

Knowledge Distillation of Domain-adapted LLMs for Question-Answering in Telecom

Anonymous ACL submission

Abstract

Knowledge Distillation (KD) is one of the approaches to reduce the size of Large Language Models (LLMs). A LLM with smaller number of model parameters (student) is trained to mimic the performance of a LLM of a larger size (teacher model) on a specific task. For domain-specific tasks, it is not clear if teacher or student model, or both, must be considered for domain adaptation. In this work, we study this problem from perspective of telecom domain Question-Answering (QA) task. We systematically experiment with Supervised Fine-tuning (SFT) of teacher only, SFT of student only and SFT of both prior to KD. We design experiments to study the impact of vocabulary (same and different) and KD algorithms (vanilla KD and Dual Space KD, DSKD) on the distilled model. Multi-faceted evaluation of the distillation using 14 different metrics (N-gram, embedding and LLM-based metrics) is considered. Experimental results show that SFT of teacher improves performance of distilled model when both models have same vocabulary, irrespective of algorithm and metrics. Overall, SFT of both teacher and student results in better performance across all metrics, although the statistical significance of the same depends on the vocabulary of the teacher models.

1 Introduction

Large Language Models (LLMs) are complex models that perform a wide range of tasks, while Small Language Models (SLMs) have fewer parameters and are more suited for specific, resource-constrained applications. It has been well established that domain adaptation improves performance of LLMs in technical domains, such as telecom (Soman and Ranjani, 2023; Bariah et al., 2023; Roychowdhury et al., 2024; Karapantelakis et al., 2024; Zou et al., 2024). The need for SLMs arises due to their efficiency and cost-effectiveness

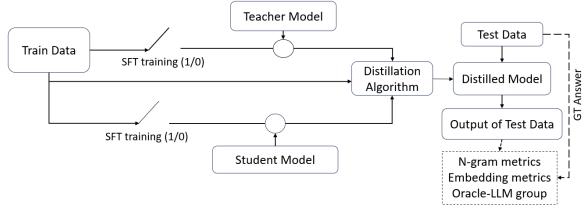


Figure 1: A schematic representation of experiments consisting of the choice of SFT for teacher student, the choice of distillation algorithms, Vanilla or DSKD, and choice of evaluation metrics.

as against LLMs (Piovesan et al., 2024; Maatouk et al., 2024; Schick and Schütze, 2020). Techniques to reduce the size of LLMs while retaining much of their performance is an area of active research. Popular techniques include quantization (Zhang et al., 2023), pruning (Ma et al., 2023) and Knowledge Distillation (KD) (Gou et al., 2021).

In this work, we focus on the impact of domain adaptation of LLMs via KD approach. KD is a technique where a “student” (smaller) model is trained to replicate the performance of a “teacher” (larger) model (Gou et al., 2021; Xu et al., 2024) for a particular task. KD was originally proposed to reduce model size while retaining performance (Hinton et al., 2015).

1.1 Problem statement

The smaller models obtained during KD is said to improve generalization, reduce overfitting, especially when trained on small datasets. These small models enable faster inference and lower deployment cost. In domain specific tasks, such as telecom, it is important to ensure the models considered are domain aware. This is typically achieved through pre-training and/or supervised fine-tuning (SFT). SFT is a model training technique where a pre-trained model is further trained on a labeled dataset via supervised learning (Vaswani et al., 2017). To the best of our knowledge, there has been

071 no work pertaining to impact of domain adaptation
072 through SFT of either teacher or student models
073 prior to distillation. In addition, there are no in-
074 sights on how one must choose the teacher and stu-
075 dent models *viz.* must they be of same vocabulary
076 or different. Lastly, quantifying performance of
077 distilled generative models requires a holistic eval-
078 uation (Roychowdhury et al., 2024) as considering
079 just N-gram metrics or embedding based similarity
080 metrics can be severely limiting for LLMs. Hence,
081 in-lieu of these gaps, we formalize the research
082 questions in this work as follows:

083 • **RQ1:** Does SFT of teacher and/or student
084 models prior to KD improve distilled model
085 performance?

086 • **RQ2:** Does the choice of models for SFT and
087 KD impact performance i.e., are there advan-
088 tages in using models of different vocabulary
089 over same vocabulary?

090 • **RQ3:** Does performance change for different
091 metric groups - N-gram based, embedding
092 based and Oracle-LLM based metrics?

093 1.2 Overview of KD techniques

094 Vocabulary of the models chosen for KD impact
095 the performance of the distilled model. In this sub-
096 section, we give a quick overview of vocabulary
097 prior to overview of KD techniques in literature.

098 1.2.1 Vocabulary

099 LLM vocabulary refers to the set of tokens (com-
100 prising of words, sub-words, or characters) that is
101 used to represent text (Kolesnikova et al., 2022).
102 Tokenization is the process of converting input text
103 into tokens, and subsequently converted to embed-
104 ding vectors. Tokenization and thus vocabulary
105 plays an important role in model performance. It is
106 evident that the vocabularies across LLM families
107 differ based on the tokenization (Kolesnikova et al.,
108 2022).

109 1.2.2 KD Algorithms

110 Typical KD training process involves comparing
111 the token representations of the teacher and student
112 models to align the latter to that of former using
113 KL divergence (KLD) loss (Aguilar et al., 2020).
114 We refer to this technique, in this paper, as vanilla
115 KD.

116 When teacher and student model have differ-
117 ent vocabulary, the models predict the tokens of

118 next word in sequence from different vocabularies
119 (Kolesnikova et al., 2022). Thus, it can be expected
120 that vocabulary plays an important role in distilled
121 model performance. Performance improvement in
122 the scenario where the vocabularies do not match
123 has been addressed by extending the vanilla KD ap-
124 proach by projecting each model’s embeddings to a
125 unified space; this is referred to Dual Space KD or
126 DSKD (Zhang et al., 2024). For creating the unified
127 space, the outputs from teacher model space are
128 projected on to student model space and vice-versa.
129 The transformation for projection is learnt during
130 Cross-Model Attention (CMA) (Zhang et al., 2024)
131 mechanism which also bridges the difference in
132 vocabularies.

133 In this work, we consider two models (Llama
134 family and Mistral family) and two KD approaches
135 - vanilla KD and DSKD - to study the impact of
136 vocabulary and algorithms on domain adaptation
137 of LLMs. To the best of our knowledge, our work
138 is the first to study the effect of domain adaptation
139 through SFT of both the teacher and the student
140 LLMs prior to distillation.

141 1.3 Overview of metrics

142 Evaluation of generated output from a LLM is
143 an evolving research topic (Desmond et al., 2024;
144 Roychowdhury et al., 2024). The current KD ap-
145 proaches typically report on few N-gram based
146 metrics only (Zhang et al., 2024). For a more
147 rounded evaluation of LLM, we consider three
148 metric groups: N-gram based metrics, embedding
149 based metrics and Oracle-LLM based metrics. The
150 specific metrics are listed below:

- **N-gram based metrics:** BLEU, BLEU-CN
, BLEU-DM , BLEU-DC (Shi et al., 2022),
ROUGE-L Precision and Recall (Lin, 2004).
These scores are indicative of overlap of N-
gram word sequences or longest common se-
quences.
- **Embedding based metrics:** Cosine similarity
(using all-Mini-L6-v2 embeddings (Reimers
and Gurevych, 2020)), BERTScore (Zhang
et al., 2019). These scores are indicative of
semantic similarity.
- **Oracle-LLM based metrics:** RAG Assess-
ment metrics (RAGAs) that uses Oracle-LLM
to arrive at metrics such as faithfulness, fac-
tual correctness, answer similarity, answer cor-
rectness, answer relevance and context rele-

167 vance, (Es et al., 2024), (Roychowdhury et al.,
 168 2024).

169 Higher scores imply better model performance
 170 for all the metrics considered above. Capturing
 171 KD performance using set of metrics which cover
 172 word/token overlap, semantic similarity and genera-
 173 tion perspective aids towards holistic analysis.

174 1.4 Contributions

175 From the experiments designed and through the
 176 results on TeleQuAD (Gebre et al., 2025), the
 177 contributions of this work are:

- 178 180 182 • This is the first work which addresses the ef-
 184 186 188 fect of supervised fine tuning (SFT) of both
 184 186 188 the teacher and the student language models
 184 186 188 prior to distillation (with a focus on telecom
 184 186 188 domain QA task).
- 183 185 187 • We demonstrate that SFT of teacher and stu-
 183 185 187 dent models improves performance, irrespec-
 183 185 187 tive of vocabulary and algorithm choice.
- 186 188 190 • We demonstrate SFT of teacher has significant
 186 188 190 performance improvements (across metrics)
 186 188 190 when using same vocabulary models.
- 189 191 193 • In scenarios where SFT training has practical
 189 191 193 limitations, using different vocabulary with
 189 191 193 DSKD algorithm is found to be useful.
- 192 194 196 • All group-wise metrics show similar perfor-
 192 194 196 mance trends.

194 The rest of the paper is organized as follows. The
 195 experimental design and evaluation metrics are de-
 196 scribed in Section 2, followed by experimental
 197 setup and results in Section 3. We conclude and
 198 discuss future work in Section 4.

200 2 Methodology

201 We describe the experimental setup, statistical tests
 202 and the details of dataset and models.

203 2.1 Experimental Setup

204 We describe the experimental design considered to
 205 study the impact of vocabulary (same and different)
 206 and KD algorithms (vanilla KD and Dual Space
 207 KD, DSKD) on the distilled model. We also ana-
 208 lyze the impact of untrained/SFT teacher/student
 209 model on the final distilled model. Fig. 1 shows
 210 the schematic representation of our experimen-
 211 tal setup. Depending on choice of SFT training,
 212 teacher model and distillation algorithms, there are
 213 4 parameters of interest here:

Notation	Description
$T_B(L)$	Base Llama as teacher model (Same vo- cabulary)
$T_{SFT}(L)$	SFT Llama as teacher model (Same vo- cabulary)
$T_B(M)$	Base Mistral as teacher model (Different vocabulary)
$T_{SFT}(M)$	SFT Mistral as teacher model (Different vocabulary)
S_B	Base TinyLlama as student model
S_{SFT}	SFT TinyLlama as student model
V and D	Vanilla algorithm and DSKD algorithm for KD process

214 Table 1: A summary of notations used to formulate
 215 hypothesis tests and report results.

- 216 218 220 • **Teacher** – Two variants of the teacher model,
 216 218 220 base model and SFT model, arising out of SFT
 216 218 220 training (depicted as a 1/0 switch) in Fig. 1.
- 217 219 221 • **Student** – Similarly, student model is also
 217 219 221 considered with two variants - base model
 217 219 223 and SFT model (refer to Fig. 1). These two
 217 219 225 addresses RQ1.
- 220 222 224 • **Vocabulary** – To study impact of vocabulary,
 220 222 226 we consider two cases where teacher and stu-
 220 222 228 dent (i) both having same vocabulary (ii) both
 220 222 230 having different vocabulary. We fix student
 220 222 232 model to be from the Llama family - TinyL-
 220 222 234 lama. Hence, with respect to the student SLM
 220 222 236 TinyLlama, choosing the teacher model as (i)
 220 222 238 LLM Llama results in same vocabulary (ii)
 220 222 240 LLM Mistral results in different vocabulary.
 220 222 242 This addresses RQ2.
- 230 232 234 • **KD algorithm** – To analyze if insights on
 230 232 236 vocabulary is invariant to choice of KD al-
 230 232 238 gorithm, we consider two KD algorithms -
 230 232 240 Vanilla KD and DSKD.

234 Fig. 2 shows a schematic representation of 16
 235 combinations of experiments arising out of the de-
 236 sign described above. The notations used to depict
 237 the various combinations are summarized in Table
 238 1. We report performance using 14 metrics (refer
 239 Section 1.3) for each of the 16 combinations of
 240 distillation experiments.

241 2.2 Hypothesis tests

242 In addition to reporting the performance metrics,
 243 we analyze the impact of the SFT of teacher, stu-

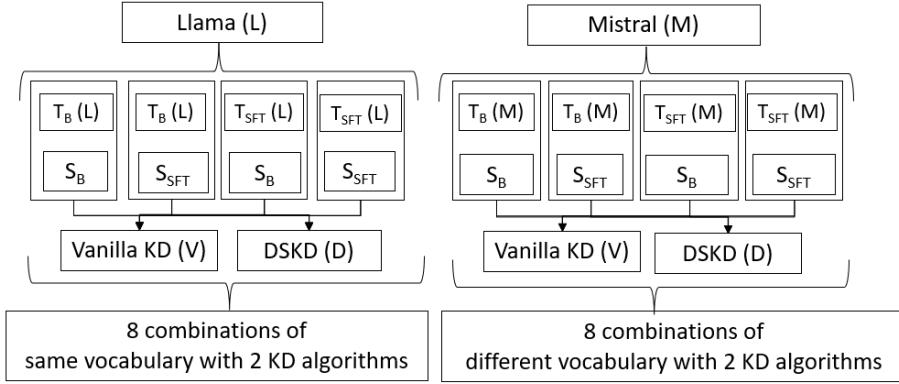


Figure 2: Schematic representation of different choices based on which we conduct Hypothesis tests

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

dent, model vocabulary and the algorithm chosen for each metric. This results in 16 combinations of results for 14 metrics (RQ3); to ensure the results are statistically significant, we group the results to perform statistical hypothesis tests (Wilcoxon statistics signed rank test (Gehan, 1965)).

We henceforth use the notation where a tuple (T_B, S_B) indicates a teacher-student pair where the models are identified by the acronyms as in Table 1. Using a wildcard * in the suffixes indicate all possible options of the latter. When we use a third term in the tuple e.g. D or V we refer to the corresponding algorithm - not having this indicates that we test for both algorithms. We compare each of the 14 metrics via a statistical test and this is indicated by the $Perf()$ function.

260
261
262
263

- **H-Train:** We consider the null hypotheses (NH), Eq. (1), to analyze if T_{SFT} or S_{SFT} or both (followed by KD) impacts the performance of the distilled model (RQ1).

$$\begin{aligned}
 H_{train}^T : & \text{Perf}(T_B, S_B) = \text{Perf}(T_{SFT}, S_B) \\
 H_{train}^S : & \text{Perf}(T_B, S_B) = \text{Perf}(T_B, S_{SFT}) \\
 H_{train}^{T,S} : & \text{Perf}(T_B, S_B) = \text{Perf}(T_{SFT}, S_{SFT})
 \end{aligned} \tag{1}$$

267
268
269
270
271
272
273
274

The alternate hypotheses to all of these correspond to $\text{Perf}(T_B, S_B) \neq \text{Perf}(T_*, S_*)$ respectively where * corresponds to the SFT of teacher or student or both. For each of the three NH above, impact on vocabulary (L and M) and algorithm (V and D) choice are also considered. So, we have 12 hypothesis tests for each of the 14 metrics.

275
276

- **H-SFT:** Results show that T_{SFT}, S_{SFT} combination results in best performance across

277
278
279
280
281
282
283
284
285
286
287
288
289

metrics (discussed later in Section 3). To analyze the impact of the T_{SFT} only, S_{SFT} only and (T_{SFT}, S_{SFT}) prior to the distillation process (RQ1), we formulate NH as Eq. (2).

$$\begin{aligned}
 H_{SFT}^T : & \text{Perf}(T_{SFT}, S_{SFT}) = \text{Perf}(T_{SFT}, S_B) \\
 H_{SFT}^S : & \text{Perf}(T_{SFT}, S_{SFT}) = \text{Perf}(T_B, S_{SFT})
 \end{aligned} \tag{2}$$

283
284
285
286
287
288
289

Again, the alternate hypotheses to all of these correspond to $\text{Perf}(T_{SFT}, S_{SFT}) \neq \text{Perf}(T_*, S_*)$ respectively. Here, * refers to SFT of teacher model only or student model only. Each of the binary choice of vocabulary (M, L) and algorithm (V, D) is considered resulting in 8 tests for each of the 14 metrics.

290
291

- **H-Algo:** Impact of KD algorithm (RQ2) post SFT through NH is shown in Eq. (3).

$$\begin{aligned}
 H_{Alg}^{T,S} : & \text{Perf}(T_{SFT}, S_{SFT}, V) = \text{Perf}(T_{SFT}, S_{SFT}, D) \\
 H_{Alg}^B : & \text{Perf}(T_B, S_B, V) = \text{Perf}(T_B, S_B, D)
 \end{aligned} \tag{3}$$

294
295
296
297
298
299
300

This is considered for both the vocabulary scenarios, (M, L), and scenario of best performing SFT models (T_{SFT}, S_{SFT}) and untrained models (T_B, S_B); the latter accounts for scenarios when training models is not feasible. This results in 4 NH tests for each of the 14 metrics.

2.3 Dataset description

301
302
303
304
305
306
307

We consider samples from TeleQuAD (Gebre et al., 2025), a Telecom QA dataset, curated using publicly available 3GPP (Rel 15) documents (3GPP, 2019). The training, development and test data comprise of 2385, 726 and 597 QA pairs, respectively, derived from 452 contexts (sections).

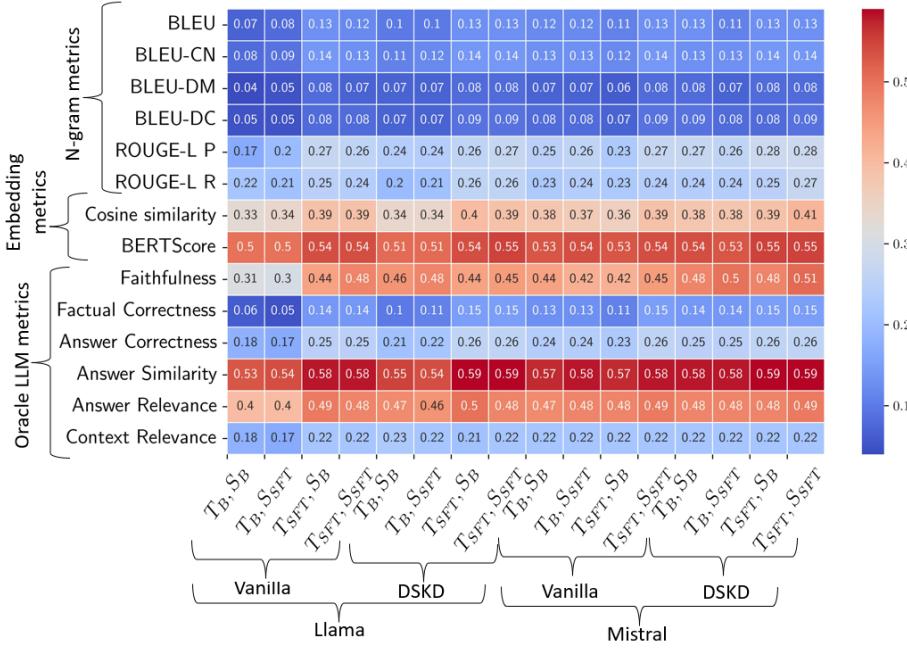


Figure 3: Performance on 14 metrics for various combinations of T_B , T_{SFT} , S_B , S_{SFT} using two KD algorithms (Vanilla and DSKD) and models of different and same vocabulary (Mistral and Llama).

2.4 Environment

In our experiments, we have considered Llama-7b¹, Mistral-7b² as teacher models and Tinyllama-1.1b³ as student model. The GPU used for training and inference is NVIDIA A100-SXM4-80GB. Table 2 summarizes the parameters considered for T_{SFT} and S_{SFT} .

Model source	Huggingface model hub ⁴
Maximum epoch	50
Early stopping criteria	minimum improvement + 0.01
Early stopping patience	3 epochs
Learning rate	0.001, cosine decay
SFT algorithm	Low-Rank Adaptation (LoRA) (Hu et al., 2021)
Rank	256
Alpha	8
Dropout	0.1

Table 2: Summary of the parameters for SFT.

3 Experimental Results

Fig. 3 shows the heatmap depicting performance of 16 combinations of KD for 14 metrics. For brevity,

¹<https://huggingface.co/meta-llama/Llama-2-7b>

²<https://huggingface.co/mistralai/Mistral-7B-v0.1>

³<https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0>

we also report the mean of all 14 metrics and group-wise metrics (N-gram metrics, embedding based metrics and Oracle-LLM metrics) in Fig. 4.

We systematically analyze the results and organize our findings as impact of (i) SFT (RQ1) (ii) SFT on teacher and student (RQ1) (iii) vocabulary and KD algorithm (RQ2) (iv) performance metrics groups (RQ3)

3.1 Impact of SFT

We organize analysis with vocabulary as starting point:

3.1.1 Llama

Consider the bar plots which depicts Llama as the teacher in Fig. 4 i.e., the bars denoting (Llama, Vanilla KD) and (Llama, DSKD). We observe that SFT of teacher/student/both results in improvement of performance irrespective of the training algorithm (first bar vs the subsequent 3 bars). The improvement is statistically significant (refer to H_{train}^S , H_{train}^T , $H_{train}^{T,S}$ in Table 3). Here, we observe that NH is rejected for most metrics (13 out of 14 for Vanilla KD and 8 or 9 out of 14 for DSKD) with SFT of student or teacher or both for Llama vocabulary, irrespective of algorithms. From this and from the average performance metrics, we infer that SFT results in statistically significant performance improvement when we choose models of same vocabulary (Llama and TinyLlama pair) mod-

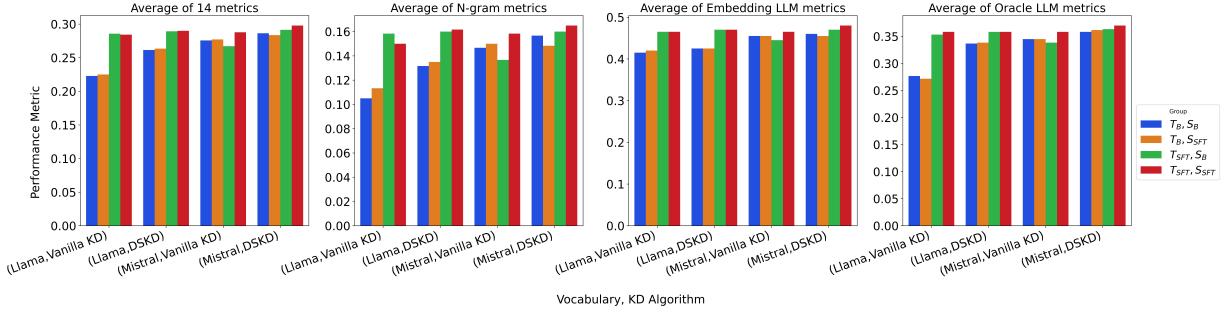


Figure 4: Group-wise average of performance metrics from the heatmap in Fig. ??.

346 els.

347 3.1.2 Mistral

348 Refer to Mistral set of bar plots in Fig 4 i.e., the
 349 bars denoting (Mistral, Vanilla KD) and (Mistral,
 350 DSKD). We observe that training improves results
 351 Fig. 4, but the improvement is not statistically
 352 significant (refer row Mistral in Table 3); NH is
 353 not rejected H_{train}^S , H_{train}^T , $H_{train}^{T,S}$ i.e., 0 out of 14
 354 metrics are NH rejected.

355 Thus, combining these findings, we infer
 356 that **training using SFT improves performance**
 357 **across vocabulary and algorithms; improvement**
 358 **with SFT of teacher and/or student when**
 359 **models have same vocabulary is significant.**

360 3.2 Impact of SFT on teacher and student

361 3.2.1 Llama

362 We observe from Llama set of bar plots of Fig 4
 363 (i.e., the bars denoting (Llama, Vanilla KD) and
 364 (Llama, DSKD)), that SFT results in improved per-
 365 formance for (T_{SFT}, S_B) and (T_{SFT}, S_{SFT}) than
 366 for (T_B, S_{SFT}) across metric groups. From Table
 367 3, Llama row and H_{SFT}^S , we see that NH is rejected
 368 for most cases irrespective of the KD algorithm -
 369 improvement of (T_{SFT}, S_{SFT}) over (T_B, S_{SFT}) is
 370 more significant than that of (T_{SFT}, S_{SFT}) over
 371 (T_{SFT}, S_B) combination i.e., NH is rejected in 13
 372 and 9 out 14 metrics for H_{SFT}^S and not rejected
 373 for any metric in H_{SFT}^T . This implies that **SFT of**
 374 **teacher model before KD is useful and it is**
 375 **not necessary to train both teacher and student**
 376 **when choosing models of same vocabulary.**

377 3.2.2 Mistral

378 When vocabulary is different i.e., refer Mistral
 379 set of results in Fig 4, the bars denoting (Mistral,
 380 Vanilla KD) and (Mistral, DSKD), we observe that
 381 best performance seen in (T_{SFT}, S_{SFT}) , followed
 382 by (T_B, S_{SFT}) , and an apparent dip in performance

Algorithm	Llama-V	Llama-D	Mistral-V	Mistral-D
H_{train}^S	0	1	0	0
H_{train}^T	13	9	0	0
$H_{train}^{T,S}$	13	8	0	0
H_{SFT}^S	13	9	0	0
H_{SFT}^T	0	0	0	0
$H_{Alg}^{T,S}$	0		1	
H_{Alg}^B	10		14	

383 Table 3: Count of metrics for which NH is rejected for
 384 385 each of the hypotheses listed in Section 2.2

386 is observed for (T_{SFT}, S_B) or (T_B, S_{SFT}) . Referring
 387 388 to Table 3 for Mistral, all the H-SFT tests
 389 390 show that NH is not rejected for any of the met-
 391 392 rics for both H_{SFT}^T and H_{SFT}^S . This implies **the**
 393 394 **performance improvement/dip with both mod-**
 395 396 **els trained or either model trained is not statis-**
 397 398 **tically significant irrespective of the KD algo-**
 399 399 **rithm.** We suspect this could be because of limited
 400 401 training data and one of the potential future work
 401 402 direction could be towards SFT results with more
 402 403 training samples.

394 3.3 Impact of KD algorithm and Vocabulary

395 3.3.1 Algorithm

396 400 Consider the best performing pair of models i.e.,
 397 401 (T_{SFT}, S_{SFT}) . We observe that the model per-
 398 402 formance improvement exists, but is not significant
 399 403 enough; refer to Table 3 where NH is not rejected
 400 404 for most of the metrics for $H_{Alg}^{T,S}$, across vocabu-
 401 405 laries (NH rejected is 0 out of 14 for Llama and
 402 406 1 out of 14 metrics for Mistral model). **This im-**
 403 407 **pplies, KD performance doesn't depend on the**
 404 408 **algorithm choice with SFT of both teacher and**
 405 409 **student. However, when SFT is not feasible, we**
 406 410 **observe that performance is (statistically) better**
 407 411 **with DSKD algorithm** because NH is rejected for
 408 412 most of the metrics for (10 out of 14 and 14 out of

409 14) vocabulary with H_{Alg}^B .

410 3.3.2 Vocabulary

411 Consider barplots corresponding to (T_{SFT}, S_{SFT})
412 in Fig. 4, i.e., SFT of both teacher and student
413 models. We observe that average of all of the
414 metrics are similar. Hence, **vocabulary does not im-**
415 **pact performance with both models are trained.**
416 However, **when training is not a feasibility, using**
417 **models from different vocabulary with DSKD**
418 **algorithm shows better performance.**

419 3.4 Impact of Performance Metrics

420 From Fig. 4 and Table 3, we observe that although
421 the range of results of the 3 groups of metrics are
422 different, the trends followed across groups are in
423 alignment. **There is no metric group where the**
424 **results are contradictory.**

425 3.5 Summary

426 We summarize the findings from the results section
427 above here.

428 • RQ1

- 429 – Training teacher models, student mod-
430 – els or both using SFT improves perfor-
431 – mance across Llama, Mistral models and
432 – Vanilla KD and DSKD algorithms.
- 433 – When teacher and student models are
434 – Llama and tinyLlama, SFT of teacher
435 – before KD is useful and it may not be
436 – necessary to train both teacher and stu-
437 – dent.
- 438 – When teacher model is Mistral, and stu-
439 – dent model is TinyLlama, the perfor-
440 – mance improvement with SFT of both
441 – teacher and student models is not statisti-
442 – cally significant over that of either model
443 – being trained, and this holds irrespec-
444 – tive of the KD algorithm.

445 • RQ2

- 446 – If one performs SFT of both teacher
447 – and student, distilled model performance
448 – doesn't depend on the algorithm or
449 – teacher model (Llama or Mistral) choice.
- 450 – When SFT is not feasible, we observe
451 – that performance is (statistically) better
452 – using Mistral as teacher model, TinyL-
453 – lama as student model with DSKD algo-
454 – rithm.

• RQ3

- 455 – The performance results follow similar
456 – trends across metric groups.

458 4 Conclusions & Future Work

459 In this work, we have systematically studied im-
460 – pact of SFT of teacher and student model prior
461 – to KD of LLMs from perspective of vocabulary
462 – match, KD algorithms, variants of teacher SFT or
463 – student SFT or both. Our results are based on a
464 – telecom QA dataset and we use various metrics
465 – for an overall perspective. We have discussed out-
466 – come of RQs through performance results and sta-
467 – tistical tests. From our analysis, we recommend
468 – that when teacher is Mistral, training using SFT
469 – improves performance across vocabulary and algo-
470 – rithms; improvement with SFT of teacher and/or
471 – student when models have same vocabulary is sig-
472 – nificant. When Llama is the teacher, SFT of teacher
473 – model before KD is useful and it is not necessary
474 – to train both teacher and student when choosing
475 – models of same vocabulary.

476 Future work would involve extending it to other
477 – tasks like code generation and agent-based sys-
478 – tems. Another direction for future work is towards
479 – model size - the teacher models used in this work
480 – are of relatively smaller size. Evaluation of KD
481 – from larger models including Mixture of Experts
482 – (MoE) models for domain-specific tasks would be
483 – important for the community.

484 References

3GPP. 2019. 3GPP release 15. Technical report, 3GPP.
Accessed: 2024-05-19.

Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao,
Xing Fan, and Chenlei Guo. 2020. Knowledge distil-
lation from internal representations. In *Proceedings
of the AAAI conference on artificial intelligence*, vol-
ume 34, pages 7350–7357.

Lina Bariah, Hang Zou, Qiyang Zhao, Belkacem
Mouhouche, Faouzi Bader, and Merouane Debbah.
2023. Understanding telecom language through large
language models. In *GLOBECOM 2023-2023 IEEE
Global Communications Conference*, pages 6542–
6547. IEEE.

Michael Desmond, Zahra Ashktorab, Qian Pan, Casey
Dugan, and James M Johnson. 2024. Evalullm: Llm
assisted evaluation of generative outputs. In *Compan-
ion Proceedings of the 29th International Conference
on Intelligent User Interfaces*, pages 30–32.

503 Shahul Es, Jithin James, Luis Espinosa Anke, and 556
504 Steven Schockaert. 2024. Ragas: Automated 557
505 evaluation of retrieval augmented generation. In *Proceed- 558
506 ings of the 18th Conference of the European Chapter 559
507 of the Association for Computational Linguistics: 559
508 System Demonstrations*, pages 150–158.

509 Fitsum Gebre, Henrik Holm, Maria Gunnarsson, 560
510 Doumitrou Nimara, Jieqiang Wei, Vincent Huang, 561
511 Avantika Sharma, and H G Ranjani. 2025. *Tele- 562
512 QuAD: A suite of question answering datasets for 563
513 the telecom domain*.

514 Edmund A Gehan. 1965. A generalized wilcoxon test 564
515 for comparing arbitrarily singly-censored samples. 565
516 *Biometrika*, 52(1-2):203–224.

517 Jianping Gou, Baosheng Yu, Stephen J Maybank, and 566
518 Dacheng Tao. 2021. Knowledge distillation: A 567
519 survey. *International Journal of Computer Vision*, 568
520 129(6):1789–1819.

521 Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. 569
522 2015. *Distilling the knowledge in a neural network*. 570
523 *ArXiv*, abs/1503.02531.

524 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 571
525 Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 572
526 and Weizhu Chen. 2021. Lora: Low-rank adap- 573
527 tation of large language models. *arXiv preprint* 574
528 *arXiv:2106.09685*.

529 Athanasios Karapantelakis, Mukesh Thakur, Alexan- 575
530 dros Nikou, Farnaz Moradi, Christian Olrog, Fitsum 576
531 Gaim, Henrik Holm, Doumitrou Daniil Nimara, and 577
532 Vincent Huang. 2024. Using large language mod- 578
533 els to understand telecom standards. In *2024 IEEE 579
534 International Conference on Machine Learning for 580
535 Communication and Networking (ICMLCN)*, pages 581
536 440–446.

537 Alina Kolesnikova, Yuri Kuratov, Vasily Konovalov, and 582
538 Mikhail Burtsev. 2022. Knowledge distillation of 583
539 russian language models with reduction of vocabulary. 584
540 *arXiv preprint arXiv:2205.02340*.

541 Chin-Yew Lin. 2004. *ROUGE: A package for 585
542 automatic evaluation of summaries*. In *Text Summarization 586
543 Branches Out*, pages 74–81, Barcelona, Spain. 587
544 Association for Computational Linguistics.

545 Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 588
546 Llm-pruner: On the structural pruning of large 589
547 language models. *Advances in neural information pro- 590
548 cessing systems*, 36:21702–21720.

549 Ali Maatouk, Nicola Piovesan, Fadhel Ayed, Antonio 591
550 De Domenico, and Merouane Debbah. 2024. Large 592
551 language models for telecom: Forthcoming impact 593
552 on the industry. *IEEE Communications Magazine*.

553 Nicola Piovesan, Antonio De Domenico, and Fadhel 594
554 Ayed. 2024. Telecom language models: Must they 595
555 be large? *arXiv preprint arXiv:2403.04666*.

556 Nils Reimers and Iryna Gurevych. 2020. Mak- 596
557 ing monolingual sentence embeddings multilingual 597
558 using knowledge distillation. *arXiv preprint arXiv:2004.09813*.

559 Sujoy Roychowdhury, Sumit Soman, H. G. Ranjani, 598
560 Neeraj Gunda, Vansh Chhabra, and Sai Krishna Bala. 599
561 2024. Evaluation of RAG metrics for question 600
562 answering in the telecom domain. In *ICML 2024 Work- 601
563 shop on Foundation Models in the Wild*.

564 Timo Schick and Hinrich Schütze. 2020. It’s not just 602
565 size that matters: Small language models are also 603
566 few-shot learners. *arXiv preprint arXiv:2009.07118*.

567 Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi 604
568 Han, Hongyu Zhang, Dongmei Zhang, and Hong- 605
569 bin Sun. 2022. On the evaluation of neural code 606
570 summarization. In *Proceedings of the 44th inter- 607
571 national conference on software engineering*, pages 608
572 1597–1608.

573 Sumit Soman and H. G. Ranjani. 2023. Observations 609
574 on LLMs for telecom domain: capabilities and lim- 610
575 itations. In *Proceedings of the Third International 611
576 Conference on AI-ML Systems*, pages 1–5.

577 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 612
578 Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 613
579 Kaiser, and Illia Polosukhin. 2017. Attention is all 614
580 you need. *Advances in neural information processing 615
581 systems*, 30.

582 Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, 616
583 Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao, 617
584 and Tianyi Zhou. 2024. A survey on knowledge 618
585 distillation of large language models. *arXiv preprint 619
586 arXiv:2402.13116*.

587 Cheng Zhang, Jianyi Cheng, Ilia Shumailov, George A 620
588 Constantinides, and Yiren Zhao. 2023. Revisit- 621
589 ing block-based quantisation: What is impor- 622
590 tant for sub-8-bit llm inference? *arXiv preprint 623
591 arXiv:2310.05079*.

592 Songming Zhang, Xue Zhang, Zengkui Sun, Yufeng 624
593 Chen, and Jinan Xu. 2024. Dual-space knowledge 625
594 distillation for large language models. In *Proceed- 626
595 ings of the 2024 Conference on Empirical Methods 627
596 in Natural Language Processing (EMNLP),Miami 628
597 Florida USA*.

598 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q 629
599 Weinberger, and Yoav Artzi. 2019. Bertscore: Eval- 630
600 uating text generation with bert. *arXiv preprint 631
601 arXiv:1904.09675*.

602 Hang Zou, Qiyang Zhao, Yu Tian, Lina Bariah, Faouzi 632
603 Bader, Thierry Lestable, and Merouane Debbah. 633
604 2024. Telecompt: A framework to build telecom- 634
605 specfic large language models. *arXiv preprint 635
606 arXiv:2407.09424*.

607