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Abstract

Diffusion models are commonly interpreted as learning the score function, i.e.,
the gradient of the log-density of noisy data. However, this assumption implies
that the target of learning is a conservative vector field, which is not enforced by
the neural network architectures used in practice. We present numerical evidence
that trained diffusion networks violate both integral and differential constraints
required of true score functions, demonstrating that the learned vector fields are
not conservative. Despite this, the models perform remarkably well as generative
mechanisms. To explain this apparent paradox, we advocate a new theoretical
perspective: diffusion training is better understood as flow matching to the ve-
locity field of a Wasserstein Gradient Flow (WGF), rather than as score learning
for a reverse-time stochastic differential equation. Under this view, the “proba-
bility flow” arises naturally from the WGF framework, eliminating the need to
invoke reverse-time SDE theory and clarifying why generative sampling remains
successful even when the neural vector field is not a true score. We further show
that non-conservative errors from neural approximation do not necessarily harm
density transport. Our results advocate for adopting the WGF perspective as a
principled, elegant, and theoretically grounded framework for understanding dif-
fusion generative models.

1 Background

Diffusion models are typically described as follows: Given D-dimensional samples x € R” drawn
from a data distribution p, one defines a forward Itd process that gradually corrupts x into noise.
Throilf]ghout this paper, we use the continuous-time Ornstein—Uhlenbeck (OU) process for concrete-
ness

dX, = -X,dt + \/iqu Xo =z ~ po, (D

where each component of W; is a standard Wiener process. The process (I)) converges to a limit-
ing distribution p1., as ¢ — oo, which is an isotropic Gaussian in R”. Because of the choice of
diagonal matrices in the drift and diffusion terms, each component of X; follows the well-studied
one-dimensional OU process.

']16] established the equivalence of the OU process with the discrete-time Denoising Diffusion Probabilistic
Model [10] and the score-based formulation [20]]. This setup is often called “variance-preserving” (VP), though
this term is misleading: for each sample, the variance is not constant over time (which, in most scientific
contexts, is the definition of “preserving”), but grows as v/1 — e—2t. Our analysis extends naturally to the
standard Brownian motion process dX; = dW;, commonly termed “variance-exploding” (VE).
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Equivalently, the forward dynamics can be described in terms of densities. The transition kerneﬂ
p(&,t]C, ) satisfies the Fokker-Planck Equation (FPE):

Oup(&,t|C, s) = Ve[€p(&,tI¢, 8)] + VEp(E,HC, 5), )

with the initial condition p(&,0) = §(§ — z) for each of the drawn samples = ~ g, where J(-)
denotes the Dirac delta distribution.

The modern understanding of diffusion models is grounded in Anderson’s reverse-time theory [2],
which guarantees the existence of a reverse-time It6 process that transforms samples from the simple
distribution pi, back into data-like samples as ¢ : co — 0:

dX, = [X; + 25 (X,, —7)]dT + V2dW,, X_ o0 ~ floo- 3)

Here, we define 7 := —t, 7 : —oo — 0, p(z, t) denotes the forward density with initial distribution
o, 8(&,t) := Ve log p(€,t) € RP is the score function of the corrupted (forward) distribution given
initial distribution p, and dWj is again a multi-dimensional Wiener process. The central training
objective of diffusion models is thus framed as learning the score function s(x, t) [20]. In practice, a
neural network R” x R — RP is used to approximate s(z, t), which is then plugged into (3) during
sampling.

A key point is that the score function has a special mathematical structure: it is a conservative
field. Neural networks used in practice are not constrained to produce conservative vector fields
and, therefore, do not necessarily preserve this structure. This raises the central question of this
study:

Does a trained neural network actually learn a valid score function, or merely a
useful vector field for generative sampling?

1.1 Wasserstein Gradient Flow

Wasserstein Gradient Flow (WGF) originates from the theory of optimal transport (OT), but it has
become increasingly relevant for understanding modern generative models. Here, we provide a brief
overview and refer readers to the classic references [/1,|7] for comprehensive materials.

Recall the forward evolution of the probability density p(z, t) under the FPE (). In their seminal
work, Jordan, Kinderlehrer, and Otto observed that an implicit Euler discretization of the FPE can
be reinterpreted as a variational problem: each timestep corresponds to minimizing a free energy
functional that combines Shannon entropy with a Wasserstein-2 distance penalty [11]. This insight,
known as the JKO scheme, shows that the FPE can be understood as a gradient flow of entropy in
the space of probability measures.

Building on this idea, Otto introduced a formal Riemannian calculus on the space of probability dis-
tributions, demonstrating that the FPE defines a steepest descent in Wasserstein geometry [15]. This
framework—now widely known as Otto calculus—precisely formalizes the notion that probability
densities evolve like particles sliding down an energy landscape, but within the geometry induced by
optimal transport. In addition, Otto also introduced the generalized Liouville equation (GLEﬂ9].
Taken together, the JKO scheme and Otto’s formulation provide the foundation for WGF, unifying
PDE evolution, entropy maximization, and optimal transport. One powerful result of WGF theory
is:

While the sample paths of the diffusion process that FPE describes are fundamen-
tally stochastic, the marginal distributimﬂ of the paths at a specific time, p(+, t), is
identical to the marginal distribution of the trajectories driven by a deterministic
WGE.

2Since the OU process decomposes into D independent one-dimensional processes, the density factorizes
across coordinates: p(§,t | ¢, s) = Hil pi(&i,t| G, 8)

3We distinguish GLE from the “continuity equation”, a term commonly used in the field of OT. We make this
distinction because continuity equations in physics can describe arbitrary conserved quantities (mass, energy,
etc.), but the GLE specifically governs normalized probability density functions.

*p(-, ) is referred to as the marginal distribution because it is only the distribution of X at time ¢. It is a
marginal distribution of the the joint distribution specified the stochastic process, p (¢, , . .. Tty )-
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To see this, let us consider setting the energy functional as the sum of a quadratic potential and the
negative Shannon entropy

2

E{p(,t)} ::/?p(:v,t) dx—i—/p(x,t)logp(m,t) dz. 4)

Here, the first term accounts for the drift/advection and the second for the diffusion in the FPE @)
The idea is to identify the steepest descent direction functions that decrease the energy the most in
the space of probability density functions induced by a deterministic velocity field v(z, t). Applying
d/dt to the energy functional:

d SE{p(,t)} Op(x,1)
&E{p(',t)} = / 6p(£l),t) ot dz,

where the functional variation of E with respect to the density function p can be explicitly computed:

&)

sp(z, ) dp(xt) [/ 5 0p(@,t) +(p+dp)log (p +dp) dz — /p(x,t) log p (z,1) dz
1 2 22
~ m/ [2 + log p(z, 1) + 1} op (1) dz = == +log p(x, ). (6)

In the last two equations, we neglected higher-order O(dp(z,t)) terms (using the asymptotic sym-
bol ~) and applied the normalization condition that the functional perturbation [ dp(z,t)dz = 0
because [ p(z,t)dz =1 = [ (p+ dp) (x,t) dz. Next, inserting GLE [9] (see footnote 3)):

Op (w,1) = =V, - [’U(l}t)p(.%’,t)] ) (N

and the functional variation (6] into (5) leads to
d x?
GEe = =[5 +0(e0] 9. biapte) oo

= /U(J:,t) x4+ Vi logp (z,t)] p(a,t) dz, (8)

where we used integration by parts and assumed vanishing boundary terms. The above equation
can be interpreted as an inner product of the functions v(-,t) and V, log p(-, t) under the measure
p(-,t). Clearly, the velocity field that corresponds to the steepest descent of the energy functional
should align with the opposite direction of V. log(+,t) (up to a global multiplicative constant):

vwer(z, 1) == —x — Vi log p(z,t) = —x — s(z,t). )

The probability distribution of the resulting flow system with the above velocity field evolves under
the GLE:

0]
ap (z,1) = =V - [owar(z, t)p(2,t)] = Vi [(z + Vi log p(z, 1)) p (2, 1)] (10)
which is exactly the FPE (2)) describing the OU.

Song et al. rediscovered the WGF velocity field (9) through manipulating the FPE and noticing
Vep(z,t) = p(a,t) Vy log p(x, t). They used the term “probability flow”, without referencing the
JKO scheme, Otto calculus, and WGF. We believe it is beneficial to point out the origin of this
theoretical framework, given its deeper connection to OT and the variational nature of the diffusion
process.

2 Numerical experiments
We now shift our focus to numerical experiments to verify the central question we have in score-
based generative modeling: Are we learning the score function?

Due to the definition of the score function, s(z,t) := V,log p(x,t), the fundamental theorem of
calculus (or generalized Stokes’ theorem in high dimension) states that the line integral of the score
function along a closed path in the state space has to be equal to zero:

fg(x,t)-dfzo. (11)
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Figure 1: Mechanisms for assessing integral constraints. Illustration of the three mechanisms we
used to construct closed paths for evaluating integral constraints within the high-density regions of
the data distribution.

We will refer to (TI) as the integral constraint. The second constraint, also following directly from
the definition of the score function, states:

0 o
%jsi a—xisj(ac,t), for any pair (i, j) € {1...D}>. (12)

We refer to (I2)) as the differential constraint. Our goal is to numerically investigate wether either of
the constraints are met in trained diffusion models.

('r’t) =

2.1 Models and datasets

To present a minimal working example, we trained a MNIST diffusion model using a lightweight
U-Net implementation. The model is composed of ShuffleNet-style residual bottlenecks and depth-
wise convolutions. The time indices are embedded, passed through an MLP, and added to the feature
maps in each block. It employs simple encoder—decoder blocks with downsampling and upsampling
and skip connections, keeping the model lightweight (around 4 MB). The implementation can be
found at [3]. We used the cosine schedule [[14] and a total discrete time index T = 1000, which
corresponds to observing time-homogeneous OU process (I)) at discrete times [16]

1 f — cos [ F/L+0.008 7
= —5log gy f(R) -—C°S< 1+ 0.008 2)

13)
We also performed the same test with latent diffusion, using a VAE with an 8 x 8 latent space
(implementation based on [|18]]). The diffusion process employs the same network as before but acts
in the latent space of the VAE.

The purpose of this experiment is to enable a comprehensive analysis with tractable computation,
especially for evaluating the differential constraints. The results are presented in the following
sections. We also observed a similar behavior for the CIFAR-10 dataset (Appendix [4.2).

2.2 Integral constraints

To numerically check the integral constraint (IT)), we introduce three different mechanisms for gen-
erating closed paths on which the integral is evaluated:

* Brownian path. Starting from a corrupted sample x; € R” generated by the forward diffusion,
we perform a random walk on R” using a Brownian bridge, which generates a path in R” starting
and ending at ;. The path of Brownian bridge is XB8 = W,, — uW¢; /U with a fictitious time
u € [0,U). We choose U = 9, uniformly sample 1,000 discrete time steps in between, and add
the resulting path to a forward sample z;, i.€., Y,.s = 7; + XEB. This method does not guarantee
that the path stays close to the the typical region induced by the forward process, as illustrated in
Fig.[I](a). We include this path as a way to study the behavior of out-of-distribution samples.

* Rotation path. Following the typical application of image corruption process, the corrupted
sample z; = xge~ ! + /1 —e~2tg, where ¢ ~ N (0,1). We randomly pair each of the D
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Figure 2: Results of integral and differential constraints, as functions of discrete time index k: a)
shows the absolute value of the integral condition § Sy - dZ; b) presents the same quantity but for the
latent dynamics; c) reports the differential condition |0;,s; — 5‘96]. s;| in normal diffusion; d) shows
the corresponding differential condition in latent diffusion.

components of €, so (g;,¢;) forms a two-dimensional vector. Then, we rotate each of the D /2
two-dimensional vectors with respect to the origin, i.e., €;(u) = cos(27u)e; + sin(2wu)e; and
€%(2mu) = —sin(27u)e; + cos(2mu)e;. Note that we rotate all D /2 pairs with the same “angular
velocity”. The resulting vector is used to generate a closed loop in the z-space, i.€., Y.t = Toe '+
V1 —e=2%'(u), u : 0 — 1. With this construct, the probability density of noise realization &’ (u)
is identical to that of the original noise realization €, ensuring the closed path in the x-space sits
in the region where most of the probability mass is.

* Projection path. We first generate multiple corrupted samples z; from the same initial ¢, then
find a way to connect these points such that the connections lie in the typical set of corrupted
distribution. In order to achieve this, we propose a simple mechanism: to connect two corrupted
samples z; and x}, we first generate points that linearly interpolate between the two samples, and
then project the interpolated points back to the corrupted distribution. Since Gaussian diffusion
in high-dimensional space induces the structure of a thin shell around the clean samples, the
projection can be carried out by projecting the samples radially back to the shell in R”, whose
radius is estimated either through Monte Carlo sampling (which we also know would be ~ /D
from asymptotic analysis). An illustrative schematic diagram is provided in Fig.[T] (c).

Figures[2](a) and (b) show the results of evaluating the integral constraint using these three methods
of generating closed paths. Summary statistics of these distributions are provided in Fig. @ in the
Appendix.

Clearly, the integral condition is not satisfied in the trained neural network. One may argue whether
the magnitude matters to the reverse-time dynamics. To answer this, we notice that the score-induced



149

150
151

152

153
154
155
156

157

158
159
160
161

162
163

164
165
166
167

168
169
170
171
172
173
174

175
176
177
178
179
180
181

182

183
184

185

187
188
189

190
191
192

drift 2s(x, t) is added to a linear term x(¢) in (3); this provides us a non-dimensional quantity:
¢ lgllag -

where 3/ is a dummy vector looping over the generated path. Results of this quantity are presented

in Figs. [5|and [6]in Appendix, showing a significant deviation from 0.

(14)

2.3 Differential constraints

Due to the intensive resources required to compute the full Jacobian matrix, we instead randomly
sample 64 components of the predicted score s(x,t) and 64 components of the corrupted samples
x; to compute a 64 X 64 sub-Jacobian matrix. The statistics were collected from 256 samples for
each time step, and are presented in Fig.|2|(c) and (d), both showing non-zero contributions.

3 Discussion

The numerical evidence clearly suggests that the trained neural network does not learn the score
function, which is a conservative field. However, the trained network can definitely perform the
generative task. The observation raises an interesting question: what is the trained neural network
actually learning in order to perform the generative task?

We here propose a bold hypothesis, leveraging the WGF theory, to understand what happens in the
“score-matching” generative modeling. Our assertion is:

Existing diffusion modeling is better understood as modeling a normalizing flow
[5]], through performing flow matching [12] to the WGF velocity (9), rather than
learning the reverse stochastic differential equation established by [2]], popularized
by [20].

Contrary to typical flow-based models [5] which learn the velocity field by maximizing the end-
to-end likelihood, the flow-matching method [12] matches the neural velocity field to a target ve-
locity field. The target velocity field is often analytically derived for a prescribed transport from
the data distribution to an easy-to-sample distribution (often isotropic Gaussian distribution in high
dimension), and evaluated on sampled training data. Here, we use the WGF induced by the energy
functional (@) as the prescribed transport, and match the velocity field (). More precisely, we only
match the flow induced by the entropic term in ().

There are several advantages to understand the diffusion model as the flow-matching WGF. First, the
“probability flow” is naturally included in the WGF framework. Secondly, we can formally bypass
the necessity to invoke the reverse-time Itd process, which can be confusing and counterintuitive—
as will be seen below, within the WGF and Otto calculus framework, the deterministic probability
flow ODE arises naturally, bypassing the need to explicitly route through Anderson’s reverse-time
SDE. Finally, flow-matching WGF naturally explains why the trained neural flow, which fails to
obey the differential and integral score conditions, can still perform in generative modeling.

To see this, let us illustrate a self-consistent narrative of a flow-matching problem:

1. Optimization objective. Our goal is to learn (9) through flow-matching. We choose to minimize
the L? error between the neural velocity and the entropy-induced velocity field in ()

min By wumit(1,2..7H Banp (1) lvo (- te) — s (- tr)ll, (15)

2. Data generation. Samples to perform Monte Carlo approximation of the above L?-norm will
be drawn from the distribution at time ¢, induced by the energy function (@). Instead of using
the WGF in the forward dynamics, which involves estimating log p in high dimension, we use
the equivalent OU process (1)) to generate sample and more importantly, to compute analytically
exact s(x,t) for matching the neural velocity field.

3. Sampling/Inference. To perform the generative task, terminal samples drawn from the isotropic
Gaussian are transported from ¢ — oo to ¢ = 0 by integrating the ordinary differential equation
backward in time. That is, dz(7)/dT = —vwgr(x(7)) = z(7) + NN(z(7), —7), where 7 = —t,
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so signs flip relative to forward time. z(c0) ~ N (0,1) and 7 : —oo — 0. The corresponding
GLE [9] is

({%p (x,t) = =V, [(x + vo= (z,—7)) p (z,1)], (16)

where 6* stands for the trained neural weights.

Operationally, the above descriptions are identical to applying the “score-matching” for training and
performing “probability flow” for inference [20]. However, because of the deterministic nature of
the WGEF, we would not need to invoke the reverse-time stochastic process [2]. The simplicity is the
first benefit of recognizing the existing approach as a Wasserstein Gradient Flow-Matching problem.

By framing the learning as a flow-matching problem, it is most natural to weight each time equally,
which is the de facto training procedure for both discrete-time [[10] and continuous-time [20] diffu-
sion models. The procedure would seem ad hoc if one aims to parameterize a neural network for
learning the reverse-time diffusion process by a more theoretically grounded log-likelihood (more
precisely, the bound of which) maximization as shown in [19]. As DDPM [10] pointed out, the log-
likelihood approach involved weights which are not uniform in time; by removing such non-uniform
weights, DDPM achieved a better performance by effectively solving a flow-matching problem.

Next, assuming that we learn the WGF perfectly, we can treat the reverse-time WGF as a dynamical
system:

%CE(T) = 2(7) + NN(z(7), —7) = z(7) + V, log(z(7), —7). (17)

This system is identical to a Wasserstein Gradient Flow with the energy functional,
2

E{P('ﬂ')}:—/%p(xn')dx—/p(x,s)logp(xm) dz

2
—— [ Sowna—2 [ o ogp ) dot [ ol ogp@ ) ar (8)

Reverse-time drift Reverse-time diffusion

which is equivalent to the reverse-time Ito process (3). This suggests that we would not need to in-
voke Anderson’s seminal proof of the existence of the reverse diffusion [2]] for generative task. This
justifies the second advantage of the WGF framework. We remark, however, that to rigorously estab-
lish the equivalence of the forward and reverse path measures, Anderson’s theory remains necessary.
Nevertheless, because generative diffusion models only require consistency at the level of marginal
densities, it is not necessary to invoke path measures in practice. We emphasize that our results con-
cern density transport (marginals). We do not make claims about sample-path equivalence, which
requires Anderson’s reverse-time construction. However, the corresponding reverse-time It process
not only can be used as a stochastic process for sampling, but also coincidentally the reverse-time
process established by Anderson [2].

Finally, as suggested by our numerical analysis, the neural network is not learning a gradient of
a scalar potential, i.e. NN(z,t) # s(x,t) for all ¢, both globally (because it violates the integral
conditions) or locally (because it violates the differential conditions.) It is thus puzzling and chal-
lenging to analyze how the violations affect the reverse-time diffusion, and consequently the quality
of the generated samples. The flow representation can bring some insight here. Suppose we use
the trained, yet imperfect neural velocity field NN(z,t) ~ V,logp(x,t). Denote the error by
e(z,t) := s(x,t) — NN(z,t). Then, the GLE governing the distribution driven by the neural veloc-
ity field is

0 0
5-p(@,7) = = == [(@+ NN (2, 7)) p (&, ~7)]
0 0
- % [(:C +s (LC, _T)) p (xv _T)] + % [6(3;'7 —T)p (xv _7)]
0
- % [(£C +s (LC, _T)) P (LC, _T)]
+ [V ez, —7) + 8T (z,—7) - e (2, —7)] p(z, —7). (19)
Immediately, we can identify a condition that if the error field e(x, t) satisfies
0=V, e(x,t)+ s (z,t)-e(z,t), (20)
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Figure 3: a) L2 norm of e(x, t) and b) Stein operator value of e(x, t).

the induced distribution is identical to the true distribution. In other words, if e(x,t) lives in the
null kernel of the operator V,, + sT(x,t), the trained neural network can perfectly perform the
generative task, even if it is not perfectly capturing the score function. We remark that this vector
operator is related to the Stein operator [13]] and is the key construct in several recent papers on
sampling [4][6, 21]|. In Fig. 3] we computed the error field on a trained latent diffusion model using
forward generated samples, showing that indeed a significant e(x, t) is induced (which is of order
102, significant compared to the order 10° of deterministic decaying flow, #(t) = —x(t)), but the
error field is statistically conﬁnecﬂ in the null kernel. This analysis suggests that:

Even when NN(z,t) is not the score function V, logp(x,t), the trained neural
network can still be effective to perform generative modeling.

We remark that this analysis is only possible by recognizing the underlying flow structure. We
humbly acknowledge that we are not the first to propose the equivalence between diffusion and flow
models: Song et al. [20] recognized the “probability flow/ODE” and even suggested density and
likelihood estimation, and very recently, Gao et al. pointed out the resemblance between diffusion
and flow models [8]. Nevertheless, to our best knowledge, there have been no studies connecting
diffusion models and normalizing flow parametrized by flow matching through the elegant theory of
WGF and Otto calculus. The existing theories neither connect the flow operator to the Stein operator
[13]]. Furthermore, the identification of a unified description between the diffusion models and WGF
could inspire new forward random sampling (“‘data generation”) for training and regularizing flow-
based models.

To conclude, we advocate for this theoretical framework because, first, it was developed over 20
years ago, and yet has been largely ignored in the machine learning literature, and second, the setup
is self-consistent, simple, concise, and elegant. We dedicate this work to the pioneers of WGF
theory—Jordan, Kinderlehrer, and Otto—whose foundational insights continue to shape and inspire
cutting-edge machine learning research today.
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Figure 4: (MNIST) Summary statistics of ¢ 5y - dZ calculated by different path-generating mecha-
nisms, in normal and latent diffusions.
s« 4 Appendix

305 We provide more statistics of the non-dimensionalized quantity | ¢ 55dZ|/ ¢ |Z;| - |dZ| (T4), as well
306 as experiment results on the CIFAR-10 dataset.

307 4.1 More numerical results on MNIST
a8 Refer to Figs. @ ]

s00 4.2 Numerical results on CIFAR-10
310 For CIFAR-10, we utilized the models from , it implements the standard DDPM and VAE with

311 latent dimension of 3 X 16 x 16. We also tried training these models from scratch, which exhibits
s12  similar behaviors to the pretrained ones. Results are presented in Figs. [7] [8] B} [T0]
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Figure 5: (MNIST) Results of integral constraints, as functions of discrete time index k: a) shows
the absolute value of the integral condition § Sj - dZ normalized by the path length and the strength
of the deterministic flow, § |Z;||dZ|; b) presents the same quantity but for the latent dynamics.
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Figure 6: (MNIST) Summary statistics of | § S - dZ|/ ¢ |Z;||dZ| calculated by different path-
generating mechanisms, in normal and latent diffusions.
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Figure 10: (CIFAR-10) Summary statistics of | ¢ sy - dZ| § |Z,||dZ| calculated by different path-
generating mechanisms, in normal and latent diffusions.
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