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Abstract
We introduce a family of algorithms for on-
line conformal prediction with coverage guar-
antees for both adversarial and stochastic data.
In the adversarial setting, we establish the stan-
dard guarantee: over time, a pre-specified tar-
get fraction of confidence sets cover the ground
truth. For stochastic data, we provide a guaran-
tee at every time instead of just on average over
time: the probability that a confidence set covers
the ground truth—conditioned on past observa-
tions—converges to a pre-specified target when
the conditional quantiles of the errors are a linear
function of past data. Complementary to our the-
ory, our experiments spanning over 15 datasets
suggest that the performance improvement of our
methods over baselines grows with the magni-
tude of the data’s dependence, even when base-
lines are tuned on the test set. We put these
findings to the test by pre-registering an exper-
iment for electricity demand forecasting in Texas,
where our algorithms achieve over a 10% reduc-
tion in confidence set sizes, a more than a 30%
improvement in quantile and absolute losses with
respect to the observed errors, and significant out-
comes on all 78 out of 78 pre-registered hypothe-
ses. We provide documentation for the pypi pack-
age implementing our algorithms here: https:
//conformalopt.readthedocs.io/.

1. Introduction
It would be unreasonable to presume that a predictive model
would maintain its accuracy eternally—populations change,
new scenarios arise, individuals modify behavior—so seek-
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ing a predictor that can always guarantee its accuracy is
no more than a snipe hunt. Instead, however, we might
seek an appropriate (and dynamic) level of confidence in
our predictions, even in the face of changing data processes.
Even more, we ought to develop procedures that can provide
such guarantees in arbitrary settings, so that we do not rely
on (likely invalid) modeling assumptions, but which can in
fact do the “right thing,” adapting to underlying structure
when it exists. To address these desiderata, this work adopts
and adapts online conformal prediction, providing predic-
tive confidence sets for which, over time, a pre-specified
fraction covers the ground truth, even if data is adversarial.

Current algorithms for online conformal prediction resem-
ble bang-bang controllers from control theory, which switch
between two extreme states to achieve a desired behav-
ior. The first algorithm to propose this approach, Gibbs &
Candès’s Adaptive Conformal Inference (ACI) 2021, con-
structs confidence sets using a single parameter that governs
their level of conservativeness. The update rule for this pa-
rameter is simple: on an error, increase the parameter by a
constant, and otherwise, decrease it by (another) constant,
inducing bang-bang behavior. Existing theoretical analy-
ses for ACI suggest making these switches as aggressive
as possible to obtain the tightest coverage. Several works
have extended ACI by adaptively tuning the magnitude of
these updates (Gibbs & Candès, 2024; Zaffran et al., 2022;
Bhatnagar et al., 2023) or with more sophisticated update
rules that, that for example, incorporate other aspects from
control (Angelopoulos et al., 2023; Yang et al., 2024), but
all fundamentally share the same bang-bang backbone.

This purely adversarial approach overlooks the possibility
of achieving stronger guarantees under more predictable
data. In this work, we show that directly modeling the
distribution of errors can provide both new theoretical guar-
antees and empirical benefits. Our key observation is that
we can develop algorithms that not only satisfy the standard
adversarial guarantees, but also achieve time-conditional
coverage guarantees for stochastic data by solving a stochas-
tic optimization problem. These time-conditional coverage
guarantees ensure that we eventually achieve the target cov-
erage level at all times, instead of only when averaged across
time. While we are not the first to depart from purely ad-
versarial guarantees—past work considers the i.i.d. setting
(Angelopoulos et al., 2024)—we provide guarantees for a
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general class of standard stochastic processes that exhibit
dependence across time, such as autoregressive processes.

Our theoretical results show the benefits of this approach
across three main settings. In the first, we show the stan-
dard adversarial guarantee that over time, a pre-specified
fraction of our prediction sets contain the true label. That
is, in the worst-case setting where an adversary hand-picks
the data, we still satisfy the same general guarantees as in
past work. In the other two, we consider stochastic data. We
first prove that when our model for the underlying errors is
well-specified, we get a time-conditional coverage guaran-
tee. The byproducts of these guarantees are new theoretical
results for strongly convex stochastic optimization, where
we develop convergence guarantees for stochastic gradient
methods that operate with dependent data. In the second
setting, where our model is mis-specified but an ergodic
stochastic process generates the data, we show the conver-
gence of our algorithms to the minimizer of an expected loss
with respect to the stationary data distribution. Here, we
extend past results on convex optimization with ergodic data
(Duchi et al., 2012; Agarwal & Duchi, 2013) to last-iterate
strongly convex settings.

In addition to our theory, we empirically evaluate our pro-
posed algorithms alongside existing ones. We first use sev-
eral standard datasets in the online conformal literature,
where we control the marginal coverage of all algorithms
to make fair comparisons. In the spirit of truly testing our
proposed algorithms, we also conduct a pre-registered ex-
periment on a period of electricity consumption data in
Texas. There, we record our hyperparameter choices and
experiment design before the data is available. Across all
18 datasets, our algorithms never perform discernibly worse
than baselines (even after tuning baseline hyperparameters
on the test set), and consistently outperform them when-
ever the data exhibits strong linear dependence (which we
measure in terms of autocorrelation of the first lag).

We summarize our contributions and the organization of the
paper below.

• Section 3 presents a new algorithm for online conformal
prediction, allowing for arbitrary parametric online con-
formal predictors beyond scalars.

• Section 4 develops adversarial guarantees, showing it
always achieves long-run coverage (1).

• Sections 5 and 6 develop stochastic guarantees, showing
it attains conditional coverage when well-specified and
relaxed conditional coverage when mis-specified.

• Section 7 contains experiments on 17 datasets with a
pre-registration to compare our method with existing al-
ternatives and provide evidence of its empirical benefits.

We defer all proofs to Appendix C.

2. Preliminaries
The goal of online conformal prediction is to generate confi-
dence sets in an online fashion. In this setting, we sequen-
tially observe covariates Xt ∈ X and wish to construct
confidence sets Ct : X ⇒ Y for the labels Yt ∈ Y .

We construct these confidence sets from a score function
st : X × Y → R, which may be learned and updated over
time. The score function defines Ct(Xt) via the level sets

Ct(Xt) := {y ∈ Y : st(Xt, y) ≤ qt},

for some threshold qt ∈ R. The conformal confidence set
makes an error at time t if the conformal score

St := st(Xt, Yt),

exceeds the threshold qt, which we formally define as
errt := 1qt<St . The task of the online conformal learner is
then to choose the thresholds qt adaptively.

The validity guarantee typically sought in online conformal
prediction is that of long-run coverage, which requires that
for any pre-specified α ∈ (0, 1), the algorithm makes an
error roughly an α fraction of the time over T ∈ N steps:∣∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣∣ = o(1), (1)

even when the data is adversarial. This is, however, a weak
notion of validity, as the individual confidence sets Ct need
not satisfy any non-trivial coverage guarantee. In fact, one
could disregard the data and satisfy the guarantee (1) by
alternating between qt = ∞ and qt = −∞, in which
case the sets are either Ct(Xt) = ∅ with no coverage or
Ct(Xt) = Y with trivial full coverage. A stronger guaran-
tee, which would give a real sense of uncertainty at time
t, would require that conditioned on the past, Ct(Xt) con-
tains Yt with probability 1 − α. This, of course, requires
stochastic data.

Our main goal is therefore to develop algorithms that sat-
isfy both this stronger conditional guarantee for stochas-
tic processes as well as long-run coverage for adversarial
data. More formally, when the covariate and label pairs
{(Xt, Yt)}t are stochastic with canonical filtration {Ft}t
defined by Ft = σ({(Xi, Yi)}ti=1), we seek algorithms that
satisfy the following consistency guarantee:∣∣∣∣P(Yt /∈ Ct(Xt) | Ft−1)− α

∣∣∣∣ = o(1), (2)

for a general class of stochastic processes.

To preface algorithms seeking this stronger coverage condi-
tion, we briefly provide an equivalent characterization of (2)
in terms of the conformal scores. Since Yt ∈ Ct(Xt) ⇔
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qt ≥ St, achieving (2) is equivalent to tracking the (1− α)
conditional quantile of St | Ft−1 defined as

q⋆t := inf{q ∈ R : P(q ≥ St | Ft−1) ≥ 1− α},

as long as these quantiles are unique. This property brings
about a natural loss function for our problem: the (1− α)
quantile loss, which is defined as

ℓquantile(r) := (1− α)max{r, 0}+ αmax{−r, 0}.

As first shown in Koenker & Bassett Jr. (1978), the quantiles
q⋆t are the minimizers of the expected quantile loss:

q⋆t = argmin
q∈R

E [ℓquantile(St − q) | Ft−1] .

We can thus achieve our goal (2) by minimizing this condi-
tional loss, and we will use this equivalent characterization
to develop online conformal algorithms.

2.1. Definitions

We define our online conformal predictor at time t as a
function qt : X t−1×Yt−1×Θ→ R. The predictor uses the
previous covariates Xt−1

1 := {Xi}t−1
i=1 and labels Y t−1

1 :=
{Yi}t−1

i=1 to compute the threshold qt = qt(X
t−1
1 , Y t−1

1 , θ).
We can update the parameter θ ∈ Θ over time, and often
use the simplified notation qt(θ) := qt(X

t−1
1 , Y t−1

1 , θ).

The closed convex parameter set Θ defining conformal
predictors {qt}t is well-specified for a stochastic process
{(Xt, Yt)}t if a single parameter θ⋆ represents all the con-
ditional quantiles:

q⋆t = qt(θ
⋆),

and asymptotically well-specified if some parameters only
satisfy this equality asymptotically, so that for θ⋆ ∈ Θ⋆

lim sup
t
|q⋆t − qt(θ

⋆)| = 0.

In the asymptotic regime, our conformal predictors are also
regular if for any θ ∈ Θ \Θ⋆, lim inft→∞ |q⋆t − qt(θ)| > 0
almost surely, and η-bounded if for a learning rate schedule
η = {ηt}t and any θ⋆ ∈ Θ⋆,

∑∞
t=1 ηt|q⋆t − qt(θ

⋆)| < ∞
almost surely.

Many of our results apply to conformal predictors qt(·)
with a bias term. In this case, for θ̃ ∈ Θ̃ ⊆ Rd−1 and
c ∈ R such that θ⊤ = [θ̃⊤, c] and all t ∈ N, there exists
ht : X t−1 × Yt−1 × Θ̃→ R satisfying

qt(θ) = ht(θ̃) + c.

We often also require these predictors to be bounded so that
Θ̃ ⊆ {θ̃ ∈ Rd−1 : ∀t ∈ N, |ht(θ̃)| ≤ Kq} for Kq ∈ (0,∞).
In our experiments, we define conformal predictors using
feature maps Φt : X t−1×Yt−1 → Rd producing conformal
covariates Zt = Φt(X

t−1
1 , Y t−1

1 ), so that qt(θ) = Z⊤
t θ;

these are bounded if Zt and θ̃ have bounded Euclidean
norm ∥·∥.

Algorithm 1 Batched projected online gradient descent
Input: θ1 ∈ Rd, batch size m, convex feasible set Θ,
learning rate schedule {ηb}
for b = 1 to B do

for i = 1 to m do
Predict threshold qb,i(θb)
Observe score Sb,i

Compute gradient ĝb,i ← ∂ℓb,i(θb)
end for
Update θb+1 ← ΠΘ

(
θb − ηb

1
m

∑m
i=1 ĝb,i

)
end for

3. Algorithms
Our online conformal predictors serve as estimators for the
conditional quantiles q⋆t , so the core idea of our method is to
optimize their parameters via online gradient descent on the
quantile loss ℓt(θ) := ℓquantile(St− qt(θ)) so as to approach
the the minimizers of its conditional expectation Lt(θ) :=
E[ℓt(θ) | Ft−1]. This procedure follows similar algorithmic
principles as ACI but allows for arbitrary parametric online
conformal predictors beyond scalars.

We present the framework of our proposed method in Al-
gorithm 1, which performs a gradient descent step on the
conformal predictors’ parameter θ ∈ Θ after observing each
batch of data. To simplify notation regarding batches, we
use t to represent time t, and the tuple (b, i) to denote the
i’th sample in the b’th batch. Our batch size is m, so time
(b, i) is equivalent to time (b − 1)m + i. When subscript
b appears on its own, it refers to a quantity that is uniform
across batch b.

In the following examples, we instantiate some special cases
of conformal predictors that can be used with Algorithm 1.
Example 3.1. Scalar quantile tracking (SQT) (Angelopou-
los et al., 2023): Choose Θ = R and

qt(θ) = θ.

This model is well-specified when {St}t are i.i.d. or all
conditional quantiles q⋆t are equal.
Example 3.2. Scalar quantile tracking (SQT) + scorecaster
q̂t: Choose Θ = R and

qt(θ) = θ + q̂t.

This model is asymptotically well-specified when (q̂t − q⋆t )
converges to a constant and fully well-specified when
(q̂t − q⋆t ) is constant across all time. Since the conditional
quantiles q⋆t are not necessarily the same for all t as in
Example 3.1, the scorecaster aims to predict the time de-
pendence in the conditional quantile so that the differences
(q̂t−q⋆t ) are constant. In our experiment section, the model
SQT+AR is of this form and fits q̂t as a quantile estimator
for autoregressive (AR) models.
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Example 3.3. Linear quantile tracking (LQT) of order
p: Choose Θ = Rp+1, feature map Φt(X

t−1
1 , Y t−1

1 ) =
(St−1, · · · , St−p, 1), and

qt(θ) = θ⊤Φt(X
t−1
1 , Y t−1

1 ).

This model is well-specified for AR processes of order at
most p, and can be extended to richer feature vectors.

Our experiments focus on the models described above, but
our framework is designed to be flexible and allow for even
more general conformal predictors. For example, given
access to p ∈ N scorecasters {q̂t,i}pi=1, we could extend
Example 3.2 by choosing Θ = [0, 1]p × R and

qt(θ) = θ⊤[q̂t,1, · · · , q̂t,p, 1].

Similarly to the SQT + scorecaster method, this variant
would be well-specified if any of the scorecasters satisfy the
conditions in Example 3.2 and enjoy regret bounds against
the best predictor in hindsight with respect to the quantile
loss immediately from classical online convex optimization
results (Hazan, 2016). In particular, by choosing SQT pre-
dictors with learning rates in a fixed grid as scorecasters, we
could obtain a conformal predictor that preserves long-run
coverage and attains quantile loss at least as good as the best
SQT predictor in that grid without the need for tuning.

4. Guarantees under adversarial data
We first focus on the setting where covariate and label pairs
(Xt, Yt) are adversarial. In this context, we show that by
arguments similar to those in Gibbs & Candès (2021); An-
gelopoulos et al. (2023; 2024), our algorithms satisfy the
long-run coverage guarantee (1). We provide the proof in
Section C.1 of Appendix C.
Theorem 4.1. Let the scores St be almost surely bounded
for any time t with supt |St| ≤ Ks < ∞ and let {ηb}b be
a non-increasing sequence of learning rates. Then, for any
bounded conformal predictor with a bias term initialized so
that |c1| ≤ Ks +Kq, Algorithm 1 with batch size m and
B = ⌊ Tm⌋ almost surely satisfies∣∣∣∣∣ 1T

T∑
t=1

errt − α

∣∣∣∣∣ ≤ 2m(Ks +Kq + η1)

TηB
+

m− 1

T
.

This long-run coverage bound generalizes those in An-
gelopoulos et al. (2023) and Angelopoulos et al. (2024)
for SQT, as it allows batch sizes larger than 1 and more
complex underlying models.

5. Guarantees under well-specification
We now show that in addition to always satisfying the long-
run coverage guarantee (1) for adversarial data, our algo-
rithms achieve the conditional coverage guarantee (2) when

the parameter set Θ is well-specified. We begin by showing
this property asymptotically, and then provide finite sample
rates characterizing the speed of convergence when suitably
large batch sizes are chosen.

For the remaining sections with stochastic data we always
assume that our conformal predictor qt is linear in its pa-
rameter θ ∈ Θ ⊆ Rd, so that qt(θ) = θ⊤Zt for covariates
Zt = Φt(X

t−1
1 , Y t−1

1 ) ∈ Rd. This implies that ℓt is convex
for all t ∈ N. We also assume that these covariates have
almost surely bounded norm supt ∥Zt∥ ≤ G so that our
conformal predictor is G-Lipschitz.

For this section in particular, we make an assumption on the
distribution of {St}t: the conditional score distributions St |
Ft−1 have uniformly lower and upper bounded continuous
densities ft in some ε-neighborhood around their unique
quantiles q⋆t . More concretely, for all t: p ≤ ft(s) ≤ u if
|s− q⋆t | ≤ ε.

While all of our stochastic guarantees apply to the existing
SQT algorithm, they are stronger for the LQT algorithm; its
larger parameter set Θ is well-specified more often and has
minimizers θ⋆ ∈ Θ at least as good, according to any loss.

5.1. Asymptotic Consistency

The following result shows the consistency of Algorithm 1
under the weakest assumptions, where we require only
asymptotic well-specification and non-increasing learning
rates ηt satisfying

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η

2
t < ∞. We

provide the proof in Section C.2 of Appendix C.
Theorem 5.1. Let the assumptions in the previous para-
graph hold, and assume that the conformal predictors have
a bias term, are asymptotically well-specified, regular, and
η-bounded. Then the iterates θb produced by Algorithm 1
satisfy

θb
a.s.−−→ θ∞ ∈ Θ⋆,

and attain the conditional coverage guarantee

P (Yt /∈ Ct(Xt) | Ft−1)
a.s.−−→ α.

This consistency result also holds more broadly for confor-
mal predictors that ensure that ℓt is convex for all t, with
linear models being a special case.

5.2. Finite-sample Convergence

We will now provide finite-sample convergence rates for
Algorithm 1. The two main challenges are the changing
expected conditional loss Lt (with expected subgradients
that depends on the time t) and the lack of strong convexity
or smoothness in the quantile loss.

A key result for our convergence analysis is the following
strong convexity lemma, which shows that the batched con-
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ditional losses are large if our iterate θ is far from θ⋆. This is
non-trivial, as each conditional loss Lt can have an infinite
number of minimizes, for example when Zt represents the
last p ≥ 1 scores and has a bias term. We provide a proof
of this Lemma in Section C.3 of Appendix C.

Lemma 5.2. Let Θ be well-specified with finite diameter
D. For batch b, let λb be the minimum eigenvalue of the
sample covariance matrix 1

m

∑m
i=1 Zb,iZ

⊤
b,i and let µb :=

pλb

2 min
{

ε
GD , 1

}
. Then, the conditional loss gap in batch

b is lower bounded for any θ ∈ Θ:

1

m

m∑
i=1

Lb,i(θ)− Lb,i(θ
⋆) ≥ µb∥θ − θ⋆∥2.

The bound above is data-dependent and for our main con-
vergence result, we will need a positive lower bound on
minb∈[B] E[λb | Fb−1,m], which ensures that the progress
with each gradient step is lower-bounded. This requires an
analysis of the minimum eigenvalues λb. We provide an ex-
ample lower bound for the weakly-stationary AR(1) model
St = ϕSt−1 + εt with |ϕ| < 1 and zero mean εt

iid∼ Pε,
which we follow for most of our experiments, and prove it
in Section C.4 of Appendix C.

Lemma 5.3. Let {St}t follow a weakly-stationary AR(1)
stochastic process where E

[
ε4t
]
≤ O(1)E

[
ε2t
]2

, and there
is a constant σ > 0 such that P([ε]+ ≥ σ) ≥ 1

4 and
P([−ε]+ ≥ σ) ≥ 1

4 . Let Zb,i = (Sb,i, 1) and Σb =
1
m

∑m
i=1 Zb,iZ

⊤
b,i. Then for m ≥ 1

1−ϕ there are numeri-
cal constants p, c > 0 such that

P(λmin(Σb) ≥ c · (σ ∧ 1) | Fb−1,m) ≥ p.

In particular, E[λmin(Σb) | Fb−1,m] ≥ pc(σ ∧ 1).

We can now state our finite-sample convergence result,
which we prove in Section C.5 of Appendix C, provided
that a result analogous to Lemma 5.3 holds almost surely.

Theorem 5.4. Let the assumptions of Lemma 5.2 hold, and
let µmin ≤ minb∈[B] E[µb | Fb−1,m], B ≥ 4, and c ∈ [0, 1].
Then, for any b ≤ B and a universal constant C, the iterates
of Algorithm 1 with learning rates ηb = 2c−1

µminbc
satisfy the

following bound with probability at least 1− δ:

∥θb − θ∗∥2 ≤ C
(log(B log(B)/δ) + 1)G2

µ2
minb

c
.

This implies that if u′ is a uniform upper bound for
the conditional densities in a neighborhood of size GD
around q⋆t , then for some (other) constant C ′ depending on
m,u′, G, µmin, and any t ≤ T ,∣∣∣∣P(Yt /∈ Ct(Xt) | Ft−1)− α

∣∣∣∣ ≤ C ′

√
(log(T log(T )/δ))

tc
.

Our result provides a data-dependent, last-iterate high-
probability bound. To the best of our knowledge, it is the
first finite-sample convergence analysis for SGD that does
not rely on stationarity or mixing, but instead assumes only
the existence of a unique minimizer consistent across time.

This convergence resuls shows a trade-off in terms of learn-
ing rate when compared to the long-run coverage bound in
Theorem 4.1. As the learning rates decay quickly and ap-
proach Θ(1/t), this bound tightens to a fast O(1/t), while
the long-run coverage bound turns vacuous. On the other
hand, as the learning rates approach Θ(1), this convergence
rate becomes vacuous while the long-run coverage bound
strengthens to O(1/t). This suggests learning rate schedules
with faster decay to achieve better convergence rates when
the well-specified assumption holds. We will observe the
same learning rate tradeoff in the following section, where
we trade well-specification for a mixing assumption on the
data.

6. Guarantees under mis-specification
Under mis-specification, the full conditional guarantee (2) is
impossible. Thus, we weaken this goal to consider achieving
a type of best-in-class approximation to conditional cover-
age, where for a sequence of coverage values αt “optimal”
relative to the data and parameters Θ, we obtain∣∣∣∣P (Yt /∈ Ct(Xt) | Ft−1)− αt

∣∣∣∣ = o(1).

If αt = α for all t, which holds under well-specification,
we recover conditional coverage (2).

We thus consider a setting where there is some stationary
distribution Π governing the long run behavior of {(St, Zt)}.
For this long-run distribution Π, we define the αt implicitly
via the best quantile predictor

θ⋆ ∈ argmin
θ∈Θ

{
LΠ(θ) := EΠ

[
ℓquantile(S − Z⊤θ)

]}
,

(Typically, we consider an ergodic stochastic process con-
verging to a stationary distribution Π.) When the minimizer
θ⋆ is unique, it defines conformal sets

C⋆
t (Xt) =

{
y ∈ Y | s(Xt, y) ≤ Z⊤

t θ⋆
}

and “relatively optimal” confidence values

αt = P (Yt /∈ C⋆
t (Xt) | Ft−1) . (3)

These αt are often close to α, as all other θ ∈ Θ attain
worse expected coverage relative to our chosen features
Zi. We formalize and prove this, as well as providing syn-
thetic experiments showing the coverage properties of αt,
in Section D.1 of Appendix D.
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Aside from the good coverage provided by θ⋆, it is not imme-
diately clear that the quantile loss is the correct objective to
minimize. The iterates of Algorithm 1 perform well with re-
spect to the quantile loss since they achieve sublinear regret
by the argument in Theorem 3.1 of Hazan (2016), but one
may instead be concerned with alternative loss functions,
such as conformal set sizes or the square loss. However, in
Appendix D.2 we argue as in Mannor et al. (2009) that in
the online adversarial setting, minimizing a loss function
subject to long-run average constraints is impossible even
in the case of simple linear functions, so it is unlikely that
this is possible in the case of minimizing some arbitrary loss
subject to the long-run coverage guarantee (1).

To characterize the speed of convergence to the αt in (3), we
will assume the stochastic process generating {(St, Zt)}t is
β-mixing. If for 0 < r ≤ t, we let P t

[r] be the distribution
of (Zt, St) given Fr with density pt[r], we can define the
β-mixing coefficient

β(τ) := sup
t∈N

{
2E
[∥∥∥P t+τ

[t] −Π
∥∥∥
TV

]}
,

with mixing time τβ(P, ϵ) = inf{τ ∈ N | β(τ) ≤ ϵ}.

Under these assumptions, Algorithm 1 with m = 1 reduces
to a special instance of ergodic mirror descent (Duchi et al.,
2012; Agarwal & Duchi, 2013) applied to the convex func-
tion LΠ(θ). When the scores S have densities, the expected
quantile loss behaves like a strongly convex function, allow-
ing us to extend prior analyses to the last-iterate strongly
convex setting. We provide a proof of this extension in Sec-
tion C.6 of Appendix C. (Our proofs formally require that
under Π, the conditional score distribution S | Z has contin-
uous density πZ with the uniformly upper and lower-bounds
pΠ ≤ πZ(s) ≤ uΠ in a ε-neighborhood of ZT θ⋆.)

Theorem 6.1. Let the assumptions stated above hold, and
let Θ have finite diameter D. For some λ > 0, let
EΠ

[
ZZ⊤] ⪰ λI , t ∈ [T + 1], c ∈ [0, 1], and µ =

pΠλmin
{

ε
GD , 1

}
. Then the minimizer θ⋆ is unique and

the iterates θt produced by Algorithm 1 with m = 1 and
ηt =

2c

µtc satisfy

E
[
∥θt − θ⋆∥2

]
≤ C

(
G2

µ2
+

GD

µ

)
τ

tc
,

for τ = τβ(P, t
−c) and a universal constant C. This im-

plies that if u is a uniform upper bound for the conditional
densities in a ε-neighborhood around Z⊤

t θ⋆, for some other
constant C ′ now depending on µ,G,D, u, ε,

E [|P (Yt /∈ Ct(Xt) | Ft−1)− αt|] ≤ C ′
√

τ

tc
.

In both cases, the expectation is taken over the samples
{(Si, Zi)}ti=1.

Here we also observe the same tradeoff as in Theorem 5.4
in terms of the learning rate when compared to the long-run
coverage guarantee of Theorem 4.1.

7. Experiments
In this section, we empirically evaluate Algorithm 1 along-
side baselines. We focus on SQT+AR as in Example 3.2
and LQT of order p as in Example 3.3, and use batch size
m = 1 since larger batch sizes provide comparable results.

7.1. Baseline algorithms

We now describe the baselines we compare against.

Adaptive conformal inference (ACI) (Gibbs & Candès,
2021). In offline conformal prediction, the threshold q to
construct confidence sets C(·) is chosen (up to a minor cor-
rection) as the (1−α) empirical quantile of a heldout set of
validation scores. ACI instead chooses the (1− αt) empiri-
cal quantile of past scores for time-varying αt updated via
gradient descent on the quantile loss.

Our remaining baselines fall under the conformal PID con-
trol framework (Angelopoulos et al., 2023).

Scalar quantile tracking (SQT). This method (also known
as conformal P control) directly updates the threshold qt
via gradient descent on the quantile loss. It predicts qt =∑t−1

i=1 ηi(erri − α) when initialized at q1 = 0.

Conformal PI control (PI). This method incorporates an
error integrator rt : R → R, adding rt(

∑t−1
i=1 erri − α) to

the SQT update. As in Angelopoulos et al. (2023), we
use the tangent integrator rt(x) := KI tan(x log(t)/tCsat),
where KI , Csat > 0 are hyperparameters and tan(x) =
sign(x) · ∞ for x /∈ [−π/2, π/2].

Conformal PID control (PID). This method is the same
as PI, but also predicts future scores via a scorecaster q̂t,
whose predictions are added to the PI update. As in An-
gelopoulos et al. (2023), we use a Theta (Assimakopoulos &
Nikolopoulos, 2000) scorecaster, which we call the PID(T)
method, and an AR scorecaster, which we call the PID(A)
method.

We use the code in Angelopoulos et al. (2023) to implement
the ACI, PI, and PID methods, where we replace predictions
of∞ with the maximum score in each test set. We test all
methods with both fixed and decaying step sizes. The decay-
ing step sizes are of the form c · t−0.6 as in Angelopoulos
et al. (2024), which satisfies the conditions of our stochastic
consistency guarantees. For the PI and PID methods, we
additionally adopt their learning rate trick of multiplying
the learning rate by the highest score over a trailing window,
even though this does not satisfy the conditions of Theo-
rem 4.1. We describe the hyperparameter grids for each
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method in Section B.1 of Appendix B.

7.2. Existing data

In this section, we run our algorithms and baselines on
datasets appearing in the online conformal literature. We
describe our datasets below.

7.2.1. DATASETS

Stock data (AMZN, GOOGL, MSFT). Using stock data
is common in online conformal work. Here we consider
the returns of Amazon, Google, and Microsoft stock, which
are datasets used in Angelopoulos et al. (2023) and contain
roughly 3,000 observations each.

Daily climate. This dataset has 1,575 daily temperature
measurements in Delhi, India from 2013 to 2017, and is
also used in Angelopoulos et al. (2023).

For the stock and daily climate datasets, we use the fol-
lowing four base forecasters: autoregressive (AR) model
of order 3, Theta model, Prophet model, and Transformer
model. These are retrained at every time-step and give pre-
dictions {Ŷt}t of the time series {Yt}t defining conformal
scores St := |Ŷt − Yt|. We use the code in Angelopou-
los et al. (2023) to generate the predictions and subsequent
scores. This gives a total of 16 (small) datasets.

Elec2 (Harries, 1999). This dataset consists of 45,312
hourly measurements of electricity demand in New South
Wales, Austrailia from May 7, 1996 to December 5, 1998.
As in Angelopoulos et al. (2024), we use a one-day de-
layed moving average as base forecaster, that is Ŷt :=
1
24

∑24
i=1 Yt−24−i and conformal scores St := |Ŷt − Yt|.

7.2.2. EXPERIMENTAL SET-UP

In all experiments, we set the confidence level to 1−α = 0.9.
We always reserve the first scores as a validation set, and set
the rest as the test set. We tune the hyperparameters for our
algorithms on the validation set, and for the baselines, we
directly tune the hyperparameters on the test set. We justify
this approach below.

We choose our experimental design following the recom-
mendation in Gulrajani & Lopez-Paz (2020) to specify
strategies for model selection under distribution shifts. Since
this is not explicitly done in all prior online conformal work,
we tune baseline hyperparameters on the test set to identify
a rough upper bound on their performance. We want to nei-
ther rely on heuristics (which can only be worse) nor subject
baselines to our (potentially suboptimal) tuning strategies,
so our setup ensures that the best possible choices, subject
to our extensive grid, are always made. Several follow-up
works on ACI have considered adaptively setting hyper-
parameters; these are orthogonal to this work, and can be

adapted to our algorithms (Gibbs & Candès, 2024; Zaffran
et al., 2022; Bhatnagar et al., 2023).

For our methods, we recommend tuning hyperparameters
by performing a grid search on recent data. One almost al-
ways has access to a validation set of past conformal scores,
which can give a sense of general properties of the data. We
provide a starting grid in Section B.1 of Appendix B, which
is implemented in our code and used in all our experiments.
If the optimal values are found at the edge of the grid, the
grid should be made larger.

7.2.3. EXPERIMENTAL RESULTS

Our experimental results come in two parts, as we separate
datasets into ones with stronger and weaker linear depen-
dence. Since we fit linear autoregressive models to the
scores, we expect our algorithms to do well when the data
exhibits linear dependence, and otherwise be on par with
existing algorithms.

To measure this property in our setting, we consider the
autocorrelation of the first lag, which quantifies the degree
of linear dependence between a time series and its one-step
lagged values. We foresee increasing linear dependence
when the base forecaster gets worse. For example, in a
regression setting, if the labels Yt ∈ R are decomposed
into their conditional mean µt and uncorrelated zero-mean
noise wt as Yt = µt + wt, then the scores St = |wt|
have no linear dependence when the base forecaster predicts
the conditional mean µt perfectly. Otherwise, the error
in conditional mean (a function of past data) introduces
correlations between the scores. This is supported by the
stock data where we can directly compare base predictors:
we show in Table 4 of Appendix B that larger loss (average
score) corresponds to larger autocorrelation of the first lag.

In the first four blocks of Table 1, we present results for
the Microsoft stock dataset. Due to space constraints, we
defer to Appendix B the remaining results for Amazon
stock, Google stock, and the daily climate dataset, although
they are similar. In the subsequent block, we report results
for the larger Elec2 dataset. We only present separate re-
sults for both fixed and decaying step sizes for our main
algorithm (LQT)—for all other algorithms we report the
best result. We focus on both the quantile loss to mea-
sure the closeness of the threshold to the true scores, as
well as the set sizes to show how conservative the con-
formal sets are. In Appendix B, we also measure the av-
erage win rate against LQT(fixed), which we define as
1
T

∑T
t=1 1{ℓt,baseline ≤ ℓt,LQT (fixed)} when ℓ corresponds

to quantile loss or set size, to get a sense of instantaneous
performance.

The key takeaway is that when there is linear dependence
in the conformal scores, our algorithms fit the data better
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Dataset, metric LQT (fixed) LQT (decay) SQT+AR SQT ACI PI PID(T) PID(A)
Sm

al
le

r
A

ut
oc

or
r. MSFT ar, q. loss (avg) 0.091 0.09 0.09 0.088 0.09 0.088 0.088 0.091

MSFT ar, set size (avg) 0.853 0.818 0.869 0.83 0.85 0.822 0.812 0.838

MSFT theta, q. loss (avg) 0.139 0.133 0.136 0.14 0.154 0.14 0.128 0.138
MSFT theta, set size (avg) 2.048 1.956 1.997 2.113 2.266 2.092 1.922 2.068

L
ar

ge
r

A
ut

oc
or

re
la

tio
n

MSFT prophet, q. loss (avg) 0.104 0.1 0.101 0.151 0.213 0.15 0.134 0.134
MSFT prophet, set size (avg) 2.718 2.705 2.738 3.117 3.57 3.143 2.938 2.934

MSFT transformer, q. loss (avg) 0.115 0.118 0.107 0.289 0.352 0.196 0.149 0.148
MSFT transformer, set size (avg) 5.947 5.942 5.852 7.629 7.938 6.661 6.119 6.104

Elec2, q. loss (avg) 0.005 0.005 0.005 0.013 0.015 0.013 0.011 0.011
Elec2, set size (avg) 0.16 0.159 0.157 0.229 0.244 0.227 0.201 0.201
Elec2, runtime (sec) 0.18 - 129.82 0.05 17.57 0.58 234.76 3.94

ERCOT, q. loss (avg) 29.095 29.158 36.918 59.118 76.629 53.233 42.344 42.349
ERCOT, set size (avg) 691.496 691.414 746.546 977.629 1117.69 912.214 778.808 778.99

Table 1. Performance of conformal predictors across datasets, separated by datasets with smaller autocorrelation (top 2) and larger
autocorrelation (bottom 4) of the first lag. Our algorithms are the three on the left. Numbers are in bold if they represent at least a 5%
improvement over all methods in the other category. All algorithms achieved at least 0.88 long-run coverage. We do not report runtime
for LQT(decay) because it is the same as LQT(fixed).
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Figure 1. Linear quantile tracking (fixed) predictions versus scores for MSFT AR (left) and MSFT Prophet (middle) and ERCOT (right).

than the baselines. Otherwise, all algorithms perform simi-
larly. For stock data, this dependence typically exists for the
Prophet and Transformer base predictors, but not as much
with the Theta and AR base predictors. This can be seen in
Figure 1, where we show an ending window of scores and
predictions for the LQT algorithm on both the MSFT AR
and Prophet datasets. In the former, the scores look more
like pure noise with a first lag having autocorrelation 0.19,
while there are clearer waves in the latter with the first lag
having autocorrelation 0.95. LQT is roughly constant in
the former and the scores appear unpredictable; in the latter,
LQT tracks the scores.

Even when results are similar, it is advantageous to use
the LQT algorithm due to its lightweight nature and simple
update. In Table 1, we also show the running times of each
algorithm with a fixed step size for the largest Elec2 dataset.
Here the p order for LQT is 1, which is a very common
choice in our experiments. This is only slightly slower than
SQT, and much faster than any other method like PID that
attempts to model the score distribution.

7.3. Pre-registered experiment

Our main experiment is pre-registered on Open Science
Framework (OSF). The pre-registration document is in-
cluded in the supplementary material and we provide the
OSF link here: https://osf.io/64jbp/.

We gather data from the Electric Reliability Council of Texas
(ERCOT), an organization that operates Texas’s electrical
grid. This data is accessible through the Grid Status API,
which provides the true electricity load and a forecast for
the load every 5 minutes. Our conformal scores are their
absolute difference, and our test data is from 12/18/2024
to 1/04/2025, which provides roughly 5,000 scores. We
tuned the hyperparameters for our algorithms on the data
from 2 weeks prior to the date of preregistration, and the
hyperparameters for all baselines are tuned on the test data.
Summarized results are at the bottom of Table 1, and we
also show an ending window of scores in the rightmost
plot of Figure 1, as well as long-run coverage rates in Fig-
ure 2. Our methods show significant improvements, and the
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Figure 2. Long-run coverage of online conformal algorithms on pre-registered ERCOT data. The left plot shows the long-run coverage
as a function of time for several algorithms; all converge to the target (1− α = 0.9) rather quickly. On the right, we vary the learning
rate decay (the learning rate is of the form ct−x, we vary x here) for LQT to exhibit the tradeoff from our theory. We observe a slower
convergence for more quickly decaying learning rates.

autocorrelation of the first lag was 0.94.

In addition to reporting our standard metrics, we also com-
mitted to hypothesis tests in our preregistration. We per-
formed 78 tests with several loss functions comparing each
baseline to LQT(fixed), and we describe these in Section B.2
of Appendix B. We report here that all 78 hypothesis tests
can be rejected at a 0.05 significance level, and that almost
all p-values are significantly smaller than 0.05.

8. Conclusion
In this work, we developed a new framework for online con-
formal prediction that not only satisfies standard marginal
adversarial guarantees but also achieves time-conditional
coverage at every time for more predictable stochastic data.
In our experiments, we observed that the linear dependence
of the data, which we measure in terms of autocorrelation,
is a strong indicator of the performance improvements that
our algorithms offer over the baselines.

While our approach focused on simple autoregressive mod-
els, we expect that more complex conformal predictors that,
for example, use richer feature vectors or incorporate trans-
formations of the data, can offer further empirical improve-
ments. We expect that techniques from offline conformal
prediction that approach covariate-conditional coverage can
be incorporated into our framework to provide even stronger
conditional guarantees. We also believe that similar con-
sistency guarantees can hold when ℓt is weakly convex, as
stochastic subgradient iterates converge to stationary points
in this case (Duchi & Ruan, 2017; Davis & Drusvyatskiy,
2019).
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A. Related work
Online conformal prediction builds on standard offline conformal prediction for exchangeable data (Vovk et al., 2005),
a framework that has recently grown in popularity, with its tools also finding applications in areas such as risk control
(Angelopoulos et al., 2022) and language modeling (Mohri & Hashimoto, 2024). It guarantees that P(Yt+1 ∈ C(Xt+1)) ≥
1 − α, and P(Yt+1 ∈ C(Xt+1)) ≤ 1 − α + 1

t+1 , when the conformal scores {St}t are almost surely distinct (Lei et al.,
2018). A key property of these results is that the probability statements are marginal over both the dataset used to fit the
predictive sets C and the new covariate Xt+1.

Real-world data can however fail to satisfy the exchangeability assumption. Similar to how more traditional machine
learning theory has been adapted to develop guarantees under weaker assumptions (Mansour et al., 2009; Awasthi et al.,
2023), adaptive conformal inference (ACI) (Gibbs & Candès, 2021) introduced the first algorithm to present an adversarial
approach to conformal prediction. Subsequent work follows two main directions. The first explores how to adaptively tune
the magnitude of ACI updates using online learning techniques, resulting in algorithms such as AgACI (Zaffran et al., 2022),
SAOCP (Bhatnagar et al., 2023), and DtACI (Gibbs & Candès, 2024). These methods primarily address the adversarial
setting, offering improved regret guarantees while preserving similar long-run coverage properties as ACI. Similarly to our
work, Zaffran et al. (2022) discuss the idea of making ACI adaptive to time series with general dependency, but AgACI is
not guaranteed to provide adversarial long-run coverage and is thus not comparable with our algorithms.

The second line of work proposes modifications to ACI’s update rule inspired by ideas from control theory, leading to new
algorithms like PID-conformal (Angelopoulos et al., 2023) and BCI (Yang et al., 2024). Our work is more closely aligned
with a recent line of research developing online conformal algorithms that achieve good performance in stochastic settings
while preserving long-run coverage when data is adversarial, such as decaying step-size ACI (Angelopoulos et al., 2024),
which focuses on the i.i.d. setting.

Our work focuses on developing time-conditional conformal guarantees that average over the covariate distribution while
conditioning on the set C, as in Angelopoulos et al. (2024). Such guarantees are fundamental for ensuring that our
algorithms remain valid without the need for retraining, as is common in standard offline conformal algorithms such as
CQR (Romano et al., 2019). Recent work also addresses the remaining challenge of providing covariate-conditional—or
simply conditional—coverage guarantees, both in the offline setting (Barber et al., 2022; Gibbs et al., 2023; Jung et al.,
2023; Areces et al., 2024) and in the online adversarial setting (Gupta et al., 2022; Bastani et al., 2022). In particular, Kiyani
et al. (2024) introduce mean squared conditional error as a metric to evaluate algorithms seeking covariate-conditional
guarantees in the stochastic i.i.d. setting, which is similar to the notion of time-conditional coverage we discuss in Section 6.

Our results are also related to the convergence theory of Stochastic Gradient Descent (SGD) (Robbins & Monro, 1951),
which provides rates of convergence for the gap (or error) between the loss attained by the algorithm’s outputs and the true
minimizer. In the case where the algorithm receives i.i.d. samples from the target distribution and the loss is convex and
smooth, Nemirovski et al. (2009) show that after T steps of SGD, the expected error of the last iterate is O(T−1/2) and
O(T−1) if the loss is additionally strongly convex.

The quantile regression framework, as presented in Koenker & Bassett Jr. (1978), has a non-smooth objective, so our results
build upon the convergence theory for non-smooth functions. In this setting, many guarantees focus on the loss attained by
the average iterate rather than the final iterate, achieving optimal expected rates of O

(
T−1/2

)
(Nemirovski & Yudin, 1983)

and O
(
T−1

)
(Rakhlin et al., 2012) when the loss is strongly convex. Shamir & Zhang (2013) show that these rates are

indeed better than those for the final iterates, which only achieve expected errors of O
(
log(T )T−1/2

)
and O

(
log(T )T−1

)
in the convex and strongly convex settings, respectively. Harvey et al. (2019) extends both of these to the high probability
regime.

In our setting, we analyze the performance of SGD when the data is not sampled i.i.d. from the target distribution, so our
results are also related to the convergence theory of SGD with dependent data. The class of problems we focus on is part
of the family of stochastic problems with exogenous correlated noise (Kushner & Yin, 2003), which Duchi et al. (2012)
analyzes in the context of β-mixing and ϕ-mixing processes. Duchi et al. (2012) show that for convex losses under such
mixing assumptions, the error rate of the average SGD iterate is governed by the β and ϕ mixing times of our process,
respectively. Agarwal & Duchi (2013) extend these results to the strongly convex setting but still focus on average iterate
guarantees.
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Dataset, metric LQT (fixed) LQT (decay) QT+AR SQT ACI PI PID(T) PID(A)

Elec2, q. loss (avg) 0.005 0.005 0.005 0.013 0.015 0.013 0.011 0.011
Elec2, set size (avg) 0.16 0.159 0.157 0.229 0.244 0.227 0.201 0.201

Elec2, q. loss (win %) 1.0 0.563 0.603 0.158 0.183 0.189 0.241 0.243
Elec2, set size (win %) 1.0 0.567 0.612 0.183 0.206 0.209 0.255 0.258

Elec2, q. loss (avg) p-val 1.0 0.939 0.899 0.0 0.0 0.0 0.0 0.0
Elec2, set size (avg) p-val 1.0 0.948 0.914 0.0 0.0 0.0 0.0 0.0
Elec2, a. loss (avg) p-val 1.0 0.928 0.886 0.0 0.0 0.0 0.0 0.0

Elec2, q. loss (win %) p-val 1.0 0.881 0.977 0.0 0.0 0.0 0.0 0.0
Elec2, set size (win %) p-val 1.0 0.884 0.988 0.0 0.0 0.0 0.0 0.0
Elec2, a. loss (win %) p-val 1.0 0.885 0.973 0.0 0.0 0.0 0.0 0.0

Table 2. Elec2 dataset. Our algorithms are the three on the left. Numbers are bolded if they represent at least a 5% improvement over all
methods in the other category. All algorithms achieved at least 0.89 coverage.

Dataset, metric LQT (fixed) LQT (decay) QT+AR SQT ACI PI PID(T) PID(A)

ERCOT, q. loss (avg) 29.095 29.158 36.918 59.118 76.629 53.233 42.344 42.349
ERCOT, set size (avg) 691.496 691.414 746.546 977.629 1117.69 912.214 778.808 778.99

ERCOT, q. loss (win %) 1.0 0.371 0.399 0.227 0.288 0.296 0.286 0.283
ERCOT, set size (win %) 1.0 0.34 0.407 0.243 0.31 0.317 0.301 0.296

ERCOT, q. loss (avg) p-val 1.0 0.5 0.0 0.003 0.016 0.002 0.0 0.0
ERCOT, set size (avg) p-val 1.0 0.507 0.0 0.002 0.016 0.001 0.0 0.001
ERCOT, a. loss (avg) p-val 1.0 0.494 0.0 0.004 0.015 0.003 0.0 0.0

ERCOT, q. loss (win %) p-val 1.0 0.183 0.001 0.0 0.0 0.0 0.0 0.0
ERCOT, set size (win %) p-val 1.0 0.175 0.003 0.0 0.0 0.0 0.0 0.0
ERCOT, a. loss (win %) p-val 1.0 0.18 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. Pre-registered ERCOT dataset. Our algorithms are the three on the left. Numbers are bolded if they represent at least a 5%
improvement over all methods in the other category. All algorithms achieved at least 0.89 coverage.

B. Additional Experiments
In this section, we report more detailed results for our experiments. In Table 2 and Table 3, we present full results for the
Elec2 dataset and the pre-registered ERCOT dataset, respectively. The hyperparameter grids are in B.1, with ours tuned on
validation data and the baseline hyperparameters tuned on the test sets. These additionally contain win rates versus LQT
(fixed), defined as 1

T

∑T
t=1 1{ℓt,baseline ≤ ℓt,LQT (fixed)} when ℓ corresponds to quantile loss or set size, as well as p-values to

determine significance. For each baseline algorithm and loss function ℓ corresponding to quantile loss, absolute loss, and set
size, we construct a time series of the form

{ℓt,baseline − ℓt,LQT (fixed)}t,

and one with corresponding indicator form

{1{ℓt,baseline ≥ ℓt,LQT (fixed)} − 0.5}t.

This gives 6 time series per method. With the assumption that the data is (weakly) stationary, our null hypothesis is that the
baseline algorithm is at least as good as LQT(fixed). That is, the mean µ of each stochastic process is non-positive: µ ≤ 0,
with alternative hypothesis µ > 0. Since the data is not independent, we must resort to a hypothesis test for dependent data.
For that reason, we use the test in Lobato (2001, Section 2.1), which we describe in detail in Section B.2.

Lastly, we show full results for the smaller datasets in Table 6. We reserve the first 1/3 of the datasets as validation data and
tune our hyperparamters with the hyperparameter grid in Appendix B.1, while still tuning baseline hyperparameters on the
test set.

We also show the relationship between loss of base predictor and autocorrelation of the first lag for the stock data in Table 4.
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Dataset Base predictor Loss (average score) Autocorrelation of first lag

GOOGL AR 4.68 0.23
Prophet 24.47 0.95
Theta 11.38 0.76
Transformer 151.40 0.99

MSFT AR 0.38 0.19
Prophet 1.78 0.95
Theta 0.93 0.75
Transformer 5.03 0.99

AMZN AR 3.85 0.31
Prophet 25.28 0.98
Theta 3.86 0.30
Transformer 63.53 0.99

Daily-Climate AR 1.25 0.19
Prophet 2.16 0.67
Theta 1.48 0.15
Transformer 9.83 0.97

Table 4. Relationship between loss (average score) and dependence (measured via autocorrelation of first lag) for stock data.

B.1. Hyperparameters

Here we describe the hyperparameters used in our experiments. All hyperparameters are tuned via grid search, with grids
presented in Table 5. Again, we emphasize that all baseline hyperparameters are always tuned on the test sets. When tuning
hyperparameters, we use the ones that lead to the best quantile loss, since this is implicitly what all algorithms minimize and
is also a measure of the closeness of the predictions to the true scores, provided that they achieved 1− α− 0.01 = 0.89
coverage. If no choice achieves at least 0.89 coverage, we disregard that constraint.

Hyperparameter Applicable Algorithms Grid Values
Learning rate All 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4, 1e5

P order LQT, SQT+AR 0, 1, 2
Bias covariate LQT 0.1, 1, 5, 10, 100, 200, 1000

KI PI, PID(A), PID(T) 10, 100, 200, 1000, Angelopoulos et al. (2023, Appendix B) heuristic
Csat PI, PID(A), PID(T) 0.1, 1, 5, 20, Angelopoulos et al. (2023, Appendix B) heuristic

Table 5. Hyperparameter grids.

We provide intuition for the hyperparameters of LQT here. The p order corresponds to the AR(p) model that we use to
predict the quantiles of our scores. Therefore, it should correspond to the number of lags with large partial autocorrelation,
which can be examined by plotting the partial autocorrelation function (PACF) plot. As a heuristic, we observe that choosing
p equal to the number of consecutive lags with a magnitude larger than 0.2 leads to good performance. In some cases, values
larger than those in Table 5 can be helpful, as in the case of Elec2 dataset. The other main hyperparameter (besides the
learning rate) is the feature corresponding to the bias in the conformal covariate. Specifically, if we choose a p order of 1,
the conformal covariate will be of the form Zt = [St−1, w], where w is the bias covariate. While any non-zero bias term
satisfies our guarantees, we generally observe that it should be on the same order of magnitude as the scores. For that reason,
a heuristic is the average validation score (or a slightly smaller value). We can likely achieve a similar effect by normalizing
the scores and setting w = 1.

B.1.1. SCORECASTER DETAILS

For the PID baseline methods, we implement both the Theta and AR scorecaster using code from Angelopoulos et al. (2023).
Angelopoulos et al. (2023) train the scorescaster at using all past data at every time step. We follow this procedure for the
smaller datasets in Table 6. This becomes prohibitely slow for larger datasets, so there we only use the most recent 200
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scores. In the ERCOT pre-registration, we had committed to only using the most recent 10 scores, but we show better results
here with 200 scores since this is a baseline.

The algorithm SQT+AR also uses an AR scorecaster to predict the next conditional quantile. In all datasets besides ERCOT,
the AR scorecaster is trained using the most recent 200 scores via quantile regression and the cvxpy python library. The
runtime can likely be made much faster by using other libraries. At the time of preregistration, we had only committed to
using the most recent 10 scores, so for ERCOT data we only use the most recent 10 scores since this is one of our proposed
methods.

B.2. Dependent hypothesis testing

To determine if our algorithm, represented by LQT (fixed), provides a significant improvement over a baseline for a specific
loss function ℓ, we look at the following two sequences of random variables

Xt = ℓt,baseline − ℓt,LQT (fixed) Wt = 1{ℓt,baseline > ℓt,LQT (fixed)} − 0.5.

In this case, if we assume that E [Xt] = µx and E [Wt] = µw are constant over time, testing for a significant improvement
would be equivalent to testing the null hypotheses (H0, H̃0) against the alternative hypotheses (H1, H̃1) in the following
hypothesis tests

H0 : µx ≤ 0 H̃0 : µw ≤ 0

H1 : µx > 0 H̃1 : µw > 0.

However, because Xt and Wt come from a time series and are not i.i.d. samples from an underlying distribution, standard
hypothesis tests are not applicable here. For this reason, we use the hypothesis test in Lobato (2001, Section 2.1) which
applies to an arbitrary dependent sequence Yt on a probability space (Ω,A, P ) satisfying the following properties:

1. Yt is wide-sense stationary so that E [Yt] = µy for all t ∈ N and E [Yt1Yt2 ] = E [Yt1+τYt2+τ ] for all t1, t2, τ ∈ N.

2. For some δ > 0, E
[
Y 2+δ
t

]
<∞.

3. For St =
∑t

i=1 Yi, E
[
S2
t

]
= σ2

t satisfies σ2
t →∞.

4. Yt is ρ-mixing so that the maximum correlation coefficient

ρ(k) = sup {corr(Z1, Z2) : Z1 ∈ L2(Ω, σ(Yi : i ≤ t)), Z2 ∈ L2(Ω, σ(Yi : i ≥ t+ k)), t ∈ N} ,

satisfies ρ(k)→ 0.

Under these assumptions, if µy = 0, then Herrndorf (1984, Corollary) shows that for all r ∈ [0, 1]

1√
t

⌊rt⌋∑
i=1

Yi
d−→ ϕB(r),

where ϕ =
√
2πfy(0), fy(0) is the spectral density of Yt at zero frequency, and B(r) is a Brownian motion process. Lobato

(2001) now uses this result to conclude that the test statistic

Vt =
t1/2Ȳt

s
1/2
t

with st =
1

t2

t∑
i=1

 i∑
j=1

Yj − Ȳt

2

,

satisfies

Vt
d−→ U1/2 with U1/2 =

B(1)√∫ 1

0
(B(r)− rB(1))2 dr

.

Assuming that the conditions outlined above hold for Xt and Wt under the null hypothesis, we can now perform one-sided
hypothesis tests on our random sequences by computing the value of Vt and comparing it to the critical values of the
distribution of U1/2. We provide estimated p-values with the same simulation technique in Lobato (2001) but using
10,000,000 sequences of length 10,000.
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Figure 3. ∥θt − θ⋆∥ vs. time t for synthetic AR(2) data, averaged over 10 runs where the error bars represent standard deviation.

B.3. Synthetic data

Here we experimentally verify our convergence theory in Section 5 by generating synthetic AR(p) data where our well-
specified assumption holds. In this case, an optimal parameter θ⋆ ∈ Θ exists, so we can track the distance between the
iterates of Algorithm 1 and this optimal parameter.

Our synthetic data is sampled from the following AR(2) process:

St = 0.3St−1 − 0.3St−2 + ϵt,

where ϵt
iid∼ N(0, 1). If we now run Algorithm 1 with covariates Zt = [St−1, St−2, 1]

⊤, the optimal parameters are
θ⋆ = [0.3,−0.3, ϕ−1(1− α)]⊤, where ϕ−1 represents the inverse of the standard normal CDF.

In Figure 3, we plot the distance to θ⋆ over time for fixed and decaying learning rates. The decaying learning rates are
Θ(1/t), which Theorem 5.4 suggests gives the fastest convergence. The results are as expected: fixed learning rates appear
to converge to a noise ball, and decaying learning rates appear to converge to θ⋆, suggesting that the conditional coverage
condition (2) holds.
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Dataset, metric LQT (fixed) LQT (decay) SQT+AR SQT ACI PI PID(T) PID(A)

MSFT ar, q. loss (avg) 0.091 0.09 0.09 0.088 0.09 0.088 0.088 0.091
MSFT ar, set size (avg) 0.853 0.818 0.869 0.83 0.85 0.822 0.812 0.838
MSFT ar, q. loss (win %) 1.0 0.554 0.486 0.538 0.538 0.515 0.526 0.517
MSFT ar, set size (win %) 1.0 0.566 0.474 0.542 0.538 0.526 0.528 0.517

MSFT theta, q. loss (avg) 0.139 0.133 0.136 0.14 0.154 0.14 0.128 0.138
MSFT theta, set size (avg) 2.048 1.956 1.997 2.113 2.266 2.092 1.922 2.068
MSFT theta, q. loss (win %) 1.0 0.561 0.485 0.428 0.447 0.451 0.547 0.505
MSFT theta, set size (win %) 1.0 0.563 0.49 0.423 0.446 0.457 0.543 0.504

MSFT prophet, q. loss (avg) 0.104 0.1 0.101 0.151 0.213 0.15 0.134 0.134
MSFT prophet, set size (avg) 2.718 2.705 2.738 3.117 3.57 3.143 2.938 2.934
MSFT prophet, q. loss (win %) 1.0 0.519 0.466 0.302 0.281 0.301 0.257 0.251
MSFT prophet, set size (win %) 1.0 0.508 0.449 0.31 0.3 0.309 0.268 0.269

MSFT transformer, q. loss (avg) 0.115 0.118 0.107 0.289 0.352 0.196 0.149 0.148
MSFT transformer, set size (avg) 5.947 5.942 5.852 7.629 7.938 6.661 6.119 6.104
MSFT transformer, q. loss (win %) 1.0 0.443 0.543 0.29 0.243 0.345 0.38 0.373
MSFT transformer, set size (win %) 1.0 0.441 0.536 0.294 0.257 0.356 0.379 0.373

AMZN ar, q. loss (avg) 1.198 1.215 1.205 1.198 1.29 1.195 1.197 1.228
AMZN ar, set size (avg) 10.112 9.711 10.398 10.112 11.592 10.009 10.15 10.63
AMZN ar, q. loss (win %) 1.0 0.538 0.446 1.0 0.508 0.537 0.528 0.469
AMZN ar, set size (win %) 1.0 0.556 0.446 1.0 0.513 0.554 0.554 0.481

AMZN theta, q. loss (avg) 1.218 1.203 1.207 1.188 1.283 1.192 1.195 1.23
AMZN theta, set size (avg) 10.252 10.364 10.586 9.927 11.364 9.91 9.976 10.426
AMZN theta, q. loss (win %) 1.0 0.405 0.397 0.452 0.42 0.458 0.453 0.406
AMZN theta, set size (win %) 1.0 0.379 0.371 0.434 0.394 0.446 0.438 0.391

AMZN prophet, q. loss (avg) 2.208 1.419 1.341 2.432 2.998 2.264 1.855 1.84
AMZN prophet, set size (avg) 49.995 42.825 43.105 52.808 57.934 51.747 46.209 46.231
AMZN prophet, q. loss (win %) 1.0 0.529 0.511 0.341 0.293 0.364 0.384 0.378
AMZN prophet, set size (win %) 1.0 0.514 0.488 0.352 0.302 0.369 0.386 0.379

AMZN transformer, q. loss (avg) 1.713∗ 1.863 1.39 4.975 6.622 4.286 2.055 2.057
AMZN transformer, set size (avg) 93.963∗ 97.903 92.614 127.9 143.724 120.728 97.04 97.04
AMZN transformer, q. loss (win %) 1.0 0.389 0.567 0.309 0.25 0.292 0.283 0.274
AMZN transformer, set size (win %) 1.0 0.367 0.545 0.314 0.261 0.307 0.277 0.269

GOOGL ar, q. loss (avg) 1.117 1.136 1.138 1.122 1.185 1.124 1.118 1.142
GOOGL ar, set size (avg) 10.436 9.828 10.681 10.335 11.167 10.334 9.932 10.827
GOOGL ar, q. loss (win %) 1.0 0.63 0.465 0.418 0.545 0.541 0.633 0.495
GOOGL ar, set size (win %) 1.0 0.675 0.477 0.413 0.557 0.567 0.666 0.494

GOOGL theta, q. loss (avg) 1.744 1.61 1.615 1.76 1.911 1.762 1.623 1.724
GOOGL theta, set size (avg) 24.999 23.433 23.027 25.503 27.248 24.773 23.235 24.545
GOOGL theta, q. loss (win %) 1.0 0.594 0.603 0.458 0.495 0.509 0.586 0.512
GOOGL theta, set size (win %) 1.0 0.598 0.616 0.455 0.5 0.523 0.598 0.519

GOOGL prophet, q. loss (avg) 1.335 1.33 1.317 2.086 2.459 2.072 1.812 1.803
GOOGL prophet, set size (avg) 34.916 35.136 35.297 43.597 47.222 43.553 39.424 39.154
GOOGL prophet, q. loss (win %) 1.0 0.38 0.406 0.27 0.258 0.272 0.245 0.251
GOOGL prophet, set size (win %) 1.0 0.333 0.371 0.279 0.27 0.284 0.248 0.25

GOOGL transformer, q. loss (avg) 1.711 1.585∗ 1.6 5.729 12.424 4.045 2.396 2.407
GOOGL transformer, set size (avg) 208.989 206.891∗ 207.588 245.381 291.003 228.834 212.054 211.965
GOOGL transformer, q. loss (win %) 1.0 0.566 0.601 0.158 0.212 0.277 0.318 0.318
GOOGL transformer, set size (win %) 1.0 0.557 0.605 0.174 0.227 0.292 0.322 0.322

daily-climate ar, q. loss (avg) 0.243 0.246 0.249 0.243 0.251 0.239 0.237 0.254
daily-climate ar, set size (avg) 2.708 2.514 2.609 2.632 2.689 2.705 2.583 2.708
daily-climate ar, q. loss (win %) 1.0 0.537 0.525 1.0 0.5 0.549 0.556 0.47
daily-climate ar, set size (win %) 1.0 0.539 0.532 1.0 0.504 0.558 0.564 0.461

daily-climate theta, q. loss (avg) 0.274 0.268 0.269 0.264 0.275 0.265 0.263 0.288
daily-climate theta, set size (avg) 3.325 3.351 3.291 3.295 3.192 3.245 3.174 3.247
daily-climate theta, q. loss (win %) 1.0 0.47 0.476 0.539 0.527 0.552 0.542 0.483
daily-climate theta, set size (win %) 1.0 0.454 0.473 0.541 0.533 0.57 0.539 0.498

daily-climate prophet, q. loss (avg) 0.269 0.275 0.281 0.317 0.3 0.309 0.32 0.317
daily-climate prophet, set size (avg) 3.828 3.788 3.918 4.219 4.22 4.168 4.2 4.162
daily-climate prophet, q. loss (win %) 1.0 0.506 0.483 0.347 0.383 0.394 0.356 0.374
daily-climate prophet, set size (win %) 1.0 0.515 0.482 0.351 0.39 0.404 0.371 0.399

daily-climate transformer, q. loss (avg) 0.313 0.317 0.315 0.443 0.359 0.392 0.42 0.421
daily-climate transformer, set size (avg) 9.1 9.148 8.955 10.126 9.923 9.808 9.831 9.899
daily-climate transformer, q. loss (win %) 1.0 0.409 0.549 0.431 0.376 0.431 0.345 0.311
daily-climate transformer, set size (win %) 1.0 0.406 0.548 0.437 0.384 0.436 0.359 0.317

Table 6. Numbers are bolded if they represent at least a 5% improvement over all methods in the other category. Asterisk numbers
achieved less than 0.87 coverage. All baselines achieved at least 0.89 coverage because we tuned them on the test set.
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C. Deferred proofs for Sections 4, 5, and 6
C.1. Proof of Theorem 4.1

This proof follows Theorems 1 and 2 of (Angelopoulos et al., 2024). Similarly, we argue that adversarial coverage follows
from the boundedness of the bias terms in our iterates. More concretely, using the decomposition θb = (θ̃b, cb) ∈ Θ̃×R we
prove the following proposition.

Proposition C.1. If supb |cb| ≤ C <∞ almost surely, then with probability 1, Algorithm 1 satifies∣∣∣∣∣ 1T
T∑

t=1

errt − α

∣∣∣∣∣ ≤ 2mC

TηB
+

m− 1

T
.

It now remains to show that the bias terms cb are indeed bounded, which we do via the following claim.

Claim C.1. The iterates of Algorithm 1 satisfy supb |cb| ≤ Ks +Kq + η1 almost surely.

We now provide proofs for both of these results.

Demonstrating Proposition C.1. The final time T is not necessarily divisible by the batch size m, so by time T ,
Algorithm 1 will only perform updates based on the first Bm ≤ T scores. For this reason, we first point out that by the
triangle inequality, ∣∣∣∣∣ 1T

T∑
t=1

(errt − α)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

Bm∑
t=1

(errt − α)

∣∣∣∣∣+ 1

T

T−Bm∑
i=1

|errB+1,i − α| ,

and since |errB+1,i − α| ≤ 1 for all i ∈ [T −Bm] and T −Bm ≤ m− 1,∣∣∣∣∣ 1T
T∑

t=1

(errt − α)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

Bm∑
t=1

(errt − α)

∣∣∣∣∣+ m− 1

T
.

The rightmost term m−1
T matches the result in Proposition C.1, so it only remains to show that∣∣∣∣∣ 1T

Bm∑
t=1

(errt − α)

∣∣∣∣∣ ≤ 2mC

TηB
. (4)

For this purpose, we define

∆b :=

{
mη−1

1 if b = 1

m(η−1
b − η−1

b−1) if b > 1,

to argue that the left-hand side of inequality (4) can be written in terms of the bias terms {cb}Bb=1 as∣∣∣∣∣ 1T
Bm∑
t=1

(errt − α)

∣∣∣∣∣ =
∣∣∣∣∣ 1T

B∑
b=1

m∑
i=1

(errb,i − α)

∣∣∣∣∣
=

∣∣∣∣∣ 1T
B∑

b=1

m∑
i=1

(
b∑

r=1

∆r

)
ηb
m

(errb,i − α)

∣∣∣∣∣
=

∣∣∣∣∣ 1T
B∑

r=1

∆r

(
B∑

b=r

m∑
i=1

ηb
m

(errb,i − α)

)∣∣∣∣∣
=

∣∣∣∣∣ 1T
B∑

r=1

∆r (cB+1 − cr)

∣∣∣∣∣ .
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Since the bias terms are bounded |cB+1 − cr| ≤ 2C, by Hölder’s inequality we have that∣∣∣∣∣ 1T
Bm∑
t=1

errt − α

∣∣∣∣∣ ≤ 2C

T
∥∆1:B∥1 .

Since the learning rate schedule {ηb}Bb=1 is non-increasing ∥∆1:B∥1 is a telescoping sum so that

∥∆1:B∥1 = mη−1
B ,

which shows inequality (4) and thus the desired result.

Demonstrating Claim C.1. For C := (Ks +Kq + η1), we will only prove that cb ≥ −C with probability 1, since the
other direction cb ≤ C follows by an identical argument. We will proceed by contradiction, so we let τ := inf{b ∈ N | cb <
−C} <∞ be the first index where cb falls below −C, and note that τ > 1 since |c1| ≤ Ks +Kq . We will now show that if
a finite τ existed, then cτ−1 < cτ < −C, contradicting our definition that τ is the first index where cb falls below −C.

Recall that Θ = Θ̃× R, so the projection step in Algorithm 1 leaves the last coordinate unchanged, and the update for the
bias term has bounded magnitude

sup
b
|cb+1 − cb| = sup

b

ηb
m

m∑
i=1

|errb,i − α| ≤ η1.

This implies that the previous bias term cτ−1 < −(Ks +Kq) and the predictions for batch (τ − 1) with i ∈ [m] satisfy

qτ−1,i(θτ−1) = hτ−1,i(θ̃τ−1) + cτ−1 < −Ks.

But, by our assumption that all scores are at least −Ks almost surely, these predictions all lead to errors as errτ−1,i =
1qτ−1,i<Sτ−1,i

= 1 and thus the previous update must inrease the bias term:

cτ = cτ−1 +
ητ
m

m∑
i=1

(errτ−1,i − α) > cτ−1,

which shows the desired contradiction and demonstrates Claim C.1. This argument only requires that the bias term can take
any value in the set [−C,C] so it can hold if Θ has finite diameter, as is required by some of our other results.

C.2. Proof of Theorem 5.1

In our search for consistent conformal predictors that satisfy the conditional coverage guarantee (2), we must first characterize
what model parameters (if any) attain this property. Our first step is thus to establish the conditional coverage of any
sequence which eventually represents all the conditional quantiles, matching our definition of asymptotic well-specification:

Proposition C.2. For any sequence of iterates satisfying θb
a.s.−−→ θ∞ ∈ Θ⋆, then

P (Yt ∈ Ct(Xt) | Ft−1)
a.s.−−→ 1− α,

and our conformal predictors satisfy the consistency guarantee (2).

In light of this proposition, proving Theorem 5.1 is equivalent to showing that Algorithm 1 eventually converges to some
θ∞ ∈ Θ⋆:

Proposition C.3. The sequence of iterates {θb}b produced by Algorithm 1 satisfies

θb
a.s.−−→ θ∞ ∈ Θ⋆.

We now provide proofs for both of these statements.
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Demonstrating Proposition C.2. Recall that for b = ⌊ t
m⌋

P (Yt ∈ Ct(Xt) | Ft−1) = P (St ≤ qt(θb) | Ft−1)

= P (St ≤ q⋆t | Ft−1) +

∫
(1St∈[q⋆t ,qt(θb)]

− 1St∈[qt(θb),q⋆t ]
)dPSt|Ft−1

.

For any ε > 0, if we let ε be the neighborhood around the quantiles where the uniform density upper bound p1 holds, with
probability 1 we can take t and b large enough that

|qt(θ∞)− q⋆t | ≤
min{ϵ/p1, ε}

2

|qt(θb)− qt(θ∞)| ≤ min{ϵ/p1, ε}
2

,

simultaneously. For such t, it must also be the case that

|P (Yt ∈ Ct(Xt) | Ft−1)− (1− α)| ≤ ϵ,

and since ϵ was arbitrary

P (Yt ∈ Ct(Xt) | Ft−1)
a.s.−−→ 1− α.

Demonstrating Proposition C.3. We start by defining ĝb,i ∈ ∂lb,i(θb) as our empirical subgradient for batch b and index
i satisfying gb,i = E [ĝb,i | Fb,i−1] ∈ ∂Lb,i(θb). For any θ⋆ ∈ Θ⋆, we now use our assumption that the conformal predictor
has a bias term to define

∆b,i :=


0
...
0

q⋆b,i − qb,i(θ
⋆)

 ,

which can be nonzero as we only require asymptotic well-specification, so that

qb,i(θ
⋆ +∆b,i) = q⋆b,i,

and

0 ∈ ∂Lb,i(θ
⋆ +∆b,i).

Our proof is based on the proof of Theorem 4 in Chapter 7 of Ryu & Yin (2022), which hinges on the following three claims:

(i) Almost surely, limb→∞ ∥θb − θ⋆∥ exists and is finite for all θ⋆ ∈ Θ⋆.

(ii) The iterates {θb}b are arbitrarily close to optimal infinitely often, since for any θ⋆ ∈ Θ⋆

lim inf
b→∞

1

m

m∑
i=1

⟨gb,i, θb − (θ⋆ +∆b,i)⟩ = 0.

(iii) Claims (i) and (ii) imply that θb
a.s.−−→ θ∞ ∈ Θ⋆.

Demonstrating Claims (i) and (ii). For this part, we rely on the Robbins and Siegmund quasimartingale convergence
theorem (Robbins & Siegmund, 1971), which we state in Theorem E.1 in Appendix E without proof. To apply this result,
we must first construct an appropriate quasimartingale.
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Claim C.2. For any θ⋆ ∈ Θ⋆, define the Fmb-measurable random variables

Vb := ∥θb+1 − θ⋆∥2

Db := 2
ηb+1

m

m∑
i=1

E [⟨ĝb+1,i, θb+1 − (θ⋆ +∆b+1,i)⟩ | Fmb]

Ub := G2η2b+1 + 2
ηb+1

m

m∑
i=1

E
[
|q⋆b+1,i − qb+1,i(θ

⋆)| | Fmb

]
.

Then Vb, Db, Ub are non-negative with
∑∞

b=1 Ub <∞ almost surely and

E
[
Vb | Fm(b−1)

]
≤ Vb−1 −Db−1 + Ub−1,

so we can apply Theorem E.1.

Proof. Since θb+1 = ΠΘ

(
θb − ηb

m

∑m
i=1 ĝb,i

)
∥θb+1 − θ⋆∥2 ≤ ∥θb − θ⋆∥2 + η2b

∥∥∥∥∥ 1

m

m∑
i=1

ĝb,i

∥∥∥∥∥
2

− 2
ηb
m

m∑
i=1

⟨ĝb,i, θb − θ⋆⟩

≤ ∥θb − θ⋆∥2 +G2η2b − 2
ηb
m

m∑
i=1

⟨ĝb,i, θb − (θ⋆ +∆b,i)⟩ − 2
ηb
m

m∑
i=1

⟨ĝb,i,∆b,i⟩.

If we now let θb = (θ̃b, cb) ∈ Θ̃× R, we can use the fact that our model has a bias term to argue that the last coordinate of
our empirical gradient [ĝb,i]d satisfies

[ĝb,i]d ∈ ∂cbℓ(Sb,i − hb,i(θ̃b)− cb),

so that |[ĝb,i]d| ≤ max{α, 1− α} < 1 and∣∣∣∣∣
m∑
i=1

⟨ĝb,i,∆b,i⟩

∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

[ĝb,i]d(q
⋆
b,i − qb,i(θ

⋆))

∣∣∣∣∣ ≤
m∑
i=1

|q⋆b,i − qb,i(θ
⋆)|.

We can now use this fact and our previous upper bound to conclude that

∥θb+1 − θ⋆∥2 ≤ ∥θb − θ⋆∥2 +G2η2b + 2
ηb
m

m∑
i=1

|q⋆b,i − qb,i(θ
⋆)| − 2

ηb
m

m∑
i=1

⟨ĝb,i, θb − (θ⋆ +∆b,i)⟩.

This shows that the Fmb-measurable random variables

Db = 2
ηb+1

m

m∑
i=1

E [⟨ĝb+1,i, θb+1 − (θ⋆ +∆b+1,i)⟩ | Fmb]

Ub = G2η2b+1 + 2
ηb+1

m

m∑
i=1

E
[
|q⋆b+1,i − qb+1,i(θ

⋆)| | Fmb

]
.

satisfy

E
[
Vb | Fm(b−1)

]
≤ Vb−1 −Db−1 + Ub−1.

The sequence {Db}b is also non-negative as

Db = 2
ηb+1

m

m∑
i=1

E [E [⟨ĝb+1,i, θb+1 − (θ⋆ +∆b+1,i)⟩ | Fmb+i−1] | Fmb]

= 2
ηb+1

m

m∑
i=1

E [⟨gb+1,i, θb+1 − (θ⋆ +∆b+1,i)⟩ | Fmb]

≥ 0,
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since Lb,i(θ) is convex and (θ⋆ + ∆b,i) minimizes Lb,i for any (b, i). Additionally, Ub is also non-negative and by
η-summability and the fact that

∑∞
b=1 η

2
b <∞, with probability 1

∞∑
b=1

Ub <∞.

We can now use Claim C.2 and Theorem E.1 to conclude that almost surely

(1) limb→∞ Vb exists and is finite.

(2)
∑∞

b=2

∑m
i=1

ηb

m ⟨gb,i, θb − (θ⋆ +∆b,i)⟩ <∞.

Theorem E.1 states that
∑∞

b=1 Db <∞ almost surely instead of (2), but this is immediate consequence of the former since∑∞
b=1 Db being almost surely finite implies that E [

∑∞
b=1 Db] <∞ and

E

[ ∞∑
b=1

Db

]
= E

[
2

∞∑
b=2

m∑
i=1

ηb
m
⟨gb,i, θb − (θ⋆ +∆b,i)⟩

]
,

so the finiteness of this expectation also implies (2). This argument holds for any θ⋆ ∈ Θ⋆ so by (1) for all θ⋆ ∈ Θ⋆

[with probability 1 limb→∞ ∥θb − θ⋆∥ exists], and since Θ⋆ ⊂ Rd by Proposition 1 in Chapter 5 of Ryu & Yin (2022) this
implies (i) as with probability 1 [for all θ⋆ ∈ Θ⋆, limb→∞ ∥θb − θ⋆∥ exists]. For (ii), since

∑∞
b=1 ηb =∞, by our positivity

constraint (2) implies that for any θ⋆ ∈ Θ⋆,

lim inf
b→∞

1

m

m∑
i=1

⟨gb,i, θb − (θ⋆ +∆b,i)⟩ = 0.

Demonstrating Claim (iii). The fact that ∥θb − θ⋆∥ is bounded by claim (i) implies that θb is almost surely bounded too,
so by (ii) there exists a subsequence bj →∞

θbj → θ∞
1

m

m∑
i=1

⟨gbj ,i, θbj − (θ⋆ +∆bj ,i)⟩ → 0.

We will now show that θ∞ ∈ Θ⋆ by contradiction, so we assume that θ∞ /∈ Θ⋆ and argue that if this is the case

lim sup
j→∞

1

m

m∑
i=1

⟨gbj ,i, θbj − (θ⋆ +∆bj ,i)⟩ > 0,

which contradicts the condition above. The fact that our conformal predictors are regular implies that there exist infinitely
many k ≥ 1 such that

|qbk,1(θ∞)− q⋆bk,1| ≥ ϵ

for some ϵ > 0. We can now find N large enough so that any j ≥ N satisfies
∥∥θbj − θ∞

∥∥ ≤ ϵ
2G and by our Lipschitz

assumption

|qbj ,1(θbj )− qbj ,1(θ∞)| ≤ ϵ

2
.

Therefore, for any of the infinitely many k ≥ N where |qbk,1(θ∞)− q⋆bk,1| ≥ ϵ we also have

|qbk,i(θbk)− q⋆bk,i| ≥
ϵ

2
.
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We now apply Lemma E.3 and our uniform local lower bound on the conditional densities for any such k ≥ N to conclude
that there exist constants c1, c2 such that

1

m

m∑
i=1

⟨gbk,i, θbk − (θ⋆ +∆bk,i)⟩ ≥
1

m
⟨gbk,1, θbk − (θ⋆ +∆bk,1)⟩

≥ 1

m
(Lbk,1(θbk)− Lbk,1(θ

⋆ +∆bk,1))

≥ 1

m
(c1ϵ ∧ c2ϵ

2) > 0.

This result contradicts our assumption that limj→∞
1
m

∑m
i=1⟨gbj ,i, θbj − (θ⋆ +∆bj ,i)⟩ = 0, so θ∞ ∈ Θ⋆. Finally, by (i)

we know that almost surely ∥θb − θ⋆∥ exists for all θ⋆ ∈ Θ⋆, which includes θ⋆ = θ∞ so ∥θb − θ∞∥ → 0 and the entire
sequence converges to θ∞ ∈ Θ⋆ almost surely.

C.3. Proof of Lemma 5.2

Since Θ is well-specified, there exists θ⋆ ∈ Θ such that θ⋆⊤Zb,i = q⋆b,i is the conditional quantile of Sb,i | Fb,i−1.
Noting that Zb,i is measurable with respect to Fb,i−1 and |θ⊤Zb,i − θ⋆⊤Zb,i| ≤ GD by our Lipschtiz and finite diameter
assumptions, we can use Lemma E.3, the lower bounds in the standard scalar case, to write

1

m

m∑
i=1

Lb,i(θ)− Lb,i(θ
⋆) =

1

m

m∑
i=1

E[ℓquantile(Sb,i − θ⊤Zb,i)− ℓquantile(Sb,i − θ⋆⊤Zb,i) | Fb,i−1]

≥ 1

m

m∑
i=1

p

2
min

{ ε

GD
, 1
}
|θ⊤Zb,i − θ⋆⊤Zb,i|2.

This can further be lower bounded as:

1

m

m∑
i=1

Lb,i(θ)− Lb,i(θ
⋆) ≥ p

2m
min

{ ε

GD
, 1
} m∑

i=1

(θ − θ⋆)⊤Zb,iZ
⊤
b,i(θ − θ⋆)

=
p

2
min

{ ε

GD
, 1
}
(θ − θ⋆)⊤

(
1

m

m∑
i=1

Zb,iZ
⊤
b,i

)
(θ − θ⋆)

≥ pλb

2
min

{ ε

GD
, 1
}
∥θ − θ⋆∥22

= µb∥θ − θ⋆∥22.

The second inequality follows from the fact that x⊤Ax ≥ λmin(A) ∥x∥2 for any symmetric matrix A and with minimum
eigenvalue λmin(A) ∈ R, and any x. Note that λb here is non-negative since its corresponding matrix is the average of
positive semidefinite matrices. This completes the proof.

C.4. Proof of Lemma 5.3

For simplicity, we consider only a single batch of m observed covariate vectors Zi = (Si, 1) for i = 1, . . . ,m, as in the
assumed AR(1) process we have Si = ϕSi−1 + εi, where εi are i.i.d. with E[εi] = 0. This is sufficient to show Lemma 5.3
since the proof for an arbitrary batch b is identical after appropriately offsetting the indices of the scores. Define the matrix

Σ :=
1

m

m∑
i=1

ZiZ
⊤
i =

1

m

m∑
i=1

[
S2
i Si

Si 1

]
.

Let Sm = 1
m

∑m
i=1 Si and S2

m = 1
m

∑m
i=1 S

2
i be, respectively, the sample mean and second moment of the scores. We can

relate the minimal eigenvalues of Σ to first and second moments of Sm
1 via the following lemma:

Lemma C.4. For the matrix Σ = 1
m

∑m
i=1 ZiZ

⊤
i , we have

λmin(Σ) ≥

(
1− Sm

2

S2
m

)
S2
m

1 + S2
m

.
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Deferring the proof of Lemma C.4 temporarily, we see that to show Lemma 5.3, it suffices to show that both

(i) S2
m ≥ c0σ

2 for a constant c0 > 0

(ii) Sm
2 ≤ c1 · S2

m for a constant c1 < 1

with constant probability, as when these both occur, we have

λmin(Σ) ≥ (1− c1)
c0σ

2

1 + c0σ2

with constant probability. For the remainder of the proof, we thus seek to demonstrate both of these, and in both cases,
we assume S0 = s for a fixed scalar value s ∈ R, as the process is independent of (S−i)i∈N given S0, and we condition
implicitly on S0 throughout.

Demonstrating claim (i). Writing Si = ϕSi−1 + εi, we have

m∑
i=1

S2
i =

m∑
i=1

(ϕSi−1 + εi)
2 ≥

m∑
i=1

ε2i 1{sign(εi) = sign(Si−1)} .

But of course, by assumption on the innovation process we have P([ε]+ ≥ σ) ≥ 1
4 and P([−ε]+ ≥ σ) ≥ 1

4 , so that

m∑
i=1

ε2i 1{sign(εi) = sign(Si−1)} ≥
m

4
(1− o(1))σ2

with high probability.1 This demonstrates point (i).

Demonstrating claim (ii). This requires a substantially more tedious argument. We first develop explicit formulae for Si

and their sums. Define the sequence of vectors

vi :=
[
ϕi−1 ϕi−2 · · · 1 0 · · · 0

]⊤ ∈ Rm
+ .

Then we have

Si =

i∑
j=1

ϕi−jεj + ϕiS0 = ϕiS0 + vTi ε,

so that
m∑
i=1

Si = ϕ
1− ϕm+1

1− ϕ
S0 +

m∑
i=1

1− ϕm−i+1

1− ϕ
εi (5a)

and
m∑
i=1

S2
i =

m∑
i=1

(ϕiS0 + vTi ε)
2 = ϕ2 1− ϕ2(m+1)

1− ϕ2
S2
0 + εT

( m∑
i=1

viv
T
i

)
ε+ 2S0

m∑
i=1

ϕivTi ε. (5b)

We will control the deviations of both the expansions (5). For the former (5a), a quick calculation with Chebyshev’s
inequality shows that with probability at least 1− 1/t2,∣∣∣∣ m∑

i=1

1− ϕm−i+1

1− ϕ
εi

∣∣∣∣ ≤ O(1)t
√
m

σε

1− ϕ
.

For the second term (5b), we control both the quadratic
∑m

i=1(v
T
i ε)

2 and the final linear term.

Claim C.3. Let M =
∑m

i=1 viv
T
i . Then E[εTMε] = σ2

ε tr(M), and there is a numerical constant p > 0 such that for all
t ∈ [0, 1],

P
(
εTMε ≥ tσ2

ε tr(M)
)
≥ (1− t)2 · p.

1Making this rigorous would use Azuma’s inequality.
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Proof. The expectation calculation is trivial. To lower bound the probabilities, note that by the Paley-Zygmund inequality,
for any t ∈ [0, 1],

P(εTMε ≥ tσ2
ε tr(M)) ≥ (1− t)2

σ4
ε tr(M)2

E[(εTMε)2]
,

so that the claimed constant p =
σ4
ε tr(M)2

E[(εTMε)2]
. We now demonstrate that p is indeed a (numerical) constant under the

assumptions of Lemma 5.3. To control the denominator, the expansion εTMε =
∑

i,j εiεjMij and that the εi are are i.i.d.
and mean zero together imply

E[(εTMε)2] =

m∑
i=1

M2
iiE[ε4i ] +O(1)

∑
i ̸=j

MiiMjjE[ε2i ε2j ] +O(1)
∑
i ̸=j

M2
ijE[ε2i ε2j ]

= O(1)σ4
ε

(
tr(M)2 + ∥M∥2Fr

)
.

Because vt has entries vt,i = ϕt−i for i ≤ t and vt,i = 0 otherwise,

Mij =

m∑
t=1

vt,ivt,j =

m∑
t=i∨j

ϕ2t−i−j = ϕ−i−j
m∑

t=i∨j

ϕ2t = ϕ2(i∨j)−i−j 1− ϕ2(i∨j+1)

1− ϕ2
.

So tr(M) =
∑m

i=1
1−ϕ2(i+1)

1−ϕ2 ≳ m
1−ϕ2 , while by considering the diagonal, one-off diagonal, two-off-diagonal, and so on,

∥M∥2Fr ≲
∑m−1

i=0 (m− i)ϕ2i 1
(1−ϕ2)2 . The following observation allows us to control such sums:

Observation C.1. Let c ̸= 1. Then for any m ∈ N,

m−1∑
i=0

(m− i)ci = m
1− cm

1− c
+

(m+ 1)cm − 1

1− c
− c− cm+1

(1− c)2
+

1− cm

1− c
.

Proof. We observe that
∑m−1

i=0 ci = 1−cm

1−c whenever c ̸= 1, and so

m−1∑
i=0

(m− i)ci = m
1− cm

1− c
−

m−1∑
i=0

(i+ 1)ci +

m−1∑
i=0

ci

= m
1− cm

1− c
− ∂

∂c

m−1∑
i=0

ci+1 +
1− cm

1− c

= m
1− cm

1− c
− ∂

∂c

c− cm+1

1− c
+

1− cm

1− c
.

Computing derivatives gives the result.

Returning to our chain of inequalities and substituting c = ϕ2 in the observation, we thus obtain

∥M∥2Fr ≲
m

(1− ϕ2)3
≪ tr(M)2,

and so the constant p = tr(M)2

O(1)(tr(M)2+∥M∥2
Fr)

≳ 1 as desired.

Finally, we control the final sum in the expansion (5b). Defining the scalars

ui =
1

1− ϕ
ϕi
(
1− ϕm−i+1

)
,

so for the vector u = (u1, . . . , um) we observe that

m∑
i=1

ϕivTi ε =

m∑
i=1

uiεi = uT ε,
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and so

E

[( m∑
i=1

ϕivTi ε

)4
]
= E[(uT ε)4] =

m∑
i=1

u4
iE[ε4i ] +O(1)

∑
i̸=j

u2
iu

2
jE[ε2i ε2j ] = O(1)σ4

ε

(
∥u∥44 + ∥u∥

4
2

)
.

Because ∥u∥44 ≤
ϕ4

(1−ϕ)4(1−ϕ4) and ∥u∥22 ≤
ϕ2

(1−ϕ)2(1−ϕ2) , we obtain that

P

(∣∣∣∣ m∑
i=1

ϕivTi ε

∣∣∣∣ ≥ tσε

)
≤ ϕ4

(1− ϕ)4(1− ϕ2)2
· O(1)

t4

for all t ≥ 0. Summarizing, in pursuit of proving claim (ii), we have shown
Claim C.4. There is a numerical constant p > 0 such that for any ta, tb ≥ 0, with probability at least p− 1/t2a − 1/t4b ,∣∣∣∣∣

m∑
i=1

Si − ϕ
1− ϕm+1

1− ϕ
S0

∣∣∣∣∣ ≤ O(1)ta
√
m

σε

1− ϕ

and
m∑
i=1

S2
i ≥ ϕ2 1− ϕ2(m+1)

1− ϕ2
S2
0 +

σ2
ε

2
tr

(
m∑
i=1

viv
⊤
i

)
−O(1)S0tbσε

ϕ

(1− ϕ)
√
1− ϕ2

.

By claim C.4, we may evidently choose ta, tb to be appropriate constants and see that with (numerical) constant probability,

Sm
2
≲

ϕ2

m2(1− ϕ)2
S2
0 +

σ2
ε

m(1− ϕ)2
and S2

m ≳
ϕ2

m

1

1− ϕ2
S2
0 +

σ2
ε

1− ϕ2
− S0σεϕ

m(1− ϕ)
√
1− ϕ2

.

We consider two cases: depending on whether S2
0 ≥ mσ2

ε/ϕ
2. In the first case (that it is larger), we see that Sm

2
≲

ϕ2

m2(1−ϕ)2S
2
0 while

S2
m ≳

ϕ2S2
0

m(1− ϕ2)
− S2

0ϕ
2

m3/2(1− ϕ)
√
1− ϕ2

.

That 1
(1−ϕ)2 ≤

1
1−ϕ2 immediately shows S2

m ≳ Sm
2
. In the latter case that S2

0 < mσ2
ε/ϕ

2, we have Sm
2
≲ σ2

ε

m(1−ϕ)2 while

by the Fenchel-Young inequality ab ≤ a2

2 + b2

2 ,

S2
m ≳

ϕ2S2
0

m(1− ϕ2)
+

σ2
ε

1− ϕ
− S2

0ϕ
2

2m(1− ϕ2)
− σ2

ε

2m(1− ϕ)2

(⋆)

≥ ϕ2S2
0

2m(1− ϕ2)
+

σ2
ε

2m(1− ϕ)2
,

where inequality (⋆) used that m ≥ 1
1−ϕ . In particular, we have S2

m ≳ Sm
2
, as desired.

Lastly, we return to prove Lemma C.4:

Proof. We explicitly find the eigenvalues of a two-by-two matrix. For scalars a, b and matrix

A =

[
a b
b 1

]
we have det(A− λI) = (a− λ)(1− λ)− b2 = λ2 − (a+ 1)λ+ a− b2.

Solving for det(A− λI) = 0, we obtain eigenvalues

λ =
a+ 1±

√
(a− 1)2 + 4b2

2
.

Now, let us assume that b2 = (1− γ)a for some γ ∈ [0, 1]. Then using the first-order concavity of the square root (that is,
that
√
x+∆ ≤

√
x+ ∆

2
√
x

), we obtain

2λmin(A) = a+ 1−
√
(a− 1)2 + 4(1− γ)a = a+ 1−

√
(a+ 1)2 − 4γa ≥ 2γa

a+ 1
.

Substituting a = S2
m and b = Sm, which satisfy b2 ≤ a by Jensen’s inequality, on the event that (1 − γ)S2

m ≥ Sm
2

we

have λmin(Σ) ≥ γS2
m

1+S2
m

. Noting that (1− γ)S2
m ≥ Sm

2
if and only if γ ≤ 1− Sm

2

S2
m

gives the lemma.
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C.5. Proof of Theorem 5.4

We first introduce some new notation regarding gradients for ease of presentation. We denote the conditional subgradient by
gb,i(θ) ∈ ∂θLb,i(θ) and the observed subgradient by ĝb,i(θ) ∈ ∂θℓquantile(Sb,i − θ⊤Zb,i), dropping the argument θ when it
is clear from context. We denote the batch expected subgradient conditioned on previous batches, as gb = E[ 1m

∑m
i=1 ĝb,i |

Fb−1,m], the batch empirical subgradient as ĝb :=
1
m

∑m
i=1 ĝb,i, and define the difference zb = gb − ĝb.

As in the proof of asymptotic consistency of Theorem 5.1, we start by establishing the connection between the conditional
coverage guarantee (2) and the conformal predictor’s parameter θ ∈ Θ. The following proposition states that the conditional
coverage error can be bounded by the distance of θ to the optimal θ⋆ ∈ Θ that represents all conditional quantiles under
well-specification.

Proposition C.5. Let Sb,i | Fb,i−1 have density fb,i upper-bounded by u′ in a GD-neighborhood around its conditional
quantile q⋆b,i. Then, ∣∣∣∣P(Yb,i ∈ Cb,i(Xb,i) | Fb,i−1)− (1− α)

∣∣∣∣ ≤ u′G ∥θb − θ⋆∥ .

Deferring the proof of Proposition C.5 temporarily, we see that to prove Theorem 5.4 it only remains to show that
Algorithm 1’s parameters θb ∈ Θ satisfy ∥θb − θ⋆∥2 ∈ O(log(B log(B)/δ)/bc) with high probability. We do this through
the following two claims:

(i) For any δ > 0 there exist recursive upper bounds ∥θb+1 − θ⋆∥2 ≤
√∑b

i=1 Ab,i ∥θi − θ⋆∥2 +Rb that hold simultane-
ously for all b ≤ B with probability at least 1− δ.

(ii) Under the event in (i),
√∑b

i=1 Ab,i ∥θi − θ⋆∥2 +Rb ∈ O(log(B log(B)/δ)/bc) by strong induction.

Substituting our bound on ∥θb − θ⋆∥2, we get that for some constant Cb, which is a function of G,µmin, u
′,∣∣∣∣P(Yb,i ∈ Cb,i(Xb,i) | Fb,i−1)− (1− α)

∣∣∣∣ ≤ Cb

√
(log(B log(B)/δ))

bc
.

Without batching, as in the statement of Theorem 5.4 for different constant C, a function of m,G, µmin, u
′, we can write∣∣∣∣P(Yt ∈ Ct(Xt) | Ft−1)− (1− α)

∣∣∣∣ ≤ C

√
(log(T log(T )/δ))

tc
.

We now turn to the proof, which borrows several parts from Proposition 1 of Rakhlin et al. (2012). The novelty lies in the
batch setting, the changing objective function, and the generalized learning rates.

Demonstrating Claim (i). We start by unrolling one iteration of Algorithm 1, using the fact that θb+1 = ΠΘ(θb − ηbĝb):

∥θb+1 − θ⋆∥2 ≤ ∥θb − ηbĝb − θ⋆∥2

= ∥θb − θ⋆∥2 − 2ηb ⟨ĝb, θb − θ⋆⟩+ η2b ∥ĝb∥2

≤ ∥θb − θ⋆∥2 − 2ηb ⟨ĝb, θb − θ⋆⟩+ 2ηb ⟨gb, θb − θ⋆⟩ − 2ηb ⟨gb, θb − θ⋆⟩+ η2bG
2

= ∥θb − θ⋆∥2 − 2ηb
1

m

m∑
i=1

E[⟨gb,i, θb − θ⋆⟩ | Fb−1,m] + 2ηb ⟨zb, θb − θ⋆⟩+ η2bG
2.

This expression can now be upper bounded using the subgradient inequality ⟨gb,i, θb − θ⋆⟩ ≥ Lb,i(θb) − Lb,i(θ
⋆) and

Lemma 5.2 due to well-specification:

∥θb+1 − θ⋆∥2 ≤ ∥θb − θ⋆∥2 − 2ηb
1

m

m∑
i=1

E[(Lb,i(θb)− Lb,i(θ
⋆)) | Fb−1,m] + 2ηb ⟨zb, θb − θ⋆⟩+ η2bG

2

≤ ∥θb − θ⋆∥2 − 2ηb∥θb − θ⋆∥2E[µb | Fb−1,m] + 2ηb ⟨zb, θb − θ⋆⟩+ η2bG
2.
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We now use the assumption that E [µb | Fb−1,m] is uniformly lower bounded by µmin > 0 with probability 1 (as in
Lemma 5.3), and our choice of step size ηb =

2c−1

bcµmin
to argue that

∥θb+1 − θ⋆∥2 ≤ ∥θb − θ⋆∥2 − 2ηb∥θb − θ⋆∥2µmin + 2ηb ⟨zb, θb − θ⋆⟩+ η2bG
2

= (1− 2ηbµmin) ∥θb − θ⋆∥2 + 2ηb ⟨zb, θb − θ⋆⟩+ η2bG
2

≤
(
1−

(
2

b

)c)
∥θb − θ⋆∥2 + 2ηb ⟨zb, θb − θ⋆⟩+ η2bG

2.

Unrolling this recursion until b = 2, we obtain:

∥θb+1 − θ⋆∥2 ≤
b∏

i=2

(
1−

(
2

i

)c)
∥θ2 − θ⋆∥2 +

b∑
i=2

b∏
j=i+1

(
1−

(
2

j

)c)
2ηi ⟨zi, θi − θ⋆⟩+

b∑
i=2

b∏
j=i+1

(
1−

(
2

j

)c)
η2iG

2

≤ 2c

µmin

b∑
i=2

b∏
j=i+1

(
1−

(
2

j

)c)
1

ic
⟨zi, θi − θ⋆⟩+ G2

µ2
min

b∑
i=2

b∏
j=i+1

(
1−

(
2

j

)c)
1

i2c
,

where the first term vanishes since
(
2
i

)c
= 1 at i = 2. Note that the sum in the second term can be bounded by 1

bc using

Lemma E.6 so that using the simplified notation fb(i) :=
∏b

j=i+1

(
1−

(
2
j

)c)
1
ic ,

∥θb+1 − θ⋆∥2 ≤ 2c

µmin

b∑
i=2

fb(i) ⟨zi, θi − θ⋆⟩︸ ︷︷ ︸
(⋆)

+
G2

µ2
minb

c
.

The upper bound in its current form does not match Claim (i) as it depends on ⟨zi, θi − θ⋆⟩ rather than the norms ∥θi − θ⋆∥.
We bridge this gap in the following proposition using the fact that (⋆) is a martingale that we can bound with high probability.

Proposition C.6. Let Mb(i) := fb(i) ⟨zi, θi − θ⋆⟩ and δ > 0. Then Mb(i) is a martingale difference sequence and with
probability at least 1− δ

b∑
i=2

Mb(i) ≤ 8Gmax


√√√√ b∑

i=2

fb(i)2 ∥θi − θ⋆∥2, Gfb(b)

µmin

√
log

(
B log(B)

δ

)
√

log

(
B log(B)

δ

)
,

for all b ≤ B simultaneously.

Proof. Our sequence Mb(i) forms a martingale difference sequence since

E[ĝi − gi | Fi−1,m] = E

 1

m

m∑
j=1

ĝi,j − E

 1

m

m∑
j=1

ĝi,j | Fi−1,m

 | Fi−1,m

 = 0,

fb(i) is constant, and θi is measurable with respect to Fi−1,m. The conditional variance, using the fact that ∥zi∥ ≤ 2G, can
be bounded by

Var(Mb(i) | Fi−1,m) ≤ 4fb(i)
2G2 ∥θi − θ⋆∥2 ,

so that the sum of the conditional variances from Mb(2) to Mb(b) satisfies

b∑
i=2

Var(Mb(i) | Fi−1,m) ≤ 4G2
b∑

i=2

fb(i)
2 ∥θi − θ⋆∥2 .

We also have the uniform bound (since fb is increasing by arguments in the inductive step of Lemma E.4)

|Mb(i)| ≤ fb(b)2G ∥θi − θ⋆∥ ≤ 2G2fb(b)

µmin
,
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where the upper-bound ∥θi − θ⋆∥ ≤ G
µmin

follows from the fact that

G ∥θi − θ⋆∥ ≥ ∥gi∥ ∥θi − θ⋆∥ ≥ ⟨gi, θi − θ⋆⟩ ≥ E [µi | Fi−1,m] ∥θi − θ⋆∥2 ≥ µmin ∥θi − θ⋆∥2 . (6)

Now, we can apply Lemma E.2 from Bartlett et al. (2008) to bound the sum of martingale differences
∑b

i=2 Mb(i). As b
increases from 2 to B, we have (B − 1) martingales, which we will bound together with a union bound. As long as B ≥ 4
and δ′ ∈ (0, 1/e), with probability at least 1−Bδ′, for all b ≤ B,

b∑
i=2

Mb(i) ≤ 2max

2

√√√√4G2

b∑
i=2

fb(i)2 ∥θi − θ⋆∥2, 2G
2fb(b)

µmin

√
log

(
log(B)

δ′

)
√
log

(
log(B)

δ′

)

≤ 8Gmax


√√√√ b∑

i=2

fb(i)2 ∥θi − θ⋆∥2, Gfb(b)

µmin

√
log

(
log(B)

δ′

)
√

log

(
log(B)

δ′

)
.

Substituting δ′ = δ
B yields the stated result.

Summarizing, with the goal of establishing a O(log(B log(B)/δ)/bc) rate for ∥θb − θ⋆∥2, we have shown that for all b ≤ B,
with probability at least 1− δ,

∥θb+1 − θ⋆∥2

≤ 2c

µmin
8Gmax


√√√√ b∑

i=2

fb(i)2 ∥θi − θ⋆∥2, Gfb(b)

µmin

√
log

(
B log(B)

δ

)
√
log

(
B log(B)

δ

)
+

G2

µ2
minb

c

≤
16G

√
log(B log(B)/δ)

µmin

√√√√ b∑
i=2

fb(i)2 ∥θi − θ⋆∥2 + 16G2 log(B log(B)/δ)

µ2
minb

c
+

G2

µ2
minb

c

=
16G

√
log(B log(B)/δ)

µmin

√√√√ b∑
i=2

fb(i)2 ∥θi − θ⋆∥2 + G2(16 log(B log(B)/δ) + 1)

µ2
minb

c
.

This is equivalent to Claim (i).

Demonstrating Claim (ii). We now prove by strong induction that ∥θb − θ⋆∥2 ≤ a
bc for suitably chosen a. This holds for

b = 1, 2 if a ≥ 2G2

µ2
min

, since that implies ∥θb − θ⋆∥2 ≤ G2

µ2
min

, which holds by inequality (6). To show the inductive step, we
write the above inequality as

∥θb+1 − θ⋆∥2 ≤ x

√√√√ b∑
i=2

fb(i)2 ∥θi − θ⋆∥2 + y

bc
,

for x =
16G
√

log(B log(B)/δ)

µmin
and y = G2(16 log(B log(B)/δ)+1)

µ2
min

. By the inductive hypothesis, ∥θi − θ⋆∥2 ≤ a
ic for i = 1, . . . b.

To show that ∥θb+1 − θ⋆∥2 ≤ a
(b+1)c , it suffices to find a sufficiently large so that

x

√√√√ b∑
i=2

fb(i)2
a

ic
+

y

bc
≤ a

(b+ 1)c
.

By Lemma E.7, which bounds
∑b

i=2 fb(i)
2 1
ic

x
√
a · 1

bc
+

y

bc
≤ a

(b+ 1)c
⇔ (x

√
a+ y)

(
b+ 1

b

)c

≤ a.
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Using the fact that
(
b+1
b

)c ≤ b+1
b ≤

3
2 for b ≥ 2 and c ∈ [0, 1], then

a ≥ 3

2
(x
√
a+ y)⇔ a− 3x

2

√
a− 3y

2
≥ 0.

Solving the quadratic inequality, we get that

√
a ≥ 1

2

(
3x

2
+

√
9x2

4
+ 6y

)
⇐= a ≥ 1

2

(
9x2

4
+

9x2

4
+ 6y

)
=

9x2

4
+ 3y.

Substituting in the values of x and y, we get that

a ≥ 576G2 log(B log(B)/δ)

µ2
min

+
3G2(16 log(B log(B)/δ) + 1)

µ2
min

⇐= a ≥ G2(624 log(B log(B)/δ) + 3)

µ2
min

.

Note that this satisfies the condition on a in the base case, that is a ≥ 2G2

µ2
min

, since 3G2

µ2
min
≥ 2G2

µ2
min

. This shows Claim (ii) and
the first statement of the theorem.

Lastly, we return to prove Proposition C.5:

Proof. We use our assumption that St | Ft−1 has density ft upper-bounded by u′ in a GD neighborhood around the
conditional quantile q⋆t , so that∣∣∣∣P(Yb,i ∈ Cb,i(Xb,i) | Fb,i−1)− (1− α)

∣∣∣∣ = ∣∣∣∣P(qb,i(θb) ≥ Sb,i | Fb,i−1)− P(qb,i(θ⋆) ≥ Sb,i | Fb,i−1)

∣∣∣∣
= max

{∫ qb,i(θ
⋆)

qb,i(θb)

fb,i(x)dx,

∫ qb,i(θb)

qb,i(θ⋆)

fb,i(x)dx

}
≤ u′|qb,i(θb)− qb,i(θ

⋆)|
≤ u′G ∥θb − θ⋆∥ .

C.6. Proof of Theorem 6.1

We first provide a roadmap for the proof, and then the details for each step.

For our iterates θt to converge to θ⋆ which defines the best quantile predictor, we must first establish the existence and
uniqueness of the minimizer θ⋆. We will argue that under our assumptions, this is a consequence of the strong convexity of
LΠ(θ) around its minimizer.

Claim C.5. Let the assumptions of Theorem 6.1 hold. Then:

(i) There exists θ⋆ ∈ Θ such that LΠ(θ
⋆) ≤ LΠ(θ) for any other θ ∈ Θ.

(ii) For any θ ∈ Θ and µ = pΠλmin
{
1, ε

GD

}
LΠ(θ)− LΠ(θ

⋆) ≥ µ

2
∥θ − θ⋆∥2 ,

so θ⋆ is unique.

Claim C.5 not only states the existence and uniqueness of θ⋆, but also the fact that LΠ behaves like a strongly convex
function with respect to its minimizer. This allows us to bound the squared distance ∥θt − θ⋆∥2 using a recursion argument
based on Proposition 1 of Rakhlin et al. (2012):
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Claim C.6. The iterates θt of Algorithm 1 with m = 1 and ηt =
2c

µtc satisfy

∥θt+1 − θ⋆∥2 ≤
t∑

i=2

t∏
j=i+1

(
1−

(
2

j

)c)
2ηi(LΠ(θi)− LΠ(θ

⋆)− ℓi(θi) + ℓi(θ
⋆))

+

t∑
i=2

t∏
j=i+1

(
1−

(
2

j

)c)
η2i ∥ĝi∥2 .

To prove the first part of Theorem 6.1 it now suffices to control the expected value of the bound in Claim C.6. Deriving a
bound for the rightmost term is straightforward from our Lipschitz assumption and the learning rate inequality in Lemma E.6.
To control the remaining term we rely on the following lemma.

Lemma C.7. Let {ν2, · · · , νt} be any sequence of positive scalars and

A =

t∑
i=2

νi(LΠ(θi)− LΠ(θ
⋆)− ℓi(θi) + ℓi(θ

⋆)),

then for 0 < τ < t

E [A] ≤ GD

(
t−τ∑
i=2

[
νi ·

β(τ)

2
+ |νi − νi+τ |+

νiτηiG

D

]
+

τ∑
i=2

νi +

t∑
i=t−τ+1

2νi

)
.

The expectation is taken over the samples {(Si, Zi)}ti=1.

Combining the bounds for both terms now yields the first part of Theorem 6.1, which we summarize below.

Proposition C.8. Based on the bound in Claim C.6, the iterates θt of Algorithm 1 with m = 1 and ηt =
2c

µtc satisfy

E
[
∥θt+1 − θ⋆∥2

]
≤ C

(
G2

µ2
+

GD

µ

)
τ

(t+ 1)c
,

for t ∈ [T + 1] and a universal constant C.

The final step is to link this upper bound to the expected coverage gap via the following lemma.

Lemma C.9. Let St | Ft−1 have density ft upper-bounded by u in a ε-neighborhood around Z⊤
t θ⋆. Then,

E [|P (Yt /∈ Ct(Xt) | Ft−1)− αt|] ≤
(
G

ε
+ uΠG

)√
E
[
∥θt+1 − θ⋆∥2

]
.

We now provide proofs for each of these results, with the proof of Lemma C.7 deferred to the end of the section.

Demonstrating Claim C.5. Part (i) is a straightforward consequence of the extreme value theorem since Θ is closed and
bounded and LΠ(θ) is continuous, so there exists θ⋆ ∈ Θ such that LΠ(θ

⋆) ≤ LΠ(θ) for any other θ ∈ Θ. Part (ii) requires
a more detailed analysis that we split into 3 sub-parts:

(ii)(a) The Hessian∇2LΠ(θ) exists for all θ ∈ B2(θ
⋆, ε

G ).

(ii)(b) LΠ is pΠλ-strongly convex in B2(θ
⋆, ε

G ) since for any θ in this set the Hessian satisfies

∇2LΠ(θ) ⪰ pΠλI.

(ii)(c) Part (b) and the finite diameter of Θ imply part (ii) of Claim C.5.
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Demonstrating (ii)(a). Recall that by the chain rule for subdifferentials

∇LΠ(θ) = EΠ

[
Z(P

(
S ≤ Z⊤θ | Z

)
− (1− α))

]
.

For any z and i ∈ [d] we now define the auxiliary function

gi(θ; z) = zi(P
(
S ≤ z⊤θ | Z = z

)
− (1− α)),

so that for any j ∈ [d] if we now let πz be the continuous conditional density of S | Z = z, then the derivative

∂gi(θ; z)

∂θj
= zi

(
∂

∂θj

∫ z⊤θ

−∞
πz(s)ds

)
= πz(z

⊤θ)zizj ,

exists by the chain rule and the fundamental theorem of calculus. We now note that for any θ ∈ B2(θ
⋆, ε

G )

1. |zi| ≤ G <∞ so gi(θ; z) is an integrable function of z.

2. |zizj | ≤ G2 <∞ and πz is upper bounded by uΠ over {s = z⊤θ : θ ∈ B2(θ
⋆, ε

G ), ∥z∥ ≤ G}∣∣∣∣∂gi(θ; z)∂θj

∣∣∣∣ ≤ G2uΠ

with probability 1 and G2uΠ <∞ is an integrable function of z.

These results allow us to swap expectation and differentiation to conclude that for any θ ∈ B2(θ
⋆, ε

G )

∇2LΠ(θ) = EΠ

[
πZ(Z

⊤θ)ZZT
]
.

Demonstrating (ii)(b). Armed with our proof of (ii)(a) and an explicit expression for ∇2LΠ(θ), the result (ii)(b) now
follows from the fact that for any θ in this set πZ(Z

⊤θ) ≥ pΠ and

∇2LΠ(θ) ⪰ pΠλI.

We have thus shown that LΠ(θ) is µ-strongly convex for µ = pΠλ on B2(θ
⋆, ε

G ).

Demonstrating (ii)(c). If ε ≥ GD then LΠ is µ-strongly convex for all Θ so the claim immediately holds. If ε < GD for
any θ ∈ Θ and β ∈ [0, 1] we can define θ̃ = βθ + (1− β)θ⋆ ∈ Θ so that∥∥∥θ̃ − θ⋆

∥∥∥ = β
∥∥∥θ̃ − θ⋆

∥∥∥ ≤ βD,

and choosing β = ε
GD ∈ (0, 1) now ensures that θ̃ ∈ B2(θ

⋆, ε
G ). We now know that for any other θ ̸= θ⋆ the convex

optimality conditions indicate that ⟨∇LΠ(θ
⋆), θ − θ⋆⟩ ≥ 0 and by the convexity of LΠ(θ)

LΠ(θ)− LΠ(θ
⋆) ≥ 1

β

(
LΠ(θ̃)− LΠ(θ

⋆)
)

≥ ⟨∇LΠ(θ
⋆), θ − θ⋆⟩+ pΠλ

2β

∥∥∥θ̃ − θ⋆
∥∥∥2

≥ pΠλ

2
β ∥θ − θ⋆∥2 .

This implies that θ⋆ is unique since LΠ(θ) > LΠ(θ
⋆) for θ ̸= θ⋆.
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Demonstrating Claim C.6. To obtain our upper bound we define ĝt ∈ ∂lt(θt) as our empirical subgradient for time t and
turn to the standard recursive relationship

∥θt+1 − θ⋆∥2 ≤ ∥θt − θ⋆∥2 − 2ηt⟨ĝt, θt − θ⋆⟩+ η2t ∥ĝt∥22 .

We can now use the convexity of ℓt to conclude that

∥θt+1 − θ⋆∥2 ≤ ∥θt − θ⋆∥2 − 2ηt(ℓt(θt)− ℓt(θ
⋆)) + η2t ∥ĝt∥22

= ∥θt − θ⋆∥2 − 2ηt(LΠ(θt)− LΠ(θ
⋆)) + 2ηt(LΠ(θt)− LΠ(θ

⋆)− ℓt(θt) + ℓt(θ
⋆)) + η2t ∥ĝt∥22 .

Recall that by Claim C.5 if µ = pΠλmin
{

ε
GD , 1

}
then

LΠ(θ)− LΠ(θ
⋆) ≥ µ

2
∥θ − θ⋆∥2 ,

so that

∥θt+1 − θ⋆∥2 ≤ (1− µηt) ∥θt − θ⋆∥2 + 2ηt(LΠ(θt)− LΠ(θ
⋆)− ℓt(θt) + ℓt(θ

⋆)) + η2t ∥ĝt∥22 .

For arbitrary t ≥ 2 we now set ηt = 2c

µtc and unroll the inequality to obtain

∥θt+1 − θ⋆∥2 ≤
t∏

i=2

(
1−

(
2

i

)c)
∥θ2 − θ⋆∥2

+

t∑
i=2

t∏
j=i+1

(
1−

(
2

j

)c)
2ηi(LΠ(θi)− LΠ(θ

⋆)− ℓi(θi) + ℓi(θ
⋆))

+

t∑
i=2

t∏
j=i+1

(
1−

(
2

j

)c)
η2i ∥ĝi∥2 ,

where the first term vanishes since (1− 2c/ic) = 0 at i = 2.

Demonstrating Proposition C.8. We can obtain a bound for the leftmost term in Claim C.6 by applying Lemma C.7 with

νi =

t∏
j=i+1

(
1−

(
2

j

)c)
21+c

µic
,

and using the learning rate inequalities in Lemmas E.4, E.5, E.6, and E.8 to bound each individual term. After some algebra,
this yields the upper bound

E [A] ≤ GDβ(τ)

µ
+

28τGD

µtc
+

8τG2

µ2tc
,

and choosing τ = τβ(P, (t+ 1)−c)

E [A] ≤ GD

µ(t+ 1)c
+

28τGD

µtc
+

8τG2

µ2tc
.

To handle the remaining term, we see that by the learning rate inequality in Lemma E.6
t∑

i=2

t∏
j=i+1

(
1−

(
2

j

)c)
22c

µ2i2c
E
[
∥ĝi∥2

]
≤ 4G2

µ2tc
≤ 4τG2

µ2tc
,

and thus since
(
t+1
t

)c ≤ 3
2 for t ≥ 2,

E
[
∥θt+1 − θ⋆∥2

]
≤ GD

µ(t+ 1)c
+

56τGD

µ(t+ 1)c
+

18τG2

µ2(t+ 1)c

≤ 58

(
G2

µ2
+

GD

µ

)
τ

(t+ 1)c
.

The value t ≥ 2 was chosen arbitrarily so the result holds for any 3 ≤ t+ 1 ≤ T + 1. Moreover, the inequality (6) in the
proof of Theorem 5.4 also holds in this case, with the corresponding µ, so ∥θi − θ⋆∥2 ≤ GD/µ and the bound is also valid
for t+ 1 = 1, 2.
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Demonstrating Lemma C.9. We start by using our local upper bound on the conditional density to upper bound the
coverage gap

Rt = |P (Yt ∈ Ct(Xt) | Ft−1)− (1− αt)|
= |P (St ≤ qt(θt) | Ft−1)− P (St ≤ qt(θ

⋆) | Ft−1) |

=

∣∣∣∣∫ (1St∈[qt(θ⋆),qt(θt)] − 1St∈[qt(θt),qt(θ⋆)])dPSt|Ft−1

∣∣∣∣
≤ 1∥θt−θ⋆∥> ε

G
+

∣∣∣∣∫ 1∥θt−θ⋆∥≤ ε
G
(1St∈[qt(θ⋆),qt(θt)] − 1St∈[qt(θt),qt(θ⋆)])dPSt|Ft−1

∣∣∣∣
≤ 1∥θt−θ⋆∥> ε

G
+ u |qt(θt)− qt(θ

⋆)|
≤ 1∥θt−θ⋆∥> ε

G
+ uG ∥θt − θ⋆∥ .

We now take the expectation of Rt to conclude that

E [Rt] ≤ P
(
∥θt − θ⋆∥ > ε

G

)
+ uGE [∥θt − θ⋆∥] ,

and by Markov’s inequality,

E [Rt] ≤
(
G

ε
+ uG

)
E [∥θt − θ⋆∥] .

Finally, applying Jensen’s inequality

E [Rt] ≤
(
G

ε
+ uG

)√
E
[
∥θt − θ⋆∥2

]
,

which proves the desired result.

Demonstrating Lemma C.7. The proof of this lemma follows from a similar decomposition as in the proof of Theorem
3.1 in Duchi et al. (2012), so we first introduce the following two lemmas adapted from their analysis.

Lemma C.10. [Adapted from Lemma 6.3 in Duchi et al. (2012)] Let our ergodicity assumption hold, let our conformal
models be G-Lipschitz, and let Θ have finite diameter D. Then for θ ∈ m(Fi), t > τ ≥ 0, i ≤ t− τ , and any θ⋆ ∈ Θ

E [LΠ(θ)− LΠ(θ
⋆)− ℓi+τ (θ) + ℓi+τ (θ

⋆) | Fi] ≤ GD
∥∥∥P i+τ

[i] −Π
∥∥∥
TV

Proof. Note that

E [LΠ(θ)− LΠ(θ
⋆)− ℓi+τ (θ) + ℓi+τ (θ

⋆) | Fi] =

∫
(ℓ(s− z⊤θ)− ℓ(s− z⊤θ⋆))dΠ(z, s)

−
∫

(ℓ(s− z⊤θ)− ℓ(s− z⊤θ⋆))dP i+τ
[i] (z, s),

and since we assume that Π and P i+τ
[i] have densities with respect to the Lebesgue measure λ on Rd+1

|E [LΠ(θ)− LΠ(θ
⋆)− ℓt+τ (θ) + ℓt+τ (θ

⋆) | Ft]| =
∣∣∣∣∫ (ℓ(s− z⊤θ)− ℓ(s− z⊤θ⋆))(π(z, s)− pi+τ

[i] (z, s))dλ(z, s)

∣∣∣∣
≤ GD

∫
|π(z, s)− pi+τ

[i] (z, s)|dλ(z, s)

= GD
∥∥∥P i+τ

[i] −Π
∥∥∥
TV

.
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Lemma C.11. [Adapted from Lemma 6.4 in Duchi et al. (2012)] Let our conformal models be G-Lipschitz and let {ηt}t be
a non-increasing sequence of step sizes. For t > τ ≥ 0 and i ≤ t− τ the iterates produced by Algorithm 1 with batch size 1
satisfy

|ℓi+τ (θi)− ℓi+τ (θi+τ )| ≤ τηiG
2.

Proof. Recall that

θi+τ = θi −
i+τ−1∑
r=i

ηr∂ℓr(θr),

and since the learning rate schedule {ηt} is non-increasing

∥θi+τ − θi∥ =

∥∥∥∥∥
i+τ−1∑
r=i

ηr∂ℓr(θr)

∥∥∥∥∥
≤

i+τ−1∑
r=i

ηr ∥∂ℓr(θr)∥

≤ τηiG.

Finally, using our Lipschitz assumption once again

|ℓi+τ (θi)− ℓi+τ (θi+τ )| ≤ τηiG
2.

We now note that we can decompose A into the following 5 terms

A1 =

t−τ∑
i=2

νi (LΠ(θi)− LΠ(θ
⋆)− ℓi+τ (θi) + ℓi+τ (θ

⋆))

A2 =

t−τ∑
i=2

νi+τ (ℓi+τ (θi)− ℓi+τ (θi+τ ))

A3 =

t−τ∑
i=2

(νi − νi+τ )(ℓi+τ (θi)− ℓi+τ (θ
⋆))

A4 =

τ+1∑
i=2

νi (ℓi(θ
⋆)− ℓi(θi))

A5 =

t∑
i=t−τ+1

νi(LΠ(θi)− LΠ(θ
⋆)− ℓi(θi) + ℓi(θ

⋆)),

so that A =
∑5

k=1 Ak. We will now bound the expectation of each of these terms individually. Firstly, we observe that

E [A1] =

t−τ∑
i=2

νiE [(LΠ(θi)− LΠ(θ
⋆)− ℓi+τ (θi) + ℓi+τ (θ

⋆))]

=

t−τ∑
i=2

νiE [E [(LΠ(θi)− LΠ(θ
⋆)− ℓi+τ (θi) + ℓi+τ (θ

⋆)) | Fi]] ,

and apply Lemma C.10 to obtain

E [A1] ≤
t−τ∑
i=2

νiGD
β(τ)

2
.
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For A2 we note that by Lemma C.11

A2 ≤
t−τ∑
i=2

νi+ττηiG
2,

so E [A2] must also be upper bounded by this quantity. The upper bounds for the remaining 3 terms follow from the triangle
inequality, our Lipschitz assumption, and our diameter bound

E [A3] ≤
t−τ∑
i=2

GD|νi − νi+τ |

E [A4] ≤
τ∑

i=2

νiGD

E [A5] ≤
t∑

i=t−τ+1

2νiGD.

Summing up all the stated upper bounds yields the result.

D. Justifying the quantile loss
Here we provide some intuition to justify why the quantile loss is an effective metric for evaluating and comparing online
conformal algorithms. We argue that the minimizers of the quantile loss exhibit desirable properties in both mis-specified
ergodic and adversarial settings, as discussed in Sections D.1 and D.2, respectively.

In addition to these results, we also point out that the quantile loss is often quite natural for the online conformal task.
Specifically, it grows linearly as the predicted quantile deviates further from the observed score St, and its asymmetric
nature penalizes mis-coverage, where an actual error occurs, more heavily than over-coverage, where the conformal set is
simply less conservative than necessary, as long as α < 0.5.

D.1. Properties of the quantile loss in the mis-specified ergodic setting

In Section 6, we argued that if our quantile models are linear and the covariate and score pairs {(Zt, St)} are produced
by an ergodic process P converging to a stationary distribution Π, then the iterates of Algorithm 1 with batch size m = 1
converge to θ⋆ minimizing LΠ, the expected quantile loss with respect to the stationary distribution. This implies that the
coverage properties of our algorithm are determined by

αt = P
(
St > Z⊤

t θ⋆ | Ft−1

)
.

To argue that these αt often provide good coverage in the mis-specified setting, we consider the case where
P
(
St > Z⊤

t θ | Ft−1

)
= P

(
St > Z⊤

t θ | Zt

)
. This holds, for example, when the distribution of St only depends on

the previous q scores and we use an LQT model of order p ≥ q. In this case we can provide an alternative characterization
of the stronger guarantee (2), since we assume that Π is the stationary distribution of our process

αt(z) := P
(
St > z⊤θ⋆ | Zt = z

)
= EΠ

[
1{S>z⊤θ⋆} | Z = z

]
,

so that αt = α ∈ σ(Z) if and only if

sup
V ∈L2(Ω,σ(Z),ΠZ)

EΠ

[
V (α− 1{S>Z⊤θ⋆})

]
= 0.

In the mis-specified setting, our predictor will not be able to attain conditional coverage, but may be able to attain the weaker
condition of coverage with respect to a family of witnesses V ⊂ L2(Ω, σ(Z),ΠZ):

sup
V ∈V

EΠ

[
V (α− 1{S>Z⊤θ⋆})

]
= 0.

We will now argue that these αt provide good coverage within our class of conformal predictors since for any other θ we
can find a witness function V defined by our features Z such that the sets obtained from qt(θ) have strictly worse coverage
than qt(θ

⋆) relative to V .
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Figure 4. Comparison of attained Lcov for θcov, θ⋆, and the average value of Lcov over 10,000 randomly chosen θ.

Theorem D.1. Let the assumptions in the previous paragraph and those of Theorem 6.1 hold. Then, for any θ ∈ Θ \ {θ⋆}
there exists β(θ) ∈ Rd such that the witness V = β(θ)⊤Z satisfies

EΠ

[
V (α− 1{S>Z⊤θ})

]
> EΠ

[
V (α− 1{S>Z⊤θ⋆})

]
≥ 0.

Proof. Recall from our proof of Theorem 6.1 that LΠ(θ) = EΠ

[
ℓquantile(S − Z⊤θ)

]
has gradient

∇L(θ) = EΠ

[
Z(α− 1{S>Z⊤θ})

]
,

and that by the convex optimality conditions

⟨∇LΠ(θ), θ − θ⋆⟩ ≥ LΠ(θ)− LΠ(θ
⋆) ≥ ⟨∇LΠ(θ

⋆), θ − θ⋆⟩+ µ

2
∥θ − θ⋆∥22 > ⟨∇LΠ(θ

⋆), θ − θ⋆⟩ ≥ 0.

This immediately implies that for β(θ) = (θ − θ⋆) and V = β(θ)⊤Z

EΠ

[
V (α− 1{S>Z⊤θ})

]
> EΠ

[
V (α− 1{S>Z⊤θ⋆})

]
≥ 0.

Note that the proof of Theorem D.1 also shows that when θ⋆ ∈ Int(Θ), the model defined by θ⋆ is the only one to achieve
coverage relative to our features Zi since ∇L(θ⋆) = EΠ

[
Z(α− 1{S>Z⊤θ⋆})

]
= 0. This result illustrates why minimizing

the quantile loss is desirable, especially when θ⋆ ∈ Int(Θ), as the minimizer obtains the best coverage relative to our
features.

We can also verify that αt provide good coverage in synthetic experiments where the stationary distribution Π is known. For
our experiment we consider the standard AR(1) model with standard Gaussian i.i.d. innovations and parameter 0.5, and
use a mis-specified linear model with feature vector Φt(S

t−1
1 )⊤ = [1, S2

1 , · · · , S
p
1 ] for p ≥ 2. In this case, a natural way to

measure coverage of our model is through

Lcov(θ) = EΠ

[∣∣∣∣P (S > Z⊤θ | Z
)
− α

∣∣∣∣] ,
the expected absolute difference between the conditional mis-coverage of our model and α. We now show the values of
Lcov attained by the minimizer θ⋆ of LΠ, the minimizer θcov of Lcov, and the average value of Lcov for 10,000 randomly
chosen θ, in Figure 4. Our results suggest that even under the criterion Lcov the θ⋆ minimizing the quantile loss provides
good coverage comparable to θcov, which is significantly better than the coverage attained by most other parameter values.

D.2. Properties of the quantile loss in the adversarial setting

In many cases, we can interpret online conformal prediction algorithms from online convex optimization perspective, where
we analyze the performance of an algorithm A producing iterates θt optimizing a sequence of convex functions ft : Θ→ R
in terms of static regret with respect to some set Θ̄ ⊆ Θ

RT (A, {ft}, Θ̄) =

T∑
t=1

ft(θt)− inf
θ∈Θ̄

T∑
t=1

ft(θ).

In this context, by the argument in Theorem 3.1 of (Hazan, 2016) Algorithm 1 (A1) also satisfies the following regret bound.
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Theorem D.2. Let ℓt be convex and G-Lipschtiz for every t ∈ N, and let Θ have finite diameter D. Then the iterates {θt}t
produced by Algorithm 1 with non-increasing learning rates {ηt}t and m = 1 satisfy

RT (A1, {ℓt},Θ) ≤ D2

ηT
+G2

T∑
t=1

ηt.

We now note that by Theorem 4.1, when scores are bounded Algorithm 1 also achieves small constraint violation with
respect to the constraint functions gt(θ) = 1qt(θ)<St

− α. Therefore, if we define the set of parameters that satisfy the
cumulative constraints in hindsight

Θ̄T =

{
θ ∈ Θ :

T∑
t=1

gt(θ) ≤ 0

}
,

Algorithm 1 with learning rates ηt = ct−1/2−ϵ for some c, ϵ > 0 and m = 1 provides a solution to the constrained
non-convex online optimization problem

min
θ1,··· ,θT∈Θ

T∑
t=1

ℓt(θt)− min
θ∈Θ̄T

T∑
t=1

ℓt(θ)

s.t.
T∑

t=1

gt(θt) ≤ 0,

having sublinear regretRT (A1, {ℓt}, Θ̄T ) = O(T 1/2+ϵ) and constraint violations
∑T

t=1 gt(θt) ≤ O(T 1/2+ϵ), simultane-
ously.

Note that any algorithm with sublinear constraint violations will satisfy

1

T

T∑
t=1

errt − α ≤ o(1),

which is equivalent to providing at least (1 − α) adversarial marginal coverage in the long-run. This naturally prompts
the question of whether we can design algorithms with at least (1− α) adversarial marginal coverage and similarly small
regretRT (A1, {ft}, Θ̄T ) for an arbitrary set of convex functions {ft} chosen by the user. The following Lemma, which
follows from a simple adaptation of the argument in Proposition 4 of Mannor et al. (2009), points out that this is impossible
in general even when objective and constraint functions are linear. We provide a proof of this fact in Section D.3 for
convenience of the reader.
Theorem D.3. Let Θ have finite diameter D. Then there exist sequences of linear functions {ft}, {gt} such that any
algorithm A attaining

lim sup
T→∞

1

T

T∑
t=1

gt(θt) ≤ 0,

also suffers

lim sup
T→∞

RT (A, {ft}, Θ̄T )

T
> 0,

and it is thus impossible to attain sublinear regret and constraint violations simultaneously.

However, we believe the design of online conformal algorithms that allow the user to trade off between coverage and regret
with respect to some arbitrary sequence of convex loss functions {ft} is a promising area of future research.

D.3. Proof of Theorem D.3

This proof closely follows the proof of Proposition 4 of Mannor et al. (2009); we only adapt it to our online convex
optimization setup for the convenience of the reader. To prove this result, we first define the behavior of our adversary and
then show how this choice makes it impossible to attain sublinear regret and constraint violations simultaneously.

38



Online Conformal Prediction via Online Optimization

Defining the adversary. Let (v, w) ∈ argmaxv,w∈Θ ∥v − w∥ be the two furthest points in our set so that ∥v − w∥ =
D <∞, and consider a setting where the behavior of our adversary is dictated by a sequence of indices jt so that

gt(θ) =

{
−1 jt = 1
1
D2 (w − v)⊤(θ − v) jt = 2,

and ft(θ) = 1− 1
D2 (w − v)⊤(θ − v). For any θ ∈ Θ

ft(θ) ≥ 1− 1

D2
∥w − v∥ ∥θ − v∥ ≥ 0,

and ft(w) = 0, so that w minimizes ft for any t. Let q̂T = 1
T

∑T
t=1 1jt=2 then if q̂T ≤ 1/2 we could choose θ = w (in

hindsight) to minimize all ft(θ) while satisfying the average constraint. We now let our adversary initialize a counter k = 0
and pick the indices jt using the following two steps:

1. While k = 0 or 1
D2(t−1)

∑t−1
r=1(w − v)⊤(θr − v) > 1

2 pick jt = 2 and increment k by 1.

2. For the next k time indices jt = 1. Then, reset counter k to 0 and go back to step 1.

Proving the impossibility result. We will now show that any algorithm that has sublinear constraint violations against
this adversary cannot attain sublinear regret. To do so, we show that:

(i) The adversary executes both steps infinitely often.

(ii) Any algorithm attains at least linear regret when the adversary finishes executing step 2.

Demonstrating claim (i). We will prove this result by contradiction, so we first assume that step 2 occurs only a finite
number of times. This implies that after a finite number of time steps, the adversary only chooses jt = 2 so that q̂T → 1.
However, our sublinear constraint

lim sup
T→∞

1

T

T∑
t=1

gt(θt) ≤ 0

implies that the condition 1
D2(t−1)

∑t−1
r=1(w − v)⊤(θr − v) > 1

2 must be violated at some point, triggering step 2. This
result implies that both steps occur infinitely often, so we can find infinitely many ti < t′i < ti+1 such that the adversary
plays step 1 for t ∈ (ti, t

′
i] and step 2 for t ∈ (t′i, ti+1].

Demonstrating claim (ii). Since both steps are equally long we know that q̂ti =
1
2 and

inf
θ∈Θ̄ti

ti∑
r=1

fr(θ) = 0.

Observe that by construction ti+1 − t′i ≤ t′i so that t′i ≥
ti+1

2 and thus

1

D2ti+1

ti+1∑
r=1

(w − v)⊤(θr − v) ≤ 1

ti+1

(
t′i
2
+ (ti+1 − t′i)

)
=

1

ti+1

(
ti+1 −

t′i
2

)
≤ 1

ti+1

(
ti+1 −

ti+1

4

)
=

3

4
.

This implies that

Rti+1
(A, {ft}, Θ̄ti+1

)

ti+1
= 1− 1

D2ti+1

ti+1∑
r=1

(w − v)⊤(θr − v) ≥ 1

4
,

39



Online Conformal Prediction via Online Optimization

and also the desired result

lim sup
T→∞

RT (A, {ft}, Θ̄T )

T
≥ 1

4
> 0.

E. Auxiliary results
E.1. Existing Theorems and Lemmas

In this section we compile several known results that we use in our proofs for the convenience of the reader. The first result
is a useful tool for asymptotic convergence proofs commonly known as the Robbins–Siegmund quasimartingale convergence
Theorem. We apply this result in our proof of Theorem 5.1.

Theorem E.1. [Adapted from Robbins & Siegmund (1971)] Let (Ω,F , P ) be a probability space and F1 ⊂ F2 ⊂ · · · be a
sequence of sub-σ-algebras of F . For each n = 1, 2, · · · let Vn, Dn, Un, and βn be non-negative Fn-measurable random
variables such that

E [Vn+1 | Fn] ≤ Vn(1 + βn)−Dn + Un,

then limn→∞ Vn exists and is finite and
∑∞

n=1 Dn <∞ almost surely on{ ∞∑
n=1

βn <∞,

∞∑
n=1

Un <∞

}
.

The second result is a concentration inequality for martingale difference sequences from Bartlett et al. (2008) and is used to
derive the high-probability bounds in Theorem 5.4.

Lemma E.2. [Copied from Bartlett et al. (2008)] Let d1, . . . , dT be a martingale difference sequence with a uniform bound
|di| ≤ b for all i. Let V =

∑T
t=1 Vart−1(dt) be the sum of conditional variances of dt’s. Further, let σ =

√
V . Then we

have, for any δ < 1/e and T ≥ 4,

P

(
T∑

t=1

dt > 2max
{
2σ, b

√
log(1/δ)

}√
log(1/δ)

)
≤ log(T )δ.

The final result provides some lower bounds on the expected quantile loss gap between some q ∈ R and the true quantile q⋆,
in terms of the distance between q and q⋆. We use this lemma for our proofs of the results in Section 5 and 6.

Lemma E.3. Let S have a positive continuous density f , lower bounded by p > 0 in an ε-neighborhood around its unique
(1− α) quantile q⋆. Then,

(i) For q such that |q − q⋆| ≤ ε,

E[ℓquantile(S − q)− ℓquantile(S − q∗)] ≥ p

2
|q − q⋆|2.

(ii) For q such that |q − q⋆| > ε,

E[ℓquantile(S − q)− ℓquantile(S − q∗)] ≥ pε

2
|q − q⋆|.

(iii) For q such that |q − q⋆| ≤ K with K ∈ (ε,∞),

E[ℓquantile(S − q)− ℓquantile(S − q∗)] ≥ pε

2K
|q − q⋆|2.

Proof. We dedicate a section to the proof of each lower bound.
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Demonstrating (i). We only prove (i) for q ≥ q⋆ as the other direction follows by an identical argument. We temporarily
adopt the notation L(q) := E[ℓquantile(S − q)] and recall that

∂qℓquantile(S − q) =

{
α− 1S−q>0 S ̸= q

[α− 1, α] S = q.

The subgradient of the expected quantile loss L is thus

∂qL(q) = ∂qE[ℓquantile(S − q)] = E[∂qℓquantile(S − q)] = E[α− 1S−q>0] = P(S ≤ q)− (1− α),

since we assume that S has a density. This is single valued so we can conclude that L(q) is differentiable and L′(q) =
P(S ≤ q)− (1− α). Note that P(S ≤ q⋆) = (1− α) since f is continuous, and for q ∈ [q⋆, q⋆ + ε],

L′(q) = L′(q)− L′(q⋆) = P(S ≤ q)− P(S ≤ q⋆) =

∫ q

q⋆
f(s)ds ≥ p(q − q⋆) .

This now implies that

L(q)− L(q⋆) =

∫ q

q⋆
L′(z)dz ≥ p

(
q2

2
− qq⋆ − q⋆2

2
+ q⋆2

)
=

p

2
(q − q⋆)2 .

Demonstrating (ii). We once again only prove (ii) for q ≥ q⋆ as the other direction follows by an identical argument. In
this case, q > q′ := q⋆ + ε so that

L(q)− L(q⋆) = L(q)− L(q′) + L(q′)− L(q⋆)

≥ L′(q′)(q − q′) +
p

2
(q′ − q⋆)2 (convexity of L; lower bound for q′ ∈ [q⋆, q⋆ + ε])

≥ pε(q − q′) +
pε

2
(q′ − q⋆) (q′ − q⋆ = ε)

≥ pε

2
(q − q⋆),

as desired.

Demonstrating (iii). This follows immediately from the previous bound by noting that if |q − q⋆| ≤ ε then

L(q)− L(q⋆) ≥ p

2
|q − q⋆|2 ≥ pε

2K
|q − q⋆|2,

and if |q − q⋆| > ε

L(q)− L(q⋆) ≥ pε

2
(q − q⋆)

=
pε

2

(q − q⋆)2

(q − q⋆)

≥ pε

2K
(q − q⋆)2.

E.2. Learning rate inequalities

The proofs of Theorems 5.4 and 6.1 rely on multiple inequalities bounding functions of the products
∏t

j=i+1

(
1−

(
2
j

)c)
for 2 ≤ i ≤ t, so we present and prove them in this section. In standard analyses of strongly convex stochastic gradient
descent, the learning rates are of the form Θ(1/tc) for c = 1, which simplifies the analysis of these products.
Lemma E.4. For any t ≥ 2, i ∈ [2, t] and c ∈ [0, 1],

t∏
j=i+1

(
1−

(
2

j

)c)
1

ic
≤ 1

tc
.

Proof. We prove the statement by induction on i = t, . . . , 2.
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Setting up the induction. Let

ft(i) =

t∏
j=i+1

(
1−

(
2

j

)c)
1

ic
,

and note the recursive relationship

ft(i− 1) =

(
1−

(
2

i

)c)
ic

(i− 1)c
· ft(i). (7)

Our goal is now to show that ft(t) ≤ 1
tc for the base case, and given ft(i) ≤ 1

tc then ft(i− 1) ≤ 1
tc for the inductive step.

Base case. Observe that ft(t) = 1
tc , so the inequality immediately holds.

Inductive step. We now move to the inductive step, where by our previous relationship (7) and the inductive hypothesis

ft(i− 1) =

(
1−

(
2

i

)c)
ic

(i− 1)c
· ft(i)

≤
(

ic − 2c

(i− 1)c

)
1

tc

≤ 1

tc
,

proving the desired result.

Lemma E.5. For t ≥ 2 and c ∈ [0, 1],
t∑

i=2

t∏
j=i+1

(
1−

(
2

j

)c)
1

ic
≤ 1

2c
.

Proof. We prove the statement by induction on t ≥ 2.

Setting up the induction. Let

Xt :=

t∑
i=2

t∏
j=i+1

(
1−

(
2

j

)c)
1

ic
,

and note the recursive relationship

Xt =

(
1−

(
2

t

)c)
Xt−1 +

1

tc
. (8)

We already know that X2 = 2−c for the base case, so it remains to show that if Xt ≤ 2−c, then Xt+1 ≤ 2−c.

Inductive step. We now move to the inductive step where, by our previous relationship (8) and the inductive hypothesis

Xt+1 =

(
1−

(
2

t+ 1

)c)
Xt +

1

(t+ 1)c

≤
(
1−

(
2

t+ 1

)c)
1

2c
+

1

(t+ 1)c

≤ 1

2c
,

proving the desired result.
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Lemma E.6. For t ≥ 1 and c ∈ [0, 1],
t∑

i=2

t∏
j=i+1

(
1−

(
2

j

)c)
1

i2c
≤ 1

tc
.

Proof. We prove the statement by induction on t ≥ 1.

Setting up the induction. Let

Xt :=

t∑
i=2

t∏
j=i+1

(
1−

(
2

j

)c)
1

i2c
,

and note the recursive relationship

Xt =

(
1−

(
2

t

)c)
Xt−1 +

1

t2c
. (9)

We already know that X1 = 0 ≤ 1 for the base case, so our goal is to show that if Xt−1 ≤ (t− 1)−c then Xt ≤ t−c.

Inductive step. For t ≥ 2, using the recursive relationship (9) and the inductive hypothesis,

Xt ≤
(
1−

(
2

t

)c)
1

(t− 1)c
+

1

t2c
≤
(
tc − 2c + 1

(t− 1)c

)
1

tc
.

We now define g(t) := tc − (t − 1)c and note that g′(t) = c(tc−1 − (t − 1)c−1) ≤ 0 so g(t) is decreasing with
g(t) ≤ g(2) = 2c − 1, and

Xt ≤
(
tc − (t− 1)c − 2c + 1

(t− 1)c
+ 1

)
1

tc
=

(
g(t)− 2c + 1

(t− 1)c
+ 1

)
1

tc
≤ 1

tc
,

proving the desired result.

Lemma E.7. For t ≥ 1 and c ∈ [0, 1],

t∑
i=2

t∏
j=i+1

(
1−

(
2

j

)c)2
1

i3c
≤ 1

t2c
.

Proof. We prove the statement by induction on t ≥ 1.

Setting up the induction. Let

Xt :=

t∑
i=2

t∏
j=i+1

(
1−

(
2

j

)c)2
1

i3c
,

and note the recursive relationship

Xt =

(
1−

(
2

t

)c)2

Xt−1 +
1

t3c
. (10)

We already know that X1 = 0 ≤ 1 for the base case so our goal is to show that if Xt ≤ (t− 1)−2c then Xt ≤ t−2c.

Inductive step. For t ≥ 2, using the recursive relationship (10) and the inductive hypothesis,

Xt ≤
(
1−

(
2

t

)c)2
1

(t− 1)2c
+

1

t3c
=

1

t2c

((
tc − 2c

(t− 1)c

)2

+
1

tc

)
.
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We now recall from the last step of the proof of Lemma E.6 that

0 ≤ tc − 2c

(t− 1)c
≤ 1− 1

(t− 1)c
≤ 1,

so that
(

tc−2c

(t−1)c

)2
≤ tc−2c

(t−1)c and

Xt ≤
1

t2c

(
1− 1

(t− 1)c
+

1

tc

)
≤ 1

t2c
,

proving the desired result.

Lemma E.8. For any t ≥ 3, τ ∈ [t− 2] and c ∈ [0, 1]

Qt,τ =

t−τ∑
i=2

∣∣∣∣∣∣
t∏

j=i+1

(
1−

(
2

j

)c)
1

ic
−

t∏
j=i+τ+1

(
1−

(
2

j

)c)
1

(i+ τ)c

∣∣∣∣∣∣ ≤ 3τ

tc

Proof. Note that

Qt,τ =

t−τ∑
i=2

t∏
j=i+τ+1

(
1− 2c

jc

)
1

(i+ τ)c

∣∣∣∣∣∣1−
i+τ∏

j=i+1

(
1− 2c

jc

)
(i+ τ)c

ic

∣∣∣∣∣∣ ,
so applying Lemma E.9,

Qt,τ ≤
t−τ∑
i=2

t∏
j=i+τ+1

(
1− 2c

jc

)
3τ

(i+ τ)2c
.

We finally note that

Qt,τ ≤
t∑

i=2+τ

t∏
j=i+1

(
1− 2c

jc

)
3τ

i2c

≤
t∑

i=2

t∏
j=i+1

(
1− 2c

jc

)
3τ

i2c
.

and applying the bound in Lemma E.6,

Qt,τ ≤
3τ

tc
.

Lemma E.9. For any t ≥ 2 and τ ≥ 1,∣∣∣∣∣1−
t+τ∏

i=t+1

(
1− 2c

ic

)
(t+ τ)c

tc

∣∣∣∣∣ ≤ 3τ

(t+ τ)c
.

Proof. For every t ≥ 2 we will use induction on τ ≥ 1 to show that the stated bound holds.
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Setting up the induction. Note that we can express

Rt,τ =

t+τ∏
i=t+1

(
1− 2c

ic

)
(t+ τ)c

tc
,

using the telescoping product

(t+ τ)c

tc
=

t+τ∏
i=t+1

ic

(i− 1)c
,

so that

Rt,τ =

t+τ∏
i=t+1

(
1− 2c

ic

)(
1 +

1

i− 1

)c

.

We will now show that for any t ≥ 2, then |1 − Rt,1| ≤ 3
(t+1)c for the base case, and if |1 − Rt,τ | ≤ 3τ

(t+τ)c then

|1−Rt,τ+1| ≤ 3(τ+1)
(t+τ+1)c for the inductive step.

Base case. For the base case with τ = 1, observe that

1−Rt,1 = 1−
(
1 +

1

t

)c

+
2c

tc
,

so we can argue that

1−Rt,1 ≤
2c

tc
=

(t+ 1)c

tc
· 2c

(t+ 1)c
≤ 3

(t+ 1)c
,

and

Rt,1 − 1 ≤
(
1 +

1

t

)c

− 1 ≤ c

t
≤ 2c

tc
≤ 3

(t+ 1)c
.

This implies that the condition holds for the base case since

|1−Rt,1| ≤
3

(t+ 1)c
.

Inductive step. We now move to the inductive step and note that

1−Rt,τ+1 =

[
1− (t+ τ + 1)c − 2c

(t+ τ)c

]
+

(t+ τ + 1)c − 2c

(t+ τ)c
[1−Rt,τ ] ,

and by the triangle inequality

|1−Rt,τ+1| ≤
∣∣∣∣1− (t+ τ + 1)c − 2c

(t+ τ)c

∣∣∣∣+ (t+ τ + 1)c − 2c

(t+ τ)c
|1−Rt,τ |.

Focusing on the first term we can apply the same logic as before to conclude that

1− (t+ τ + 1)c − 2c

(t+ τ)c
≤ 2c

(t+ τ)c
,

and

(t+ τ + 1)c − 2c

(t+ τ)c
− 1 ≤ c

t+ τ
≤ 2c

(t+ τ)c
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or equivalently ∣∣∣∣1− (t+ τ + 1)c − 2c

(t+ τ)c

∣∣∣∣ ≤ 2c

(t+ τ)c
.

We now let gt+τ (c) be as defined in Lemma E.10 and use the inductive hypothesis on the second term to conclude that

|1−Rt,τ+1| ≤
2c

(t+ τ)c
+

(
(t+ τ + 1)c − 2c

(t+ τ)c

)
3τ

(t+ τ)c

=

(
t+ τ + 1

t+ τ

)c
2c

(t+ τ + 1)c
+ gt+τ (c) ·

3τ

(t+ τ + 1)c
.

We now apply Lemma E.10 to conclude that

|1−Rt,τ+1| ≤
3

(t+ τ + 1)c
+

3τ

(t+ τ + 1)c

≤ 3(τ + 1)

(t+ τ + 1)c
,

proving the desired result.

Lemma E.10. For u ≥ 3 and c ∈ [1/2, 1] the function

gu(c) :=

(
(u+ 1)c − 2c

uc

)(
u+ 1

u

)c

,

satisfies gu(c) ≤ gu(1) ≤ 1.

Proof. By computation we find that the derivative of our function at c ∈ [1/2, 1] is

g′u(c) =
(u+ 1)c

u2c

(
2(u+ 1)c log

[
u+ 1

u

]
− 2c log

[
2(u+ 1)

u2

])
.

Note that since u ≥ 3 we have u+1
u > 1 and 2(u+1)

u2 ≤ 8
9 < 1, so that for any u, g′u(c) > 0 and the function gu(c) is

increasing. Therefore, for any u,

gu(c) ≤ gu(1) =
(u+ 1)2 − 2(u+ 1)

u2
= 1− 1

u2
≤ 1.
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