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Abstract

Knowledge Distillation (KD) is one of the ap-
proaches to reduce the size of Large Language
Models (LLMs). A LLM with smaller num-
ber of model parameters (student) is trained to
mimic the performance of a LLM of a larger
size (teacher model) on a specific task. For
domain-specific tasks, it is not clear if teacher
or student model, or both, must be considered
for domain adaptation. In this work, we study
this problem from perspective of telecom do-
main Question-Answering (QA) task. We sys-
tematically experiment with Supervised Fine-
tuning (SFT) of teacher only, SFT of student
only and SFT of both prior to KD. We design
experiments to study the impact of vocabu-
lary (same and different) and KD algorithms
(vanilla KD and Dual Space KD, DSKD) on
the distilled model. Multi-faceted evaluation
of the distillation using 14 different metrics
(N-gram, embedding and LLM-based metrics)
is considered. Experimental results show that
SFT of teacher improves performance of dis-
tilled model when both models have same vo-
cabulary, irrespective of algorithm and metrics.
Overall, SFT of both teacher and student re-
sults in better performance across all metrics,
although the statistical significance of the same
depends on the vocabulary of the teacher mod-
els.

1 Introduction

Large Language Models (LLMs) are complex mod-
els that perform a wide range of tasks, while
Small Language Models (SLMs) have fewer pa-
rameters and are more suited for specific, resource-
constrained applications. It has been well estab-
lished that domain adaptation improves perfor-
mance of LLMs in technical domains, such as
telecom (Soman and Ranjani, 2023; Bariah et al.,
2023; Roychowdhury et al., 2024; Karapantelakis
et al., 2024; Zou et al., 2024). The need for SLMs
arises due to their efficiency and cost-effectiveness
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Figure 1: A schematic representation of experiments
consisting of the choice of SFT for teacher student, the
choice of distillation algorithms, Vanilla or DSKD, and
choice of evaluation metrics.

as against LLMs (Piovesan et al., 2024; Maatouk
et al., 2024; Schick and Schiitze, 2020). Techniques
to reduce the size of LLMs while retaining much of
their performance is an area of active research. Pop-
ular techniques include quantization (Zhang et al.,
2023), pruning (Ma et al., 2023) and Knowledge
Distillation (KD) (Gou et al., 2021).

In this work, we focus on the impact of domain
adaptation of LLMs via KD approach. KD is a
technique where a “student” (smaller) model is
trained to replicate the performance of a “teacher”
(larger) model (Gou et al., 2021; Xu et al., 2024)
for a particular task. KD was originally proposed
to reduce model size while retaining performance
(Hinton et al., 2015).

1.1 Problem statement

The smaller models obtained during KD is said
to improve generalization, reduce overfitting, es-
pecially when trained on small datasets. These
small models enable faster inference and lower de-
ployment cost. In domain specific tasks, such as
telecom, it is important to ensure the models consid-
ered are domain aware. This is typically achieved
through pre-training and/or supervised fine-tuning
(SFT). SFT is a model training technique where a
pre-trained model is further trained on a labeled
dataset via supervised learning (Vaswani et al.,
2017). To the best of our knowledge, there has been



no work pertaining to impact of domain adaptation
through SFT of either teacher or student models
prior to distillation. In addition, there are no in-
sights on how one must choose the teacher and stu-
dent models viz. must they be of same vocabulary
or different. Lastly, quantifying performance of
distilled generative models requires a holistic eval-
uation (Roychowdhury et al., 2024) as considering
just N-gram metrics or embedding based similarity
metrics can be severely limiting for LLMs. Hence,
in-lieu of these gaps, we formalize the research
questions in this work as follows:

e RQ1: Does SFT of teacher and/or student
models prior to KD improve distilled model
performance?

¢ RQ2: Does the choice of models for SFT and
KD impact performance i.e., are there advan-
tages in using models of different vocabulary
over same vocabulary?

* RQ3: Does performance change for different
metric groups - N-gram based, embedding
based and Oracle-LLM based metrics?

1.2 Overview of KD techniques

Vocabulary of the models chosen for KD impact
the performance of the distilled model. In this sub-
section, we give a quick overview of vocabulary
prior to overview of KD techniques in literature.

1.2.1 Vocabulary

LLM vocabulary refers to the set of tokens (com-
prising of words, sub-words, or characters) that is
used to represent text (Kolesnikova et al., 2022).
Tokenization is the process of converting input text
into tokens, and subsequently converted to embed-
ding vectors. Tokenization and thus vocabulary
plays an important role in model performance. It is
evident that the vocabularies across LLM families
differ based on the tokenization (Kolesnikova et al.,
2022).

1.2.2 KD Algorithms

Typical KD training process involves comparing
the token representations of the teacher and student
models to align the latter to that of former using
KL divergence (KLD) loss (Aguilar et al., 2020).
We refer to this technique, in this paper, as vanilla
KD.

When teacher and student model have differ-
ent vocabulary, the models predict the tokens of

next word in sequence from different vocabularies
(Kolesnikova et al., 2022). Thus, it can be expected
that vocabulary plays an important role in distilled
model performance. Performance improvement in
the scenario where the vocabularies do not match
has been addressed by extending the vanilla KD ap-
proach by projecting each model’s embeddings to a
unified space; this is referred to Dual Space KD or
DSKD (Zhang et al., 2024). For creating the unified
space, the outputs from teacher model space are
projected on to student model space and vice-versa.
The transformation for projection is learnt during
Cross-Model Attention (CMA) (Zhang et al., 2024)
mechanism which also bridges the difference in
vocabularies.

In this work, we consider two models (Llama
family and Mistral family) and two KD approaches
- vanilla KD and DSKD - to study the impact of
vocabulary and algorithms on domain adaptation
of LLMs. To the best of our knowledge, our work
is the first to study the effect of domain adaptation
through SFT of both the teacher and the student
LLM:s prior to distillation.

1.3 Overview of metrics

Evaluation of generated output from a LLM is
an evolving research topic (Desmond et al., 2024;
Roychowdhury et al., 2024). The current KD ap-
proaches typically report on few N-gram based
metrics only (Zhang et al., 2024). For a more
rounded evaluation of LLM, we consider three
metric groups: N-gram based metrics, embedding
based metrics and Oracle-LLM based metrics. The
specific metrics are listed below:

* N-gram based metrics: BLEU, BLEU-CN
, BLEU-DM , BLEU-DC (Shi et al., 2022),
ROUGE-L Precision and Recall (Lin, 2004).
These scores are indicative of overlap of N-
gram word sequences or longest common se-
quences.

* Embedding based metrics: Cosine similarity
(using all-Mini-L6-v2 embeddings (Reimers
and Gurevych, 2020)), BERTScore (Zhang
et al., 2019). These scores are indicative of
semantic similarity.

* Oracle-LLM based metrics: RAG Assess-
ment metrics (RAGASs) that uses Oracle-LLM
to arrive at metrics such as faithfulness, fac-
tual correctness, answer similarity, answer cor-
rectness, answer relevance and context rele-



vance, (Es et al., 2024), (Roychowdhury et al.,
2024).

Higher scores imply better model performance
for all the metrics considered above. Capturing
KD performance using set of metrics which cover
word/token overlap, semantic similarity and gener-
ation perspective aids towards holistic analysis.

1.4 Contributions

From the experiments designed and through the
results on TeleQuAD (Gebre et al., 2025), the con-
tributions of this work are:

* This is the first work which addresses the ef-
fect of supervised fine tuning (SFT) of both
the teacher and the student language models
prior to distillation (with a focus on telecom
domain QA task).

* We demonstrate that SFT of teacher and stu-
dent models improves performance, irrespec-
tive of vocabulary and algorithm choice.

* We demonstrate SFT of teacher has significant
performance improvements (across metrics)
when using same vocabulary models.

* In scenarios where SFT training has practical
limitations, using different vocabulary with
DSKD algorithm is found to be useful.

* All group-wise metrics show similar perfor-
mance trends.

The rest of the paper is organized as follows. The
experimental design and evaluation metrics are de-
scribed in Section 2, followed by experimental
setup and results in Section 3. We conclude and
discuss future work in Section 4.

2 Methodology

We describe the experimental setup, statistical tests
and the details of dataset and models.

2.1 Experimental Setup

We describe the experimental design considered to
study the impact of vocabulary (same and different)
and KD algorithms (vanilla KD and Dual Space
KD, DSKD) on the distilled model. We also ana-
lyze the impact of untrained/SFT teacher/student
model on the final distilled model. Fig. 1 shows
the schematic representation of our experimen-
tal setup. Depending on choice of SFT training,
teacher model and distillation algorithms, there are
4 parameters of interest here:

’ Notation ‘ Description

Tp(L) Base Llama as teacher model (Same vo-
cabulary)

Tspr(L) | SFT Llama as teacher model (Same vo-
cabulary)

Tp(M) | Base Mistral as teacher model (Different
vocabulary)

Tsrpr(M)| SFT Mistral as teacher model (Different
vocabulary)

SB Base TinyLlama as student model

Ssrr SFT TinyLlama as student model

V and D | Vanilla algorithm and DSKD algorithm
for KD process

Table 1: A summary of notations used to formulate
hypothesis tests and report results.

* Teacher — Two variants of the teacher model,
base model and SFT model, arising out of SFT
training (depicted as a 1/0 switch) in Fig. 1.

* Student — Similarly, student model is also
considered with two variants - base model
and SFT model (refer to Fig. 1). These two
addresses RQ1.

* Vocabulary — To study impact of vocabulary,
we consider two cases where teacher and stu-
dent (i) both having same vocabulary (ii) both
having different vocabulary. We fix student
model to be from the Llama family - TinyL-
lama. Hence, with respect to the student SLM
TinyLlama, choosing the teacher model as (i)
LLM Llama results in same vocabulary (ii)
LLM Mistral results in different vocabulary.
This addresses RQ?2.

* KD algorithm — To analyze if insights on
vocabulary is invariant to choice of KD al-
gorithm, we consider two KD algorithms -
Vanilla KD and DSKD.

Fig. 2 shows a schematic representation of 16
combinations of experiments arising out of the de-
sign described above. The notations used to depict
the various combinations are summarized in Table
1. We report performance using 14 metrics (refer
Section 1.3) for each of the 16 combinations of
distillation experiments.

2.2 Hypothesis tests

In addition to reporting the performance metrics,
we analyze the impact of the SFT of teacher, stu-
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Figure 2: Schematic representation of different choices based on which we conduct Hypothesis tests

dent, model vocabulary and the algorithm chosen
for each metric. This results in 16 combinations of
results for 14 metrics (RQ3); to ensure the results
are statistically significant, we group the results
to perform statistical hypothesis tests (Wilcoxon
statistics signed rank test (Gehan, 1965)).

We henceforth use the notation where a tuple
(T, Sp) indicates a teacher-student pair where
the models are identified by the acronyms as in
Table 1. Using a wildcard * in the suffixes indicate
all possible options of the latter. When we use a
third term in the tuple e.g. D or V we refer to the
corresponding algorithm - not having this indicates
that we test for both algorithms. We compare each
of the 14 metrics via a statistical test and this is
indicated by the Per f() function.

* H-Train: We consider the null hypotheses
(NH), Eq. (1), to analyze if Tspr or Sgpr
or both (followed by KD) impacts the perfor-
mance of the distilled model (RQ1).

HtT,,am : Perf(TB, SB) = Perf(TSFT, SB)
Hg,am : Perf(TB, SB) = Perf(TB, SSFT)
HES . Perf(Tg,Sp) = Perf(Tsrr, Sser)

ey

The alternate hypotheses to all of these cor-
respond to Perf(Tgp,Sg) # Perf(T, Sk)
respectively where * corresponds to the SFT
of teacher or student or both. For each of the
three NH above, impact on vocabulary (L and
M) and algorithm (V' and D) choice are also
considered. So, we have 12 hypothesis tests
for each of the 14 metrics.

¢ H-SFT: Results show that T'spr, Sgppr com-
bination results in best performance across

2.3

metrics (discussed later in Section 3). To ana-
lyze the impact of the Ts 7 only, Sgp7 only
and (T'spr, Sspr) prior to the distillation pro-
cess (RQ1), we formulate NH as Eq. (2).

Hlpp : Perf(Tspr, Ssrr) = Perf(Tspr, Sp)

HEpr : Perf(Tser, Ssrr) = Perf(Tp, Ssrr)
(2)

Again, the alternate hypotheses to all of
these correspond to Perf(Tspr,Sspr) #
Per f(Ty, S.) respectively. Here, * refers to
SFT of teacher model only or student model
only. Each of the binary choice of vocabulary
(M, L) and algorithm (V, D) is considered
resulting in 8 tests for each of the 14 metrics.

H-Algo: Impact of KD algorithm (RQ2) post
SFT through NH is shown in Eq. (3).

H§z§ : Per f(Tsrr, Ssrr, V) = Per f(Tsrr, Ssrr,47)

Hflg : Perf(Tg,Sp,V) = Perf(Tg, Sg, D)
3)

This is considered for both the vocabulary sce-
narios, (M, L), and scenario of best perform-
ing SFT models (Tspr, Sspr) and untrained
models (T, Sg); the latter accounts for sce-
narios when training models is not feasible.
This results in 4 NH tests for each of the 14
metrics.

Dataset description

We consider samples from TeleQuAD (Gebre et al.,
2025), a Telecom QA dataset, curated using pub-
licly available 3GPP (Rel 15) documents (3GPP,
2019). The training, development and test data
comprise of 2385, 726 and 597 QA pairs, respec-
tively, derived from 452 contexts (sections).
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Figure 3: Performance on 14 metrics for various combinations of Tz, Tspr, Sp, Sspr using two KD algorithms
(Vanilla and DSKD) and models of different and same vocabulary (Mistral and Llama).

2.4 Environment

In our experiments, we have considered Llama-7b',
Mistral-7b? as teacher models and Tinyllama-1.1b>
as student model. The GPU used for training and
inference is NVIDIA A100-SXM4-80GB. Table 2
summarizes the parameters considered for Tlspr
and S SEFT-

Model source Huggingface model hub®

Maximum epoch

50

Early stopping crite-
ria

minimum improvement +
0.01

Early stopping pa-
tience

3 epochs

Learning rate

0.001, cosine decay

SFT algorithm Low-Rank Adaptation
(LoRA) (Hu et al., 2021)

Rank 256

Alpha 8

Dropout 0.1

Table 2: Summary of the parameters for SFT.
3 Experimental Results

Fig. 3 shows the heatmap depicting performance of
16 combinations of KD for 14 metrics. For brevity,

lh'ctps ://huggingface.co/meta-1lama/Llama-2-7b
2h‘ctps ://huggingface.co/mistralai/

Mistral-7B-vo.1

3https ://huggingface.co/TinyLlama/TinyLlama-1.

1B-Chat-v1.0

we also report the mean of all 14 metrics and group-
wise metrics (N-gram metrics, embedding based
metrics and Oracle-LLM metrics) in Fig. 4.

We systematically analyze the results and orga-
nize our findings as impact of (i) SFT (RQ1) (ii)
SFT on teacher and student (RQ1) (iii) vocabulary
and KD algorithm (RQ2) (iv) performance metrics
groups (RQ3)

3.1 Impact of SFT

We organize analysis with vocabulary as starting
point:

3.1.1 Llama

Consider the bar plots which depicts Llama as the
teacher in Fig. 4 i.e., the bars denoting (Llama,
Vanilla KD) and (Llama, DSKD). We observe that
SFT of teacher/student/both results in improvement
of performance irrespective of the training algo-
rithm (first bar vs the subsequent 3 bars). The
improvement is statistically significant (refer to
HE o HE HtTmm in Table 3). Here, we ob-
serve that NH is rejected for most metrics (13 out of
14 for Vanilla KD and 8 or 9 out of 14 for DSKD)
with SFT of student or teacher or both for Llama
vocabulary, irrespective of algorithms. From this
and from the average performance metrics, we infer
that SFT results in statistically significant perfor-
mance improvement when we choose models of
same vocabulary (Llama and TinyLlama pair) mod-
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Figure 4: Group-wise average of performance metrics from the heatmap in Fig. 2?2.

els.

3.1.2 Mistral

Refer to Mistral set of bar plots in Fig 4 i.e., the
bars denoting (Mistral, Vanilla KD) and (Mistral,
DSKD). We observe that training improves results
Fig. 4, but the improvement is not statistically
significant (refer row Mistral in Table 3); NH is
not rejected Htsmm’ Htj;ain’ Hg;fm 1.e., 0 out of 14
metrics are NH rejected.

Thus, combining these findings, we infer
that training using SFT improves performance
across vocabulary and algorithms; improve-
ment with SFT of teacher and/or student when
models have same vocabulary is significant.

3.2 Impact of SFT on teacher and student

3.2.1 Llama

We observe from Llama set of bar plots of Fig 4
(i.e., the bars denoting (Llama, Vanilla KD) and
(Llama, DSKD)), that SFT results in improved per-
formance for (T'spr, Sp) and (T'spr, Sspr) than
for (T, Ssrr) across metric groups. From Table
3, Llama row and H g 7> we see that NH is rejected
for most cases irrespective of the KD algorithm -
improvement of (T'spr, Sspr) over (15, Sspr) is
more significant than that of (Tspr, Sspr) over
(Tspr, Sp) combination i.e., NH is rejected in 13
and 9 out 14 metrics for H :g r and not rejected
for any metric in HgFT. This implies that SFT
of teacher model before KD is useful and it is
not necessary to train both teacher and student
when choosing models of same vocabulary.

3.2.2 Mistral

When vocabulary is different i.e., refer Mistral
set of results in Fig 4, the bars denoting (Mistral,
Vanilla KD) and (Mistral, DSKD), we observe that
best performance seen in (Ispr, Ssrr), followed
by (T's, Ssr1), and an apparent dip in performance

Algorithm | Llama-V  Llama-D | Mistral-V ~ Mistral-D
HE .. 0 1 0 0
HE . 13 9 0 0
urs, 13 8 0 0
HEpr 13 9 0 0
Hipr 0 0 0 0
HS 0 1
HS, 10 14

Table 3: Count of metrics for which NH is rejected for
each of the hypotheses listed in Section 2.2

is observed for (T'spr, Sg) or (T, Ssrr). Refer-
ring to Table 3 for Mistral, all the H-SFT tests
show that NH is not rejected for any of the met-
rics for both HgFT and H *Sg - This implies the
performance improvement/dip with both mod-
els trained or either model trained is not statis-
tically significant irrespective of the KD algo-
rithm. We suspect this could be because of limited
training data and one of the potential future work
direction could be towards SFT results with more
training samples.

3.3 Impact of KD algorithm and Vocabulary
3.3.1 Algorithm

Consider the best performing pair of models i.e.,
(Tsrr, Ssrr). We observe that the model perfor-
mance improvement exists, but is not significant
enough; refer to Table 3 where NH is not rejected
for most of the metrics for HZZ‘;, across vocabu-
laries (NH rejected is O out of 14 for Llama and
1 out of 14 metrics for Mistral model). This im-
plies, KD performance doesn’t depend on the
algorithm choice with SFT of both teacher and
student. However, when SFT is not feasible, we
observe that performance is (statistically) better
with DSKD algorithm because NH is rejected for
most of the metrics for (10 out of 14 and 14 out of



14) vocabulary with H fl ”

3.3.2 Vocabulary

Consider barplots corresponding to (I'spr, SspT)
in Fig. 4, i.e., SFT of both teacher and student
models. We observe that average of all of the met-
rics are similar. Hence, vocabulary does not im-
pact performance with both models are trained.
However, when training is not a feasibility, using
models from different vocabulary with DSKD
algorithm shows better performance.

3.4 Impact of Performance Metrics

From Fig. 4 and Table 3, we observe that although
the range of results of the 3 groups of metrics are
different, the trends followed across groups are in
alignment. There is no metric group where the
results are contradictory.

3.5 Summary

We summarize the findings from the results section
above here.

* RQI

— Training teacher models, student mod-
els or both using SFT improves perfor-
mance across Llama, Mistral models and
Vanilla KD and DSKD algorithms.

— When teacher and student models are
Llama and tinyLlama, SFT of teacher
before KD is useful and it may not be
necessary to train both teacher and stu-
dent.

— When teacher model is Mistral, and stu-
dent model is TinyLlama, the perfor-
mance improvement with SFT of both
teacher and student models is not statisti-
cally significant over that of either model
being trained, and this holds irrespective
of the KD algorithm.

« RQ2

— If one performs SFT of both teacher
and student, distilled model performance
doesn’t depend on the algorithm or
teacher model (Llama or Mistral) choice.

— When SFT is not feasible, we observe
that performance is (statistically) better
using Mistral as teacher model, TinyL-
lama as student model with DSKD algo-
rithm.

* RQ3

— The performance results follow similar
trends across metric groups.

4 Conclusions & Future Work

In this work, we have systematically studied im-
pact of SFT of teacher and student model prior
to KD of LLMs from perspective of vocabulary
match, KD algorithms, variants of teacher SFT or
student SFT or both. Our results are based on a
telecom QA dataset and we use various metrics
for an overall perspective. We have discussed out-
come of RQs through performance results and sta-
tistical tests. From our analysis, we recommend
that when teacher is Mistral, training using SFT
improves performance across vocabulary and algo-
rithms; improvement with SFT of teacher and/or
student when models have same vocabulary is sig-
nificant. When Llama is the teacher, SFT of teacher
model before KD is useful and it is not necessary
to train both teacher and student when choosing
models of same vocabulary.

Future work would involve extending it to other
tasks like code generation and agent-based sys-
tems. Another direction for future work is towards
model size - the teacher models used in this work
are of relatively smaller size. Evaluation of KD
from larger models including Mixture of Experts
(MoE) models for domain-specific tasks would be
important for the community.
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