ye et al., 2024; Ge et al., 2025a). This transferability property enables the strategic use of smaller-scale evaluations to identify optimal data mixture configurations that remain effective at target model scales, substantially reducing the computational cost of the optimization process.

The main contributions of the paper are as follows:

- We propose a probabilistic extrapolation framework to address the problem of optimizing
 data mixture for training LLMs. The framework avoids rigid assumptions on the functional
 dependence between decision variables and model performance by explicitly modeling the
 performance uncertainty, thereby highlighting the need to strategically experiment with
 selected data mixtures to minimize the uncertainty in the optimal data mixture at the desired
 scale.
- The framework gives rise to a *Multi-Fidelity Multi-Scale* BO problem, which provides a principled foundation for developing and evaluating transferable methods for optimizing data mixture. While the BO formalism that treats cheaper but noisy evaluations of the cost function of interest is well established, applying it to data mixture optimization introduces distinctive structural features, stemming from the interplays between training steps and model scales, that opens up interesting avenues for future methodological advancements, including batching strategies, asynchronous optimization, custom Gaussian process kernels, and look-ahead methods.
- To motivate the MFMS setting, we illustrate the use of smaller model sizes and earlier training steps for informing large-scale training decisions. We empirically show that exploiting cheaper evaluations on both dimensions enable more accurate predictions of model's performance at larger scale (Section 2).
- To spur methodological progress, we build an empirical testbed based on a simulator trained on 472 language model pre-training runs with varying data compositions from the SlimPajama dataset. We demonstrate the promises of the MFMS BO setting by introducing a Gaussian-process-based method. We compare the method against baselines such as Hyperband (Li et al., 2018a) and Random Search, which do not consider model scale as a decision variable. We find that even this simple approach can better explore different data mixtures and model scales, and deliver the best terminal model (as measured by downstream task performance) at least 2.6x faster than baselines (Section 4).

2 Motivation for Multi-fidelity Multi-scale Framework

While deterministically extrapolating optimal data mixtures from small-scale experiments to large-scale models can be unreliable, intuitively, results from smaller models and earlier training steps still provide valuable information that can guide large-scale training decisions. In this section, we experimentally validate two key premises of MFMS BO: (1) smaller models can help predict the performance of larger models under various data mixtures, and (2) undertrained models trained for fewer steps over different data mixtures can inform the performance of fully-trained models.

To demonstrate the predictive utility of smaller-scale experiments, we train predictors that take language model training parameters — {data mixtures, model scale, training step} — as input and

	Train	Test
E_1	half of 1B runs	remaining 1B runs
E_2	half of 1B runs	remaining 1B runs
	+ 700M runs	
E_3	half of 1B runs	remaining 1B runs
	+ all smaller runs	
E_4	half of 700M runs	remaining 700M runs
E_5	half of 700M runs	remaining 700M runs
	+ 500M runs	

DD 11 1	3 / 1 1		•
Table 1	· Model	S17e	experiments

Dataset	E_6	E_7	E_8
R^2 $R^2(\log)$	0.69	0.77	0.82
	0.74	0.82	0.85

Table 2: Results averaged over 3 runs. Notice the predictive power of our MLP is strongest when it is trained on many runs for fewer steps. This provides support for the intuition that one should distribute fixed compute budgets across multiple shorter training sessions rather than fewer longer ones.

predict either validation losses or downstream task accuracies of the resulting language model. Our experiments show that training the predictors on results from smaller-scale experiments improves the predictors' ability to estimate model performance as a function of data mixture at larger scales.

It is important to note that these predictors differ from the language models. The predictors take training hyperparameters as input and forecast the resulting language model's performance.

2.1 Collecting Predictor's Data Through LLM Pre-training Runs

To generate the training data for our predictors, we pretrained 472 language models using the OLMo 2 package (OLMo et al., 2024) with datasets derived from SlimPajama (Shen et al., 2024), a deduplicated subset of RedPajama (Weber et al., 2024). We used five categories of SlimPajama data for pretraining: Wikipedia, StackExchange, Github, ArXiv, and Book. Data from the CommonCrawl and C4 categories were held out to simulate out-of-distribution scenarios. The proportions of these five categories in each run were randomly sampled from a Dirichlet distribution. We pretrained language models varying in size from 20M to 1B parameters. We recorded training losses, validation losses across all seven data categories, and evaluated performance on three downstream tasks: HellaSwag, PIQA, and Arc Easy (Zellers et al., 2019; Bisk et al., 2020; Clark et al., 2018). The entire dataset was collected using 4x NVIDIA H100 80GB HBM3 for 500 compute days. Additional implementation details for pretraining are provided in Appendix A.

2.2 Predictor Training

We trained predictors using multilayer perceptrons (MLPs) that take as input the model size, number of training steps, and dataset proportions from the five pretraining categories. These predictors output predictions for training loss, validation losses across seven categories (including the held-out CommonCrawl and C4), and downstream task accuracies for HellaSwag, PIQA, and $Arc\ Easy$. Predictor performance was measured using the coefficient of determination (R^2) . Complete training details are documented in Appendix B.

2.3 Small Models Help Predict Larger Models Outcomes

We begin by investigating the extent to which smaller model runs can inform the dynamics of larger ones, as the literature on scaling laws (Gadre et al., 2024) would suggest. Table 1 details these experiments, and Table 3 lists the results of the experiment.

We note that, as expected, information garnered from training runs on *smaller* models seems to considerably increase the accuracy of our predictions on *larger* models, motivating our hope that a carefully crafted optimization algorithm can exploit the relationship.

Unsurprisingly, we note that $E_3 \approx E_2 > E_1$ and $E_5 > E_4$: the closer in scale the smaller models are to the larger model about which we wish to make a prediction, the more useful the information is. We, therefore, expect our MFMS BO algorithm to 'step through' model scales, starting with small and cheap models to identify promising data mixtures, and then progressing to larger models, all the while refining the data mixtures it considers optimal.

2.4 Earlier Training Steps Help Predict Later Training Steps

Dataset	E_1	E_2	E_3	$ E_4 $	E_5
Wikipedia	0.75	0.96	0.94	0.73	0.88
ArXiv	0.68	0.92	0.93	0.59	0.82
Github	0.66	0.95	0.95	0.62	0.87
Book	0.83	0.97	0.97	0.79	0.92
StackExchange	0.73	0.95	0.95	0.68	0.90
CommonCrawl	0.84	0.98	0.98	0.81	0.94
C4	0.86	0.99	0.98	0.82	0.95
ArcEasy	0.92	0.94	0.94	0.88	0.90
HellaSwag	0.97	0.98	0.97	0.94	0.96
PIQA	0.94	0.96	0.96	0.90	0.93

Table 3: R^2 values of the experiments listed in Table 1, averaged over 3 random seeds. Notice that $E_2 > E_1$ and $E_5 > E_4$ – our ability to predict the performance of larger models is considerably enhanced by insights from smaller models. Note also that $E_3 \approx E_2$; adding information about *much* smaller models does not seem to help.

The second central premise of our approach is that, given a fixed compute budget, it can be better to attempt many runs for fewer training steps than fewer runs for a larger number of training steps. To test this hypothesis, we carried out three additional experiments. In each of these experiments, we attempt to predict the final losses in 30% of our model runs (evenly distributed across model sizes). The MLP for each of these experiments is trained on (1) a set of complete runs, one for each model size (2) a set of 'truncated' runs, evenly distributed across model sizes. In E_6 , we use 16 runs truncated at 19600 training steps, in E_7 , we use 22 runs truncated at 13000 training steps, and in E_8 , we use 32 runs truncated at 8500 steps; thus, these experiments are trained on numbers generated with the same FLOPS budget. As expected,

 E_8 results in the most performant MLP model, providing evidence for our second central premise.

3 Multi-Fidelity Multi-Scale Bayesian Optimization

Knowing that both smaller models and early stopping can provide valuable insights for optimizing data mixtures, practitioners face a critical dilemma: given a fixed computational budget, how should one allocate resources to train the best model? Should one train many small models to explore different data mixtures, use early stopping at the target scale to abandon poor-performing data mixtures, or adopt a hybrid approach combining both strategies? The MFMS setting articulates this dilemma, and in this section, we provide a mathematical formulation of the problem.

We consider having access to a set of n datasets $\mathcal{D}=\{D_1,D_2,\ldots,D_n\}$, and aim to train the best-performing language model, evaluated on a given metric, with m^* parameters for z^* training steps using T datapoints. The key decision variables are the fractions of the data budget T allocated to each dataset. Specifically, we sample w_iT data points from D_i , where $\mathbf{w}=\{w_1,w_2,...,w_n\}\in\Delta^n$ and Δ^n denotes n-dimensional probability simplex. Let $\mu(\mathbf{w},m,z)$ denote the performance of a model with m parameters trained for z training steps using dataset proportions \mathbf{w} .

The model's performance is represented by an unknown function $\mu(\boldsymbol{w}, m^*, z^*)$, which maps a given data mixture \boldsymbol{w} , model size m, and training steps z to an evaluation metric. Our goal is to solve the optimization problem, $\arg\max_{\boldsymbol{w}}\mu(\boldsymbol{w}, m^*, z^*)$, where m^* and z^* represent the target model size and training steps.

We have a budget B with which we can experiment using different values of \boldsymbol{w}, m , and z. Each evaluation of $\mu(\boldsymbol{w}, m, z)$ incurs a cost c(m, z). c(m, z) is typically an increasing function of m and z, though our framework does not require this. Using m^* parameters and z^* steps every time we evaluate a new set of weights would quickly exhaust our budget. Instead, therefore, we might probe a particular set of weights on a smaller model with $m < m^*$ parameters, or with $z < z^*$ training steps — while the resulting observation $\mu(\boldsymbol{w}, m, z)$ would be less informative than $\mu(\boldsymbol{w}, m^*, z^*)$, it would be considerably cheaper and still provide valuable information.

However, since $\mu(\cdot)$ is an unknown function, it is critical to address the uncertainty in its values. BO provides a natural framework that explicitly models uncertainty in $\mu(\cdot)$ and systematically refines estimates of $\mu(\cdot)$ through posterior updates, as one observes more evaluations at different input configurations. This technique is called multi-fidelity BO. See Figure 1 for a graphical representation of the setup.

Traditional approaches to fidelity-aware BO primarily address scenarios in which the model architecture m remains fixed and only the number of training steps z is varied (Swersky et al., 2014; Domhan et al., 2015; Kandasamy et al., 2017; Li et al., 2018a). We add a layer of complexity by also considering model scale. One might be tempted to regard model scale as merely an additional fidelity

dimension, otherwise identical to training steps. However, we note that there is a fundamental distinction between the two dimensions: In the course of evaluating a model trained for z training steps, we must also evaluate that model for all steps z' < z, whereas no such hierarchical relationship exists for evaluations across different model scales. This structural difference prevents a direct application of the prior techniques, and suggests promising avenues for novel methodological developments in multi-fidelity optimization theory, though such extensions lie beyond the scope of our present work.

4 Experimental Setup

4.1 Evaluation

We propose MFMS BO as a natural framework to find optimal data mixture in practice. To demonstrate the potential of our framework, we adapt a BO algorithm based on Gaussian processes (GPs) to optimize the data mixture. However, training a new language model for each parameter that the algorithm proposes would be prohibitively expensive. Instead, therefore, we train a predictor as described in Section 2.2, and use the predictor to benchmark our approach. We train the predictor on 472 language model training runs described in Section 2.1, where 422 of the runs are randomly selected as a training set and the remaining 50 runs as a validation set. The predictor achieves $R^2 > 0.95$ across all metrics, suggesting that it is suitable as a surrogate benchmark (Eggensperger et al., 2022; Pfisterer et al., 2022).

Note: the predictor is not necessary for applying our algorithm in real-world scenarios. It serves only as an efficient benchmarking tool.

4.2 Multi-fidelity Multi-scale Gaussian Process (MFMS-GP)

Algorithm 1 Gaussian Process and Elpu

- 1: **Input:** Probability space Δ^n , model-scale space \mathcal{M} , training-step space \mathcal{Z} , and cost function $c(\cdot,\cdot)$
- 2: Initialize Gaussian Process (GP) surrogate model with three RBF kernels over Δ^n , \mathcal{M} , and \mathcal{Z} and a linear mean function
- 3: Randomly sample points from Δ^n , \mathcal{M} , and \mathcal{Z} to initialize hyperparameters of GP.
- 4: Initialize history \mathcal{H} with the randomly sampled points
- 5: **for** each optimization iteration **do**
- 6: **for** each $(m, z) \in \mathcal{M} \times \mathcal{Z}$ **do**
- 7: Optimize the EI evaluated at these values of m and z with respect to w gradient descent
- 8: end for
- 9: Select the next configuration $\lambda_{\text{next}} = (\boldsymbol{w}_{\text{next}}, m_{\text{next}}, z_{\text{next}})$ that maximizees the Expected Improvement per Unit (Elpu):

$$\mathrm{EIpu}(\lambda) = \frac{\mathrm{EI}(\lambda)}{c(m,z)}$$

- 10: Evaluate $\mu(\lambda_{\text{next}})$
- 11: Store results in \mathcal{H}
- 12: Update posterior of GP with \mathcal{H}
- 13. end for
- 14: Return best $w^* = \lambda^*[0]$ from configuration $\lambda^* = \arg \max_{\lambda \in \mathcal{H}} \mu(\lambda)$

We implement a GP surrogate model for our MFMS setting. The kernel of the GP is a product of three separate RBF kernels for the data proportion, the model scale, and the training step dimensions. To enable learning the positive correlation between model performance and both model scales and training steps, we use a linear mean function.

For the acquisition function, we use Expected Improvement (EI). EI aims to quantify the expected gain over the current best-observed function value, $\mathrm{EI}(\mathbf{x}) := \mathbb{E}\left[\max(y^* - f(\mathbf{x}), 0)\right]$, where the expectation is taken over the posterior distribution predicted by the surrogate models, and y^* represents the current best-observed function value, given by $y^* := f(\mathbf{x}_{\min})$ (Frazier, 2018). The EI function

quantifies the expected improvement in the objective value compared to the current best, thereby encouraging the selection of points that are likely to yield better performance.

Equipped with EI, we proceed by optimizing EI over the parameter space to find the most promising point to evaluate, using gradient-based methods such as L-BFGS-B (Zhu et al., 1997). However, motivated by the fact that the parameter space is discrete over parameter counts (m) and training steps (z), we choose to optimize EI over each unique tuple (m,z). Then, to account for the fact that evaluation for each tuple incurs varying costs c(m,z), we evaluate the point that has the greatest EI per unit cost (EIpu) (Lee et al., 2020). Additional details of our implementation are provided in Appendix C.

4.3 Baselines Overview

Multi-fidelity Bayesian Optimization: We employ Hyperband, implemented via SMAC (Lindauer et al., 2022), which leverages a random forest surrogate model and expected improvement as its acquisition function. Hyperband (Li et al., 2018b) efficiently explores multiple parameter configurations by early stopping poorly performing candidates. In our experiments, we fix the model scale at the target model size throughout optimization, which is not cost-aware.

Random Search: We uniformly sample data proportions and evaluate them at the largest model size and maximum training steps. See Appendix D for the detailed algorithm and implementation specifics.

5 Results

In this section, we demonstrate the effectiveness of our MFMS-BO framework by benchmarking the simple MFMS-GP method against baselines that do not leverage smaller model scales.

For each of the algorithms evaluated, we run 20 experiments over different seeds, and show the one standard deviation bound with shaded regions. The number of evaluations (the x-axis) was recorded by Wandb (Biewald, 2020) in the experiments we used to train our predictor, and normalized so that 1 evaluation corresponds to the number of flops required to train a 1B model for 100 training steps. As an example, in a "random search" algorithm, where we randomly sample parameters and train models for 20,000 steps with those parameters, doing this with five different set of parameters for a 1B model would involve 1,000 evaluation units. In a more complex algorithm, where the number of training steps and model scales are dynamically determined, we report the exact number of evaluation steps that would have been required for the various training runs in that algorithm. The MFMS-GP method requires tuning its hyperparameters. As described in Appendix C, we randomly select a few configurations to tune these parameters, and the cost of evaluating these configurations is accounted for.

Since MFMS-GP relies on GP posterior and potentially noisy EI optimizations to select model scales and training steps, it may take some time before the algorithm samples points at the target scale and fidelity, even after identifying a performant data mixture. If we were to plot only the performance of the best model trained by MFMS-GP at any given evaluation unit, the result could appear deceptively poor simply because the model was smaller or trained for fewer steps, failing to reflect the true quality of the corresponding data mixture. Therefore, to allow us to compare MFMS-GP with other baselines that always train at target model scale, we add an additional curve: **MFMS-GP full-scale**, which shows the performance one would have gotten if one takes the best configuration MFMS-GP has observed, and simply sets the model scale and training steps to the target m^* and z^* . The additional curve can be viewed as representing a realistic use of our method: a fixed compute budget is first allocated for exploration, allowing the algorithm to identify the best data mixture. In a subsequent phase, one would take this mixture to train a model to completion at the target scale. The additional computational cost of the final training is of course accounted for in these plots.

In Figures 3 and 4, we see that both of the plots for our MFMS-GP algorithm have a **2.6x to 3.3x** speedup in finding the configuration that achieves the highest accuracy. Observe that MFMS-GP rapidly explores different data mixtures and identifies promising ones earlier than Hyperband or random search. This is expected, since MFMS-GP can utilize inexpensive evaluations by training on smaller models and for fewer steps. These strong results — achieved with a simple GP-based method

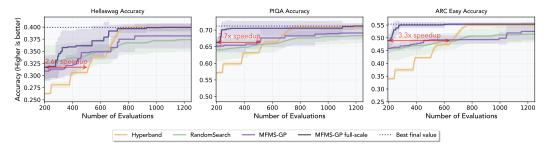


Figure 3: On maximizing accuracy in the downstream tasks, our multi-scale multi-fidelity approach achieves more than 2.6x speedup and finds the best configuration the fastest. Shaded area indicates standard deviation across random seeds.

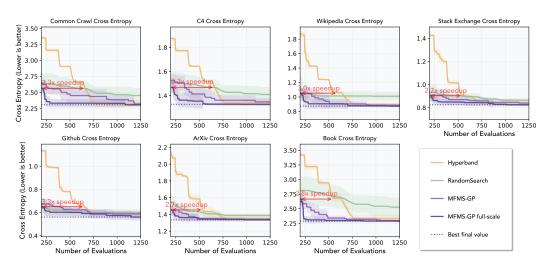


Figure 4: On minimizing the validation cross-entropy losses, our multi-scale multi-fidelity approach achieves more than 2.6x speedup and finds the best configuration the fastest. Shaded area indicates standard deviation across random seeds.

— underscore the potential of the MFMS framework in efficiently gathering low-cost yet valuable information to guide large-scale language model training. We expect that thoughtful algorithmic improvements, such as better kernel design or acquisition functions, will lead to even more powerful methods. We include the results using several standard kernels in Appendix E, and leave more extensive explorations of this new setting to future work.

6 Related Work

Data Mixtures. Several approaches aim to move beyond heuristic methods for data mixture by leveraging algorithmic techniques. Albalak et al. (2023b) propose an online data mixing strategy using a non-stochastic bandit algorithm to dynamically adjust data proportions during training, maximizing perplexity. DoReMi (Xie et al., 2023) focuses on identifying and emphasizing the "hardest" datasets for a base model through distributionally robust language modeling to improve training efficiency. Ge et al. (2025b) model a joint scaling behavior of domain proportions and training steps; we push this further through modeling the model scale. Goyal et al. (2024b) delve into the quality-quantity tradeoff in data, exploring how data filtering and repetition affect model performance and introducing scaling laws that account for data utility decay. These works highlight the increasing interest in principled and adaptive methods for data mixture optimization, yet often focus on fixed model scales. In contrast, our multi-fidelity multi-scale approach considers the practical scenario where practitioners have a fixed budget to experiment with data mixture, and can exploit cheap information gathered from smaller models and early training steps.

Scaling Laws. Scaling laws provide crucial insights into the relationship between model size, training compute, and performance in large language models (Kaplan et al., 2020; Li et al., 2025; Pearce and Song, 2024; Zhao et al., 2025; Mikami et al., 2021; Aghajanyan et al., 2023). Hoffmann et al. (2022b) established foundational scaling laws demonstrating predictable performance improvements with increased compute, model parameters, and training data. (Muennighoff et al., 2023) investigates the impact of data repetition in data-constrained scenarios, showing diminishing returns beyond a certain repetition threshold. Ruan et al. (2024) propose observational scaling laws based on "principal capabilities" to explain and predict language model performance across diverse models and benchmarks, as has been done in other BO settings. These scaling law studies motivate our framework by providing an empirical basis for extrapolating performance variations of different data mixtures across model scales.

Bayesian Optimization. Data mixture optimization, like hyperparameter tuning, benefits from efficient search strategies. Approaches range from full configuration selection with methods like BO to hyperband, which employs early termination of unpromising runs. Early BO methods (Hutter et al., 2011) used GPs to model the relationship between hyperparameters and model performance. Subsequent works explored random forests (Lindauer et al., 2022) and Parzen estimators (Bergstra et al., 2011) as surrogate models. Early stopping techniques like Hyperband (Li et al., 2018b) focus on efficiently evaluating multiple parameter configurations by progressively eliminating poorly performing candidates, and exploring many combinations with fewer resources. More recent methods like BOHB (Falkner et al., 2018) combine both the BO exploration of Parzen estimators with the multi-fidelity benefits of Hyperband. Our work, MFMS-BO, is the *first* to explore a multi-fidelity multi-scale approach for data mixture optimization.

7 Conclusion and Future Work

This work introduces a principled framework, multi-fidelity multi-scale Bayesian optimization, for optimizing data mixture compositions in large language model training, a critical challenge in modern AI system development. Our framework unifies recent advances in predicting optimal data mixtures across scales with classical multi-fidelity BO techniques. Based on this unified framework, we implemented the GP using the RBF kernels and expected-improvement-per-unit acquisition function to balance the information gain and the cost of exploring new points in the functional landscape. We find that the method achieves optimal downstream task performance **2.6 times faster** than traditional multi-fidelity approaches by strategically exploring the joint space of data mixtures and model scales.

In addition, we empirically demonstrate two key insights that inform future efficient optimization of data mixtures. First, our analysis reveals that training runs on smaller models (below 500M parameters) provide valuable predictive signals for optimizing larger architectures (1B parameters). Second, we establish that partial training runs can effectively inform full-scale training decisions. Specifically, our results show that a combination of full and partial training runs (e.g., 5 complete and 10 half-length runs) yields better predictive utility than an equal-compute allocation of full training runs alone (e.g., 10 complete runs).

Several promising directions emerge for future research. First, extending our framework to more settings, such as language model fine-tuning, data filtering, and diverse collections of datasets with more categories, would help validate its generalizability across different data mixing scenarios. In particular, the low-cost fine-tuning regime provides an opportunity to evaluate the framework without the predictor. From a methodological perspective, incorporating domain knowledge about the positive correlation between model performance and both parameter count and training duration could enhance GP kernel design. Exploring alternative acquisition functions, such as knowledge gradient (Poloczek et al., 2016; Wu et al., 2019), could further improve efficiency in navigating the optimization landscape. The fundamental differences between model scale and training steps as fidelity dimensions also require further investigation to refine their treatment within the framework. Other realistic considerations could enhance the practical benefits of the framework, such as developing algorithms supporting batch evaluations and asynchronous updates for efficient parallel exploration. Addressing these challenges will further strengthen the framework and its applicability in large-scale language model training.

Acknowledgements

The authors thank Empire AI (Bloom et al., 2025) for generously providing extensive computational resources, without which this study would not be possible. This work was supported by the Digital Future Initiative at Columbia Business School.

References

- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022a. URL https://arxiv.org/abs/2203.15556.
- Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina, Igor Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muennighoff, and Ludwig Schmidt. Language models scale reliably with over-training and on downstream tasks, 2024. URL https://arxiv.org/abs/2403.08540.
- Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. Estimating the carbon footprint of bloom, a 176b parameter language model. *Journal of Machine Learning Research*, 24(253): 1–15, 2023. URL http://jmlr.org/papers/v24/23-0069.html.
- Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing for language model pre-training, 2023a. URL https://arxiv.org/abs/2312.02406.
- Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scaling laws for data filtering—data curation cannot be compute agnostic. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 22702–22711, 2024a. doi: 10.1109/CVPR52733.2024.02142.
- Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.
- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.
- Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik Bansal, Etash Kumar Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee F Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Kamal Mohamed Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Joshua P Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah M Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham M. Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander T Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alex Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-LM: In search of the next generation of training sets for language models. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL https://openreview.net/forum?id=CNWdWn47IE.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.

- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.
- OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.
- Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. Improving pretraining data using perplexity correlations, 2024. URL https://arxiv.org/abs/2409.05816.
- Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does your data spark joy? performance gains from domain upsampling at the end of training, 2024. URL https://arxiv.org/abs/2406.03476.
- Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing laws: Optimizing data mixtures by predicting language modeling performance, 2024. URL https://arxiv.org/abs/2403.16952.
- Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Bimix: A bivariate data mixing law for language model pretraining, 2025a. URL https://arxiv.org/abs/2405.14908.
- Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang, and Min Lin. Regmix: Data mixture as regression for language model pre-training. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=5BjQOUXq7i.
- Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and Amnon Shashua. Limits to depth efficiencies of self-attention. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 22640–22651. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/ff4dfdf5904e920ce52b48c1cef97829-Paper.pdf.
- Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot hyperparameter transfer. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, volume 34, pages 17084–17097. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf.
- Yiding Jiang, Allan Zhou, Zhili Feng, Sadhika Malladi, and J Zico Kolter. Adaptive data optimization: Dynamic sample selection with scaling laws. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=aqok1UX7Z1.
- Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, and Eric Xing. Slimpajama-dc: Understanding data combinations for llm training, 2024. URL https://arxiv.org/abs/2309.10818.
- Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general algorithm configuration. In *Proceedings of the 5th International Conference on Learning and Intelligent Optimization*, LION'05, page 507–523, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 9783642255656. doi: 10.1007/978-3-642-25566-3_40. URL https://doi.org/10.1007/978-3-642-25566-3_40.
- Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: robust and efficient hyperparameter optimization at scale. *CoRR*, abs/1807.01774, 2018. URL http://arxiv.org/abs/1807.01774.
- Peter I. Frazier. A tutorial on bayesian optimization, 2018. URL https://arxiv.org/abs/1807.02811.
- Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization, 2014. URL https://arxiv.org/abs/1406.3896.

- Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. In *Proceedings of the 24th International Conference on Artificial Intelligence*, IJCAI'15, page 3460–3468. AAAI Press, 2015. ISBN 9781577357384.
- Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-fidelity Bayesian optimisation with continuous approximations. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 1799–1808. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/kandasamy17a.html.
- Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning Research*, 18(185):1–52, 2018a. URL http://jmlr.org/papers/v18/16-558.html.
- Matthias Poloczek, Jialei Wang, and Peter I. Frazier. Multi-information source optimization, 2016. URL https://arxiv.org/abs/1603.00389.
- Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious, 2024. URL https://arxiv.org/abs/2501.00656.
- Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and Ce Zhang. Redpajama: an open dataset for training large language models, 2024. URL https://arxiv.org/abs/2411.12372.
- Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, 2019.
- Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial Intelligence*, 2020.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv:1803.05457v1*, 2018.
- Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron Klein, Noor Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of reproducible multi-fidelity benchmark problems for hpo, 2022. URL https://arxiv.org/abs/2109.06716.
- Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. Yahpo gyman efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In Isabelle Guyon, Marius Lindauer, Mihaela van der Schaar, Frank Hutter, and Roman Garnett, editors, Proceedings of the First International Conference on Automated Machine Learning, volume 188 of Proceedings of Machine Learning Research, pages 3/1–39. PMLR, 25–27 Jul 2022. URL https://proceedings.mlr.press/v188/pfisterer22a.html.
- Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. *ACM Trans. Math. Softw.*, 23(4): 550–560, December 1997. ISSN 0098-3500. doi: 10.1145/279232.279236. URL https://doi.org/10.1145/279232.279236.
- Eric Hans Lee, Valerio Perrone, Cédric Archambeau, and Matthias W. Seeger. Cost-aware bayesian optimization. *CoRR*, abs/2003.10870, 2020. URL https://arxiv.org/abs/2003.10870.

- Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization package for hyperparameter optimization. *Journal of Machine Learning Research*, 23(54):1–9, 2022. URL http://jmlr.org/papers/v23/21-0888.html.
- Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization, 2018b. URL https://arxiv.org/abs/1603.06560.
- Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software available from wandb.com.
- Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing for language model pre-training, 2023b. URL https://arxiv.org/abs/2312.02406.
- Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V. Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model pretraining, 2023. URL https://arxiv.org/abs/2305.10429.
- Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Bimix: A bivariate data mixing law for language model pretraining, 2025b. URL https://arxiv.org/abs/2405.14908.
- Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scaling laws for data filtering data curation cannot be compute agnostic, 2024b. URL https://arxiv.org/abs/2404.07177.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/abs/2001.08361.
- Margaret Li, Sneha Kudugunta, and Luke Zettlemoyer. (mis)fitting: A survey of scaling laws, 2025. URL https://arxiv.org/abs/2502.18969.
- Tim Pearce and Jinyeop Song. Reconciling kaplan and chinchilla scaling laws, 2024. URL https://arxiv.org/abs/2406.12907.
- Rosie Zhao, Tian Qin, David Alvarez-Melis, Sham Kakade, and Naomi Saphra. Distributional scaling laws for emergent capabilities, 2025. URL https://arxiv.org/abs/2502.17356.
- Hiroaki Mikami, Kenji Fukumizu, Shogo Murai, Shuji Suzuki, Yuta Kikuchi, Taiji Suzuki, Shin ichi Maeda, and Kohei Hayashi. A scaling law for synthetic-to-real transfer: How much is your pre-training effective?, 2021. URL https://arxiv.org/abs/2108.11018.
- Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang, Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative mixed-modal language models, 2023. URL https://arxiv.org/abs/2301.03728.
- Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training compute-optimal large language models, 2022b. URL https://arxiv.org/abs/2203.15556.
- Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models, 2023. URL https://arxiv.org/abs/2305.16264.
- Yangjun Ruan, Chris J. Maddison, and Tatsunori Hashimoto. Observational scaling laws and the predictability of language model performance, 2024. URL https://arxiv.org/abs/2405.10938.
- James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. In *Proceedings of the 25th International Conference on Neural Information Processing Systems*, NIPS'11, page 2546–2554, Red Hook, NY, USA, 2011. Curran Associates Inc. ISBN

9781618395993.

Jian Wu, Saul Toscano-Palmerin, Peter I. Frazier, and Andrew Gordon Wilson. Practical multi-fidelity bayesian optimization for hyperparameter tuning. *CoRR*, abs/1903.04703, 2019. URL http://arxiv.org/abs/1903.04703.

Stacie Bloom, Joshua Brumberg, Ian Fisk, Robert Harrison, Robert Hull, Melur Ramasubramanian, Krystyn Van Vliet, and Jeannette Wing. Empire ai: A new model for provisioning ai and hpc for academic research in the public good. In *Practice and Experience in Advanced Research Computing 2025: The Power of Collaboration*, PEARC '25, New York, NY, USA, 2025. Association for Computing Machinery. ISBN 9798400713989. doi: 10.1145/3708035.3736070. URL https://doi.org/10.1145/3708035.3736070.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980, 2014. URL https://api.semanticscholar.org/CorpusID:6628106.

Appendix

A Pretraining Runs Details

We use the OLMo 2 OLMo et al. (2024) package for training our language models. The model configurations are

Group	d_model	n_heads	n_layers	Runs
20M	256	8	8	115
60M	512	8	8	71
150M	768	12	12	53
300M	1024	16	16	74
500M	1280	16	16	39
700M	1536	16	16	52
1B	2048	16	16	68

Table 4: Model Architecture Details by Group with Number of Runs

To decide the training mixtures of the experiments, for each experiment, we randomly sample from the probability simplex using the Dirichlet distribution of order n (number of training datasets), where we use the parameters $\alpha_i = 1, \forall i \in [n]$. Other training configurations (learning rate, momentum, etc.) are directly taken from OLMo's configuration files (e.g. 700M) We study the compute optimal regime (Hoffmann et al., 2022a): for each 1B model run, we used 20B tokens in total for training. In the interest of collecting more runs, all other model scales are trained on 10B tokens.

B Predictor Training

We train predictors using multilayer perceptrons (MLPs) consisting of three hidden layers with 64 hidden units each, ReLU activations, and dropout with a rate of 0.1, totaling approximately 5,000 parameters. The predictors accept three types of inputs: (1) the model size (number of parameters), (2) the number of training steps, and (3) the proportions of each of the five dataset categories used during pretraining, namely (*Wikipedia, StackExchange, Github, ArXiv*, and *Book*).

For each pretrained language model, the predictor outputs predictions for multiple metrics: the training loss, validation losses across seven categories (*Wikipedia*, *StackExchange*, *Github*, *ArXiv*, *Book*, and held-out datasets *CommonCrawl* and *C4*), as well as downstream task accuracies on three evaluation tasks: *HellaSwag*, *PIQA*, and *Arc Easy* (Zellers et al., 2019; Bisk et al., 2020; Clark et al., 2018). Thus, each language model corresponds to a single row in our predictor's dataset, comprising 9 inputs as described above and outputs spanning these 11 metrics.

We train the predictors to maximize the coefficient of determination (R^2) , $R^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$, where y_i is the true metric value for data point i, \hat{y}_i is the predictor's estimate, and \bar{y} is the mean of true values. Training of our predictor is conducted for 20 epochs using a batch size of 64, an Adam optimizer with a learning rate of 0.001 and weight decay of 0.01, and data normalization (standard scaling) applied to both inputs and outputs.

C Bayesian Optimization Details

For MFMS-GP, the cost of evaluating a run at a particular model scale is taken from the number of FLOPS the corresponding model scale costs during the pretraining runs. The costs are scaled appropriately such that a unit of cost corresponds FLOPS required to train 1B model for 1 training step.

Additionally, since it is prohibitively expensive to optimize EI for each of 19700 training steps, for multi-fidelity multi-scale GP, we limit the space of training steps to be $\mathcal{Z} = \{6000, 12000, 19700\}$.

To initiate the hyperparameters of MFMS-GP, we randomly select 20 configurations up to training step z=9 to fit the kernel and mean functions' parameters. The GP hyperparameters are trained using the Adam optimizer (Kingma and Ba, 2014) with a 0.1 learning rate for 50 iterations.

As mentioned in Section 4.2, we optimize EI within (m, z) tuple. For this optimization, we initiate 5 random probability weights drawn from the Dirichlet distribution and perform a gradient search for greater EI over the probability simplex.

Occasionally, the GP would be too certain of its posterior prediction such that the optimized EIs are all small in magnitude. Therefore, when the optimal EI is below a certain threshold, we lower the length scales of the RBF kernels to encourage more exploration. The threshold is set to be $1e^{-4}$, and the length scales would be lowered to 95% of their original values.

As a measure to encourage selecting higher cost evaluations later in the optimization cycle, instead of using $\mathrm{EI}_{\mathrm{pu}}(\lambda) = \frac{\mathrm{EI}(\lambda)}{c(m,z)}$, we introduce an additional parameter α that controls the importance of cost, and pick the configuration that maximizes $\frac{\mathrm{EI}(\lambda)}{c(m,z)^{\alpha}}$. Initially $\alpha=1$, and it decays by 1% for every step of the Bayesian optimization.

D Baselines

D.1 Baselines: Multi-Fidelity Bayes Opt

Algorithm 2 Hyperband with Random Forest, EI

```
1: Input: Probability space \Delta^n, training-step space \mathcal{Z}, target model scale m^*, and cost function
 2: Initialize random forest surrogate model RF
 3: Set initial design with Random Sampling
 4: Initialize history \mathcal{H} = \emptyset
 5: for each Hyperband iteration do
 6:
       Split the total computation budget into s brackets
       for each bracket s_i do
 7:
 8:
          Generate initial configurations w_1, \dots, w_n at lowest fidelity z = 1
 9:
          for each fidelity z from 1 to z^* do
10:
             Evaluate configurations w_i at fidelity z
11:
             Store results in \mathcal{H}
12:
             Fit RF on \mathcal{H}
13:
             Select next \lambda_{\text{next}} using Expected Improvement
             Update \mathcal{H} with new evaluations
14:
          end for
15:
       end for
16:
18: Return best w^* = \lambda^*[0] from configuration \lambda^* = \arg \max_{\lambda \in \mathcal{H}} \mu(\lambda)
```

As a baseline for multi-fidelity Bayesian optimization, we use Hyperband implemented by SMAC: Sequential Model-Based Optimization for General Algorithm Configuration (Lindauer et al., 2022). This multi-fidelity Bayesian optimization uses a random forest as a surrogate model, expected improvement as the acquisition function, and uses Hyperband (Li et al., 2018b), which is an early stopping technique that focuses on efficiently evaluating multiple parameter configurations by progressively eliminating poorly performing candidates, and exploring many combinations with fewer resources. Since the multi-fidelity framework does not offer a straightforward way to incorporate the additional dimension of model scale, throughout the optimization, we fix the number of the model's parameters to the target model scale m^* .

D.2 Baselines: Random Search

For a baseline that does not consider utilizing the fidelity dimension, we consider random search. Random search selects data proportions that are uniformly drawn from our data proportion space. We then run it against the largest model size and training steps.

E Kernel Comparisons

The kernel function k(x,x') in a GP defines the covariance between different input points. In the main results, we use a RBF kernel $k(\boldsymbol{w},\boldsymbol{w}')=\exp(-\frac{d(\boldsymbol{w},\boldsymbol{w}')}{2\sigma^2})$ for the data proportions \boldsymbol{w} , where $d(\boldsymbol{w},\boldsymbol{w}')=\|\boldsymbol{w}-\boldsymbol{w}'\|^2$ is the squared L^2 distance between the two probabilities. In this appendix, we experiment with distance metrics that may be more suitable for probabilities.

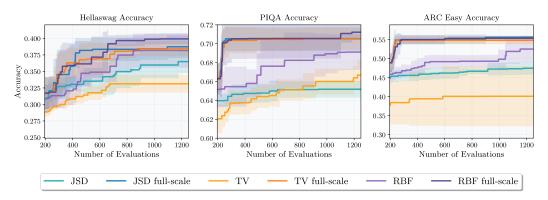


Figure 5: Comparing different Gaussian process kernels on maximizing accuracy in the downstream tasks.

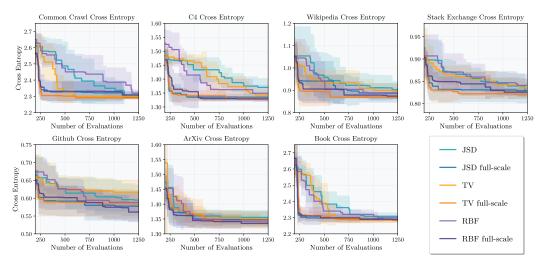


Figure 6: Comparing different Gaussian process kernels on minimizing the validation cross-entropy losses

Specifically, we consider the Total Variance (TV) distance and the Jensen–Shannon divergence (JSD), a symmetric Kullback–Leibler divergence, for the data proportions:

$$\begin{aligned} \text{TV}: \qquad d(\boldsymbol{w}, \boldsymbol{w}') &= \|\boldsymbol{w} - \boldsymbol{w}'\|_1 \\ \text{JSD}: \qquad d(\boldsymbol{w}, \boldsymbol{w}') &= \frac{1}{2} \text{KL} \left(\boldsymbol{w} \parallel \boldsymbol{\bar{w}}\right) + \frac{1}{2} \text{KL} \left(\boldsymbol{w}' \parallel \boldsymbol{\bar{w}}\right) \end{aligned}$$

where $KL(\cdot)$ denotes the Kullback–Leibler divergence, and $\bar{w} = \frac{w+w'}{2}$.

We found that on optimizing accuracy, the simple RBF kernels generally perform better. However, occasionally, JSD (on HellaSwag of Figure. 5) or TV (on Common Crawl, Wikipedia, and Stack Exchange of Figure. 6) yield better results.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract claims introduction of a new framework and speedup that comes from the formulation, which are both reflected in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The final section describes limitations in the setting and ways to approach realistic use cases.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not have theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the code used to produce the experimental results is provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: the code and data are provided.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The details are provided, either in the main text or in the appendices.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are accompanied by standard deviations.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)

- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The compute resources required are provided.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Justification: There is no potential harmful impact of the research, nor human subjects involved in the experiments.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The paper studies a fundamental research topic and does not have direct application that can be harmful.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper has no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The original creator/owners of the data and models have been properly credited.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The assets have been documented and anonymized.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development does not involve LLMs.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.