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Abstract

Many recent language models (LMs) of the Transformers family are capable of
in-context learning (ICL), manifested in the LMs’ ability to perform a new task
solely from its description in a natural language input. Previous work curating
these models assumes that ICL emerges from vast over-parametrization or the
scale of multi-task training, but recent theoretical work attributes ICL emergence
to training data properties, creating in-context learners with small, synthetic data.

Inspired by these findings, we propose Concept-aware Training (CoAT), a frame-
work for constructing training exemplars that make it beneficial for the LM to
learn to utilize the analogical reasoning concepts from demonstrations. We find
that by using CoAT, pre-trained transformers can learn to better utilise new la-
tent concepts from demonstrations and that such ability makes ICL more robust
to previously uncovered functional deficiencies. Finally, we show that concept-
aware in-context learning improves ICL performance on a majority of new tasks
compared to traditional instruction tuning, reaching performance comparable to
the multitask learners using magnitudes of more training data.

1 Introduction

The in-context learning (ICL), as initially uncovered by Brown et al. (2020), is a setting requiring
language models (LMs) to infer and apply correct functional relationships from the pairs of inputs
and outputs (i.e. demonstrations) presented solely in user input prompt (Li et al., 2023a). Given that
a small set of demonstrations can be obtained for any machine learning task, in-context learning
presents a much more versatile and practical alternative to task-specific models.

Modern in-context learners can often perform ICL with quality comparable to task-specialized mod-
els (Zhao et al., 2023; Štefánik et al., 2023). However, it remains unclear why some LMs are able
of ICL in such quality while others are not; Initial work introducing GPT3 (Brown et al., 2020) fol-
lowed by (Thoppilan et al. (2022); Chowdhery et al. (2022); inter alia) explains ICL as an emergent
consequence of models’ scale. But more recent LMs (Sanh et al., 2022; Wang et al., 2022; Wei
et al., 2021; Ouyang et al., 2022) are based on 100-times smaller models and reach comparable ICL
quality, instead attributing the ICL emergence to a vast volume and diversity of training instructions.

Other work identifies covariates of the emergence of ICL in data irregularities: training cases that
can not be explained by mere statistical co-occurrence of tokens (Chan et al. (2022); Hahn & Goyal
(2023); Appendix A). Notably, Xie et al. (2022) identify the key property in the occurrence of text
dependencies that must be resolved by identifying latent concepts that underpin these dependencies.

Inspired by these findings, we propose and implement a data construction framework that encour-
ages the occurrence of such concept-dependent irregularity in training samples, and hence, requires
models to learn to utilise latent concepts that explain these irregularities. We show that language
models are able to generalize concept-learning ability to unseen concepts, and on extrinsic evalua-
tion over 70 diverse tasks, we show that in-context learning based on concepts has the potential to
enhance training data efficiency, robustness, and performance of in-context learners.

1



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

<sep> <sep> <sep>

already picked demonstrations

P(  = 0.76

P(  = 0.43

P(  = 0.89

P(  = 0.62

<sep>

newly picked demonstrations

<sep> <sep>

All samples 1. Informativeness condition 2. Non-triviality condition

already picked

predicted sample

to be picked

predicted sample

predicted samplecandidates

Figure 1: Demonstrations selection of Concept-aware training (CoAT): From all samples of the
training dataset, we first (i) filter out available samples to ones sharing a reasoning concept# with
predicted sample (xpred, ypred). From this subset, we (ii) incrementally pick the next demonstration,
i.e. candidate sample ci such that the model Θ’s probability of generating the correct prediction ypred
if we pick ci among demonstrations is minimal.

2 Concept-Aware Training

Aiming to create language models able to learn a new latent reasoning concept in-context, we pro-
pose a Concept-Aware Training (CoAT): an instruction-tuning framework specifying conditions
for a selection of few-shot demonstrations in the training instructions (Figure 1). We assume the
format of training prompts widely used in the previous work training in-context few-shot learners
in multitask setting, constructing training instructions from k demonstrations composed of the input
texts x with labels y followed by the predicted sample’s input text xpred:

[x1, y1, ⟨sep⟩, . . . , xk, yk, ⟨sep⟩, xpred]→ ypred

In this setting, CoAT proposes to filter demonstrations sequentially by two conditions. The main
condition, denoted as informativeness condition, assures to pick demonstrations exhibiting a spe-
cific reasoning concept C that is shared between each picked demonstration (xi, yi) and the predicted
example (xpred, ypred). This makes it beneficial for the model to learn to extract and apply informa-
tive concepts of demonstrations. However, as the sole informativeness condition may easily pick
demonstrations very similar to the predicted sample, we propose applying a second condition: Non-
triviality condition chooses from the informative demonstrations the ones with which it is ‘difficult’
for the model to respond correctly. This also increases the heterogeneity of different co-occurring
concepts, avoiding the over-reliance on a small set of specific concepts in a small-data regime.

We implement1 CoAT in two training stages: First, we train LM on a synthetic QA dataset with
annotations of reasoning chains as concepts. Second, we restore the LM’s ability to work with
natural language by further training on a standard QA dataset.

Informativeness condition We find a large collection of annotated reasoning concepts in a
TeaBReaC dataset of Trivedi et al. (2022), containing more than 900 unique explanations over
a relatively large set of synthetic QA contexts. Each TeaBReAC’s explanation maps a nat-
ural question to the answer span through a sequence of declarative reasoning steps, such as
“select→group→project”. Within CoAT, we use these explanations as the shared concepts C; Hence,
in the training exemplars, all demonstrations apply the same reasoning chain as the predicted sample.

To restore the model’s ability to work with a natural language, in the second step, we fit the resulting
model to natural inputs by further fine-tuning on AdversarialQA dataset (Bartolo et al., 2021); As
the annotations of reasoning concepts in general QA datasets are scarce, in this case, we naively
use the initial word of the question (“Who”, “Where”, . . . ) as the shared concept, aware that such-
grouped samples are not always mutually informative.

Non-triviality condition In both training stages, we implement the non-triviality condition in
the following steps. (i) We select a random subset of 20 samples that passed the informativeness
condition (denoted Xinfo). (ii) From Xinfo, we iteratively pick a sequence of i ∈ 1..k demonstrations
(with a randomly-chosen number of demonstrations k : 2 ≤ k ≤ 8) as follows:

1CoAT implementation and our trained models are all available on: https://github.com/MIR-MU/CoAT.
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Figure 2: Relative performance change when (Left) a model is presented with demonstrations utilis-
ing analogical reasoning concept: a) unseen reasoning chains, or b) selected natural concepts (RQ1);
(Right) a model is presented with semantically-unrelated labels in demonstrations (RQ2).

1. For each sample (x j, y j) ∈ Xinfo, we compute a probability of generating the correct predic-
tion ypred if a given sample is included among demonstrations. When ypred contains more
than one token, we compute such probability as the average of the likelihoods of all ypred’s
tokens in the teacher-forced generation.

2. In each step i, we include among the demonstrations a sample (x j, y j) with which the prob-
ability of generating correct prediction is minimal.

An overview of this process is depicted in Fig. 1. Concrete training prompts are displayed in Table 3.

3 Experiments

Our experiments provide empirical evidence towards answering three research questions (RQs):

1. Can we improve models’ ability to benefit from new reasoning concepts in-context?
2. Can concept-aware in-context learners learn functional relations more robustly?
3. Can concept-aware in-context learning improve performance in real-world tasks?

To maximise comparability with the previous work, we fine-tune our models from T5 pre-trained
models of Xue et al. (2021). In both training stages (Sec. 2), we fine-tune all model parameters in
a teacher-forced next-token prediction (sequence-to-sequence objective) until convergence of eval-
uation loss. We construct the evaluation exemplars from k = 3 randomly but consistently chosen
demonstrations consisting of self-containing prompts, with options including expected labels. We
further detail the parameters of our training in Appendix B and of our evaluations in Appendix C.
Baselines We evaluate the impact of each CoAT’s data construction step against two baselines:
(1) Tk-random trained identically to CoAT models but picking the in-context demonstrations ran-
domly with uniform probability over the whole training set, reproducing the methodology of a ma-
jority of previous work on instruction tuning (incl. Tk-Instruct and Flan). (2) Tk-info construct-
ing training prompts from demonstrations passing only the informativeness condition; Such-picked
demonstrations can be similar or identical to the predicted sample, making it trivial to learn a correct
prediction.
Other evaluated models We also evaluate three recent in-context learners for which we can assess
what model and datasets were used in their training mix: (1) T0 (Sanh et al., 2022) trained on a
mixture of 35 datasets of different tasks; (2) Tk-Instruct (Wang et al., 2022) trained in a few-shot
format (Tk-random), over 1,616 tasks, and (3) Flan of (Chung et al., 2022) further extending the
dataset of Tk-Instruct to a total of 1,836 tasks, including 9 tasks with chain-of-thought labels.

4 Results

RQ1: Ability to benefit from new concepts Following Štefánik & Kadlčík (2023), we assess
models’ ability to benefit from new reasoning concepts in evaluation with demonstrations that are
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Figure 3: Win rate of CoAT models on Natural Instructions tasks (Left) against the baselines with
data construction of previous work (§3), and (Right) against previous models trained on mixtures of
35–1,836 tasks. “Similar” denote tasks where the models’ performance does not differ significantly.

guaranteed to share a specific concept with the predicted sample. Afterwards, we quantify models’
gain from using the demonstrated concept by computing the difference in performance between such
concept-sharing evaluation and randomly chosen demonstrations. In this framework, we perform
two analyses: (1) on TeaBReAC’s samples with previously unseen reasoning chains, and (2) on
four natural-language datasets annotating reasoning concepts within their explanations adopted from
Štefánik & Kadlčík (2023) (overviewed in §C) and compare CoAT models to a Tk-random baselines.

Figure 2 (left) shows that both CoAT and random-demonstration models can improve from ana-
logical reasoning chains presented in TeaBReAC’s demonstrations. However, the improvement of
CoAT-trained models is two times and four times larger than of Tk-random with the smaller and
larger model, respectively. Evaluation of improvements on selected natural concepts (Figure 2;
right) shows that concept-learning ability obtained with synthetic data also transfers to natural lan-
guage, as the CoAT models can benefit from concepts significantly more than Tk-random.

RQ2: Robustness to semantic distractions Previous work reports functional deficiencies of re-
cent in-context learners, including insensitivity to the demonstrations’ labels (Min et al., 2022b).
Wei et al. (2023) attribute this to models’ over-reliance on pre-trained semantic priors, i.e. tokens’
meaning. While such property is desirable to a certain extent, over-reliance can hinder the learning
of functional relations necessary for robust in-context learning of truly unseen tasks.

Following Wei et al. (2023), we assess models’ reliance on labels’ semantics over 8 SuperGLUE
tasks as a difference in performance between standard few-shot evaluation (§3) and an evaluation
with one of these modifications; (i) Changing the labels to tokens with irrelevant meaning, such as
‘Foo’, ‘Bar’, etc. (ii) Shuffling the labels so that demonstrations exhibit semantically incorrect la-
bels, but the input-label mapping remains consistent. Note that in both settings, the task’s functional
relation can still be learnt from demonstrations. We evaluate three model types: (a) CoAT-trained
models, (b) models with uncontrolled data construction (Tk-random& previous work), and (c) mod-
els with uncontrolled data construction, but fine-tuned only on a natural QA dataset (Tk-QA).

Figure 2 (right) shows the results. Tk-QA’s evaluations show that pre-training with synthetic dataset
itself mitigates over-reliance on semantics, but a comparison of Tk-random and Tk-CoAT suggests
that Tk-CoAT’s robustness to semantic distractions is a composition of both synthetic data and
CoAT’s data construction. Further, we note that multitask learners experience substantially larger
decay in performance; This could be a bias of massive multi-task learning, where label semantics can
explain a large portion of training data. This result is consistent with Wei et al. (2023), but contrary,
we show that ICL robust to semantic distractions does not emerge exclusively with (≥ 100B) scale.

RQ3: Practical efficiency of concept-aware in-context learners Finally, we assess whether the
concept-based ICL ability obtained within CoAT (Sec. 2) also helps in models’ ability to in-context
learn new tasks, as exhibited by models’ performance on a collection of unseen tasks, without any
concept annotations. We primarily compare the results of CoAT models to Tk-random, where we
can ensure that all training settings, except the data construction, are identical. As an ablation, we
also compare to Tk-info (without Non-triviality condition; §3). We evaluate models on two task
collections: (i) on 60 extractive tasks of the test split of Natural Instructions (Wang et al., 2022), and
(ii) on all SuperGLUE tasks (Wang et al., 2019) (in Appendix C).
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Figure 3 (left) compares the accuracy of CoAT models to our baselines. In comparison to Tk-
random, CoAT models reach significantly higher accuracy on 41 and 45 of 60 tasks, with comparable
performance on 13 and 14 of remaining tasks. The difference is further magnified on reasoning tasks,
which might better reflect on learning tasks’ functional relations. A comparison of Tk-Info with
Tk-random shows that CoAT’s improvements are mainly fostered by the informativeness condition.
SuperGLUE evaluations (Table 1) show similar trends: with a single exception, models utilising
a concept-sharing selection of demonstrations (Tk-CoAT and Tk-Info) consistently reach higher
scores than Tk-random. Our analyses reveal that the primary difference is in models’ ability to
follow the instruction; in 7 out of 20 evaluations, Tk-random responds out of valid label space.

Figure 3 (right) compare CoAT trained on two tasks with the models of previous work, trained on
mixtures of 35–1,836 tasks. In All tasks, CoAT models are comparable on the majority of tasks
in 5 out of 6 competitions. The evaluation on reasoning tasks supports our hypothesis that CoAT
particularly promotes improvements in learning new reasoning abilities, winning on this segment
over Flan and Tk-Instruct in a comparable number of cases as the opponents. Table 2 details
models’ scores on SuperGLUE tasks, providing further evidence on a comparability of CoAT models
to multitask learners. For instance, a comparison with Tk-Instruct reveals that CoAT’s 1B and 3B
models reach higher absolute results on 3 and 5 out of the 7 Tk-Instruct’s unseen tasks. More
comparisons with previous models can be found in Appendix D.1.

AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC

Tk-random-1B 49.4±5.2 43.6±4.8 52.7±5.1 21.8±3.9 29.3±4.6 18.0±4.0 15.3±3.8 34.0±5.0 74.7±3.4 5.1±2.4
Tk-random-3B 50.2±5.4 57.5±4.8 52.0±5.5 47.8±5.1 48.9±4.8 50.1±4.4 16.3±7.3 62.8±4.6 75.5±2.8 2.1±1.5

Tk-info-1B 50.0±4.2 42.6±5.7 52.0±4.3 47.2±3.9 49.2±4.8 53.2±4.5 15.5±4.0 19.6±2.3 61.5±2.3 3.2±1.2
Tk-info-3B 50.8±4.6 57.2±4.9 53.5±4.8 47.3±5.4 54.7±4.9 53.6±4.7 22.6±4.5 64.4±4.8 76.3±3.0 2.7±2.1

Tk-CoAT-1B 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6
Tk-CoAT-3B 57.9±4.9 57.2±4.8 53.6±4.5 60.4±4.8 52.0±5.4 56.9±5.0 23.1±3.8 63.6±4.3 81.3±3.3 56.9±3.6

Table 1: Efficiency of concept-aware training: SuperGLUE: ROUGE-L scores of ICL models
evaluated in few-shot setting on SuperGLUE tasks (Wang et al., 2019), trained using (i) random
demonstrations sampling used in previous work, (ii) informative demonstrations sampling (§3) and
(iii) informative+non-trivial sampling (CoAT; §2). Underlined are the best results per each task and
model size.

# train tasks AxG Ax-b WSC CB RTE WiC ReCoRD BoolQ COPA MultiRC

Flan-1B 1,836 84.8±3.9 21.9±4.0 70.7±4.8 92.5±2.8* 92.1±3.0* 69.9±5.1* 38.9±5.2* 92.3±2.7* 97.8±1.5* 88.3±3.2*
Flan-3B 1,836 95.3±3.7 22.0±8.0 80.2±9.2 92.7±6.7* 96.0±4.0* 79.7±8.3* 62.2±9.7* 92.1±5.1* 99.3±1.6* 90.4±6.4*

Tk-Instruct-1B 1,616 51.9±4.9 57.2±5.8 49.8±4.9 46.0±5.5 55.5±4.8 53.5±5.3 13.1±3.7 63.4±3.4* 76.9±3.2* 62.2±5.1*
Tk-Instruct-3B 1,616 53.5±4.7 49.9±4.9 51.2±4.9 66.3±4.6 62.7±4.6 50.4±4.8 18.6±4.2 68.8±4.4* 73.8±3.5* 59.9±4.9*

T0-3B 35 65.0±4.5 36.1±4.6 53.5±5.2 48.0±5.4 51.3±5.2 54.0±5.0 20.5±4.0 60.1±4.9 56.8±3.6 56.2±4.4

Tk-CoAT-1B 2 50.4±5.3 52.7±4.6 53.6±5.2 46.9±4.9 53.7±4.9 53.5±5.3 17.0±3.5 63.8±5.4 76.1±3.2 11.4±2.6
Tk-CoAT-3B 2 57.9±4.9 57.2±4.8 53.6±4.5 60.4±4.8 52.0±5.4 56.9±5.0 23.1±3.8 63.6±4.3 81.3±3.3 56.9±3.6

Table 2: Concept-aware training vs previous models: SuperGLUE: ROUGE-L of CoAT-trained
ICL models and models of comparable size in previous work. Evaluation setup is consistent with
Table 1. In cases marked with ∗, the task was used in the model’s training; Underlined are the best
results per unseen task and model size.

Conclusions

We propose Concept-aware Training (CoAT), a framework for constructing training data that make it
beneficial for a language model to learn to utilise latent reasoning concepts. We show that language
models can learn to perform a concept-based ICL (RQ1), and that concept-based ICL is more robust
in learning functional relations from demonstrations (RQ2). Finally, we find that concept-based
ICL also brings performance gains in the ICL of a majority of unseen tasks (RQ3), performing
comparably to models trained on over 1,600 tasks when trained with only two QA tasks.

More broadly, we explore an alternative axis to scaling the ICL quality, complementing the known
model and data scale axes. We wish to inspire future work towards a more proactive consideration
of properties of training data so that fitting such data necessitates the emergence of specific, robust
capabilities, such as the concept modelling ability.
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A Background

Methods for training in-context learners In-context learning ability, including few-shot ICL,
was first uncovered in GPT3 Brown et al. (2020) trained unsupervisedly for causal language mod-
elling. With no other substantial differences to previous GPT models, the emergence of ICL was at-
tributed to GPT3’s scale, having grown to over 170-billion parameters since GPT2 (≈800M params).

Not long after, a pivotal work of Schick & Schütze (2020) on a Pattern-exploiting training (PET)
has shown that even much smaller (110M) models like BERT Devlin et al. (2019) can be fine-tuned
using self-training in a similarly small data regime, first disputing the assumption on the necessity
of the scale in rapidly learning new tasks.

A new branch of autoregressive generation models further undermined the assumption of the size
conditioning of ICL. In one of the pivotal works, Min et al. (2022a) fine-tune smaller pre-trained
models (<1B parameters) on a large mixture of tasks in the few-shot prompt format and shows that
such models are also able to perform well on previously unseen tasks. Following approaches also
train smaller models for instruction following Sanh et al. (2022); Wang et al. (2022) on large mix-
tures of tasks, assuming that the model’s ability to learn an unseen task without updates emerges
from a large variety of diverse instruction formats and task types. A recently popularised rein-
forcement learning approach of InstructGPT Ouyang et al. (2022) also presents an adaptation of
instruction-following objectives, training on a large variety of instructions with automatic feedback.
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Recently, the instruction following approach was complemented by joint training on programming
code generation tasks Chen et al. (2021) and by Chain-of-Thought (CoT) objective Wei et al. (2022),
where the model is trained to respond with a sequence of natural-language steps deducing its answer
(Zhao et al., 2023). Both these extensions were empirically shown to enhance ICL ability Fu & Khot
(2022) and were adopted by Flan models Chung et al. (2022).

Analyses of ICL Despite the accuracy of ICL in many recent LMs, it remains a matter of open
discussion as to why the in-context learning emerges.

Recent studies shed some light in this direction through controlled experimentation, finding that the
LMs’ decision-making in ICL does not align with human intuition; Notably, Lu et al. (2022) first
report on the sensitivity of LMs to the specific formulation of the instructions in the prompt, while
Liu et al. (2022) report on LMs’ surprising sensitivity to the ordering of in-context demonstrations.
Further, it was shown that LMs perform ICL comparably well when the labels of the demonstrations
are randomly shuffled (Min et al., 2022b) or when the presented CoT sequences do not make sense
(Wang et al., 2023). We note that such behaviours differ from learning a functional relation of inputs
and labels from demonstrations that we might expect from in-context learners Li et al. (2023a).

Still, other studies report that under the right conditions, LMs are able to learn functional rela-
tionships solely from the input prompt; For instance, studies of Akyürek et al. (2023); Li et al.
(2023b) show that Transformers can be trained to accurately learn regression functions solely from
the prompt.

Xie et al. (2022) might be the first to identify the causal effects on ICL quality in specific data
properties, rather than data scale, identifying the causal in the presence of the latent concepts that
the model needs to utilise to improve in the training task (either pre-training or fine-tuning). Related
work attributes ICL to similar data irregularities, such as statistical burstiness Chan et al. (2022)
or compositionality (Hahn & Goyal, 2023). Note that these studies are not conflicting with the
aforementioned empirical results, but rather explain the causes of their success; For instance, in
multi-task training, smaller LMs might indeed necessarily learn to identify shared concepts from
inputs (Wies et al., 2023).

Our work builds upon these findings, but compared to the referenced studies limited to in-silico
experiments, we bring the idea of concept-aware training into real-world settings, implemented
with publicly available datasets and widely-used pre-trained models. We measure the impact of
concept-aware data construction in extrinsic evaluation over 70 diverse tasks and show its potential
to substantially enhance data efficiency and robustness in training in-context learners, compared to
previous work using magnitudes of more data and compute.

B Training details

Table 3 shows a full training example for each stage of training: (1) TeaBReaC with synthetic
contexts (top) and (2) AdversarialQA with natural-language contexts (bottom). In all our training
setups, we fine-tune all model parameters for teacher-forced next-token prediction, conventionally
used in training sequence-to-sequence language models. In the two training stages (TeaBReaC and
AdversarialQA), we use a learning rate of 5e−5 and 2e−5, respectively. Other parameters remain
identical between stages: effective batch size = 30 samples and early stopping with the patience
of 2,000 updates based on evaluation loss on a standardized validation set of each dataset. We do
not report the absolute values of evaluation loss as these are not directly comparable. In CoAT
training, we use a random subsample of 20 informative examples as a candidate set for a selection
of non-trivial demonstrations.

Other parameters of training configuration default to Training Arguments of Transformers library
Wolf et al. (2020) in version 4.19.1. For readability, we implement the relatively complex demon-
strations’ selection as a new objective of the Adaptor library Štefánik et al. (2022). The picked
demonstrations are encoded into a format consistent with the evaluation.
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Dataset Concept Training instruction Target

TeaBReaC Exactly-
matching
reasoning
chain
["select"→
"maximum"
→ "list"→
"maximum"
→ "sum"]

“Input: how many points did the Monte Vesuvio" score in their two highest scoring
matches? Context: scores of games of Pentagon". 99 scores of games of monte
vesuvio". 67 scores of games of Pentagon". 6 scores of games of monte vesuvio".
76 scores of games of Pentagon". 37 scores of games of monte vesuvio". 56 scores
of games of Pentagon". 8 scores of games of Pentagon". 90 scores of games of
Pentagon". 20 Answer: Prediction: 143 [2 more examples] Input: how many points
did the Bell 212 score in their two highest scoring games? Context: scores of games
of bell 212. 90 scores of games of S-50. 54 scores of games of bell 212. 41 scores
of games of bell 212. 36 scores of games of S-50. 23 scores of games of bell 212. 6
scores of games of bell 212. 2 scores of games of S-50. Prediction: ”

“131”

AdversarialQA Matching
question-
word “Who”

“Input: Who was the Speaker in 1909? Context: Second, Democrats have always
elevated their minority floor leader to the speakership upon reclaiming majority status.
Republicans have not always followed this leadership succession pattern. In 1919, for
instance, Republicans bypassed James R. Mann, R-IL, who had been minority leader
for eight years, and elected Frederick Gillett, R-MA, to be Speaker. Mann "had an-
gered many Republicans by objecting to their private bills on the floor;" also he was a
protégé of autocratic Speaker Joseph Cannon, R-IL (1903–1911), and many Members
"suspected that he would try to re-centralize power in his hands if elected Speaker."
More recently, although Robert H. Michel was the Minority Leader in 1994 when
the Republicans regained control of the House in the 1994 midterm elections, he had
already announced his retirement and had little or no involvement in the campaign,
including the Contract with America which was unveiled six weeks before voting day.
Prediction: Joseph Cannon, R-IL. [2 more examples] Input: Who created the legal
system still in use in Florida? Context: As a result of these initiatives northeastern
Florida prospered economically in a way it never did under Spanish rule. Further-
more, the British governors were directed to call general assemblies as soon as pos-
sible in order to make laws for the Floridas and in the meantime they were, with the
advice of councils, to establish courts. This would be the first introduction of much of
the English-derived legal system which Florida still has today including trial by jury,
habeas corpus and county-based government. Neither East Florida nor West Florida
would send any representatives to Philadelphia to draft the Declaration of Indepen-
dence. Florida would remain a Loyalist stronghold for the duration of the American
Revolution. Prediction: ”

“British”

Table 3: Examples of training instructions with expected outputs, for both our datasets applied in
training. Note that the shared reasoning concept is not a part of the model’s input.

C Evaluation details

Tables 4 shows an example of an instruction for each evaluation that we perform within the concept-
learning evaluation. For readability, we only shorten the examples of HotpotQA, where we omit
some sources of data available for the model. In the case of TeaBReaC not shown in this table,
the evaluation prompt format is the same as in training (Table 3), whereas we make sure that the
reasoning chains of evaluation samples differ from the training.

SuperGLUE Evaluation format For SuperGLUE tasks, we verbalize both the demonstrations
and predicted sample using all available templates within PromptSource library (Bach et al., 2022),
obtaining prompts for each demonstration prompt xi and its label yi in a free-text form. The prompts
commonly contain the full-text match of the possible labels as options for the model.

Following the example of Wang et al. (2022), we additionally prepend the demonstrations and labels
with keywords “Input” and “Prediction” and separate demonstrations with new lines. Thus, the
resulting input→output pairs in evaluation take this format:

“Input: x1 Prediction: y1 <newline>
Input: x2 Prediction: y2 <newline>
Input: x3 Prediction: y3 <newline>
Input: xpred Prediction: ” → “ypred”

where demonstrations (xi, yi) are picked randomly but consistently between all evaluated models.

We report results for the best-performing template for each model.

Natural-Instructions Evaluation format In the evaluations on Natural-Instructions, we closely
follow the example of Wang et al. (2022) and additionally prepend the sequence of demonstrations
with an instruction provided for each task:
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Dataset Concept Model instruction Expected output

GLUE NLI Diag. Double negation “Input: I will say that she stole my money. Question: I won’t say
that she didn’t steal my money. True, False, or Neither? Prediction:
Neither Input: I won’t say that she didn’t steal my money. Question:
I will say that she stole my money. True, False, or Neither? Predic-
tion: Neither Input: A rabbi is at this wedding, standing right there
standing behind that tree. Question: It’s not the case that there is no
rabbi at this wedding; he is right there standing behind that tree. True,
False, or Neither? Prediction: True Input: Even after now finding
out that it’s animal feed, I won’t ever stop being addicted to Flamin’
Hot Cheetos. Question: Even after now finding out that it’s animal
feed, I will never stop being addicted to Flamin’ Hot Cheetos. True,
False, or Neither? Prediction: ”

“True”

OpenBookQA Shared facts:
{"Earth is greater in
mass than Mars",
"gravity means
gravitational pull;
gravitational force;
gravitational
attraction", "as the
force of gravity
increases, the weight
of objects will
increase."}

“Facts: a decrease is a kind of change. increase means more. as mass
of a planet; of a celestial body increases, the force of gravity on that
planet will increase. to change means to become different. an animal is
a kind of living thing. the gravitational force of a planet; of a celestial
object does not change the mass of an object on that planet or celestial
body. an increase is the opposite of a decrease. an astronaut is a kind
of human. massive means great in mass. the Mars Rover is a kind of
vehicle. a living thing is a kind of object. Earth is greater in mass than
Mars. gravity means gravitational pull; gravitational energy; gravita-
tional force; gravitational attraction. greater means higher; more in
value. stay the same means not changing. a moon is a kind of ce-
lestial object; body. an increase is a kind of change. Earth is a kind
of planet. as the force of gravity increases, the weight of objects will
increase. less is similar to decrease. Mars is a kind of planet. Input:
An object has a weight of 10 kg on the surface of Earth. If the same
object were transported to the surface of Mars, the object would have
a weight of 3.8 kg. Which best explains why the weight of the ob-
ject changed when transported from Earth to Mars? (A) The density
of the object is greater on Earth than it is on Mars. (B) The volume
of the object is greater on Earth than it is on Mars. (C) Gravitational
force is greater on Earth than it is on Mars. (D) Atmospheric pressure
is less on Earth than it is on Mars. Prediction: Gravitational force
is greater on Earth than it is on Mars [two more examples] Input:
When astronauts walked on the Moon, they used weighted boots to
help them walk due to the lower gravitational pull. What difference
between Earth and the Moon accounts for the difference in gravity?
(A) density (B) diameter (C) mass (D) volume. Prediction: ”

“mass”

HotpotQA Shared relation in
reasoning: “X is a
genus”

“Input: Are Broughtonia and Laeliocattleya both orchids? Hint:
use the information from the paragraphs below to answer the ques-
tion. Otaara, abbreviated Otr. in the horticultural trade, is an inter-
generic hybrid of orchids, with "Brassavola", "Broughtonia", "Catt-
leya", "Laelia" and "Sophronitis" as parent genera. Paracaleana com-
monly known as duck orchids, is a genus of flowering plants in the or-
chid family, Orchidaceae that is found in Australia and New Zealand.
Duck orchids have a single leaf and one or a few, dull-coloured, in-
conspicuous flowers. (...) Prediction: yes [two more examples] In-
put: Are both Parodia and Thalictrum flowering plants? Hint: use
the information from the paragraphs below to answer the question.
- Thalictrum ( ) is a genus of 120-200 species of herbaceous peren-
nial flowering plants in the Ranunculaceae (buttercup) family native
mostly to temperate regions. Meadow-rue is a common name for
plants in this genus. - Parodia is a genus of flowering plants in the
cactus family Cactaceae, native to the uplands of Argentina, Peru, Bo-
livia, Brazil, Colombia and Uruguay. This genus has about 50 species,
many of which have been transferred from "Eriocactus", "Notocactus"
and "Wigginsia". They range from small globose plants to 1 m tall
columnar cacti. All are deeply ribbed and spiny, with single flowers at
or near the crown. Some species produce offsets at the base. They are
popular in cultivation, but must be grown indoors where temperatures
fall below 10 degrees. Prediction: ”

“yes”

WorldTree Relation of objects:
"generate"

“Input: Despite what some think, instead around themselves, our
planet spins around... Choices: pluto, the moon, the milky way, the
sun. Prediction: the sun Input: In a single year, a giant globe will do
this to a giant star. Choices: fight, burn, circle, explode. Prediction:
circle Input: The earth revolves around... Choices: a heat source,
the Milky Way, a neighboring planet, the moon. Prediction: a heat
source Input: the central object of our solar system is also... Choices:
the smallest object in the solar system, the coldest heavenly body, the
farthest star from us, the closest star from us. Prediction: ”

“the closest star from
us”

Table 4: Examples of evaluation instructions with expected outputs, for each dataset used in eval-
uation of in-context learning of new concepts (RQ1). Note that the demonstrations within the in-
structions share the annotated Concept with the following predicted sample.
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Dataset Concept Model instruction Expected
output

SuperGLUE - “Input: The soldiers were concealed in the brush. Select the most plausible cause: - They
were armed with rifles. - They wore camouflage uniforms. Prediction: They wore camou-
flage uniforms. Input: The print on the brochure was tiny. Select the most plausible effect: -
The man put his glasses on. - The man retrieved a pen from his pocket. Prediction: The man
put his glasses on. Input: I excused myself from the group. Select the most plausible cause:
- I turned off my phone. - My phone rang. Prediction: My phone rang. Input: My body cast
a shadow over the grass. Select the most plausible cause: - The sun was rising. - The grass
was cut. Prediction:”

“The
sun was
rising.”

Natural-Instructions - “Indicate with ‘Yes‘ if the given question involves the provided reasoning ‘Category‘. In-
dicate with ‘No‘, otherwise. We define five categories of temporal reasoning. First: "event
duration" which is defined as the understanding of how long events last. For example, "brush-
ing teeth", usually takes few minutes. Second: "transient v. stationary" events. This category
is based on the understanding of whether an event will change over time or not. For example,
the sentence "he was born in the U.S." contains a stationary event since it will last forever;
however, "he is hungry" contains a transient event since it will remain true for a short pe-
riod of time. Third: "event ordering" which is the understanding of how events are usually
ordered in nature. For example, "earning money" usually comes before "spending money".
The fourth one is "absolute timepoint". This category deals with the understanding of when
events usually happen. For example, "going to school" usually happens during the day (not
at 2 A.M). The last category is "frequency" which refers to how often an event is likely to be
repeated. For example, "taking showers" typically occurs 5 times a week, "going to Saturday
market" usually happens every few weeks/months, etc. Input: Sentence: Jack played basket-
ball after school, after which he was very tired. Question: How long did Jack play basketball?
Category: Event Duration. Prediction: Yes Input: Sentence: He was born in China, so he
went to the Embassy to apply for a U.S. Visa. Question: How often does he apply a Visa?
Category: Frequency. Prediction: Yes Input: Sentence: Jack played basketball after school,
after which he was very tired. Question: Was Jack still tired the next day? Category: Event
Duration. Prediction: No Input: Sentence: It refers to a woman who is dangerously attrac-
tive, and lures men to their downfall with her sexual attractiveness. Question: How long does
it take to lure men to their downfall? Category: Event Duration. Prediction: ”

“Yes”

Table 5: Examples of evaluation instructions with expected outputs, for selected tasks of Super-
GLUE and Natural-Instructions (RQ3). Displayed samples are from CoPA and MCTato Temporal
Reasoning tasks, respectively. Note that in these evaluations, demonstrations are picked randomly,
regardless of their concepts.

“<task instruction> <newline>
Input: x1 Prediction: y1 <newline>
Input: x2 Prediction: y2 <newline>
Input: x3 Prediction: y3 <newline>
Input: xpred Prediction: ” → “ypred”

where the <task instruction> contains the instruction as would be given to the annotators of the
evaluation task, usually spanning between 3–6 longer sentences. The demonstrations are again
picked randomly but consistently between models.

We complement all the evaluations with confidence intervals from the bootstrapped evaluation. We
analyse the error cases (Appendix C) and choose to report the results in ROUGE-L for SuperGLUE,
and in a standard accuracy for Natural-Instructions. This selection is justified in the following Sec-
tion.

C.1 Concepts evaluation

Following Štefánik & Kadlčík (2023), we evaluate our models on four natural-language concepts:
(i) reasoning logic of NLI samples of GLUE-Diagnostic dataset (Wang et al., 2018), (ii) entity
relations annotated in human explanations (Inoue et al., 2020) in the HotpotQA dataset (Yang et al.,
2018), (iii) functional operations within general elementary-grade tests of OpenBookQA (Mihaylov
et al., 2018), and (iv) shared facts in science exams of WorldTree dataset (Jansen et al., 2018; Xie
et al., 2020).

Figure 4 shows separate evaluation per each of these concepts. We see that while CoAT improves
models’ ability to work with concepts in average, this ability is still not consistent, leaving the
challenge open for future work.
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Figure 4: In-context learning of specific natural concepts: While CoAT improves the ability to
benefit from reasoning concepts on average (Fig. 2), per-concept evaluation reveals that this ability
is not consistently robust.

C.2 Evaluation metrics selection

Previous work training in-context few-shot learners is not consistent in the use of evaluation met-
rics, and the choice usually boils down to either using the exact-match accuracy (Sanh et al., 2022;
Chung et al., 2022) or ROUGE-L of Lin (2004) (Wang et al., 2022), evaluating the longest common
sequence of tokens. We investigate these two options with the aim of not penalising the models for
minor discrepancies in the output format (in the accuracy case) but avoiding false positive evalua-
tions in predictions that are obviously incorrect (in the ROUGE case).

Investigation of the models’ predictions reveals that the selection of the metric makes a large differ-
ence only in the case of Tk-Instruct models, where the situation differs between SuperGLUE and
Natural-Instructions, likely due to the character of the evaluation prompts.

(1) On SuperGlue, e.g. on MultiRC task, for the evaluation prompt: "Does answer sound like a
valid answer to the question: question", Tk-Instruct-3B in our evaluation predicts "Yes." or "Yes it
is" (instead of "Yes"), or "No not at all" (instead of "No"), likely due to the resemblance with the
format of training outputs. As we do not wish to penalize these cases, we use ROUGE-L over all
SuperGLUE evaluations.

(2) In Natural-Instructions evaluation, we find that Tk-Instruct often predicts longer extracts from
the input prompt. This is problematic with ROUGE-L in the cases where the extract contains all
possible answers, such as in the Tk-Instruct-1B’s prediction: “yes or no” to the prompt whose
instruction ends with “Please answer in the form of yes or no.”. As we encounter this behaviour in a
large portion of Natural-Instructions tasks, we evaluate all models on Natural-Instructions for exact-
match accuracy after the normalization of the casing and the removal of non-alphabetic symbols.
To make sure that the model is presented with the exact-matching answer option, we exclude from
evaluation the tasks where the correct answer is not presented in the task’s instruction. The reference
to the list of Natural-Instructions evaluation tasks can be found in Appendix D.4.

For the reported evaluations of the Reasoning tasks, we pick from the list of evaluation tasks the
ones concerned with the reasoning task by simply matching the tasks with ‘reasoning’ in their name,
resulting in the collection of 20 evaluation tasks.

D Further evaluations

D.1 SuperGLUE evaluations of other models

Table 2 compares the performance over the tasks of SuperGLUE collection (Wang et al., 2019) for
CoAT models trained on two tasks of the same (QA) type with in-context learners trained on 35–
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Figure 5: Impact of Concept-aware training per different language settings: Pairwise compar-
ison of models trained using selected training configurations (§3) on (top) Non-English tasks and
(bottom) English-only tasks of Natural-Instructions collection. Values in green and red bars indi-
cate a number of tasks where the referenced model reaches significantly higher accuracy than the
other. For the tasks denoted as similar, the difference in performance falls within the evaluation’s
confidence intervals.

Tk-Flan-3B

Tk-Flan-1B

Tk-Instruct-3B

Tk-instruct-1B

T0-3B

T0-3B

Tk-CoAT-3B

Tk-CoAT-1B

Tk-CoAT-3B

Tk-CoAT-1B

Tk-CoAT-3B

Tk-CoAT-1B

4
4

11
9
9

9
10

13
4

7
7

3
2

3
1

Natural-Instructions: Non-English tasks

Tk-Flan-3B

Tk-Flan-1B

Tk-Instruct-3B

Tk-instruct-1B

T0-3B

T0-3B

Tk-CoAT-3B

Tk-CoAT-1B

Tk-CoAT-3B

Tk-CoAT-1B

Tk-CoAT-3B

Tk-CoAT-1B

4
5
7

17
29

27

7
17

11
12

4
11

33
22

26
15

11
6

Natural-Instructions: English-only tasks

Figure 6: Comparison to previous work per different language settings: Pairwise comparison
of CoAT models vs. the models of previous work on (top) Non-English tasks and (bottom) English-
only tasks of Natural-Instructions collection. Values denote the number of tasks where the model
reaches significantly better accuracy. For the tasks denoted as similar, the difference in performance
falls within the evaluation’s confidence intervals.

1,836 tasks of the comparable size. Despite the significantly smaller volumes and complexity of
the training dataset, CoAT-trained models show competitive results to similar-size or even larger in-
context learners of previous work. For instance, the 1-billion-parameter Tk-CoAT performs better
than the 3-billion T0 in 3 cases (Ax-b, RTE, COPA) and comparably in another 3 cases (WSC, CB,
WiC). In comparison with Tk-instruct of the same size, Tk-CoAT-1B outperforms Tk-instruct in
3 out of 7 unseen tasks (WSC, CB, ReCoRD), and reaches similar scores in most other cases, even
in 2 out of 3 tasks that were included in Tk-instruct’s training mix. Similarly, larger Tk-CoAT-3B
outperforms Tk-instruct on 4 of 7 new tasks (Ax-b, WSC, WiC, ReCoRD), but with larger gaps on
the others.

D.2 Natural-Instructions: other task types

Figure 5 evaluates the impact of CoAT’s mechanism on the quality of in-context learning separately
on the English and non-English tasks. The figure reveals that CoAT works particularly well for non-
English tasks. Our analyses found this is mainly due to the low performance of the baseline on the
non-English tasks. We speculate that this can be a consequence of the higher reliance of the baseline
on token semantics (Section 4, RQ2); As our models are fine-tuned on an English-only QA model,
such learnt reliance is not applicable in multilingual settings.

Figure 6 compares the performance of CoAT models against the models of previous work, separately
on the English and non-English tasks. We can see that CoAT is slightly better at the multilingual
portion of Natural-Instructions, but the difference is not principal.

D.3 Per-concept evaluations

Figure 4 evaluates the performance gains of the baseline models (§3) and CoAT-trained models
individually per each of the concepts of the natural datasets. While the CoAT models are able to
benefit from concepts the largest in the relative change of quality, they are also not consistent in the
ability to benefit from all the concepts.
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D.4 Evaluation tasks and other configurations

SuperGLUE (Wang et al., 2019) consists of the following tasks (as ordered in our Results, §4):
Winogender Schema Diagnostics (AxG) (Rudinger et al., 2018), Broadcoverage Diagnostics (CB),
The Winograd Schema Challenge, CommitmentBank (CB), Recognizing Textual Entailment (RTE),
ContextWords in Context (WiC) (Pilehvar & Camacho-Collados, 2019), Reading Comprehension
with Commonsense Reasoning (ReCoRD) (Zhang et al., 2018), BoolQ (Clark et al., 2019), Choice
of Plausible Alternatives (COPA), Multi-Sentence Reading Comprehension (MultiRC).

Natural-Instructions consists of a larger mixture of tasks, which we do not enumerate here to main-
tain readability; the full list of evaluation tasks can be found in the original work of Wang et al.
(2022) in Figures 11 and 12.

To maintain comparability of evaluations among models, we deterministically fix the demonstration
selection procedure so that only the full prediction prompts for all the models are the same. In the
analyses comparing the differences in performance (§4; RQ1+2), we fixed the prediction samples
(xpred) between different demonstrations’ sampling strategies to avoid perplexing our comparison
with possible data selection biases. Further details can be found in the referenced implementation.

E Computational Requirements

We run both training and evaluation experiments on a machine with dedicated single NVIDIA A100-
SXM-80GB, 40GB of RAM and a single CPU core. Hence, all our reproduction scripts can run on
this or a similar configuration. Two stages of training in total take at most 6,600 updates and at most
117h of training for Tk-CoAT to converge.
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