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Abstract001

Knowledge Distillation (KD) is one of the ap-002
proaches to reduce the size of Large Language003
Models (LLMs). A LLM with smaller num-004
ber of model parameters (student) is trained to005
mimic the performance of a LLM of a larger006
size (teacher model) on a specific task. For007
domain-specific tasks, it is not clear if teacher008
or student model, or both, must be considered009
for domain adaptation. In this work, we study010
this problem from perspective of telecom do-011
main Question-Answering (QA) task. We sys-012
tematically experiment with Supervised Fine-013
tuning (SFT) of teacher only, SFT of student014
only and SFT of both prior to KD. We design015
experiments to study the impact of vocabu-016
lary (same and different) and KD algorithms017
(vanilla KD and Dual Space KD, DSKD) on018
the distilled model. Multi-faceted evaluation019
of the distillation using 14 different metrics020
(N-gram, embedding and LLM-based metrics)021
is considered. Experimental results show that022
SFT of teacher improves performance of dis-023
tilled model when both models have same vo-024
cabulary, irrespective of algorithm and metrics.025
Overall, SFT of both teacher and student re-026
sults in better performance across all metrics,027
although the statistical significance of the same028
depends on the vocabulary of the teacher mod-029
els.030

1 Introduction031

Large Language Models (LLMs) are complex mod-032

els that perform a wide range of tasks, while033

Small Language Models (SLMs) have fewer pa-034

rameters and are more suited for specific, resource-035

constrained applications. It has been well estab-036

lished that domain adaptation improves perfor-037

mance of LLMs in technical domains, such as038

telecom (Soman and Ranjani, 2023; Bariah et al.,039

2023; Roychowdhury et al., 2024; Karapantelakis040

et al., 2024; Zou et al., 2024). The need for SLMs041

arises due to their efficiency and cost-effectiveness042

Figure 1: A schematic representation of experiments
consisting of the choice of SFT for teacher student, the
choice of distillation algorithms, Vanilla or DSKD, and
choice of evaluation metrics.

as against LLMs (Piovesan et al., 2024; Maatouk 043

et al., 2024; Schick and Schütze, 2020). Techniques 044

to reduce the size of LLMs while retaining much of 045

their performance is an area of active research. Pop- 046

ular techniques include quantization (Zhang et al., 047

2023), pruning (Ma et al., 2023) and Knowledge 048

Distillation (KD) (Gou et al., 2021). 049

In this work, we focus on the impact of domain 050

adaptation of LLMs via KD approach. KD is a 051

technique where a “student" (smaller) model is 052

trained to replicate the performance of a “teacher" 053

(larger) model (Gou et al., 2021; Xu et al., 2024) 054

for a particular task. KD was originally proposed 055

to reduce model size while retaining performance 056

(Hinton et al., 2015). 057

1.1 Problem statement 058

The smaller models obtained during KD is said 059

to improve generalization, reduce overfitting, es- 060

pecially when trained on small datasets. These 061

small models enable faster inference and lower de- 062

ployment cost. In domain specific tasks, such as 063

telecom, it is important to ensure the models consid- 064

ered are domain aware. This is typically achieved 065

through pre-training and/or supervised fine-tuning 066

(SFT). SFT is a model training technique where a 067

pre-trained model is further trained on a labeled 068

dataset via supervised learning (Vaswani et al., 069

2017). To the best of our knowledge, there has been 070
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no work pertaining to impact of domain adaptation071

through SFT of either teacher or student models072

prior to distillation. In addition, there are no in-073

sights on how one must choose the teacher and stu-074

dent models viz. must they be of same vocabulary075

or different. Lastly, quantifying performance of076

distilled generative models requires a holistic eval-077

uation (Roychowdhury et al., 2024) as considering078

just N-gram metrics or embedding based similarity079

metrics can be severely limiting for LLMs. Hence,080

in-lieu of these gaps, we formalize the research081

questions in this work as follows:082

• RQ1: Does SFT of teacher and/or student083

models prior to KD improve distilled model084

performance?085

• RQ2: Does the choice of models for SFT and086

KD impact performance i.e., are there advan-087

tages in using models of different vocabulary088

over same vocabulary?089

• RQ3: Does performance change for different090

metric groups - N-gram based, embedding091

based and Oracle-LLM based metrics?092

1.2 Overview of KD techniques093

Vocabulary of the models chosen for KD impact094

the performance of the distilled model. In this sub-095

section, we give a quick overview of vocabulary096

prior to overview of KD techniques in literature.097

1.2.1 Vocabulary098

LLM vocabulary refers to the set of tokens (com-099

prising of words, sub-words, or characters) that is100

used to represent text (Kolesnikova et al., 2022).101

Tokenization is the process of converting input text102

into tokens, and subsequently converted to embed-103

ding vectors. Tokenization and thus vocabulary104

plays an important role in model performance. It is105

evident that the vocabularies across LLM families106

differ based on the tokenization (Kolesnikova et al.,107

2022).108

1.2.2 KD Algorithms109

Typical KD training process involves comparing110

the token representations of the teacher and student111

models to align the latter to that of former using112

KL divergence (KLD) loss (Aguilar et al., 2020).113

We refer to this technique, in this paper, as vanilla114

KD.115

When teacher and student model have differ-116

ent vocabulary, the models predict the tokens of117

next word in sequence from different vocabularies 118

(Kolesnikova et al., 2022). Thus, it can be expected 119

that vocabulary plays an important role in distilled 120

model performance. Performance improvement in 121

the scenario where the vocabularies do not match 122

has been addressed by extending the vanilla KD ap- 123

proach by projecting each model’s embeddings to a 124

unified space; this is referred to Dual Space KD or 125

DSKD (Zhang et al., 2024). For creating the unified 126

space, the outputs from teacher model space are 127

projected on to student model space and vice-versa. 128

The transformation for projection is learnt during 129

Cross-Model Attention (CMA) (Zhang et al., 2024) 130

mechanism which also bridges the difference in 131

vocabularies. 132

In this work, we consider two models (Llama 133

family and Mistral family) and two KD approaches 134

- vanilla KD and DSKD - to study the impact of 135

vocabulary and algorithms on domain adaptation 136

of LLMs. To the best of our knowledge, our work 137

is the first to study the effect of domain adaptation 138

through SFT of both the teacher and the student 139

LLMs prior to distillation. 140

1.3 Overview of metrics 141

Evaluation of generated output from a LLM is 142

an evolving research topic (Desmond et al., 2024; 143

Roychowdhury et al., 2024). The current KD ap- 144

proaches typically report on few N-gram based 145

metrics only (Zhang et al., 2024). For a more 146

rounded evaluation of LLM, we consider three 147

metric groups: N-gram based metrics, embedding 148

based metrics and Oracle-LLM based metrics. The 149

specific metrics are listed below: 150

• N-gram based metrics: BLEU, BLEU-CN 151

, BLEU-DM , BLEU-DC (Shi et al., 2022), 152

ROUGE-L Precision and Recall (Lin, 2004). 153

These scores are indicative of overlap of N- 154

gram word sequences or longest common se- 155

quences. 156

• Embedding based metrics: Cosine similarity 157

(using all-Mini-L6-v2 embeddings (Reimers 158

and Gurevych, 2020)), BERTScore (Zhang 159

et al., 2019). These scores are indicative of 160

semantic similarity. 161

• Oracle-LLM based metrics: RAG Assess- 162

ment metrics (RAGAs) that uses Oracle-LLM 163

to arrive at metrics such as faithfulness, fac- 164

tual correctness, answer similarity, answer cor- 165

rectness, answer relevance and context rele- 166
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vance, (Es et al., 2024), (Roychowdhury et al.,167

2024).168

Higher scores imply better model performance169

for all the metrics considered above. Capturing170

KD performance using set of metrics which cover171

word/token overlap, semantic similarity and gener-172

ation perspective aids towards holistic analysis.173

1.4 Contributions174

From the experiments designed and through the175

results on TeleQuAD (Gebre et al., 2025), the con-176

tributions of this work are:177

• This is the first work which addresses the ef-178

fect of supervised fine tuning (SFT) of both179

the teacher and the student language models180

prior to distillation (with a focus on telecom181

domain QA task).182

• We demonstrate that SFT of teacher and stu-183

dent models improves performance, irrespec-184

tive of vocabulary and algorithm choice.185

• We demonstrate SFT of teacher has significant186

performance improvements (across metrics)187

when using same vocabulary models.188

• In scenarios where SFT training has practical189

limitations, using different vocabulary with190

DSKD algorithm is found to be useful.191

• All group-wise metrics show similar perfor-192

mance trends.193

The rest of the paper is organized as follows. The194

experimental design and evaluation metrics are de-195

scribed in Section 2, followed by experimental196

setup and results in Section 3. We conclude and197

discuss future work in Section 4.198

2 Methodology199

We describe the experimental setup, statistical tests200

and the details of dataset and models.201

2.1 Experimental Setup202

We describe the experimental design considered to203

study the impact of vocabulary (same and different)204

and KD algorithms (vanilla KD and Dual Space205

KD, DSKD) on the distilled model. We also ana-206

lyze the impact of untrained/SFT teacher/student207

model on the final distilled model. Fig. 1 shows208

the schematic representation of our experimen-209

tal setup. Depending on choice of SFT training,210

teacher model and distillation algorithms, there are211

4 parameters of interest here:212

Notation Description
TB(L) Base Llama as teacher model (Same vo-

cabulary)
TSFT (L) SFT Llama as teacher model (Same vo-

cabulary)
TB(M) Base Mistral as teacher model (Different

vocabulary)
TSFT (M) SFT Mistral as teacher model (Different

vocabulary)
SB Base TinyLlama as student model
SSFT SFT TinyLlama as student model
V and D Vanilla algorithm and DSKD algorithm

for KD process

Table 1: A summary of notations used to formulate
hypothesis tests and report results.

• Teacher – Two variants of the teacher model, 213

base model and SFT model, arising out of SFT 214

training (depicted as a 1/0 switch) in Fig. 1. 215

• Student – Similarly, student model is also 216

considered with two variants - base model 217

and SFT model (refer to Fig. 1). These two 218

addresses RQ1. 219

• Vocabulary – To study impact of vocabulary, 220

we consider two cases where teacher and stu- 221

dent (i) both having same vocabulary (ii) both 222

having different vocabulary. We fix student 223

model to be from the Llama family - TinyL- 224

lama. Hence, with respect to the student SLM 225

TinyLlama, choosing the teacher model as (i) 226

LLM Llama results in same vocabulary (ii) 227

LLM Mistral results in different vocabulary. 228

This addresses RQ2. 229

• KD algorithm – To analyze if insights on 230

vocabulary is invariant to choice of KD al- 231

gorithm, we consider two KD algorithms - 232

Vanilla KD and DSKD. 233

Fig. 2 shows a schematic representation of 16 234

combinations of experiments arising out of the de- 235

sign described above. The notations used to depict 236

the various combinations are summarized in Table 237

1. We report performance using 14 metrics (refer 238

Section 1.3) for each of the 16 combinations of 239

distillation experiments. 240

2.2 Hypothesis tests 241

In addition to reporting the performance metrics, 242

we analyze the impact of the SFT of teacher, stu- 243

3



Figure 2: Schematic representation of different choices based on which we conduct Hypothesis tests

dent, model vocabulary and the algorithm chosen244

for each metric. This results in 16 combinations of245

results for 14 metrics (RQ3); to ensure the results246

are statistically significant, we group the results247

to perform statistical hypothesis tests (Wilcoxon248

statistics signed rank test (Gehan, 1965)).249

We henceforth use the notation where a tuple250

(TB , SB) indicates a teacher-student pair where251

the models are identified by the acronyms as in252

Table 1. Using a wildcard * in the suffixes indicate253

all possible options of the latter. When we use a254

third term in the tuple e.g. D or V we refer to the255

corresponding algorithm - not having this indicates256

that we test for both algorithms. We compare each257

of the 14 metrics via a statistical test and this is258

indicated by the Perf() function.259

• H-Train: We consider the null hypotheses260

(NH), Eq. (1), to analyze if TSFT or SSFT261

or both (followed by KD) impacts the perfor-262

mance of the distilled model (RQ1).263

HT
train : Perf(TB, SB) = Perf(TSFT , SB)264

HS
train : Perf(TB, SB) = Perf(TB, SSFT )265

HT,S
train : Perf(TB, SB) = Perf(TSFT , SSFT )

(1)
266

The alternate hypotheses to all of these cor-267

respond to Perf(TB, SB) ̸= Perf(T∗, S∗)268

respectively where ∗ corresponds to the SFT269

of teacher or student or both. For each of the270

three NH above, impact on vocabulary (L and271

M ) and algorithm (V and D) choice are also272

considered. So, we have 12 hypothesis tests273

for each of the 14 metrics.274

• H-SFT: Results show that TSFT , SSFT com-275

bination results in best performance across276

metrics (discussed later in Section 3). To ana- 277

lyze the impact of the TSFT only, SSFT only 278

and (TSFT , SSFT ) prior to the distillation pro- 279

cess (RQ1), we formulate NH as Eq. (2). 280

HT
SFT : Perf(TSFT , SSFT ) = Perf(TSFT , SB) 281

HS
SFT : Perf(TSFT , SSFT ) = Perf(TB, SSFT )

(2)
282

Again, the alternate hypotheses to all of 283

these correspond to Perf(TSFT , SSFT ) ̸= 284

Perf(T∗, S∗) respectively. Here, ∗ refers to 285

SFT of teacher model only or student model 286

only. Each of the binary choice of vocabulary 287

(M , L) and algorithm (V , D) is considered 288

resulting in 8 tests for each of the 14 metrics. 289

• H-Algo: Impact of KD algorithm (RQ2) post 290

SFT through NH is shown in Eq. (3). 291

HT,S
Alg : Perf(TSFT , SSFT , V ) = Perf(TSFT , SSFT , D)292

HB
Alg : Perf(TB, SB, V ) = Perf(TB, SB, D)

(3)
293

This is considered for both the vocabulary sce- 294

narios, (M , L), and scenario of best perform- 295

ing SFT models (TSFT , SSFT ) and untrained 296

models (TB, SB); the latter accounts for sce- 297

narios when training models is not feasible. 298

This results in 4 NH tests for each of the 14 299

metrics. 300

2.3 Dataset description 301

We consider samples from TeleQuAD (Gebre et al., 302

2025), a Telecom QA dataset, curated using pub- 303

licly available 3GPP (Rel 15) documents (3GPP, 304

2019). The training, development and test data 305

comprise of 2385, 726 and 597 QA pairs, respec- 306

tively, derived from 452 contexts (sections). 307
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Figure 3: Performance on 14 metrics for various combinations of TB , TSFT , SB , SSFT using two KD algorithms
(Vanilla and DSKD) and models of different and same vocabulary (Mistral and Llama).

2.4 Environment308

In our experiments, we have considered Llama-7b1,309

Mistral-7b2 as teacher models and Tinyllama-1.1b3310

as student model. The GPU used for training and311

inference is NVIDIA A100-SXM4-80GB. Table 2312

summarizes the parameters considered for TSFT313

and SSFT .314

Model source Huggingface model hub4

Maximum epoch 50
Early stopping crite-
ria

minimum improvement +
0.01

Early stopping pa-
tience

3 epochs

Learning rate 0.001, cosine decay
SFT algorithm Low-Rank Adaptation

(LoRA) (Hu et al., 2021)
Rank 256
Alpha 8
Dropout 0.1

Table 2: Summary of the parameters for SFT.

3 Experimental Results315

Fig. 3 shows the heatmap depicting performance of316

16 combinations of KD for 14 metrics. For brevity,317

1https://huggingface.co/meta-llama/Llama-2-7b
2https://huggingface.co/mistralai/

Mistral-7B-v0.1
3https://huggingface.co/TinyLlama/TinyLlama-1.

1B-Chat-v1.0

we also report the mean of all 14 metrics and group- 318

wise metrics (N-gram metrics, embedding based 319

metrics and Oracle-LLM metrics) in Fig. 4. 320

We systematically analyze the results and orga- 321

nize our findings as impact of (i) SFT (RQ1) (ii) 322

SFT on teacher and student (RQ1) (iii) vocabulary 323

and KD algorithm (RQ2) (iv) performance metrics 324

groups (RQ3) 325

3.1 Impact of SFT 326

We organize analysis with vocabulary as starting 327

point: 328

3.1.1 Llama 329

Consider the bar plots which depicts Llama as the 330

teacher in Fig. 4 i.e., the bars denoting (Llama, 331

Vanilla KD) and (Llama, DSKD). We observe that 332

SFT of teacher/student/both results in improvement 333

of performance irrespective of the training algo- 334

rithm (first bar vs the subsequent 3 bars). The 335

improvement is statistically significant (refer to 336

HS
train, HT

train, HT,S
train in Table 3). Here, we ob- 337

serve that NH is rejected for most metrics (13 out of 338

14 for Vanilla KD and 8 or 9 out of 14 for DSKD) 339

with SFT of student or teacher or both for Llama 340

vocabulary, irrespective of algorithms. From this 341

and from the average performance metrics, we infer 342

that SFT results in statistically significant perfor- 343

mance improvement when we choose models of 344

same vocabulary (Llama and TinyLlama pair) mod- 345
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Figure 4: Group-wise average of performance metrics from the heatmap in Fig. ??.

els.346

3.1.2 Mistral347

Refer to Mistral set of bar plots in Fig 4 i.e., the348

bars denoting (Mistral, Vanilla KD) and (Mistral,349

DSKD). We observe that training improves results350

Fig. 4, but the improvement is not statistically351

significant (refer row Mistral in Table 3); NH is352

not rejected HS
train, HT

train, HT,S
train i.e., 0 out of 14353

metrics are NH rejected.354

Thus, combining these findings, we infer355

that training using SFT improves performance356

across vocabulary and algorithms; improve-357

ment with SFT of teacher and/or student when358

models have same vocabulary is significant.359

3.2 Impact of SFT on teacher and student360

3.2.1 Llama361

We observe from Llama set of bar plots of Fig 4362

(i.e., the bars denoting (Llama, Vanilla KD) and363

(Llama, DSKD)), that SFT results in improved per-364

formance for (TSFT , SB) and (TSFT , SSFT ) than365

for (TB , SSFT ) across metric groups. From Table366

3, Llama row and HS
SFT , we see that NH is rejected367

for most cases irrespective of the KD algorithm -368

improvement of (TSFT , SSFT ) over (TB , SSFT ) is369

more significant than that of (TSFT , SSFT ) over370

(TSFT , SB) combination i.e., NH is rejected in 13371

and 9 out 14 metrics for HS
SFT and not rejected372

for any metric in HT
SFT . This implies that SFT373

of teacher model before KD is useful and it is374

not necessary to train both teacher and student375

when choosing models of same vocabulary.376

3.2.2 Mistral377

When vocabulary is different i.e., refer Mistral378

set of results in Fig 4, the bars denoting (Mistral,379

Vanilla KD) and (Mistral, DSKD), we observe that380

best performance seen in (TSFT , SSFT ), followed381

by (TB, SSFT ), and an apparent dip in performance382

Algorithm Llama-V Llama-D Mistral-V Mistral-D

HS
train 0 1 0 0

HT
train 13 9 0 0

HT,S
train 13 8 0 0

HS
SFT 13 9 0 0

HT
SFT 0 0 0 0

HT,S
Alg 0 1

HB
Alg 10 14

Table 3: Count of metrics for which NH is rejected for
each of the hypotheses listed in Section 2.2

is observed for (TSFT , SB) or (TB, SSFT ). Refer- 383

ring to Table 3 for Mistral, all the H-SFT tests 384

show that NH is not rejected for any of the met- 385

rics for both HT
SFT and HS

SFT . This implies the 386

performance improvement/dip with both mod- 387

els trained or either model trained is not statis- 388

tically significant irrespective of the KD algo- 389

rithm. We suspect this could be because of limited 390

training data and one of the potential future work 391

direction could be towards SFT results with more 392

training samples. 393

3.3 Impact of KD algorithm and Vocabulary 394

3.3.1 Algorithm 395

Consider the best performing pair of models i.e., 396

(TSFT , SSFT ). We observe that the model perfor- 397

mance improvement exists, but is not significant 398

enough; refer to Table 3 where NH is not rejected 399

for most of the metrics for HT,S
Alg , across vocabu- 400

laries (NH rejected is 0 out of 14 for Llama and 401

1 out of 14 metrics for Mistral model). This im- 402

plies, KD performance doesn’t depend on the 403

algorithm choice with SFT of both teacher and 404

student. However, when SFT is not feasible, we 405

observe that performance is (statistically) better 406

with DSKD algorithm because NH is rejected for 407

most of the metrics for (10 out of 14 and 14 out of 408
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14) vocabulary with HB
Alg.409

3.3.2 Vocabulary410

Consider barplots corresponding to (TSFT , SSFT )411

in Fig. 4, i.e., SFT of both teacher and student412

models. We observe that average of all of the met-413

rics are similar. Hence, vocabulary does not im-414

pact performance with both models are trained.415

However, when training is not a feasibility, using416

models from different vocabulary with DSKD417

algorithm shows better performance.418

3.4 Impact of Performance Metrics419

From Fig. 4 and Table 3, we observe that although420

the range of results of the 3 groups of metrics are421

different, the trends followed across groups are in422

alignment. There is no metric group where the423

results are contradictory.424

3.5 Summary425

We summarize the findings from the results section426

above here.427

• RQ1428

– Training teacher models, student mod-429

els or both using SFT improves perfor-430

mance across Llama, Mistral models and431

Vanilla KD and DSKD algorithms.432

– When teacher and student models are433

Llama and tinyLlama, SFT of teacher434

before KD is useful and it may not be435

necessary to train both teacher and stu-436

dent.437

– When teacher model is Mistral, and stu-438

dent model is TinyLlama, the perfor-439

mance improvement with SFT of both440

teacher and student models is not statisti-441

cally significant over that of either model442

being trained, and this holds irrespective443

of the KD algorithm.444

• RQ2445

– If one performs SFT of both teacher446

and student, distilled model performance447

doesn’t depend on the algorithm or448

teacher model (Llama or Mistral) choice.449

– When SFT is not feasible, we observe450

that performance is (statistically) better451

using Mistral as teacher model, TinyL-452

lama as student model with DSKD algo-453

rithm.454

• RQ3 455

– The performance results follow similar 456

trends across metric groups. 457

4 Conclusions & Future Work 458

In this work, we have systematically studied im- 459

pact of SFT of teacher and student model prior 460

to KD of LLMs from perspective of vocabulary 461

match, KD algorithms, variants of teacher SFT or 462

student SFT or both. Our results are based on a 463

telecom QA dataset and we use various metrics 464

for an overall perspective. We have discussed out- 465

come of RQs through performance results and sta- 466

tistical tests. From our analysis, we recommend 467

that when teacher is Mistral, training using SFT 468

improves performance across vocabulary and algo- 469

rithms; improvement with SFT of teacher and/or 470

student when models have same vocabulary is sig- 471

nificant. When Llama is the teacher, SFT of teacher 472

model before KD is useful and it is not necessary 473

to train both teacher and student when choosing 474

models of same vocabulary. 475

Future work would involve extending it to other 476

tasks like code generation and agent-based sys- 477

tems. Another direction for future work is towards 478

model size - the teacher models used in this work 479

are of relatively smaller size. Evaluation of KD 480

from larger models including Mixture of Experts 481

(MoE) models for domain-specific tasks would be 482

important for the community. 483
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