
Are We Really Learning the Score Function?
Reinterpreting Diffusion Models Through

Wasserstein Gradient Flow Matching

Anonymous Author(s)
Affiliation
Address
email

Abstract

Diffusion models are commonly interpreted as learning the score function, i.e.,1

the gradient of the log-density of noisy data. However, this assumption implies2

that the target of learning is a conservative vector field, which is not enforced by3

the neural network architectures used in practice. We present numerical evidence4

that trained diffusion networks violate both integral and differential constraints5

required of true score functions, demonstrating that the learned vector fields are6

not conservative. Despite this, the models perform remarkably well as generative7

mechanisms. To explain this apparent paradox, we advocate a new theoretical8

perspective: diffusion training is better understood as flow matching to the ve-9

locity field of a Wasserstein Gradient Flow (WGF), rather than as score learning10

for a reverse-time stochastic differential equation. Under this view, the “proba-11

bility flow” arises naturally from the WGF framework, eliminating the need to12

invoke reverse-time SDE theory and clarifying why generative sampling remains13

successful even when the neural vector field is not a true score. We further show14

that non-conservative errors from neural approximation do not necessarily harm15

density transport. Our results advocate for adopting the WGF perspective as a16

principled, elegant, and theoretically grounded framework for understanding dif-17

fusion generative models.18

1 Background19

Diffusion models are typically described as follows: Given D-dimensional samples x ∈ RD drawn20

from a data distribution µ0, one defines a forward Itô process that gradually corrupts x into noise.21

Throughout this paper, we use the continuous-time Ornstein–Uhlenbeck (OU) process for concrete-22

ness:123

dXt = −Xt dt+
√
2 dWt, X0 = x ∼ µ0, (1)

where each component of Wt is a standard Wiener process. The process (1) converges to a limit-24

ing distribution µ∞ as t → ∞, which is an isotropic Gaussian in RD. Because of the choice of25

diagonal matrices in the drift and diffusion terms, each component of Xt follows the well-studied26

one-dimensional OU process.27

1[16] established the equivalence of the OU process with the discrete-time Denoising Diffusion Probabilistic
Model [10] and the score-based formulation [20]. This setup is often called “variance-preserving” (VP), though
this term is misleading: for each sample, the variance is not constant over time (which, in most scientific
contexts, is the definition of “preserving”), but grows as

√
1− e−2t. Our analysis extends naturally to the

standard Brownian motion process dXt = dWt, commonly termed “variance-exploding” (VE).

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Equivalently, the forward dynamics can be described in terms of densities. The transition kernel228

ρ(ξ, t|ζ, s) satisfies the Fokker–Planck Equation (FPE):29

∂tρ(ξ, t|ζ, s) = ∇ξ[ξ ρ(ξ, t|ζ, s)] +∇2
ξρ(ξ, t|ζ, s), (2)

with the initial condition ρ(ξ, 0) = δ(ξ − x) for each of the drawn samples x ∼ µ0, where δ(·)30

denotes the Dirac delta distribution.31

The modern understanding of diffusion models is grounded in Anderson’s reverse-time theory [2],32

which guarantees the existence of a reverse-time Itô process that transforms samples from the simple33

distribution µ∞ back into data-like samples as t : ∞ → 0:34

dXτ = [Xτ + 2s (Xτ ,−τ)] dτ +
√
2 dWτ , X−∞ ∼ µ∞. (3)

Here, we define τ := −t, τ : −∞ → 0, ρ(x, t) denotes the forward density with initial distribution35

µ0, s(ξ, t) := ∇ξ log ρ(ξ, t) ∈ RD is the score function of the corrupted (forward) distribution given36

initial distribution µ0, and dWs is again a multi-dimensional Wiener process. The central training37

objective of diffusion models is thus framed as learning the score function s(x, t) [20]. In practice, a38

neural network RD ×R → RD is used to approximate s(x, t), which is then plugged into (3) during39

sampling.40

A key point is that the score function has a special mathematical structure: it is a conservative41

field. Neural networks used in practice are not constrained to produce conservative vector fields42

and, therefore, do not necessarily preserve this structure. This raises the central question of this43

study:44

Does a trained neural network actually learn a valid score function, or merely a45

useful vector field for generative sampling?46

1.1 Wasserstein Gradient Flow47

Wasserstein Gradient Flow (WGF) originates from the theory of optimal transport (OT), but it has48

become increasingly relevant for understanding modern generative models. Here, we provide a brief49

overview and refer readers to the classic references [1, 7] for comprehensive materials.50

Recall the forward evolution of the probability density ρ(x, t) under the FPE (2). In their seminal51

work, Jordan, Kinderlehrer, and Otto observed that an implicit Euler discretization of the FPE can52

be reinterpreted as a variational problem: each timestep corresponds to minimizing a free energy53

functional that combines Shannon entropy with a Wasserstein-2 distance penalty [11]. This insight,54

known as the JKO scheme, shows that the FPE can be understood as a gradient flow of entropy in55

the space of probability measures.56

Building on this idea, Otto introduced a formal Riemannian calculus on the space of probability dis-57

tributions, demonstrating that the FPE defines a steepest descent in Wasserstein geometry [15]. This58

framework—now widely known as Otto calculus—precisely formalizes the notion that probability59

densities evolve like particles sliding down an energy landscape, but within the geometry induced by60

optimal transport. In addition, Otto also introduced the generalized Liouville equation (GLE)3[9].61

Taken together, the JKO scheme and Otto’s formulation provide the foundation for WGF, unifying62

PDE evolution, entropy maximization, and optimal transport. One powerful result of WGF theory63

is:64

While the sample paths of the diffusion process that FPE describes are fundamen-65

tally stochastic, the marginal distribution4 of the paths at a specific time, ρ(·, t), is66

identical to the marginal distribution of the trajectories driven by a deterministic67

WGF.68

2Since the OU process decomposes into D independent one-dimensional processes, the density factorizes
across coordinates: ρ(ξ, t | ζ, s) =

∏D
i=1 ρi(ξi, t | ζi, s)

3We distinguish GLE from the “continuity equation”, a term commonly used in the field of OT. We make this
distinction because continuity equations in physics can describe arbitrary conserved quantities (mass, energy,
etc.), but the GLE specifically governs normalized probability density functions.

4ρ(·, t) is referred to as the marginal distribution because it is only the distribution of Xt at time t. It is a
marginal distribution of the the joint distribution specified the stochastic process, ρ (xt1 , . . . xtN).

2

To see this, let us consider setting the energy functional as the sum of a quadratic potential and the69

negative Shannon entropy70

E {ρ (·, t)} :=

∫
x2

2
ρ (x, t) dx+

∫
ρ (x, t) log ρ (x, t) dx. (4)

Here, the first term accounts for the drift/advection and the second for the diffusion in the FPE (2).71

The idea is to identify the steepest descent direction functions that decrease the energy the most in72

the space of probability density functions induced by a deterministic velocity field v(x, t). Applying73

d/dt to the energy functional:74

d
dt
E {ρ (·, t)} =

∫
δE {ρ (·, t)}
δρ(x, t)

∂ρ (x, t)

∂t
dx, (5)

where the functional variation of E with respect to the density function ρ can be explicitly computed:75

δE {ρ (·, t)}
δρ(x, t)

:=
1

δρ(x, t)

[∫
x2

2
δρ (x, t) + (ρ+ δρ) log (ρ+ δρ) dx−

∫
ρ (x, t) log ρ (x, t) dx

]
∼ 1

δρ(x, t)

∫ [
x2

2
+ log ρ(x, t) + 1

]
δρ (x, t) dx =

x2

2
+ log ρ(x, t). (6)

In the last two equations, we neglected higher-order O(δρ(x, t)) terms (using the asymptotic sym-76

bol ∼) and applied the normalization condition that the functional perturbation
∫
δρ(x, t) dx = 077

because
∫
ρ(x, t) dx = 1 =

∫
(ρ+ δρ) (x, t) dx. Next, inserting GLE [9] (see footnote 3):78

∂tρ (x, t) = −∇x · [v(x, t)ρ(x, t)] , (7)

and the functional variation (6) into (5) leads to79

d
dt
E {ρ (·, t)} = −

∫ [
x2

2
+ log ρ (x, t)

]
∇x · [v(x, t)ρ(x, t)] dx

=

∫
v(x, t) · [x+∇x log ρ (x, t)] ρ(x, t) dx, (8)

where we used integration by parts and assumed vanishing boundary terms. The above equation80

can be interpreted as an inner product of the functions v(·, t) and ∇x log ρ(·, t) under the measure81

ρ(·, t). Clearly, the velocity field that corresponds to the steepest descent of the energy functional82

should align with the opposite direction of ∇x log(·, t) (up to a global multiplicative constant):83

vWGF(x, t) := −x−∇x log ρ(x, t) = −x− s(x, t). (9)

The probability distribution of the resulting flow system with the above velocity field evolves under84

the GLE:85

∂

∂t
ρ (x, t) = −∇x · [vWGF(x, t)ρ(x, t)] = ∇x [(x+∇x log ρ(x, t)) ρ (x, t)] , (10)

which is exactly the FPE (2) describing the OU.86

Song et al. rediscovered the WGF velocity field (9) through manipulating the FPE and noticing87

∇xρ(x, t) = ρ(x, t)∇x log ρ(x, t). They used the term “probability flow”, without referencing the88

JKO scheme, Otto calculus, and WGF. We believe it is beneficial to point out the origin of this89

theoretical framework, given its deeper connection to OT and the variational nature of the diffusion90

process.91

2 Numerical experiments92

We now shift our focus to numerical experiments to verify the central question we have in score-93

based generative modeling: Are we learning the score function?94

Due to the definition of the score function, s(x, t) := ∇x log ρ(x, t), the fundamental theorem of95

calculus (or generalized Stokes’ theorem in high dimension) states that the line integral of the score96

function along a closed path in the state space has to be equal to zero:97 ∮
s⃗(x, t) · dx⃗ = 0. (11)

3

Figure 1: Mechanisms for assessing integral constraints. Illustration of the three mechanisms we
used to construct closed paths for evaluating integral constraints within the high-density regions of
the data distribution.

We will refer to (11) as the integral constraint. The second constraint, also following directly from98

the definition of the score function, states:99

∂

∂xj
si(x, t) =

∂

∂xi
sj(x, t), for any pair (i, j) ∈ {1 . . . D}2 . (12)

We refer to (12) as the differential constraint. Our goal is to numerically investigate wether either of100

the constraints are met in trained diffusion models.101

2.1 Models and datasets102

To present a minimal working example, we trained a MNIST diffusion model using a lightweight103

U-Net implementation. The model is composed of ShuffleNet-style residual bottlenecks and depth-104

wise convolutions. The time indices are embedded, passed through an MLP, and added to the feature105

maps in each block. It employs simple encoder–decoder blocks with downsampling and upsampling106

and skip connections, keeping the model lightweight (around 4 MB). The implementation can be107

found at [3]. We used the cosine schedule [14] and a total discrete time index T = 1000, which108

corresponds to observing time-homogeneous OU process (1) at discrete times [16]109

tk = −1

2
log

f(k)

f(0)
, f(k) := cos

(
k/T + 0.008

1 + 0.008

π

2

)
(13)

We also performed the same test with latent diffusion, using a VAE with an 8 × 8 latent space110

(implementation based on [18]). The diffusion process employs the same network as before but acts111

in the latent space of the VAE.112

The purpose of this experiment is to enable a comprehensive analysis with tractable computation,113

especially for evaluating the differential constraints. The results are presented in the following114

sections. We also observed a similar behavior for the CIFAR-10 dataset (Appendix 4.2).115

2.2 Integral constraints116

To numerically check the integral constraint (11), we introduce three different mechanisms for gen-117

erating closed paths on which the integral is evaluated:118

• Brownian path. Starting from a corrupted sample xt ∈ RD generated by the forward diffusion,119

we perform a random walk on RD using a Brownian bridge, which generates a path in RD starting120

and ending at xt. The path of Brownian bridge is XBB
u = Wu − uWU/U with a fictitious time121

u ∈ [0, U). We choose U = 9, uniformly sample 1,000 discrete time steps in between, and add122

the resulting path to a forward sample xt, i.e., yu;t = xt +XBB
u . This method does not guarantee123

that the path stays close to the the typical region induced by the forward process, as illustrated in124

Fig. 1 (a). We include this path as a way to study the behavior of out-of-distribution samples.125

• Rotation path. Following the typical application of image corruption process, the corrupted126

sample xt = x0e
−t +

√
1− e−2tε, where ε ∼ N (0, I). We randomly pair each of the D127

4

Figure 2: Results of integral and differential constraints, as functions of discrete time index k: a)
shows the absolute value of the integral condition

∮
s⃗θ ·dx⃗; b) presents the same quantity but for the

latent dynamics; c) reports the differential condition |∂xisj − ∂xjsi| in normal diffusion; d) shows
the corresponding differential condition in latent diffusion.

components of ε, so (εi, εj) forms a two-dimensional vector. Then, we rotate each of the D/2128

two-dimensional vectors with respect to the origin, i.e., ε′i(u) = cos(2πu)εi + sin(2πu)εj and129

ε′j(2πu) = − sin(2πu)εi+cos(2πu)εj . Note that we rotate all D/2 pairs with the same “angular130

velocity”. The resulting vector is used to generate a closed loop in the x-space, i.e., yu;t = x0e
−t+131 √

1− e−2tε′(u), u : 0 → 1. With this construct, the probability density of noise realization ε′(u)132

is identical to that of the original noise realization ε, ensuring the closed path in the x-space sits133

in the region where most of the probability mass is.134

• Projection path. We first generate multiple corrupted samples xt from the same initial x0, then135

find a way to connect these points such that the connections lie in the typical set of corrupted136

distribution. In order to achieve this, we propose a simple mechanism: to connect two corrupted137

samples xt and x′
t, we first generate points that linearly interpolate between the two samples, and138

then project the interpolated points back to the corrupted distribution. Since Gaussian diffusion139

in high-dimensional space induces the structure of a thin shell around the clean samples, the140

projection can be carried out by projecting the samples radially back to the shell in RD, whose141

radius is estimated either through Monte Carlo sampling (which we also know would be ≈
√
D142

from asymptotic analysis). An illustrative schematic diagram is provided in Fig. 1 (c).143

Figures 2 (a) and (b) show the results of evaluating the integral constraint using these three methods144

of generating closed paths. Summary statistics of these distributions are provided in Fig. 4 in the145

Appendix.146

Clearly, the integral condition is not satisfied in the trained neural network. One may argue whether147

the magnitude matters to the reverse-time dynamics. To answer this, we notice that the score-induced148

5

drift 2s(x, t) is added to a linear term x(t) in (3); this provides us a non-dimensional quantity:149

2
∮
s⃗(y⃗, t) · dy⃗∮
|y⃗| |dy⃗|

, (14)

where y⃗ is a dummy vector looping over the generated path. Results of this quantity are presented150

in Figs. 5 and 6 in Appendix, showing a significant deviation from 0.151

2.3 Differential constraints152

Due to the intensive resources required to compute the full Jacobian matrix, we instead randomly153

sample 64 components of the predicted score s(x, t) and 64 components of the corrupted samples154

xt to compute a 64 × 64 sub-Jacobian matrix. The statistics were collected from 256 samples for155

each time step, and are presented in Fig. 2 (c) and (d), both showing non-zero contributions.156

3 Discussion157

The numerical evidence clearly suggests that the trained neural network does not learn the score158

function, which is a conservative field. However, the trained network can definitely perform the159

generative task. The observation raises an interesting question: what is the trained neural network160

actually learning in order to perform the generative task?161

We here propose a bold hypothesis, leveraging the WGF theory, to understand what happens in the162

“score-matching” generative modeling. Our assertion is:163

Existing diffusion modeling is better understood as modeling a normalizing flow164

[5], through performing flow matching [12] to the WGF velocity (9), rather than165

learning the reverse stochastic differential equation established by [2], popularized166

by [20].167

Contrary to typical flow-based models [5] which learn the velocity field by maximizing the end-168

to-end likelihood, the flow-matching method [12] matches the neural velocity field to a target ve-169

locity field. The target velocity field is often analytically derived for a prescribed transport from170

the data distribution to an easy-to-sample distribution (often isotropic Gaussian distribution in high171

dimension), and evaluated on sampled training data. Here, we use the WGF induced by the energy172

functional (4) as the prescribed transport, and match the velocity field (9). More precisely, we only173

match the flow induced by the entropic term in (4).174

There are several advantages to understand the diffusion model as the flow-matching WGF. First, the175

“probability flow” is naturally included in the WGF framework. Secondly, we can formally bypass176

the necessity to invoke the reverse-time Itô process, which can be confusing and counterintuitive—177

as will be seen below, within the WGF and Otto calculus framework, the deterministic probability178

flow ODE arises naturally, bypassing the need to explicitly route through Anderson’s reverse-time179

SDE. Finally, flow-matching WGF naturally explains why the trained neural flow, which fails to180

obey the differential and integral score conditions, can still perform in generative modeling.181

To see this, let us illustrate a self-consistent narrative of a flow-matching problem:182

1. Optimization objective. Our goal is to learn (9) through flow-matching. We choose to minimize183

the L2 error between the neural velocity and the entropy-induced velocity field in (9)184

min
θ

Ek∼Unif({1,2...T})Ex∼ρ(·,t) ∥vθ(·, tk)− s (·, tk)∥2 (15)

2. Data generation. Samples to perform Monte Carlo approximation of the above L2-norm will185

be drawn from the distribution at time t, induced by the energy function (4). Instead of using186

the WGF in the forward dynamics, which involves estimating log ρ in high dimension, we use187

the equivalent OU process (1) to generate sample and more importantly, to compute analytically188

exact s(x, t) for matching the neural velocity field.189

3. Sampling/Inference. To perform the generative task, terminal samples drawn from the isotropic190

Gaussian are transported from t → ∞ to t = 0 by integrating the ordinary differential equation191

backward in time. That is, dx(τ)/dτ = −vWGF(x(τ)) = x(τ) + NN(x(τ),−τ), where τ ≡ −t,192

6

so signs flip relative to forward time. x(∞) ∼ N (0, I) and τ : −∞ → 0. The corresponding193

GLE [9] is194

∂

∂τ
ρ (x, t) = −∇x [(x+ vθ∗ (x,−τ)) ρ (x, t)] , (16)

where θ∗ stands for the trained neural weights.195

Operationally, the above descriptions are identical to applying the “score-matching” for training and196

performing “probability flow” for inference [20]. However, because of the deterministic nature of197

the WGF, we would not need to invoke the reverse-time stochastic process [2]. The simplicity is the198

first benefit of recognizing the existing approach as a Wasserstein Gradient Flow-Matching problem.199

By framing the learning as a flow-matching problem, it is most natural to weight each time equally,200

which is the de facto training procedure for both discrete-time [10] and continuous-time [20] diffu-201

sion models. The procedure would seem ad hoc if one aims to parameterize a neural network for202

learning the reverse-time diffusion process by a more theoretically grounded log-likelihood (more203

precisely, the bound of which) maximization as shown in [19]. As DDPM [10] pointed out, the log-204

likelihood approach involved weights which are not uniform in time; by removing such non-uniform205

weights, DDPM achieved a better performance by effectively solving a flow-matching problem.206

Next, assuming that we learn the WGF perfectly, we can treat the reverse-time WGF as a dynamical207

system:208

d
dτ

x(τ) = x(τ) + NN(x(τ),−τ) = x(τ) +∇x log(x(τ),−τ). (17)

This system is identical to a Wasserstein Gradient Flow with the energy functional,209

E {ρ (·, τ)} = −
∫

x2

2
ρ (x, τ) dx−

∫
ρ (x, s) log ρ (x, τ) dx

= −
∫

x2

2
ρ (x, τ) dx− 2

∫
ρ (x, τ) log ρ (x, τ) dx︸ ︷︷ ︸

Reverse-time drift

+

∫
ρ (x, τ) log ρ (x, τ) dx︸ ︷︷ ︸

Reverse-time diffusion

(18)

which is equivalent to the reverse-time Itô process (3). This suggests that we would not need to in-210

voke Anderson’s seminal proof of the existence of the reverse diffusion [2] for generative task. This211

justifies the second advantage of the WGF framework. We remark, however, that to rigorously estab-212

lish the equivalence of the forward and reverse path measures, Anderson’s theory remains necessary.213

Nevertheless, because generative diffusion models only require consistency at the level of marginal214

densities, it is not necessary to invoke path measures in practice. We emphasize that our results con-215

cern density transport (marginals). We do not make claims about sample-path equivalence, which216

requires Anderson’s reverse-time construction. However, the corresponding reverse-time Itô process217

not only can be used as a stochastic process for sampling, but also coincidentally the reverse-time218

process established by Anderson [2].219

Finally, as suggested by our numerical analysis, the neural network is not learning a gradient of220

a scalar potential, i.e. NN(x, t) ̸= s(x, t) for all t, both globally (because it violates the integral221

conditions) or locally (because it violates the differential conditions.) It is thus puzzling and chal-222

lenging to analyze how the violations affect the reverse-time diffusion, and consequently the quality223

of the generated samples. The flow representation can bring some insight here. Suppose we use224

the trained, yet imperfect neural velocity field NN(x, t) ≈ ∇x log ρ(x, t). Denote the error by225

e(x, t) := s(x, t)− NN(x, t). Then, the GLE governing the distribution driven by the neural veloc-226

ity field is227

∂

∂τ
ρ(x, τ) = − ∂

∂x
[(x+ NN (x,−τ)) ρ (x,−τ)]

= − ∂

∂x
[(x+ s (x,−τ)) ρ (x,−τ)] +

∂

∂x
[e(x,−τ)ρ (x,−τ)]

= − ∂

∂x
[(x+ s (x,−τ)) ρ (x,−τ)]

+
[
∇x · e(x,−τ) + sT (x,−τ) · e (x,−τ)

]
ρ(x,−τ). (19)

Immediately, we can identify a condition that if the error field e(x, t) satisfies228

0 = ∇x · e(x, t) + sT (x, t) · e (x, t) , (20)

7

Figure 3: a) L2 norm of e(x, t) and b) Stein operator value of e(x, t).

the induced distribution is identical to the true distribution. In other words, if e(x, t) lives in the229

null kernel of the operator ∇x + sT (x, t), the trained neural network can perfectly perform the230

generative task, even if it is not perfectly capturing the score function. We remark that this vector231

operator is related to the Stein operator [13] and is the key construct in several recent papers on232

sampling [4, 6, 21]. In Fig. 3, we computed the error field on a trained latent diffusion model using233

forward generated samples, showing that indeed a significant e(x, t) is induced (which is of order234

102, significant compared to the order 100 of deterministic decaying flow, ẋ(t) = −x(t)), but the235

error field is statistically confined5 in the null kernel. This analysis suggests that:236

Even when NN(x, t) is not the score function ∇x log p(x, t), the trained neural237

network can still be effective to perform generative modeling.238

We remark that this analysis is only possible by recognizing the underlying flow structure. We239

humbly acknowledge that we are not the first to propose the equivalence between diffusion and flow240

models: Song et al. [20] recognized the “probability flow/ODE” and even suggested density and241

likelihood estimation, and very recently, Gao et al. pointed out the resemblance between diffusion242

and flow models [8]. Nevertheless, to our best knowledge, there have been no studies connecting243

diffusion models and normalizing flow parametrized by flow matching through the elegant theory of244

WGF and Otto calculus. The existing theories neither connect the flow operator to the Stein operator245

[13]. Furthermore, the identification of a unified description between the diffusion models and WGF246

could inspire new forward random sampling (“data generation”) for training and regularizing flow-247

based models.248

To conclude, we advocate for this theoretical framework because, first, it was developed over 20249

years ago, and yet has been largely ignored in the machine learning literature, and second, the setup250

is self-consistent, simple, concise, and elegant. We dedicate this work to the pioneers of WGF251

theory—Jordan, Kinderlehrer, and Otto—whose foundational insights continue to shape and inspire252

cutting-edge machine learning research today.253

References254

[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows: In Metric Spaces and255

in the Space of Probability Measures. 2nd ed. Basel: Birkhäuser, 2008. ISBN: 978-3-7643-256

8722-8.257

[2] Brian D.O. Anderson. “Reverse-time diffusion equation models”. en. In: Stochastic Processes258

and their Applications 12.3 (May 1982), pp. 313–326. ISSN: 03044149. DOI: 10.1016/259

0304-4149(82)90051-5.260

[3] bot66. MNISTDiffusion: Implement a MNIST (also minimal) version of denoising diffusion261

probabilistic model from scratch. https://github.com/bot66/MNISTDiffusion. 2022.262

5We averaged over 256 randomly generated forward samples xt. For each sample, the sufficient condition
does not seem to be met but the average seems to agree, noting the significant variance for small k.

8

https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.1016/0304-4149(82)90051-5
https://github.com/bot66/MNISTDiffusion

[4] Peng Chen and Omar Ghattas. Projected Stein Variational Gradient Descent. June 2020.263

arXiv: 2002.03469 [cs].264

[5] Ricky T. Q. Chen et al. Neural Ordinary Differential Equations. Dec. 2019. arXiv: 1806.265

07366 [cs, stat].266

[6] Mingzhou Fan et al. “Path-Guided Particle-based Sampling”. In: Proceedings of the 41st267

International Conference on Machine Learning. PMLR, July 2024, pp. 12916–12934.268

[7] Alessio Figalli and Federico Glaudo. An Invitation to Optimal Transport, Wasserstein Dis-269

tances, and Gradient Flows. Second edition. Berlin, Germany: EMS Press, 2023. ISBN: 978-270

3-98547-550-6.271

[8] Ruiqi Gao et al. “Diffusion Models and Gaussian Flow Matching: Two Sides of the Same272

Coin”. In: The Fourth Blogpost Track at ICLR 2025. Feb. 2025.273

[9] G. Gerlich. “Die verallgemeinerte Liouville-Gleichung”. en. In: Physica 69.2 (Nov. 1973),274

pp. 458–466. ISSN: 0031-8914. DOI: 10.1016/0031-8914(73)90083-9.275

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models.276

Dec. 16, 2020. arXiv: 2006.11239 [cs, stat].277

[11] Richard Jordan, David Kinderlehrer, and Felix Otto. “The Variational Formulation of the278

Fokker–Planck Equation”. In: SIAM Journal on Mathematical Analysis 29.1 (Jan. 1998),279

pp. 1–17. ISSN: 0036-1410. DOI: 10.1137/S0036141096303359.280

[12] Yaron Lipman et al. “Flow Matching for Generative Modeling”. en. In: Sept. 2022. URL:281

https://openreview.net/forum?id=PqvMRDCJT9t.282

[13] Qiang Liu and Dilin Wang. “Stein Variational Gradient Descent: A General Purpose Bayesian283

Inference Algorithm”. In: Advances in Neural Information Processing Systems. Ed. by D. Lee284

et al. Vol. 29. Curran Associates, Inc., 2016.285

[14] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models.286

Feb. 18, 2021. arXiv: 2102.09672 [cs, stat].287

[15] Felix Otto. “The Geometry of Dissipative Evolution Equations: The Porous Medium Equa-288

tion”. In: Communications in Partial Differential Equations 26.1-2 (2001), pp. 101–174. DOI:289

10.1081/PDE-100002243.290

[16] Javier E. Santos and Yen Ting Lin. Understanding Denoising Diffusion Probabilistic Models291

and their Noise Schedules via the Ornstein–Uhlenbeck Process. Oct. 2023. arXiv: 2311.292

17673 [stat,cond-mat, cs,math-ph].293

[17] Won Seong. Simple Latent Diffusion Model. https : / / huggingface . co / spaces /294

JuyeopDang/KoFace-AI. 2024.295

[18] sksq96. A CNN Variational Autoencoder in PyTorch. https://github.com/sksq96/296

pytorch-vae/blob/master/vae.py. 2018.297

[19] Jascha Sohl-Dickstein et al. Deep Unsupervised Learning Using Nonequilibrium Thermody-298

namics. Nov. 18, 2015. arXiv: 1503.03585 [cond-mat, q-bio, stat].299

[20] Yang Song et al. Score-Based Generative Modeling through Stochastic Differential Equa-300

tions. Comment: ICLR 2021 (Oral). Feb. 10, 2021. arXiv: 2011.13456 [cs, stat].301

[21] Yifeng Tian, Nishant Panda, and Yen Ting Lin. “Liouville Flow Importance Sampler”. In:302

Forty-First International Conference on Machine Learning. June 2024.303

9

https://arxiv.org/abs/2002.03469
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://arxiv.org/abs/1806.07366
https://doi.org/10.1016/0031-8914(73)90083-9
https://arxiv.org/abs/2006.11239
https://doi.org/10.1137/S0036141096303359
https://openreview.net/forum?id=PqvMRDCJT9t
https://arxiv.org/abs/2102.09672
https://doi.org/10.1081/PDE-100002243
https://arxiv.org/abs/2311.17673
https://arxiv.org/abs/2311.17673
https://arxiv.org/abs/2311.17673
https://huggingface.co/spaces/JuyeopDang/KoFace-AI
https://huggingface.co/spaces/JuyeopDang/KoFace-AI
https://huggingface.co/spaces/JuyeopDang/KoFace-AI
https://github.com/sksq96/pytorch-vae/blob/master/vae.py
https://github.com/sksq96/pytorch-vae/blob/master/vae.py
https://github.com/sksq96/pytorch-vae/blob/master/vae.py
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2011.13456

Figure 4: (MNIST) Summary statistics of
∮
s⃗θ · dx⃗ calculated by different path-generating mecha-

nisms, in normal and latent diffusions.

4 Appendix304

We provide more statistics of the non-dimensionalized quantity |
∮
s⃗θdx⃗|/

∮
|x⃗t| · |dx⃗| (14), as well305

as experiment results on the CIFAR-10 dataset.306

4.1 More numerical results on MNIST307

Refer to Figs. 4, 5, 6.308

4.2 Numerical results on CIFAR-10309

For CIFAR-10, we utilized the models from [17], it implements the standard DDPM and VAE with310

latent dimension of 3 × 16 × 16. We also tried training these models from scratch, which exhibits311

similar behaviors to the pretrained ones. Results are presented in Figs. 7, 8, 9, 10.312

10

Figure 5: (MNIST) Results of integral constraints, as functions of discrete time index k: a) shows
the absolute value of the integral condition

∮
s⃗θ · dx⃗ normalized by the path length and the strength

of the deterministic flow,
∮
|x⃗t||dx⃗|; b) presents the same quantity but for the latent dynamics.

Figure 6: (MNIST) Summary statistics of |
∮
s⃗θ · dx⃗|/

∮
|x⃗t||dx⃗| calculated by different path-

generating mechanisms, in normal and latent diffusions.

11

Figure 7: (CIFAR-10) Results of integral and differential constraints, as functions of discrete time
index k: a) shows the absolute value of the integral condition

∮
s⃗θ ·dx⃗; b) presents the same quantity

but for the latent dynamics; c) reports the differential condition |∂xi
sj − ∂xj

si| in normal diffusion;
d) shows the corresponding differential condition in latent diffusion.

12

Figure 8: (CIFAR-10) Summary statistics of
∮
s⃗θ ·dx⃗ calculated by different path-generating mech-

anisms, in normal and latent diffusions.

Figure 9: (CIFAR-10) Results of integral constraints, as functions of discrete time index k: a) shows
the absolute value of the integral condition

∮
s⃗θ · dx⃗ normalized by the path length and the strength

of the deterministic flow,
∮
|x⃗t||dx⃗|; b) presents the same quantity but for the latent dynamics.

13

Figure 10: (CIFAR-10) Summary statistics of |
∮
s⃗θ · dx⃗|

∮
|x⃗t||dx⃗| calculated by different path-

generating mechanisms, in normal and latent diffusions.

14

	Background
	Wasserstein Gradient Flow

	Numerical experiments
	Models and datasets
	Integral constraints
	Differential constraints

	Discussion
	Appendix
	More numerical results on MNIST
	Numerical results on CIFAR-10

