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Abstract

Careful curation of data sources can significantly improve the performance of
LLM pre-training, but predominant approaches rely heavily on intuition or costly
trial-and-error, making them difficult to generalize across different data domains
and downstream tasks. Although scaling laws can provide a principled and general
approach for data curation, standard deterministic extrapolation from small-scale
experiments to larger scales requires strong assumptions on the reliability of such
extrapolation, whose brittleness has been highlighted in prior works. In this paper,
we introduce a probabilistic extrapolation framework for data mixture optimization
that avoids rigid assumptions and explicitly models the uncertainty in performance
across decision variables. We formulate data curation as a sequential decision-
making problem—multi-fidelity, multi-scale Bayesian optimization—where {data
mixtures, model scale, training steps} are adaptively selected to balance training
cost and potential information gain. Our framework naturally gives rise to algo-
rithm prototypes that leverage noisy information from inexpensive experiments
to systematically inform costly training decisions. To accelerate methodological
progress, we build a simulator based on 472 language model pre-training runs with
varying data compositions from the SlimPajama dataset. We observe that even
simple kernels and acquisition functions can enable principled decisions across
training models from 20M to 1B parameters and achieve 2.6x and 3.3x speedups
compared to multi-fidelity Bayesian optimization and random search baselines.
Taken together, our framework underscores potential efficiency gains achievable
by developing principled and transferable data mixture optimization methods. Our
code is available at https://github.com/namkoong-lab/data-recipes.

1 Introduction

Data is the foundational infrastructure upon which all Al systems are built. Scaling data has been a
key driver of progress in machine learning, particularly in language model training (Deng et al., 2009;

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/namkoong-lab/data-recipes

@ High fidelity exp.

Low fidelity exp

/"—\ Uncertainty

Downstream
metric

——Wikipedia

/ Books Data mixture weight Select experiment
] Github Fidelity selection /
00—
/ Reddit Small Model size Large
] I ——
%_/ Short  Traininglength  Long
Data mixture selection
(a) Optimal Training Data mixture weight
Data Distribution
Evaluate Experiment

o o o /

Wikipedia

Update posterior

—\ Sesl 4 : /_/\
S :
Iteration
(b) Training Data : : g iscal el
Distribution with Heuristics- (c) Data mixture as an adaptive optimization problem ( LOur multi-scale multi-fidelity
based Filtering ayesian optimization setup

Figure 1: Our multi-fidelity multi-scale Bayesian optimization (BO) framework. (a) Given an un-
known optimal training data distribution, (b) existing methods use heuristic-based filtering techniques
to approximate the optimal distribution. (c) Our algorithm treats data mixture optimization as a BO
problem. (d) We explore data mixtures in a cost-aware fashion; when we test a new data mixture,
we also choose the fidelity of the observation we will observe. Larger models trained for more steps
will result in high fidelity observations, but be more expensive. Every point we observe updates our
probabilistic belief of model performance over the data mixture, model size, and training steps space,
which guides subsequent parameters.

Hoffmann et al., 2022a; Gadre et al., 2024). While this data-centric approach has led to impressive
performance gains, it also incurs substantial computational and financial costs in training state-of-the-
art models (Hoffmann et al., 2022a; Luccioni et al., 2023). Beyond raw scale, the composition of
training data has emerged as a critical factor in model performance (Albalak et al., 2023a; Goyal
et al., 2024a). For instance, TinyStories (Eldan and Li, 2023) demonstrated that models with only
10 million parameters, when trained on a carefully chosen synthetic dataset, can generate coherent
and consistent English text — surpassing the capabilities of significantly larger models like GPT-2
Small (125 million parameters) (Radford et al., 2019). Similarly, Li et al. (2024) showed that a
carefully curated dataset enables training a 7-billion-parameter model comparable in performance to
that of Mistral-7Bv0.3 and Llama 3 8B while using six times less compute. In practical scenarios
where heterogeneous data sources are available, the choice of training mixture has been shown to
significantly impact model performance.

Pitfalls of Prior Approaches: This growing recognition of data composition’s importance has led
institutions to develop proprietary data mixtures based on domain expertise and empirical observations
(Radford et al., 2021; Jiang et al., 2023; OpenAl, 2024). Others have introduced heuristics, such as
Wikipedia upsampling and perplexity-guided data selection, to refine training mixtures (Thrush et al.,
2024; Blakeney et al., 2024). However, these ad hoc approaches are often tailored to specific training
datasets and downstream tasks, and may fail to transfer across domains and data types. For instance,
when organizations in specialized sectors such as healthcare or finance seek to train custom language
models on proprietary datasets, it remains unclear whether heuristics developed for public datasets
are still effective. Given the substantial resources required for training high-performance language
models, there is a pressing need for a principled framework to address data mixture optimization.

Another line of research attempts to deterministically identify the functional relationship between data
composition and model performance (Ye et al., 2024; Ge et al., 2025a; Liu et al., 2025). Data Mixing
Laws (Ye et al., 2024), for example, proposes fitting validation losses as an exponential function of
linear combinations of data proportions. However, collecting sufficient data to fit parameters of such
functions at the desired scale and training duration is often computationally prohibitive. As a result,
these methods inevitably rely on extrapolating the parameters learned from smaller models trained
for fewer steps. Numerous studies have highlighted the brittleness of using such naive extrapolation
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Figure 2: Left: The predicted validation cross-entropy loss on ArXiv data (Shen et al., 2024) as a
function of data mixing coefficient and model sizes from a data-driven predictor on 472 runs (see
details in Sec. 2). Notice the highly non-smooth geometry. Orange dots highlight the optimal data
mixture proportion for each model scale. Note that they are not consistent across scales. Middle: The
curvature at these points shows there are points of high irregularities, suggesting that the relationship
between data mixture and model performance is unlikely to take a simple functional form. Right:
A demonstration showing how functional forms like exponential decay fitted on a small number of
points would result in a high predictive error. In contrast, a probabilistic model such as a Gaussian
Process can capture uncertainty over the points.

to guide hyperparameter decisions (Levine et al., 2020; Yang et al., 2021; Jiang et al., 2025). Notably,
Jiang et al. (2025) demonstrated that extrapolating validation losses based on small models often leads
to inaccurate results. We reinforce this finding in our empirical study, observing that the optimal data
mixing proportion does not remain constant across model scales (see Figure. 2)

Existing approaches, whether based on heuristic trial-and-error or deterministic but unverifiable
extrapolation, risk failing to identify the optimal data mixture as experiment scale or data domains
change. Moreover, they share another fundamental limitation: when additional computational
budget becomes available for training new models, these approaches offer no clear guidance on
how to select the next promising data mixture to experiment with. To address these challenges,
we propose viewing the problem of curating the optimal data mixture as an adaptive optimization
problem, where practitioners iteratively refine their mixing decisions based on empirical observations
from prior experiments. This framework leverages the intuition that model performance exhibits
local consistency across similar mixtures, training steps, and model scales, while avoiding rigid
assumptions about the global structure of the performance landscape.

Our Formulation: Sequential optimization of data mixtures necessitates comprehending which
data compositions suffer the highest uncertainty and sharpening beliefs on performance as more
observations are gathered. In particular, good adaptive policies must distinguish between aleatoric
and epistemic uncertainty: epistemic uncertainty can be reduced with more data, while aleatoric
uncertainty is irreducible. Measurements must be planned to maximally reduce epistemic uncertainty
on future runs by balancing exploration and exploitation.

We formulate this sequential optimization framework as a Bayesian optimization (BO) problem: we
maintain probabilistic beliefs on the performance of various data mixtures and model scales, and use
these beliefs to choose the next model scale to train, on what data mixture, and for how long. Once
we fit and evaluate this new model, we use its performance to update our beliefs (Hutter et al., 2011;
Falkner et al., 2018; Frazier, 2018).

In standard BO, the cost of each new observation is the same, and we aim to optimize an objective
while observing the smallest number of points possible. Our setting presents additional challenges —
the cost of training a new model and observing its performance is affected by (1) the number of steps
for which the model is trained and (2) the scale of the model (the number of parameters therein).

The number of steps for which a model is trained affects the quality of the observation — the more
steps we use to train the model, the more accurately the results will reflect the utility of training on
the data mixture in question. Previous work has handled this conundrum using so-called multi-fidelity
BO, in which evaluations are ‘stopped early’ during the training process if it becomes clear the
information revealed during additional training steps will not be worth the expense (Swersky et al.,
2014; Domhan et al., 2015; Kandasamy et al., 2017; Li et al., 2018a).

Multi-Fidelity Multi-Scale (MFMS) Bayesian Optimization: Our setting is distinguished by the
second factor above — we also want to use data gathered on smaller model scales to guide our search



for optimal parameters in larger models. We refer to this new setting as Multi-Fidelity Multi-Scale
(MFMS) BO. While it can be viewed as a special case of the broader framework that optimizes black-
box functions with access to cheaper approximate evaluations (Poloczek et al., 2016), the MFMS
setting introduces a distinctive and interesting structure. Specifically, the model scales dimension
differs fundamentally from the usual fidelity dimension associated with training steps. For one,
the number of training steps typically far exceeds the number of model scales considered. More
importantly, when training for z steps, we naturally obtain observations for all intermediate steps up to
z. In contrast, evaluating a model of size m provides no inherent information about the performance
of smaller or larger architectures. This raises interesting questions about how to appropriately treat
and exploit this structure, opening new methodological directions for investigation.

Fortunately, unlike conventional hyperparameters such as learning rate or momentum, where optimal
configurations exhibit complex scaling behavior across model sizes (Yang et al., 2021), recent
empirical evidence suggests that optimal data mixture compositions enjoy greater transferability
from smaller to larger model architectures (Ye et al., 2024; Ge et al., 2025a). This transferability
property enables the strategic use of smaller-scale evaluations to identify optimal data mixture
configurations that remain effective at target model scales, substantially reducing the computational
cost of the optimization process.

The main contributions of the paper are as follows:

* We propose a probabilistic extrapolation framework to address the problem of optimizing
data mixture for training LLMs. The framework avoids rigid assumptions on the functional
dependence between decision variables and model performance by explicitly modeling the
performance uncertainty, thereby highlighting the need to strategically experiment with
selected data mixtures to minimize the uncertainty in the optimal data mixture at the desired
scale.

* The framework gives rise to a Multi-Fidelity Multi-Scale BO problem, which provides a
principled foundation for developing and evaluating transferable methods for optimizing
data mixture. While the BO formalism that treats cheaper but noisy evaluations of the cost
function of interest is well established, applying it to data mixture optimization introduces
distinctive structural features, stemming from the interplays between training steps and
model scales, that opens up interesting avenues for future methodological advancements,
including batching strategies, asynchronous optimization, custom Gaussian process kernels,
and look-ahead methods.

* To motivate the MFMS setting, we illustrate the use of smaller model sizes and earlier
training steps for informing large-scale training decisions. We empirically show that exploit-
ing cheaper evaluations on both dimensions enable more accurate predictions of model’s
performance at larger scale (Section 2).

* To spur methodological progress, we build an empirical testbed based on a simulator
trained on 472 language model pre-training runs with varying data compositions from the
SlimPajama dataset. We demonstrate the promises of the MFMS BO setting by introducing
a Gaussian-process-based method. We compare the method against baselines such as
Hyperband (Li et al., 2018a) and Random Search, which do not consider model scale as a
decision variable. We find that even this simple approach can better explore different data
mixtures and model scales, and deliver the best terminal model (as measured by downstream
task performance) at least 2.6x faster than baselines (Section 4).

2 Motivation for Multi-fidelity Multi-scale Framework

While deterministically extrapolating optimal data mixtures from small-scale experiments to large-
scale models can be unreliable, intuitively, results from smaller models and earlier training steps
still provide valuable information that can guide large-scale training decisions. In this section, we
experimentally validate two key premises of MFMS BO: (1) smaller models can help predict the
performance of larger models under various data mixtures, and (2) undertrained models trained for
fewer steps over different data mixtures can inform the performance of fully-trained models.

To demonstrate the predictive utility of smaller-scale experiments, we train predictors that take
language model training parameters — {data mixtures, model scale, training step} — as input and



Train Test Dataset Fjg E- FEyg

Eq half of 1B runs remaining 1B runs R? 0.69 0.77 0.82
E>  half of 1B runs remaining 1B runs R?*(log) 0.74 0.82 0.85
+ 700M runs
E;  half of 1B runs remaining 1B runs Table 2: Results averaged over 3 runs. Notice
+ all smaller runs the predictive power of our MLP is strongest

E4 half of 700M runs  remaining 700M runs ~ When it is trained on many runs for fewer
Es  half of 700M runs remaining 700M runs  Steps. This provides support for the intuition

+ 500M runs that one should distribute fixed compute bud-
gets across multiple shorter training sessions
Table 1: Model size experiments rather than fewer longer ones.

predict either validation losses or downstream task accuracies of the resulting language model. Our
experiments show that training the predictors on results from smaller-scale experiments improves the
predictors’ ability to estimate model performance as a function of data mixture at larger scales.

It is important to note that these predictors differ from the language models. The predictors take
training hyperparameters as input and forecast the resulting language model’s performance.

2.1 Collecting Predictor’s Data Through LLM Pre-training Runs

To generate the training data for our predictors, we pretrained 472 language models using the
OLMo 2 package (OLMo et al., 2024) with datasets derived from SlimPajama (Shen et al., 2024), a
deduplicated subset of RedPajama (Weber et al., 2024). We used five categories of SlimPajama data
for pretraining: Wikipedia, StackExchange, Github, ArXiv, and Book. Data from the CommonCrawl
and C4 categories were held out to simulate out-of-distribution scenarios. The proportions of these five
categories in each run were randomly sampled from a Dirichlet distribution. We pretrained language
models varying in size from 20M to 1B parameters. We recorded training losses, validation losses
across all seven data categories, and evaluated performance on three downstream tasks: HellaSwag,
PIQA, and Arc Easy (Zellers et al., 2019; Bisk et al., 2020; Clark et al., 2018). The entire dataset was
collected using 4x NVIDIA H100 80GB HBM3 for 500 compute days. Additional implementation
details for pretraining are provided in Appendix A.

2.2 Predictor Training

We trained predictors using multilayer perceptrons (MLPs) that take as input the model size, number
of training steps, and dataset proportions from the five pretraining categories. These predictors
output predictions for training loss, validation losses across seven categories (including the held-
out CommonCrawl and C4), and downstream task accuracies for HellaSwag, PIQA, and Arc Easy.
Predictor performance was measured using the coefficient of determination (R2). Complete training
details are documented in Appendix B.

2.3 Small Models Help Predict Larger Models Outcomes

We begin by investigating the extent to which smaller model runs can inform the dynamics of larger
ones, as the literature on scaling laws (Gadre et al., 2024) would suggest. Table | details these
experiments, and Table 3 lists the results of the experiment.

We note that, as expected, information garnered from training runs on smaller models seems to
considerably increase the accuracy of our predictions on larger models, motivating our hope that a
carefully crafted optimization algorithm can exploit the relationship.

Unsurprisingly, we note that F5 ~ Fy > I and E5 > Ejy: the closer in scale the smaller models
are to the larger model about which we wish to make a prediction, the more useful the information is.
We, therefore, expect our MFMS BO algorithm to ‘step through’ model scales, starting with small
and cheap models to identify promising data mixtures, and then progressing to larger models, all the
while refining the data mixtures it considers optimal.

2.4 Earlier Training Steps Help Predict Later Training Steps



The second central premise of our approach
Dataset Er B Es | Eu s is that, given a fixed compute budget, it can

Wikipedia 075 096 0.94 | 0.73 0.88 be better to attempt many runs for fewer
ArXiv 0.68 0.92 093 | 0.59 0.82 (training steps than fewer runs for a larger
Github 0.66 095 0.95 | 0.62 0.87 number of training steps. To test this hy-
Book 0.83 097 097 | 0.79 092 pothesis, we carried out three additional

StackExchange 0.73  0.95 0.95 | 0.68 0.90 experiments. In each of these experiments,
CommonCrawl 0.84 0.98 098 | 0.81 0.94 we attempt to predict the final losses in

C4 086 099 098 | 082 0.95 30% of our model runs (evenly distributed
ArcEasy 092 094 0.94 | 088 0.90 across model sizes). The MLP for each of
HellaSwag 097 098 0.97 | 094 0.96 these experiments is trained on (1) a set
PIQA 0.94 096 0.96 | 0.90 0.93 of complete runs, one for each model size

(2) a set of ‘truncated’ runs, evenly dis-
Table 3: R? values of the experiments listed in Table 1, tributed across model sizes. In Es, we use

averaged over 3 rando.m seeds. Nptice that 5 > E1 16 runs truncated at 19600 training steps,
and E5 > E4 — our ability to predict the performance in F;, we use 22 runs truncated at 13000
of larger models is considerably enhanced by insights  training steps, and in Eg, we use 32 runs
from smaller models. Note also that E3 ~ EQ, addlng truncated at 8500 Steps; thuS, these exper-
information about much smaller models does not seem  jments are trained on numbers generated

to help. with the same FLOPS budget. As expected,
E results in the most performant MLP model, providing evidence for our second central premise.

3 Multi-Fidelity Multi-Scale Bayesian Optimization

Knowing that both smaller models and early stopping can provide valuable insights for optimizing
data mixtures, practitioners face a critical dilemma: given a fixed computational budget, how should
one allocate resources to train the best model? Should one train many small models to explore
different data mixtures, use early stopping at the target scale to abandon poor-performing data
mixtures, or adopt a hybrid approach combining both strategies? The MFMS setting articulates this
dilemma, and in this section, we provide a mathematical formulation of the problem.

We consider having access to a set of n datasets D = {D;, Ds,...,Dy,}, and aim to train the
best-performing language model, evaluated on a given metric, with m™ parameters for z* training
steps using 7" datapoints. The key decision variables are the fractions of the data budget T" allocated to
each dataset. Specifically, we sample w; T data points from D;, where w = {w1, wa, ..., w, } € A"
and A™ denotes n-dimensional probability simplex. Let u(w, m, z) denote the performance of a
model with m parameters trained for z training steps using dataset proportions w.

The model’s performance is represented by an unknown function p(w, m*, z*), which maps a given
data mixture w, model size m, and training steps z to an evaluation metric. Our goal is to solve the
optimization problem, arg max,, u(w, m*, z*), where m* and z* represent the target model size
and training steps.

We have a budget B with which we can experiment using different values of w, m, and z. Each
evaluation of u(w, m, z) incurs a cost ¢(m, z). ¢(m, z) is typically an increasing function of m and
z, though our framework does not require this. Using m™* parameters and z* steps every time we
evaluate a new set of weights would quickly exhaust our budget. Instead, therefore, we might probe a
particular set of weights on a smaller model with m < m* parameters, or with z < z* training steps
— while the resulting observation u(w, m, z) would be less informative than pu(w, m*, z*), it would
be considerably cheaper and still provide valuable information.

However, since () is an unknown function, it is critical to address the uncertainty in its values. BO
provides a natural framework that explicitly models uncertainty in p(-) and systematically refines
estimates of u(-) through posterior updates, as one observes more evaluations at different input
configurations. This technique is called multi-fidelity BO. See Figure | for a graphical representation
of the setup.

Traditional approaches to fidelity-aware BO primarily address scenarios in which the model archi-
tecture m remains fixed and only the number of training steps z is varied (Swersky et al., 2014;
Dombhan et al., 2015; Kandasamy et al., 2017; Li et al., 2018a). We add a layer of complexity by also
considering model scale. One might be tempted to regard model scale as merely an additional fidelity



dimension, otherwise identical to training steps. However, we note that there is a fundamental distinc-
tion between the two dimensions: In the course of evaluating a model trained for z training steps, we
must also evaluate that model for all steps z’ < z, whereas no such hierarchical relationship exists
for evaluations across different model scales. This structural difference prevents a direct application
of the prior techniques, and suggests promising avenues for novel methodological developments in
multi-fidelity optimization theory, though such extensions lie beyond the scope of our present work.

4 Experimental Setup

4.1 Evaluation

We propose MFMS BO as a natural framework to find optimal data mixture in practice. To demon-
strate the potential of our framework, we adapt a BO algorithm based on Gaussian processes (GPs)
to optimize the data mixture. However, training a new language model for each parameter that the
algorithm proposes would be prohibitively expensive. Instead, therefore, we train a predictor as
described in Section 2.2, and use the predictor to benchmark our approach. We train the predictor
on 472 language model training runs described in Section 2.1, where 422 of the runs are randomly
selected as a training set and the remaining 50 runs as a validation set. The predictor achieves
R? > 0.95 across all metrics, suggesting that it is suitable as a surrogate benchmark (Eggensperger
et al., 2022; Pfisterer et al., 2022).

Note: the predictor is not necessary for applying our algorithm in real-world scenarios. It serves
only as an efficient benchmarking tool.

4.2 Multi-fidelity Multi-scale Gaussian Process (MFMS-GP)

Algorithm 1 Gaussian Process and Elpu

1: Input: Probability space A", model-scale space M, training-step space Z, and cost function
C('> )

2: Initialize Gaussian Process (GP) surrogate model with three RBF kernels over A", M, and Z
and a linear mean function

3: Randomly sample points from A™, M, and Z to initialize hyperparameters of GP.
4: Initialize history H with the randomly sampled points
5: for each optimization iteration do
6: foreach (m,z) € M x Z do
7: Optimize the EI evaluated at these values of m and z with respect to w gradient descent
8: end for
9:  Select the next configuration Apext = (Whext, Mnext, Znext) that maximizees the Expected Im-
provement per Unit (Elpu):
EI())
Elpu(\) = c(m. 2)

10:  Evaluate p(Apext)

11:  Store results in H

12:  Update posterior of GP with H

13: end for

14: Return best w* = A\*[0] from configuration A\* = arg maxycy ()

We implement a GP surrogate model for our MFMS setting. The kernel of the GP is a product of
three separate RBF kernels for the data proportion, the model scale, and the training step dimensions.
To enable learning the positive correlation between model performance and both model scales and
training steps, we use a linear mean function.

For the acquisition function, we use Expected Improvement (EI). EI aims to quantify the expected
gain over the current best-observed function value, EI(x) := E [max(y* — f(x), 0)], where the ex-
pectation is taken over the posterior distribution predicted by the surrogate models, and y* represents
the current best-observed function value, given by y* := f(Xmin) (Frazier, 2018). The EI function



quantifies the expected improvement in the objective value compared to the current best, thereby
encouraging the selection of points that are likely to yield better performance.

Equipped with EI, we proceed by optimizing EI over the parameter space to find the most promising
point to evaluate, using gradient-based methods such as L-BFGS-B (Zhu et al., 1997). However,
motivated by the fact that the parameter space is discrete over parameter counts (m) and training
steps (z), we choose to optimize EI over each unique tuple (m, z). Then, to account for the fact that
evaluation for each tuple incurs varying costs c¢(m, z), we evaluate the point that has the greatest
EI per unit cost (Elpu) (Lee et al., 2020). Additional details of our implementation are provided in
Appendix C.

4.3 Baselines Overview

Multi-fidelity Bayesian Optimization: We employ Hyperband, implemented via SMAC (Lindauer
et al., 2022), which leverages a random forest surrogate model and expected improvement as its
acquisition function. Hyperband (Li et al., 2018b) efficiently explores multiple parameter configura-
tions by early stopping poorly performing candidates. In our experiments, we fix the model scale at
the target model size throughout optimization, which is not cost-aware.

Random Search: We uniformly sample data proportions and evaluate them at the largest model
size and maximum training steps. See Appendix D for the detailed algorithm and implementation
specifics.

5 Results

In this section, we demonstrate the effectiveness of our MFMS-BO framework by benchmarking the
simple MFMS-GP method against baselines that do not leverage smaller model scales.

For each of the algorithms evaluated, we run 20 experiments over different seeds, and show the one
standard deviation bound with shaded regions. The number of evaluations (the x-axis) was recorded
by Wandb (Biewald, 2020) in the experiments we used to train our predictor, and normalized so that
1 evaluation corresponds to the number of flops required to train a 1B model for 100 training steps.
As an example, in a “random search” algorithm, where we randomly sample parameters and train
models for 20,000 steps wtih those parameters, doing this with five different set of parameters for a
1B model would involve 1,000 evaluation units. In a more complex algorithm, where the number of
training steps and model scales are dynamically determined, we report the exact number of evaluation
steps that would have been required for the various training runs in that algorithm. The MFMS-GP
method requires tuning its hyperparameters. As described in Appendix C, we randomly select a few
configurations to tune these parameters, and the cost of evaluating these configurations is accounted
for.

Since MFMS-GP relies on GP posterior and potentially noisy EI optimizations to select model scales
and training steps, it may take some time before the algorithm samples points at the target scale and
fidelity, even after identifying a performant data mixture. If we were to plot only the performance of
the best model trained by MFMS-GP at any given evaluation unit, the result could appear deceptively
poor simply because the model was smaller or trained for fewer steps, failing to reflect the true quality
of the corresponding data mixture. Therefore, to allow us to compare MFMS-GP with other baselines
that always train at target model scale, we add an additional curve: MFMS-GP full-scale, which
shows the performance one would have gotten if one takes the best configuration MFMS-GP has
observed, and simply sets the model scale and training steps to the target m* and z*. The additional
curve can be viewed as representing a realistic use of our method: a fixed compute budget is first
allocated for exploration, allowing the algorithm to identify the best data mixture. In a subsequent
phase, one would take this mixture to train a model to completion at the target scale. The additional
computational cost of the final training is of course accounted for in these plots.

In Figures 3 and 4, we see that both of the plots for our MFMS-GP algorithm have a 2.6x to 3.3x
speedup in finding the configuration that achieves the highest accuracy. Observe that MFMS-GP
rapidly explores different data mixtures and identifies promising ones earlier than Hyperband or
random search. This is expected, since MFMS-GP can utilize inexpensive evaluations by training on
smaller models and for fewer steps. These strong results — achieved with a simple GP-based method
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Figure 3: On maximizing accuracy in the downstream tasks, our multi-scale multi-fidelity approach
achieves more than 2.6x speedup and finds the best configuration the fastest. Shaded area indicates
standard deviation across random seeds.
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achieves more than 2.6x speedup and finds the best configuration the fastest. Shaded area indicates
standard deviation across random seeds.

— underscore the potential of the MFMS framework in efficiently gathering low-cost yet valuable
information to guide large-scale language model training. We expect that thoughtful algorithmic
improvements, such as better kernel design or acquisition functions, will lead to even more powerful
methods. We include the results using several standard kernels in Appendix E, and leave more
extensive explorations of this new setting to future work.

6 Related Work

Data Mixtures. Several approaches aim to move beyond heuristic methods for data mixture by
leveraging algorithmic techniques. Albalak et al. (2023b) propose an online data mixing strategy using
a non-stochastic bandit algorithm to dynamically adjust data proportions during training, maximizing
perplexity. DoReMi (Xie et al., 2023) focuses on identifying and emphasizing the “hardest” datasets
for a base model through distributionally robust language modeling to improve training efficiency. Ge
et al. (2025b) model a joint scaling behavior of domain proportions and training steps; we push this
further through modeling the model scale. Goyal et al. (2024b) delve into the quality-quantity tradeoff
in data, exploring how data filtering and repetition affect model performance and introducing scaling
laws that account for data utility decay. These works highlight the increasing interest in principled
and adaptive methods for data mixture optimization, yet often focus on fixed model scales. In contrast,
our multi-fidelity multi-scale approach considers the practical scenario where practitioners have
a fixed budget to experiment with data mixture, and can exploit cheap information gathered from
smaller models and early training steps.



Scaling Laws. Scaling laws provide crucial insights into the relationship between model size, training
compute, and performance in large language models (Kaplan et al., 2020; Li et al., 2025; Pearce
and Song, 2024; Zhao et al., 2025; Mikami et al., 2021; Aghajanyan et al., 2023). Hoffmann et al.
(2022b) established foundational scaling laws demonstrating predictable performance improvements
with increased compute, model parameters, and training data. (Muennighoff et al., 2023) investigates
the impact of data repetition in data-constrained scenarios, showing diminishing returns beyond
a certain repetition threshold. Ruan et al. (2024) propose observational scaling laws based on
"principal capabilities" to explain and predict language model performance across diverse models
and benchmarks, as has been done in other BO settings. These scaling law studies motivate our
framework by providing an empirical basis for extrapolating performance variations of different data
mixtures across model scales.

Bayesian Optimization. Data mixture optimization, like hyperparameter tuning, benefits from
efficient search strategies. Approaches range from full configuration selection with methods like
BO to hyperband, which employs early termination of unpromising runs. Early BO methods (Hutter
etal., 2011) used GPs to model the relationship between hyperparameters and model performance.
Subsequent works explored random forests (Lindauer et al., 2022) and Parzen estimators (Bergstra
et al., 2011) as surrogate models. Early stopping techniques like Hyperband (Li et al., 2018b)
focus on efficiently evaluating multiple parameter configurations by progressively eliminating poorly
performing candidates, and exploring many combinations with fewer resources. More recent methods
like BOHB (Falkner et al., 2018) combine both the BO exploration of Parzen estimators with the
multi-fidelity benefits of Hyperband. Our work, MFMS-BO, is the first to explore a multi-fidelity
multi-scale approach for data mixture optimization.

7 Conclusion and Future Work

This work introduces a principled framework, multi-fidelity multi-scale Bayesian optimization, for
optimizing data mixture compositions in large language model training, a critical challenge in modern
Al system development. Our framework unifies recent advances in predicting optimal data mixtures
across scales with classical multi-fidelity BO techniques. Based on this unified framework, we
implemented the GP using the RBF kernels and expected-improvement-per-unit acquisition function
to balance the information gain and the cost of exploring new points in the functional landscape. We
find that the method achieves optimal downstream task performance 2.6 times faster than traditional
multi-fidelity approaches by strategically exploring the joint space of data mixtures and model scales.

In addition, we empirically demonstrate two key insights that inform future efficient optimization
of data mixtures. First, our analysis reveals that training runs on smaller models (below 500M
parameters) provide valuable predictive signals for optimizing larger architectures (1B parameters).
Second, we establish that partial training runs can effectively inform full-scale training decisions.
Specifically, our results show that a combination of full and partial training runs (e.g., 5 complete and
10 half-length runs) yields better predictive utility than an equal-compute allocation of full training
runs alone (e.g., 10 complete runs).

Several promising directions emerge for future research. First, extending our framework to more
settings, such as language model fine-tuning, data filtering, and diverse collections of datasets with
more categories, would help validate its generalizability across different data mixing scenarios.
In particular, the low-cost fine-tuning regime provides an opportunity to evaluate the framework
without the predictor. From a methodological perspective, incorporating domain knowledge about the
positive correlation between model performance and both parameter count and training duration could
enhance GP kernel design. Exploring alternative acquisition functions, such as knowledge gradient
(Poloczek et al., 2016; Wu et al., 2019), could further improve efficiency in navigating the optimization
landscape. The fundamental differences between model scale and training steps as fidelity dimensions
also require further investigation to refine their treatment within the framework. Other realistic
considerations could enhance the practical benefits of the framework, such as developing algorithms
supporting batch evaluations and asynchronous updates for efficient parallel exploration. Addressing
these challenges will further strengthen the framework and its applicability in large-scale language
model training.
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Appendix

A Pretraining Runs Details

We use the OLMo 2 OLMo et al. (2024) package for training our language models. The model
configurations are

Group d_model n_heads n_layers Runs

20M 256 8 8 115
60M 512 8 8 71
150M 768 12 12 53
300M 1024 16 16 74
500M 1280 16 16 39
700M 1536 16 16 52
1B 2048 16 16 68

Table 4: Model Architecture Details by Group with Number of Runs

To decide the training mixtures of the experiments, for each experiment, we randomly sample from
the probability simplex using the Dirichlet distribution of order n (number of training datasets), where
we use the parameters «; = 1,Vi € [n]. Other training configurations (learning rate, momentum,
etc.) are directly taken from OLMo’s configuration files (e.g. 700M) We study the compute optimal
regime (Hoffmann et al., 2022a): for each 1B model run, we used 20B tokens in total for training. In
the interest of collecting more runs, all other model scales are trained on 10B tokens.

B Predictor Training

We train predictors using multilayer perceptrons (MLPs) consisting of three hidden layers with 64
hidden units each, ReLU activations, and dropout with a rate of 0.1, totaling approximately 5,000
parameters. The predictors accept three types of inputs: (1) the model size (number of parameters),
(2) the number of training steps, and (3) the proportions of each of the five dataset categories used
during pretraining, namely (Wikipedia, StackExchange, Github, ArXiv, and Book).

For each pretrained language model, the predictor outputs predictions for multiple metrics: the
training loss, validation losses across seven categories (Wikipedia, StackExchange, Github, ArXiv,
Book, and held-out datasets CommonCrawl and C4), as well as downstream task accuracies on three
evaluation tasks: HellaSwag, PIQA, and Arc Easy (Zellers et al., 2019; Bisk et al., 2020; Clark et al.,
2018). Thus, each language model corresponds to a single row in our predictor’s dataset, comprising
9 inputs as described above and outputs spanning these 11 metrics.

> (wi—9:)°
Zq‘ (%—@)2 i
where y; is the true metric value for data point ¢, §; is the predictor’s estimate, and ¥ is the mean of
true values. Training of our predictor is conducted for 20 epochs using a batch size of 64, an Adam
optimizer with a learning rate of 0.001 and weight decay of 0.01, and data normalization (standard
scaling) applied to both inputs and outputs.

We train the predictors to maximize the coefficient of determination (R?), R? = 1 —

C Bayesian Optimization Details

For MFMS-GP, the cost of evaluating a run at a particular model scale is taken from the number
of FLOPS the corresponding model scale costs during the pretraining runs. The costs are scaled
appropriately such that a unit of cost corresponds FLOPS required to train 1B model for 1 training
step.

Additionally, since it is prohibitively expensive to optimize EI for each of 19700 training steps, for
multi-fidelity multi-scale GP, we limit the space of training steps to be Z = {6000, 12000, 19700}.
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To initiate the hyperparameters of MFMS-GP, we randomly select 20 configurations up to training
step z = 9 to fit the kernel and mean functions’ parameters. The GP hyperparameters are trained
using the Adam optimizer (Kingma and Ba, 2014) with a 0.1 learning rate for 50 iterations.

As mentioned in Section 4.2, we optimize EI within (m, z) tuple. For this optimization, we initiate 5
random probability weights drawn from the Dirichlet distribution and perform a gradient search for
greater EI over the probability simplex.

Occasionally, the GP would be too certain of its posterior prediction such that the optimized Els are
all small in magnitude. Therefore, when the optimal EI is below a certain threshold, we lower the
length scales of the RBF kernels to encourage more exploration. The threshold is set to be 1e =%, and
the length scales would be lowered to 95% of their original values.

As a measure to encourage selecting higher cost evaluations later in the optimization cycle, instead of

using EL,,(\) = BV we introduce an additional parameter « that controls the importance of cost,
p c(m,z)
EI()\)

c(m,z)®

and pick the configuration that maximizes . Initially o = 1, and it decays by 1% for every

step of the Bayesian optimization.

D Baselines

D.1 Baselines: Multi-Fidelity Bayes Opt

Algorithm 2 Hyperband with Random Forest, EI

1: Input: Probability space A", training-step space Z, target model scale m*, and cost function
C(m*7 )

2: Initialize random forest surrogate model RF
3: Set initial design with Random Sampling
4: Initialize history H = ()
5: for each Hyperband iteration do
6:  Split the total computation budget into s brackets
7:  for each bracket s; do
8: Generate initial configurations wy, . . . , w,, at lowest fidelity z = 1
9: for each fidelity z from 1 to z* do
10: Evaluate configurations w; at fidelity z
11: Store results in H
12: Fit RF on H
13: Select next e using Expected Improvement
14: Update H with new evaluations
15: end for
16:  end for
17: end for

18: Return best w* = A*[0] from configuration A\* = arg maxecy p(A)

As a baseline for multi-fidelity Bayesian optimization, we use Hyperband implemented by SMAC:
Sequential Model-Based Optimization for General Algorithm Configuration (Lindauer et al., 2022).
This multi-fidelity Bayesian optimization uses a random forest as a surrogate model, expected im-
provement as the acquisition function, and uses Hyperband (Li et al., 2018b), which is an early
stopping technique that focuses on efficiently evaluating multiple parameter configurations by pro-
gressively eliminating poorly performing candidates, and exploring many combinations with fewer
resources. Since the multi-fidelity framework does not offer a straightforward way to incorporate the
additional dimension of model scale, throughout the optimization, we fix the number of the model’s
parameters to the target model scale m*.

D.2 Baselines: Random Search

For a baseline that does not consider utilizing the fidelity dimension, we consider random search.
Random search selects data proportions that are uniformly drawn from our data proportion space. We
then run it against the largest model size and training steps.
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E Kernel Comparisons

The kernel function k(z, z’) in a GP defines the covariance between different input points. In the

main results, we use a RBF kernel k(w,w’) = exp(—d(g’T’?’/)) for the data proportions w, where
d(w,w’) = ||]w — w'||? is the squared L? distance between the two probabilities. In this appendix,

we experiment with distance metrics that may be more suitable for probabilities.
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Figure 5: Comparing different Gaussian process kernels on maximizing accuracy in the downstream
tasks.
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Figure 6: Comparing different Gaussian process kernels on minimizing the validation cross-entropy
losses

Specifically, we consider the Total Variance (TV) distance and the Jensen—Shannon divergence (JSD),
a symmetric Kullback-Leibler divergence, for the data proportions:

TV : d(w,w') = |lw —w'|;
1 1
ISD:  d(w,w') = KL (w || @) + KL (w' || @)

w+w'

where KL(-) denotes the Kullback—Leibler divergence, and w = *-5

We found that on optimizing accuracy, the simple RBF kernels generally perform better. However,
occasionally, JSD (on HellaSwag of Figure. 5) or TV (on Common Crawl, Wikipedia, and Stack
Exchange of Figure. 6) yield better results.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract claims introduction of a new framework and speedup that comes
from the formulation, which are both reflected in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The final section describes limitations in the setting and ways to approach
realistic use cases.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not have theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All the code used to produce the experimental results is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: the code and data are provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details are provided, either in the main text or in the appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The results are accompanied by standard deviations.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources required are provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There is no potential harmful impact of the research, nor human subjects
involved in the experiments.
Guidelines:
* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper studies a fundamental research topic and does not have direct
application that can be harmful.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper has no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The original creator/owners of the data and models have been properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The assets have been documented and anonymized.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLM:s.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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