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Abstract

Current post-training quantization methods for LLMs compress the weights down
to 4-bits, with moderate to low degradation in accuracy. However, further reducing
the number of bits or accelerating the network while avoiding large accuracy drops,
especially for smaller, sub 7B models, remains an actively researched and open
problem. To address this, in this work, we introduce Quantization with Binary
Bases (QBB), a new approach for low-bit quantization that effectively removes
(nearly) all multiplications, reducing the implementation to summations. Our novel
approach works by decomposing the original weights into a set of binary (1-bit)
matrices using an iterative process. For a given layer, starting from a weight matrix,
we first construct an initial approximation using an analytical solution, where each
new binary matrix, paired with a scaling vector, approximates the residual error
of the previous estimation. Secondly, using gradient descent and a progressive
learning curriculum, we find the optimal set of binary matrices and scaling vectors
that minimize the ℓ2 distance between the produced approximation and original
weights. Thirdly, as previous steps are input agnostic, we holistically optimize the
scaling vectors alone, calibrating them in student-teacher fashion, with the teacher
providing both the data, by autoregressive generation starting from a random token,
and the target logits. When evaluated across multiple LLM families, our approach
matches and outperforms all prior works, setting a new state-of-the-art result using
a summation-only based approach.

1 Introduction

Large Language Models (LLMs) demonstrated proficiency in natural language understanding and
generation across multiple domains, exhibiting strong in-context learning abilities [3; 52; 53]. This
remarkable performance can be in part attributed to the ever-increasing model and dataset sizes [25;
9], with the current generation of models being trained on Trillion-sized (tokens) datasets [53],
using Billions of parameters [53; 24; 29]. This, in turn, made deploying such models, even on
consumer-grade GPUs, problematic. A promising and flexible direction that disentangles the training
and the deployment process, while being hardware friendly, is given by post-training and/or data-
free quantization [16; 32; 48]. Within this area, current methods have successfully achieved 4×
compression (i.e. 4-bit quantization) with small drops in accuracy [16; 7; 32], especially for larger
(7B+) models. However, compressing the model further and/or applying said methods to smaller
models yields unsatisfactory results [16; 32]. Importantly, on the inference side, this class of PTQ
approaches replaces 16b multiplications with mixed-precision (i.e., 16b-4b) ones, which have limited
hardware support and rely on software-based solutions. Our aim is to alleviate these limitations,
enabling higher compression rates while removing (nearly) all multiplications.

To this end, departing from prior work, we focus on the most extreme case of quantization, that of
binarization (which, as we will show, enables us to remove costly multiplications). As binarizing the
weights directly, without retraining, results in unsatisfactory performance, we propose to approximate
the weights W using a set of binary matrices Bi, i ∈ {1, ..., N} with corresponding fp16 scaling
vectors αi. The main case of interest studied is that of N = 4. We note that binarising the weights
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is a particularly interesting case as the matrix multiplications can be implemented using masked
selection/data loading and summations, removing all the multiplications, but 1, that with the scaling
vector.

As binarising the weights directly is suboptimal (see Sec. 4), we introduce a new iterative approach
for estimating the optimal binary matrices Bi and scaling vectors αi: Firstly, for a given weight W
belonging to the l-th layer, we construct an initial approximation using an analytical solution, whereby
each new additional binary matrix approximates the residual error of the previous estimation(s).
Secondly, using gradient descent, we iteratively adjust the binary weights and scaling vectors one by
one by minimizing the ℓ2 norm between the target weights and the produced estimation. As until
now the process is agnostic to the input distribution of the data, we plug the approximated weights
back into the model, optimizing in the interest of speed and generalizability the scaling vectors only.
This step uses a teacher-student approach and does not require any training dataset. Instead, we
generate synthetic data starting from random tokens by adapting [38] to be more sample efficient.
Note that this bypasses the need for any real data. Our approach matches and outperforms prior 4-bit
quantization methods across a wide variety of LLMs models (e.g: LLaMA-2, Phi-2, etc.) while
removing all multiplication (except the final one with the scaling vector), being fast to calibrate
and being amenable, in certain conditions to higher compression rates (see Sec. 4.6), setting a new
state-of-the-art result.

2 Related work

LLMs quantization is a particular application of network quantization [18; 8; 22; 42; 56] to LLMs.
As for the former, broadly speaking, these methods can be split into two categories: Quantization-
Aware Training (QAT) - which requires retraining or training in quantized form, and Post-Training
Quantization (PTQ), which can be applied directly, without additional retraining. As retraining
such models, especially without losing generality, is challenging, most of the work focused on
PTQ [16; 49; 32; 30], although a recent line of work tackles the latter too using data-free strategies [38]
or parameters efficient fine-tuning [14]. One of the most prominent recent lines of work was the
introduction of GPTQ [16] that proposes a one-shot low-bit weight quantization method based
on approximate second-order information. Follow-up work improves upon it by considering the
outliers [27; 13], the effect of the activations on the weight quantization performance [32; 30],
by training the quantization parameters [48] or by grouping and reordering the parameters [62].
Methodologically, our approach stands in between PQT and QAT, as we support both layer-wise input
agnostic binarization and fast data-free recalibration. In either case, our approach doesn’t require a
training corpus.

Binarization also known as 1-bit quantization, represents the most extreme case of quantization.
In this instance, when both operands are binary, the multiplications can be replaced with bitwise
operations, while when one is binary and the other real, the multiplications become summations.
These desirable properties make binarization a particularly interesting case of quantization. The
current base formulation can be traced to [10; 11], which proposes to binarize the values using the
sign function, whose gradient is estimated using a straight-through estimator [2]. Subsequent works
primarily focus on training-aware solutions for vision models [46; 33; 34; 5; 4; 15; 58; 64; 63; 26; 6;
40; 35; 61; 45]. For example, Rastegari et al. [46] introduces analytically computed scaling vectors
for both the input and the weights, while [4] building on top, proposes to learn them holistically,
via backpropagation instead. Liu et al. [34] argues for the use of real-valued down-sampling layers
and the use of double skip connections, while [5] replaces ReLU with PReLUs and makes use of
two-staged optimization.

Many works have also studied network binarization in the context of transformers [1; 44; 36; 37],
focusing on either full retraining or fine-tuning on labeled datasets using mostly smaller models (e.g.,
BERT, BART). More relevant to our work are the recent attempts to adapt and apply binarization
to LLMs [55; 39; 47; 60]. BitNet [55] swaps all linear layers with BitLinear, their 1-bit weight’s
replacement, which are then trained from scratch. PB-LLM [47] explores the partial binarization
of LLMs, in which the salient weights are stored in higher bits, and the rest are binarized, with
a fine-tuning step (i.e., a QAT step) to recover the original LLM performance. BitNet b1.58 [39]
encodes every weight using three states {−1, 0, 1} instead of two, which are then trained from scratch
similar to BitNet [55]. Finally, OneBit [60] proposes a 1-bit QAT method that decomposes the
weights into 1-bit weights and two full-precision scaling vectors, which are then fine-tuned with a
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Figure 1: Binary weights initialization phase: starting from the target weight W, we construct N
binary matrices Bi and scaling vectors αi analytically. The 1st binary weight and scaling vector are
obtained using Eq. 2 while the subsequent ones use Eq. 3.
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Figure 2: Iterative weights binarization: Starting from the weights initialized as shown in Fig. 1,
we update the binary weights one-by-one, where at each step i ∈ {1 . . . N}, only Bi is updated by
minimizing the loss function in eq. (4), while the rest are frozen. Note that all of the scaling vectors
αi are updated at every step.

distillation loss for a better approximation. However, all these approaches require full retraining or
fine-tuning on labeled datasets with a large training overhead. In contrast, our approach is applicable
post-training, doesn’t require any labeled (nor unlabeled) datasets, is fast to optimize, makes use of
multiple binary bases, and scales well to billion-sized models.

3 Method

3.1 Layer-wise input-agnostic weights binarization

Given a linear layer, represented as f(X,W,b) = X ·W + b, with X ∈ Rn×cin the input tensor,
W ∈ Rcin×cout the weight matrix and, optionally, b ∈ Rcout the bias term. n represents the number
of tokens, cin and cout the number of input, and respectively output channels. Note that we are
considering the batch size to be 1 and the bias 0 for brevity, as the formulations are independent of
them. Our goal is to then quantize the elements of W with W̃ such that X ·W ≈ X ·W̃. Unlike prior
works [16; 32] that focus primarily on 3 and 4-bit quantization, herein, we focus on compressing the
weights using a set of binary bases, without comprising the model’s accuracy and importantly, without
requiring any training or calibration dataset(s), enabling in the process a potential implementation
based (nearly) solely on summations.

For our purposes, let us consider the most extreme case of quantization, that of binarization, whereby
the values are represented using 1-bit. In this instance, the real-valued weights W can be approxi-
mated as W ≈ W̃ = αB, where B = sign(W) is a binary matrix and α ∈ Rcout

+ a scaling vector.
Given a set of real-valued weights that are binarized, following Rastegari et al. [46], the optimal value
for α can be computed analytically as α = 1

cout
∥W ∥ℓ1,col with ∥W ∥ℓ1,col as the ℓ1-norm computed

over the columns of W . Note, that in order to avoid spurious states (i.e. states at which the function

is ill-defined - 0), the sign function used is defined as: sign(x) =
{
−1, x < 0

1, x ≥ 0
.
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In essence, this relation tells us that we can find the optimal values for B and α by solely looking at
W, i.e. without requiring any training data. The downside is that the quantization errors are very
high due to reduced representation power, which completely degrades the model’s performance. This
is perhaps not surprising, as the number of representable states for one given value drops from 216 for
16-bits to 24 for 4 bits and, finally, 21 for the binary case. This discrepancy is even more noticeable
when considering the total number of unique permutations representable on such a weight matrix.

To address this, we propose to represent W̃ with a linear combination of N binary matrices:

W̃ =

N∑
i=1

αiBi (1)

In this case, finding the optimal values for αi,Bi, i ∈ {1, ..., N} can no longer be achieved using the
analytical solution of Rastegari et al. [46]. As such, we propose a new iterative optimization approach
in which the weights and the scaling vectors are iteratively learned via gradient descent. The exact
optimization process requires, however, careful considerations. The gradients of sign(.) are 0 almost
everywhere, taking the form of the Dirac Delta function. Hence, to make training possible, in practice
they are approximated using a straight-through estimator [2] taking the form of a clipped identity
function [46; 11]. These gradients are however noisy with the training prone to oscillations and
instabilities: for a value infinitesimally close to 0, there exists a full state transition to either of the
extremes, i.e. −1 or +1, for any non-zero gradient, hence any noise, even a machine representation
error, can result in large swings. To alleviate this, we study (i) how to initialize the weights and the
scales, and (ii) how to stabilize the optimization process.

Weights and scale initialization: Given an initial estimation α1B1 computed analytically by directly
approximating the weight matrix W as:

B1 = sign(W),α1 =
1

cout
∥W ∥ℓ1,col , (2)

we then initialize the subsequent αi,Bi, i ∈ {2 . . . N} values by approximating the residual error
∆i at step i:

Bi = sign(∆i),αi =
1

cout
∥∆i∥ℓ1,col , ∆i = W −

i−1∑
j=1

αjBj . (3)

This sets the underlying distribution behind each Bi matrix to the direction that would minimize the
overall quantization error. See Fig. 1 for an illustration.

Iterative weights and scales optimization: Starting from the above initialization, we aim to minimize
the following loss function:

L2 = ∥W −
N∑
i=1

αiBi∥22, (4)

where both αi and Bi are trainable parameters, with Bi maintained in the binary state using the sign
function. However, the direct, naïve approach of optimizing all parameters jointly leads to training
instability. To alleviate this, we devise an iterative training procedure, akin to block coordinate
descent, in which the weights are trained one-by-one. Specifically, and as shown in Fig. 2, for N
binary matrices, we have N training steps. During each training step, only one binary weight is
updated, while the rest stay frozen. We note, however, that the scales are trained in all cases. This
approach prevents us from concomitantly changing too many binary weights, effectively simplifying
the problem at each step to learning a binary correction factor to an existing approximation.

Progressive weights quantization: To further simplify the approximation of full-precision weights
using binary bases, we follow previous binarization approaches [5; 40] and progressively reduce
the gap between full-precision and binary weights. Specifically, instead of directly approximating
full-precision weights, we first quantize them to a lower precision using an off-the-shelf method (e.g.,
4-bit using GPTQ). Then, we apply the proposed method with these quantized weights as a starting
point (i.e. initialization followed by iterative optimization).
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3.2 Data-free holistic binarization

Until now, our binarization process was input-agnostic, considering only the to-be-binarized weights
W on a per-layer basis. However, this does not factor two important aspects: (1) the effect of
cumulative errors resulted from imperfect approximations of the previous layer’s weights and (2) the
effect on the overall model’s output objectives, given that a local approximation isn’t necessarily the
optimal global solution under quantization induced errors.

To maintain the generalization properties of the target LLM, instead of making use of downstream
datasets, we generate synthetic data using the (full-precision) model itself, following Liu et al. [38].
Specifically, the 1st token is randomly selected, with the model generating the subsequent ones
up to a certain length or until the EOS token is encountered. Note that the next token is selected
stochastically to increase the diversity of the output sequences.

Once the data is generated, we can directly use it to train the model with the standard next-token
CE loss. However, as the synthetic data is noisy, forcing these labels into the quantized model
is suboptimal. Instead, we directly use the produced logits pT as soft ground truth, effectively
performing Knowledge Distillation [20]. In practice, we use the MSE loss between the student
(quantized model) and teacher (full precision model) logits, which is analogous to a cross-entropy
based distillation at high-temperature [20]. The loss is defined as:

LMSE =

V∑
v=1

n∑
i=1

∥pTi,v − pSi,v∥22, (5)

where V represents the size of the vocabulary and n the number of tokens.

By inspecting the per-layer quantization (Sec. 3.1), we notice that different layers within different
regions of the model have different quantization errors that are sometimes different by up to an
order of magnitude. Hence, training them only with a signal applied at the very end of the model is
suboptimal. Thus, we also apply a layer-wise MSE loss between the corresponding features of the
teacher and student and the end of every transformer block:

Lfeat =

L∑
l=1

n∑
i=1

∥fT
i,l − fS

i,l∥22, (6)

where fT
i,l and fS

i,l are the features after the l-th transformer module of the i-th token produced by the
teacher, and respectively student (quantized) model.

The overall loss is then computed as:

Ldistill = s1LMSE + s2Lfeat, (7)

with s1 and s2 scaling factors for balancing the two loss terms.

It’s generally accepted that higher accuracy gaps between the student-teacher pair hinder the learning
process, as the student has a difficult job of matching the teacher’s output. To alleviate this, herein,
we randomly swap parts of the teacher model with blocks from the student model. Effectively, this
creates an instant family of models, with a performance situated between that of student and teacher
models. The sampling is varied, with increasing difficulty (i.e. fewer blocks swapped) as the training
progresses.

Efficient Calibration: To improve the efficiency of our calibration process, firstly, we only fine-tune
the scaling vectors αi making the training process compute and time efficient, keeping everything
else, including the binary weights Bi, frozen. Secondly, to speed up the training further and make it
more sample-efficient, we propose a simple filtering step of the generated training data. Specifically,
we only train on self-generated sequences where the quantized student and full-precision teacher
differ the most, instead of directly using all the generated samples as in Liu et al. [38]. This is done
by first scoring the generated sequences using Eq. 5, then keeping the top-K samples with the highest
student-teacher discrepancy. This reduces the training time without any impact on the final results.

4 Ablation studies and analysis

4.1 Impact of the proposed components
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Table 1: Impact of the main components measured for a Phi-2 (2.7B) and LLaMA-2 (7B) model in
terms of perplexity on WikiText2. N/A - indicates failure (> 105 perplexity).

Method Phi-2 (2.7B) LLaMA-2 (7B)

without Sec. 3.1 & 3.2 N/A N/A
+ Sec. 3.1 12.32 5.37
+ Sec. 3.2 10.48 5.21

Figure 3: Per-layer reconstruction error for a Phi-2
model when varying the initialization used: ran-
dom, without the cascaded (residual) init, and with.

In this section, we showcase the importance of
each proposed component, focusing in particu-
lar on what it takes to make the binarization sta-
ble. For a breakdown of the KD subcomponents,
see Sec. 4.3. As the results from Tab. 1 show,
both proposed components, i.e. Layer-wise in-
put agnostic weights binarization (Sec. 3.1) and
Data-free holistic distillation (Sec. 3.2) improve
the model’s accuracy and are critical for achiev-
ing convergence. Notably, the data-free calibra-
tion is particularly important for smaller models,
which are generally harder to quantize.

Moreover, to validate that binarization is inher-
ently unstable, we first ablate the initialization
step. In Fig. 3 we plot, on a layer-by-layer basis,
the ℓ2 quantization error for different weight ini-
tialization strategies: random initialization - the
weights are sampled from a normal distribution; w/o cascaded initialization - all weights attempt to
minimize the global error at initialization; with cascaded initialization - each weight approximates
the remaining residual error (Eqs. 2 and 3). We can immediately observe that random initialization
results in errors that are an order of magnitude higher. Furthermore, the proposed cascaded initial-
ization results in reconstruction errors that are on average 2× smaller than the direct alternative,
that minimizes the global error instead of the residual one, as proposed in our work. Interestingly,
there are a few layers (the ones harder to quantize) for which the two are behaving similarly. Such
layers tend to have more outliers, which makes the finding of the optimal solution (that minimizes
the average reconstruction error), more prone to local minimums.

4.2 Binary weights and process analysis

Figure 4: Proportion of binary weights that
changed their state (bit flips) after applying the
proposed iterative training process, shown for the
first 20 layers of a Phi-2 model for all 4 bases.

To offer some insights on the binarization pro-
cess, in Fig. 4 we show the proportion of the
weights that change state between initialization
and the end of the iterative training process,
on a per-layer basis, for each binary base. In-
terestingly, the first and last binary matrix un-
dergo minimal changes, with typically only 0.01
- 0.2% of the weights transitioning to a different
state. In comparison, the second, and particu-
larly the third base change approximately 40%
and respectively 50% of their bases. Moreover,
we can observe that for layer IDs 6 and 8, while
the proportion of transitions decreases for the
second one, the amount increases for the third,
which appears to compensate in order to main-
tain the same overall proportion of bit flips when
aggregated across all bases. These phenomena
can be tied to how the initialization is performed:
the first binary matrix directly approximates the
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full precision weights W, hence it is already close to its optimal solution while the last one has to
approximates a relatively small residual error, as 3 bases give relative similar results (see Fig. 6).

4.3 Effect of distillation

Knowledge Distillation [20] was shown to improve the performance of smaller models by the virtue
of providing guidance either at the feature level [19] or at the output space, by providing (soft)
pseudo-labels. Herein, we ablate various design choices, summarizing the results in Tab. 2. In
particular, we consider the following options: (1) CE - using directly the synthetic data as hard labels
and then calibrating the model using the standard next token prediction Cross-Entropy Loss; (2)
KD - Using the soft probabilities provided by the teacher, this is identical to standard Knowledge
Distillation [20]; (3) KD-MSE - Compute a ℓ2 (MSE) loss between the logits of the student and
teacher; (4) KD-MSE with swap - gradually vary the strength of teacher, from weaker to stronger,
by randomly swapping some block in the teacher model with ones from the student and then apply
the KD-MSE loss. Note that the per-layer feature loss (eq. 6) is used for all cases except (1) CE, i.e.
when the teacher model is not utilised. As the results show, the KD-MSE with swap outperforms all
other variants. Moreover, for this use case, the KD-MSE variant outperforms the vanilla KD loss.

Table 2: Effect of different Knowledge Distillation strategies measured using a Phi-2 (2.7B) model
in terms of perplexity on WikiText2.

CE KD KD-MSE KD-MSE with swap

11.82 10.61 10.48 10.40

4.4 Effect of data filtering
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Figure 5: The PPL on WikiText-2 with Phi-2 (2.7b)
trained on a variable number of training samples.
Here, we compare the performance when using the
generated data directly, or when filtering is applied.

During the calibration step, in order to make
the training more sample efficient, we proposed
to filter the randomly self-generated data and
only keep the sequences with the highest teacher-
student discrepancy as measured by the MSE be-
tween their output logits (i.e. Eq. 5). As shown
in Fig. 5, this simple filtering step results in
faster convergence for the same amount of train-
ing samples (i.e. lower perplexity) compared
to directly training on the randomly generated
sequences.

4.5 How many binary bases should we use?

Figure 6: Per-layer reconstruction error after
the initial layer-by-layer optimization for a Phi-
2 model. Notice that the performance is generally
stable for N ≥ 3.

Throughout this work, we mainly focus on the
N = 4 case as it provides an optimal balance be-
tween accuracy, compute cost and storage. For
clarity and completeness, herein, we explore
how the performance varies for different values
of N . As a study case, we take the Phi-2 (2.7B)
model and plot the initial reconstruction errors,
after applying the method described in Sec. 3.1.
We do so on a layer-by-layer basis, as this will
also reveal wherever certain layers are harder to
quantize. Looking at the results shown in Fig. 6
we can make the following observations: (1)
There is a notable performance drop and phase
transition for N ≤ 2; (2) Perhaps unsurprisingly,
not all layers are made equal, with different lay-
ers having different approximation errors, and
hence exhibiting variable difficulty levels from
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a quantization point of view; This could be indicative for future quantization efforts; (3) For the
layers located in the middle, a pattern emerges, with every block being (nearly) equally hard/easy to
quantize. This aligns well with the idea that transformers learn a similar representation across most of
their layers, unlike, let’s say, a convolutional model; (4) For N = 5, we can observe improvements,
especially for the most difficult layers, while the easier one has a similar value as for N = 4.

4.5.1 Effect of iterative optimisation

Figure 7: Per-layer reconstruction error after
the initial layer-by-layer optimization for a Phi-
2 model. Notice that the performance is generally
stable for N ≥ 3.

Herein, we measure the impact of the proposed
iterative training strategy presented in Sec. 3.1.
As the results from Fig. 7 updating all weights
jointly leads to signigicantly worse results, lead-
ing to an average error that is one order of mag-
nitude higher.

4.5.2 Effect
of progressive weights quantization

In line with prior work on binarization [40], we
aim to gradually increase the quantization level,
as this simplifies the problem by reducing the
apparent difficulty of the target. To this end, in
Tab. 3 we measure the impact of progressive
quantization and showcase that our approach is
amenable to different quantization targets. On
one hand, we can observe that attempting to
directly quantize the fp16 weights results in de-
graded performance, on the other, our approach works with target weights produced by different
approaches, in this case: QPTQ and OmniQuant. Moreover, we can observe that better int4 weights
also translate in better binary bases, with our method incorporating the improved scale and outlier
handling from OmniQuant for example.

Table 3: Effect of progressive weight quantization strategies measured using a LLama-2 (7B)
model in terms of perplexity on WikiText2.

FP16 GPTQ OmniQuant

Starting perf: 5.12 5.61 5.58
Ours: 7.10 5.49 5.21

4.6 Discussion on efficiency

Current low-bit post-training quantization methods result in implementations that replace the full/half
precision multiplications present within a linear layer with ones performed using operators represented
on fewer bits, most frequently 16b-4b (activation-weights). When the number of bits for at least
one of the operands drops to the most extreme case, i.e., 1-bit, all these multiplications are removed.
Depending on the implementation, they become either a masked selection ({0, 1}) or a conditional
sign set ({−1, 1}). Herein, we opt in for the former, as depending on the target hardware, it is
possible to reduce the number of summations too, by implementing a masked load, given that the
binary matrices generally have a sparsity level between 50-80%. Getting back to the core message, by
removing all the multiplications inside the linear layer, except for the final one with the scaling vector,
the power consumption could be reduced, and on custom hardware, it could translate into a smaller die
size and faster execution [51; 50; 31; 57], as in principle an adder circuit can be implemented using
a flip-flop. While different implementation and technological nodes will result in some variations,
taking as an example [21], on a 45nm node, and depending on the bit-width of the activation, an
adder consumes 4− 8× less energy compared with a multiplier. While left for future studies, further
decreasing the activations too to 1-bit can enable even faster implementations based solely on bit-wise
operations [4; 10]. Memory-wise, as we learn a sum of binary bases, certain implementations,
although not trivial to construct, can exploit either a left-most significant bit alignment to compress
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the weights to log2(N + 1) bits, as a sum of N binary matrices results in N + 1 states, or can make
use of codebooks given the cross-matrix similarities and sparsity levels. All in all, we highlight
that such representation, which removes (nearly) all the multiplications, opens the door to important
energy savings, which are especially important in a world where the total energy consumption of AI
models is expected to reach 85-135 TWh by 2027 [12] (if current trends follow) - this equates to the
entire power consumption of the Netherlands.

5 Results

We compare our approach with the current state-of-the-art for low-bit quantization in terms of
perplexity score on the main benchmark for quantization - WikiText2 [41], focusing mainly on the
LLaMA-2 [53] {7, 13, 70}B family of models. However, we also include results for LLaMA [52] {7,
13, 30, 65}B and Phi-2 [23] 2.7B models. This allows us to effectively cover a wide range of model
architectures and sizes, from the “smaller”, and hence harder to quantize, Phi-2 (2.7B parameters)
model to the large 70B LLaMA-2 model.

Training details. We implement our method using PyTorch [43], sourcing the pretrained models
from Hugging Face [59] repo, as provided by their respective authors. The evaluation code is based
on [17]. During the input-agnostic quantization part, presented in Sec. 3.1 and using a single A100
GPU, we optimize each set of binary matrices and scaling vectors, layer by layer, using the following
hyperparameters: Adam optimizer [28], 15000 iterations, no weight decay, an initial learning rate of
1e− 4 decayed to 0 using a cosine scheduler. For the data-free distillation step, presented in Sec. 3.2,
we fine-tune the scaling vectors only for 2 epochs using an Adam optimizer, a cosine learning rate
scheduler, no weights decay, and an initial learning rate set to 2.5e− 4. For added stability, we clip
the gradients with a norm higher than 1.

Baselines. For weight-only quantization, we compare with the primary baseline which is the vanilla
Round-to-nearest (RTN) quantization, in addition to current state-of-the-art methods for both W4A16
(i.e. weights in 4-bits and activations in 16-bits) and W3A16 quantization. Specifically, we consider
GPTQ [16], SpQR [13], QuIP# [54], and OmniQuant [48]. Here, we report the results for both
per-channel weight quantization and group-wise weight quantization with a group size of 128 (i.e.
denoted as g128).

Outcome. As the results from Tab. 4 show, our approach matches or outperforms prior PTQ
approaches across all model sizes.

Broader impact and limitations

As our work removes nearly all multiplications, it could improve the energy efficiency of the current
generation of AI models, reducing costs while being more environmentally friendly.

In terms of limitations, our work builds on top of existing pre-trained LLMs, some trained on
closed datasets, hence any potential biases present in the original data, affecting the original models
would likely propagate to the quantized models too. Therefore, we recommend caution before
deploying such models. Moreover, the benefits and gains mentioned are theoretical, as no custom
implementation was constructed. Additional effort may be required to translate the theoretical gains
into practice.

6 Conclusions

In this work, we introduced Quantization with Binary Bases (QBB), a new approach for low-bit
quantization that effectively removes (nearly) all multiplications, reducing the implementation to
summations. Our new approach decomposes the original weights into a set of binary matrices and
scaling vector(s) using an iterative process, whereby starting from an initial approximation obtained
using an analytical solution, each new binary matrix and scaling vector is optimized in a progressive
manner using gradient descent by minimizing the ℓ2 distance between the produced approximation
and the original weights. Finally, as the previous steps were input agnostic, the scaling factors are
optimized holistically, calibrating them in student-teacher fashion, with the teacher providing both
the data, by autoregressive generation starting from a random token, and the target logits. When
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Table 4: Weights only quantization results of LLaMA and LLaMA-2 models in terms of perplexity
on WikiText2.

Method Quantization LLAMA LLAMA-2

7B 13B 30B 70B 7B 13B 70B

FP16 - 5.68 5.09 4.10 3.53 5.12 4.57 3.12

RTN

W4A16

6.43 5.55 4.57 3.87 6.11 5.20 3.67
GPTQ [16] 6.13 5.40 4.48 3.83 5.83 5.13 3.58
AWQ [32] 6.08 5.34 4.39 3.76 6.15 5.12 -
OmniQuant [48] 5.86 5.21 4.25 3.71 5.74 5.02 3.47
QuIP# [54] 5.76 5.17 4.18 3.60 5.56 4.95 3.38

RTN

W4A16g128

5.96 5.25 4.23 3.67 5.72 4.98 3.46
GPTQ [16] 5.85 5.20 4.23 3.65 5.61 4.98 3.42
AWQ [32] 5.81 5.20 4.21 3.62 5.62 4.97 -
OmniQuant [48] 5.77 5.17 4.19 3.62 5.58 4.95 3.40

RTN

W3A16

25.73 11.39 14.95 10.68 539.48 10.68 7.52
GPTQ [16] 8.06 6.76 5.84 5.06 8.37 6.44 4.82
AWQ [32] 11.88 7.45 10.07 5.21 24.00 10.45 -
OmniQuant [48] 6.49 5.68 4.74 4.04 6.58 5.58 3.92
QuIP# [54] 5.98 5.31 4.36 3.78 5.79 5.10 3.56

RTN

W3A16g128

7.01 5.88 4.87 4.24 6.66 5.51 3.97
GPTQ [16] 6.55 5.62 4.80 4.17 6.29 5.42 3.85
AWQ [32] 6.46 5.51 4.63 3.99 6.24 5.32 -
OmniQuant [48] 6.15 5.44 4.56 3.94 6.03 5.28 3.78

QBB (Ours) W(4x1)A16g128 5.69 5.14 4.19 3.64 5.21 4.63 3.20

evaluated across multiple LLM families, our approach matches and outperforms all prior works,
setting a new state-of-the-art result using a summation-only based approach.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The contributions presented in the introduction and abstract align with the
method described in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see the section titled ”Broader impact and limitations“.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Not applicable
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the details are presented in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: No code was included with the paper at submission time.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, they are listed in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: No bar plots are provided, however, the process is deterministic, hence
subsequent runs should result in very similar outcomes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see the Results section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: -

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see the Broader Impact section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All prior resources used are appropiately cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No such data present.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No such data present.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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